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Abstract
Truck platooning enabled by connected automated vehicle (CAV) technology has been demonstrated to effectively reduce
fuel consumption for trucks in a platoon. However, given the limited number of trucks in the traffic stream, it remains ques-
tionable how great an energy saving it may yield for a practical freight system if we only rely on ad-hoc platooning. Assuming
the presence of a central platooning coordinator, this paper is offered to substantiate truck platooning benefits in fuel econ-
omy produced by exploiting platooning opportunities arising from the United States’ domestic truck demands on its highway
freight network. An integer programming model is utilized to schedule trucks’ itineraries to facilitate the formation of pla-
toons at platoonable locations to maximize energy savings. A simplification of the real freight network and an approximation
algorithm are used to solve the model efficiently. By analyzing the numerical results obtained, this study quantifies the impor-
tance of scheduled platooning in improving trucks’ fuel economy. Furthermore, the allowable platoon size, schedule flexibility,
and fuel efficiency all play a crucial role in energy savings. Specifically, by assuming that following vehicles in a platoon obtain a
10% energy reduction, an average energy reduction of 8.48% per truck can be achieved for the overall network if the maxi-
mum platoon size is seven, and the schedule flexibility is 30min. The cost–benefit analysis provided at the end suggests that
the energy-saving benefits can offset the investment cost in truck platooning technology.

Truck platooning is likely to be one of the first applica-
tions of the burgeoning connected and automated vehicle
(CAV) technology. Compared with passenger vehicles,
commercial trucks are operated more frequently and the
trucking industry is more regulated, making truck pla-
toons comparably easier to form and manage. Truck pla-
tooning is promising in yielding significant energy-saving
benefits from the aerodynamic drag reduction when trucks
are driving closely together. A few pioneer projects have
been conducted to test automated truck platooning in
closed testing environments (1). Experimental studies have
shown that fuel savings for the following vehicles in a pla-
toon formation vary from 5% to 13%, depending on
speed and intra-platoon headway (2). Therefore, truck
platooning could lead to a substantial amount of cost sav-
ings for the trucking industry, in which fuel consumption
dominates at around 30% of the total operating cost (3).

Nevertheless, compared with the results obtained in
closed test-track experiments, actual energy savings from
truck platooning on real highways remain to be seen, as

they depend on, among other things, platooning oppor-
tunities, which can be scarce if the truck traffic volume
and the market penetration of the platooning technology
are low. The dissimilarity of trucks’ departure time
choices and routing decisions limits the availability of
platooning partners for individual trucks. It is thus criti-
cal to conduct empirical analyses to reveal, when consid-
ering practical limitations, how great an energy saving
ad-hoc truck platooning can yield and how much

1Intelligent Transportation Thrust, Systems Hub, The Hong Kong

University of Science and Technology, Guangzhou, China
2Department of Mechanical Engineering, University of Michigan, Ann Arbor,

MI
3Department of Civil and Environmental Engineering, University of

Michigan, Ann Arbor, MI
4Department of Civil, Materials and Environmental Engineering, University

of Illinois at Chicago, Chicago, IL

Corresponding Author:

Yafeng Yin, yafeng@umich.edu

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981211031231
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03611981211031231&domain=pdf&date_stamp=2021-08-03


difference coordination or scheduling can make. As early
adopters of platooning technology, trucking companies
or truck owners will naturally wonder about its energy-
saving potential during their operations. For policy-
makers, such empirical analyses can help them better
understand the key factors that fully reap the potentials
of truck platooning, allowing them to form policies that
facilitate the deployment of this technology.

Previous studies have investigated the energy-saving
potentials of truck platooning in large-scale traffic net-
works from two perspectives. The first delves into the
current truck speed profile or trajectory data to quantify
the platooning opportunities (4–6). These studies essen-
tially examine the ad-hoc platooning opportunities and
fail to consider the potential of platoon planning. The
second provides platoon planning schemes that maximize
fuel savings through optimization tools (7). While many
of these studies demonstrate the performance of their
proposed mathematical models through numerical exam-
ples, they fail to bring practical insights to the overall
potential because their examples are not based on empiri-
cal data from real systems. This paper is among the first
wave of studies incorporating real-world data with a
mathematical programming model to offer a holistic
understanding of this issue from the planning perspec-
tive. Specifically, we examine truck platooning’s energy-
saving potentials in the U.S. national highway freight
system by considering both the nation-wide truck travel-
ing demand and the existing roadway infrastructures’
feasibility for platooning. The demand data and network
topology are retrieved from the comprehensive database
offered in the Freight Analysis Framework version 4
(FAF4) produced by the Bureau of Transportation
Statistics and Federal Highway Administration (8). In
addition to ad-hoc platooning, we investigate scheduled
platooning by adapting a platoon path planning model
proposed by Abdolmaleki et al. (9), which assumes that a
central controller is responsible for scheduling the itiner-
aries of all trucks. With the origin and destination (OD)
and the time window of each truck, the model optimizes
trucks’ itineraries, namely, assigning trucks with proper
paths, travel speeds, and departure times, to create more
platooning opportunities to maximize the total energy
savings, without violating the travel windows of individ-
ual trucks.

The challenge of conducting this empirical study lies
in solving the platoon path planning model in such a
large-scale network with heavy traffic demands. Being a
concave minimization problem, its computational time
increases exponentially with the size of the network and
the number of vehicles in the network. Data processing
is first conducted to ease the computational burden by
providing the clustered truck demands and a simplified
topological representation of the U.S. national roadway

network. Trips from 363,570 trucks in 18,891 OD pairs
with an average trip distance of 630mi are considered in
the planning model. An approximation algorithm is then
implemented to accelerate the computation. A compara-
tive discussion of model results is provided, suggesting
that itinerary planning is the pivotal component that
improves platooning opportunities and thus increases
overall energy savings. We further conduct analysis to
identify the impacts on energy savings of a set of control-
lable variables, including platoon size, schedule flexibil-
ity, and trip distance. Finally, a cost–benefit analysis is
conducted, which shows that the energy-saving benefits
are promising to offset the technology cost.

The remainder is organized as follows. The second
section reviews the pertinent literature. The third section,
‘‘Data Processing,’’ describes the data processing for gen-
erating the network topology and truck OD demands,
which are the input data for the platoon path planing
model introduced in the fourth section, ‘‘The Itinerary
Planning Model.’’ The subsequent section introduces the
solution algorithms and the tuning of parameters.
Results and discussions are provided in the sixth section,
and the final section concludes the study and points out
future research directions.

Literature Review

Several previous studies have estimated the energy-saving
potentials of using a data-driven approach. However, as
the estimation method, data source, and study area vary,
there is no universal understanding. Muratori et al. uti-
lized the speed profiles of 200 Class 8 vehicles contained
in the Fleet DNA Data (10) to estimate ‘‘platoonable
miles’’ in the U.S., which are defined as the fraction of
vehicle miles traveled (VMT) that are amenable for pla-
tooning operation (5). As the Fleet DNA Data do not
contain spatial–temporal information of vehicle jour-
neys, the researchers assumed that if the travel speed is
more than 50mph for more than 15min, the miles are
platoonable. As a result, 65.6% of the total 3,170,079
VMT are platoonable, leading to a 6% reduction in over-
all energy consumption. Comparatively, Liang et al. used
the trajectory data of 1,733 heavy-duty vehicles (HDVs)
to examine the platooning possibilities of two HDVs in a
region of Europe (4). They found that by assuming that
the two HDVs are capable of platooning if their distance
is no greater than 100m on the same road, only 1.21%
of VMT are platoonable.

Another stream of research has discussed the path
planning issue for truck platooning. The planning
schemes can be distinguished by whether trucks’ travel
paths are fixed or flexible. In the former, the planner
only changes trucks’ speeds and drivers’ resting duration
to platoon nearby trucks. The latter also allows the
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planner to alter travel paths to create more platooning
opportunities. While some optimization models have
been developed (7), available empirical studies tend to
apply simple criteria when making scheduling decisions,
perhaps because of the computational difficulty of imple-
menting these models in large-scale, realistic instances,
especially when vehicle trajectory data are used (4, 6, 11).
For instance, Liang et al. showed that when allowing an
HDV to coordinate with another partner within 20 km
on the same path by changing its departure time, at most
10.76% VMT are platoonable (4). A similar study was
conducted by Lammert et al., who used the trajectory
data from over 57,000 Class 8 HDVs that traveled more
than 210million miles in the U.S. (6). The authors
assumed that a vehicle is platoonable if it is traveling at
at least 50mph, and there is at least one potential partner
within a 15-mi radius and a 15-min travel time window.
With this assumption, they concluded that 55.7% of the
VMT are platoonable. Though not explicitly discussed in
this paper, the consideration of travel radius essentially
allows rerouting, generating a much more promising
result than that in Liang et al. (4).

Trajectory data are usually hard to collect and access.
As a result, latent platooning opportunities in the planning
horizon may not be explored by the trajectory data col-
lected. Therefore, some other studies perform platoon
planning schemes on OD demand data to estimate the
energy-saving potentials. These studies usually assign
truck demands with fixed paths using traffic assignment
models first, then pair nearby trucks to platoons by chang-
ing vehicle speed, departure time, and rest duration. The
truck OD demand data of several European countries,
including Portugal (11), Netherlands (12), and Germany
(13), have been utilized. Among them, only Larsen et al.
utilized an optimization model (13) for the Germany case.

In summary, empirical studies based on itinerary opti-
mization are limited. This implies that the potential of
scheduling itineraries to facilitate truck platooning has
not been fully explored for realistic networks. Therefore,
this paper fills the void by investigating the energy-saving
potentials of truck platooning in the U.S. using an opti-
mization approach. Like many other studies, we use the
energy-saving percentage as a crucial performance mea-
sure of the estimated potential. The concept of platoon-
able miles is another performance measure that has been
frequently used in previous studies. Nevertheless, as our
paper considers two or more trucks platooning together,
one platoonable mile may be contributed by either a
two-vehicle platoon or an n -vehicle platoon with nø 3.
As the number of vehicles in the platoon matters to the
energy savings achieved, the energy-saving percentage is
not a one-to-one correspondence of the platoonable
miles. Thus it is excluded as a performance measure in
this paper.

Data Processing

For the empirical analysis, we perform two tasks in the
data processing. In the first task, we use the geospatial
data from the FAF 4 database to generate an abstract
graph representing the U.S. national highway freight sys-
tem where truck platoons travel. Geospatial data in the
FAF 4 network data are mainly derived from the
Highway Performance Monitoring System (HPMS), but
also contain state primary and secondary roads, the
National Highway System (NHS), the national network
(NN), and several intermodal connectors as appropriate
for the freight network modeling. The network consists
of over 446,142mi of equivalent road mileage covering
the contiguous states plus the District of Columbia,
Alaska, and Hawaii (Figure 1a). In the abstract graph,
each edge or link represents a road, and each node repre-
sents an intersection of two roads or the origin/destina-
tion of the trucks. Each origin/destination can represent
one or more counties. An edge’s weight represents
trucks’ average travel time on the road segment, deter-
mined by its capacity, average travel flow, and speed
limit.

The second task produces hourly truck OD demands.
FAF4 is built on Commodity Flow Survey data and
incorporates other international trade data from the
Census Bureau to provide an overall understanding of
U.S. freight movements. It coarsely divides the whole

Figure 1. Geospatial data in the Freight Analysis Framework
version 4 (FAF 4): (a) FAF 4 roadway data and (b) FAF 4 zones.
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country into 132 FAF zones, of which 129 are located in
the contigious U.S. (Figure 1b). The original data con-
tain the annual truck tonnage, monetary value, and ton-
miles by commodities between each pair of zones in the
base year 2012, and in forecast years 2020–2045 in 5-year
intervals. To obtain the truck flow, we follow the
approach used in Noruzoliaee et al. (14), which converts
the annual truck tonnage to the equivalent annual truck
flow by the loaded trucks between FAF zones and fur-
ther disaggregates it into annual loaded truck trips
between counties. The empty truck factor is then intro-
duced to estimate the empty truck flows and the associ-
ated total OD truck flows at the county level. To be
consistent with the nodes in our abstract graph, we fur-
ther aggregate OD truck flows at the county level, gener-
ating the hourly truck flows from an origin node to a
destination node accordingly. These numbers will be
used as the truck OD demand for our mathematical
program.

Network Topology

The geospatial data in FAF 4 are derived from the
HPMS over 446,142mi of roads consisting of 670,427
roadway links, most of which have low speed and are
not capable of accommodating platoonable vehicles
(Figure 1a)(Table 1). Therefore, only the links that
belong to higher functional classes, such as those in the
Interstate highway system (IHS) and the national freight
network, and local principal arterials, are selected. In
addition, we focus only on the contiguous states for
domestic truck demands and therefore disregard road-
ways in Hawaii and Alaska. The first round of selection
leads to a simplified network with 11,576 roadways,
shown in Figure 2a, where all counties are marked out as
well.

In the simplified network, the east part of the country
has a much denser roadway network than the west, and
roads in metropolitan areas are much denser than those
in the rural areas. Albeit realistic, it creates computa-
tional difficulty for solving the platoon path planning
problem. A more evenly spaced abstract network of the
contiguous states needs to be constructed.

The construction of the final abstract graph mainly
repeats the following three steps: county clustering,

roadway combination, and network cleaning. We imple-
ment a clustering algorithm named DENCLUE (15) to
cluster nearby counties into larger regions. In the 20-mi
radius from each cluster center, local roads are removed,
and roadways that are close to each other are further
combined into artificial roadways with higher capacities
to simplify the network topology while maintaining its
connectivity (Figure 3). The last step cleans the network
by removing geometric data errors from the original data
and those isolated, short, and unused roadways, yielding
a fully connected graph. For example, in the areas
around Los Angeles and San Diego (Figure 4), roadways

Table 1. Comparison between the Original Physical Network and the Abstract Graph

County/region Nodes Edges Mileage

FAF 4 network 3,108 na 670,472 446,142
The abstract graph 445 934 1,237 68,981

Note: FAF4 = Freight Analysis Framework version 4 (8); na = not applicable.

Figure 2. Physical network reconstruction: (a) the simplified
network after road selection and (b) the abstract graph of the
roadway network.
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that are not on any routes of any OD pairs are disre-
garded. As a result, the final abstract graph contains
1,237 links and 934 nodes, of which 445 are centers of
the county clusters (regions) (Figure 2b) (Table 1). The
total length of all links is 68,981mi, while 2.3% of the
mileage belongs to artificial roadways.

For each edge e in the abstract graph, we use its aver-
age travel time to represent its weight, which is the ratio
of the road length l(e) to a prevailing speed vf (e). The
prevailing speed is calculated as per the following equa-
tion (14):

vf (e)=
0:88vp(e)+ 14, if vp(e).50mph,
0:79vp(e)+ 12, if vp(e)ł 50mph:

�

Speed limit vp(e) is provided in the original data. If the
edge is constructed by combining several physical roads,
their average speed limit is applied.

Truck Demand Generation

We select five truck classes (‘‘tractor plus semitrailer
combination’’ configuration with types of ‘‘dry van,’’
‘‘platform,’’ ‘‘reefer,’’ ‘‘livestock,’’ and ‘‘automobile’’) out
of 45 different truck classes contained in FAF 4 as the
platoonable trucks. Their traffic volume is aggregated
into platoonable OD truck flow between FAF zones,
which occupies 38.1% of total truck flow in the U.S.

We apply the following disaggregation equation to
convert the truck demands between FAF zones to those
between counties:

fi, j =FI , J 3 pi3 aj ð1Þ

The equation follows the proportional weighting method,
which has been applied in previous studies that also
adopt the FAF database (14, 16, 17). In this equation,
truck flow from FAF zone I to FAF zone J is represented
by FI , J , and that from county i, located in zone I to
county j, located in zone J, is represented by fi, j. The pro-
duction factor pi is represented by the ratio of the
employment number in county i to that in zone I while
the attraction factor ai is the ratio of population in
county j to that in zone J.

To be consistent with regions in the abstract graph,
we further aggregate the county-level truck OD demands
into region-level truck OD demands. Daily truck
demands are generated by evenly distributing the annual
truck demands into 365days. To produce hourly truck
demands, we assume that a truck only departs during the
daytime from 7:00 a.m. to 5:00 p.m. at their origin’s local
time. We use a K-factor of 0.11 for peak hours

Figure 3. County cluster and roadway combination: (a) before
and (b) after.

Figure 4. County cluster and network cleaning: (a) before and (b) after.
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(7:00 a.m.–10:00 a.m., 3:00 p.m. to 5:00 p.m.) and 0.09 for
off-peak hours to generate the hourly truck demands.
With such a treatment, we essentially assume that the
generation of truck demands follows a stationary and
recurrent pattern. As a result, 81.3% of all platoonable
truck volumes, which include 363,570 trucks in 18,891
OD pairs, are used as the inputs to the platoon path
planning model introduced below.

The Itinerary Planning Model

In this model, it is assumed that each truck reports its
OD and travel window, specified by its earliest departure
and latest arrival time, to a central controller before its
departure. Therefore, trucks’ trip schedules are known a
priori. The controller aims to determine the itinerary for
each truck to facilitate platooning and minimize the total
energy consumption. Each itinerary will specify depar-
ture time, route, and speed choices at links along the
route. We formulate the itinerary planning problem on a
time-expanded network, denoted as G(N , L), constructed
based on the original ‘‘physical’’ network and a given
planning horizon. In doing so, we discretize the continu-
ous time horizon into time intervals, and create a virtual
node at each time interval t for each physical node s.
Therefore, a virtual node is represented by a two-tuple
(t, s). For each truck, a spatial–temporal link l 2 L will
be created to connect two virtual nodes, say,
(ti, si), (tj, sj) 2 N , if the truck can travel from a physical
location si at time ti to another physical location sj at a
later time tj by using the physical link (si, sj) and follow-
ing a certain speed, which belongs to a set of discrete fea-
sible speeds at the link (si, sj) (we discretize its speed
range into a set of disjoint intervals). In this sense, the
time difference tj � ti can be more than one time interval
and could be longer than the minimum time required to
traverse the physical link (si, sj), depending on the speed
a truck follows. This procedure yields a time-expanded
network that contains all feasible itineraries for each
truck to traverse the physical network. A pre-processing
procedure is then applied to refine the time-expanded
network by eliminating disconnected virtual nodes and
infeasible links (i.e., links that would make it impossible
for a truck to complete its trip within its travel window).

Note that an itinerary for truck k 2 K, specifying its
departure time, and physical route and speed choices at
each physical link, corresponds to a path in the time-
expanded network for which the starting node is
nok =(TED

k ,O(k)) and the ending node is ndk =(TLA
k ,D(k))

where TED
k is the earliest departure time of truck k and

TLA
k is its latest arrival time; O(k) and D(k) are the origin

and destination of truck k respectively. If two trucks
appear at the same spatial–temporal link, it means that
they travel on the same physical link at the same time with

the same speed, thereby becoming platooning partners
and saving energy via platooning. Considering the exis-
tence of multiple vehicle classes denoted by a set C, we
use ycl to indicate the number of vehicles in class c 2 C on
the spatial–temporal link l, and the vector Yl to denote the
number of vehicles in all classes on that link. Therefore,
fl(Yl) represents the overall fuel consumption on link l,
which is an increasing function of the number of vehicles
on the link. The model we present below is rather flexible
in accommodating various fuel consumption functions
and many vehicle classes. However, considering the
decreasing trend of marginal energy consumption with an
increase in platoon size, we assume the function fl is a
jointly concave function. That is to say, fl is concave for
each of its dependent variable ycl , 8c 2 C. This concavity
assumption of platoon energy consumption is consistent
with findings of previous studies and field experiments.

With the above consideration, the itinerary planning
problem is equivalent to the problem of finding a path
for each individual truck in the time-expanded network
such that the summation of link energy consumption fl
over all links l 2 L, is minimized. The problem can be for-
mulated as follows:

Min z=
X
l2L

fl(Yl) ð2aÞ

s:t:
X

l=(ti, si, t, s) 2 L

xkl �
X

l=(t, s, tj, sj) 2 L

xkl = dkt, s,

ð2bÞ
8(t, s) 2 N ð2cÞ

ycl =
X
k2Kc

xkl , 81ł cłC, 8l 2 L ð2dÞ

xkl 2 0, 1f g, 8k 2 K, 8l 2 L ð2eÞ

where

dkt, s =
�1 If s=O(k) ; t= TED

k

1 If s=D(k) ; t= TLA
k

0 Otherwise

8<
: ð2fÞ

In the above, the objective 2a is to minimize the total
energy consumption. Constraint 2b ensures flow conser-
vation for each truck k, where the binary decision vari-
able xkl is defined to take the value 1 if truck k traverses
the spatial–temporal link l and 0 otherwise. Constraint
2d defines ycl as the sum of trucks of class c passing
through link l. Finally, constraint 2e specifies the deci-
sion variable xkl to be binary.

The Solution Algorithm

As formulated, the mathematical program 2 belongs to
the family of multi-commodity network flow problems
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with a concave objective function. For a large-scale net-
work with enormous input demand, it is mathematically
intractable to find the exact solution efficiently so that
an approximation algorithm is applied. For this empiri-
cal study, we simply assume that all trucks are in the
same class. Therefore, the fuel consumption under pla-
tooning, denoted as fl, is only a function of the total
number of vehicles on that link. Without loss of general-
ity, we can also assume that the amount of energy sav-
ings under platooning, denoted as dl, increases with the
number of vehicles.

There are two stages in the solution algorithm
(Figure 5). In the first stage, we generate a subgraph Gk

for each vehicle k. Subgraph Gk contains all energy
‘‘shortest’’ paths from node nok to node ndk . One can fur-
ther prove that any path connecting node nok and node ndk
in Gk is the shortest path. If no planning is performed,
truck k would naturally select any of the paths in Gk .
Supposing that the itinerary planning only adjusts truck
k’s path within Gk , truck k’s energy consumption will
not be increased by the planning if no platoon is formed.
In this way, the objective of minimizing the total fuel
consumption (Equation 2a) is equivalent to another
objective of maximizing the total fuel savings:

min
X
l

fl(Yl) , max
X
l

dl(Yl)

With this understanding, the second stage initially
loads each truck to all its energy ‘‘shortest’’ paths within
its travel time window found in the first stage, which
contributes to a weighted subgraph of G(N , L) composed
of the joint set of all subgraphs Gk , 8k 2 K. We denote
this weighted subgraph as G0 for simplification. Next, we
repeat the following two steps. The first step finds the
path with the greatest energy savings in G0 connecting its
source node and its sink node, which we denote as ‘‘the

longest path.’’ This can be done by finding the shortest
path of the graph with the opposite link weights of G0,
using any shortest-path algorithms. The second step
reroutes all vehicles to travel on the intersecting parts of
the longest path and their subgraphs. We then simplify
the subgraph G0 by eliminating links in Gk that are infea-
sible for vehicle k to travel after the rerouting, and
decreasing the weights of the used links by the number
of vehicles on it. We repeat these two steps until the
longest path has a total weight of zero, resulting in the
itineraries for all trucks. The algorithm has a jKj -approx
guarantee of optimality. More detailed explanations can
be found in Abdolmaleki et al. (9).

The Rolling Horizon Scheme

To construct the time-expanded network, we adopt a 3-
day planning horizon as all trips can be finished within
72 h if no rest hours in the middle of the trips are consid-
ered. More specifically, if we use 7:00 a.m., the earliest
departure time of all trucks, as the initial time in the
time-expanded network, 92.0% of the daily trips end on
the first day, 6.6% of the trips end on the second day,
and 1.4% of them end on the third day (Figure 6). We
then use their end time as the latest arrival time to gener-
ate the travel windows. We further assume a single time
interval in the time-expanded network to be 1 h, resulting
in a network with 112,567 links and 85,930 nodes.
Because when we explore platooning opportunities in the
second day, most trucks have finished their trips in the
first day, using only the daily demands as model inputs
will lead to an underestimated result. Therefore, a rolling
horizon approach is adopted; as shown in Figure 7, a
new set of demands will be loaded into the network after

Figure 5. Illustration of the algorithm.

Figure 6. Distribution of freight demands by the trip end time.
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a 1-day interval. All the analyses in the ‘‘Results and
Discussions’’ section are based on the third day’s result,
which represents a steady state condition.

Monte-Carlo Simulation

One-hour resolution in the time-expanded network may
be too coarse to consolidate truck platoons. It suggests
that trucks traveling on a physical link from time 0:00
can platoon with those traveling from time 0:59, leading
to an overestimation of energy savings. As a remedy, we
apply the Monte-Carlo simulation approach to generate
each truck’s departure time in minutes by using a uni-
form distribution and introducing the concept of sched-
ule flexibility, which defines the maximum departure
time difference which still allows two trucks to platoon
together, when they traverse the same spatial–temporal
link. We consider three types of schedule flexibility—
10min, 15min, and 30min—in this study. For instance,
if the schedule flexibility is 10min, trucks departing from
a link at 0:00 can only platoon with those which depart
no later than 0:10.

Other Parameters

We first assume that the fuel consumption is a piece-wise
linear function formulated as

fl(m)= (m� a(m� 1))f0, 8l 2 L,m= minfN , ng

This function indicates that in a platoon with size m, the
leading vehicle obtains no energy savings while all the
following vehicles receive the same energy consumption
reduction. We assume the reduction rate a to be 0.1, a
reasonable value that is also used in other studies (18).
The platoon size is the smaller value of n, the number of

vehicles available on the spatial–temporal link l, and N ,
the maximum platoon size permitted. Presumably, a pla-
toon cannot be infinitely long. Here, we assume that the
maximum platoon size varies from two to seven.

For other parameters listed in Table 2, the average
fuel efficiency with the unit of miles per gallon and the
average annual truck tractor miles until replacement
come from Murray and Glidewell (3). The range of fuel
prices and the average fuel price can be found from the
website of the U.S. Energy Information Administration
(19). The range of technology cost is estimated by the
National Traffic Safety Administration (20).

Results and Discussions

To indicate the effectiveness of scheduled platooning
from the itinerary planning model, we provide another
scenario named ad-hoc platooning as the benchmark.
Under the benchmark scenario, each truck randomly
selects one of its shortest paths with an equal probability.
As no central controller is available to consolidate nearby
trucks into platoons, we assume that a truck can only
platoon with another if their departure time difference on
each spatial–temporal link is no greater than 1min. As
trucks’ average speed is around 70mph, this assumption
suggests that the distance between two platoonable
trucks is approximately 1mi, which is optimistic as this
distance is beyond the visual range and the communica-
tion range of vehicle-to-vehicle communication (21).
Therefore, our study leads to an overestimation for the
ad-hoc platooning compared with the 100-m criterion
used in the previous research (4).

Network-Level Potentials

With the generated truck itineraries, the spatial distribu-
tion of the total daily flow on the U.S. national highway
freight network is presented in Figure 8a. One can tell
that the truck movements in the Great Lakes area, east
coast from Boston to Washington D.C., are relatively

Figure 7. Illustration of the rolling horizon scheme.

Table 2. Key Parameters in the Empirical Study

Parameter Value

Fuel efficiency 6.4mpg
a 0.1
Maximum platoon size 2;7
Fuel price range $ 2.152/gal ; $3.365/gal
Average fuel price $ 2.850/gal
Average annual truck tractor
miles until replacement

700,000mi

Average number of years
until replacement

7

Technology cost $ 4,000 ; $ 12,000
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busier than other parts of the country. Figure 8b presents
the daily energy savings per road when the maximum pla-
toon size is seven, showing a similar trend to the spatial
distribution of truck flows in Figure 8a.

The average energy-saving percentages under different
maximum platoon sizes are presented in Figure 9. The
percentage increases with the maximum platoon size

under both scheduled and ad-hoc platooning scenarios.
However, the marginal increase of the former scenario is
much larger than that under the latter one. On average,
the energy-saving percentage achieved by scheduled pla-
tooning is at least one and a half times as large as that in
ad-hoc platooning. However, the increment to savings
from a greater schedule flexibility is marginal. Table 3
provides the exact values of energy-saving percentages.

Figure 10 illustrates the platoon size distributions over
spatial–temporal links and the average platoon size
under both scheduled and ad-hoc platooning, with maxi-
mum platoon size being two and seven, respectively.
Compared with ad-hoc platooning, scheduled platooning
has a larger platoon size on average. It shows that the
itinerary planning indeed creates more platooning oppor-
tunities. Besides, the average platoon size under ad-hoc
platooning is only 1.5 when the maximum platoon size is
seven. It implies that there is no need to impose a maxi-
mum platoon size if no planning is performed, as ad-hoc
platooning does not generate long platoons that inter-
rupt the normal traffic flows.

OD-based Performance

Figure 11 plots the relationship between energy-saving
potentials and the trip distance per OD pair. The left
panel shows the absolute values of energy-saving

Figure 8. Scheduled truck platooning over the U.S. highway freight network: (a) total daily flow under the itinerary planning and
(b) energy savings with N= 7 under the itinerary planning.

Table 3. Total Energy-Saving Percentage to Maximum Platoon Size

Max platoon size 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%)

Scheduled: 30min 4.90 6.52 7.34 7.82 8.15 8.38
Scheduled: 15min 4.80 6.40 7.19 7.67 7.98 8.20
Scheduled: 10min 4.72 6.29 7.06 7.52 7.82 8.04
Ad-hoc 3.23 4.16 4.54 4.73 4.83 4.89

Figure 9. Total energy-saving percentage to maximum platoon
size.
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percentage, while the right panel shows the energy-saving
percentage increments compared with those under ad-
hoc platooning. Based on the trip distance, we further

categorize all OD pairs into seven disjoint classes, with
each class holding an interval of 500mi. For each class,
the mean value, maximum value, minimum value, and

Figure 10. Average platoon length per hour per link: (a) N= 2 and (b) N= 7.

Figure 11. Energy-saving percentage to trip distance, N= 7: (a) absolute energy-saving under scheduled platooning and (b) increment
from ad-hoc platooning to scheduled platooning.

Table 4. Energy-Saving Percentage to Trip Distance

Miles (0, 500) (500, 1000) (1000, 1500) (1500, 2000) (2000, 2500) (2500, 3000) (3000, 3500)

Absolute energy-saving percentage
Mean 8.18 8.28 8.31 8.26 8.36 8.47 8.48
Max 8.57 8.56 8.55 8.54 8.54 8.54 8.48
Min 0 0 2.18 4.23 5.89 7.39 8.48
Std 0.86 0.54 0.41 0.47 0.28 0.10 0
Energy-saving percentage increment
Mean 3.73 3.74 4.24 4.77 4.65 4.00 4.34
Max 8.29 07.94 7.62 7.44 6.98 6.56 4.34
Min 21.45 0 0.79 1.37 1.86 1.87 4.34
Std 1.70 1.44 1.27 1.10 0.94 0.85 0

Note: max = maximum; min = minimum; std = standard deviation.
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standard deviation of absolute energy-saving percentages
and energy-saving percentage increments are listed in
Table 4. It can be seen that all trips benefit from truck
platooning regardless of the travel distance. Nevertheless,
the longer distance the trip has, the higher the average
energy-saving percentage it can receive. Furthermore,
shorter trips have larger variances in energy savings than
longer trips. In sum, the longer the trip is, the more likely
it is that it can benefit from nation-wide planning.

Individual Owner’s Perspective

Individual truck owners care about the profits if adopt-
ing the technology. Therefore, we conduct a set of
cost–benefit analyses in this subsection. We first check
break-even mileage, which is the mileage that a truck tra-
vels under platooning when the monetary value of energy
savings offsets the technology cost. We assume that the
technology cost is $12,000, the gas price is $2.850/gal, the
driving years before replacement are 7 years (Table 2),
and the inflation rate is 1.8% (22). Table 5 lists the
break-even miles under both scheduled platooning with a
10-min schedule flexibility and ad-hoc platooning, when
the maximum platoon sizes varying from two to seven.
The results from scheduled platooning are foreseeable,
while those from ad-hoc platooning are more promising
than expected. One reason is that the U.S. truck demand
is very large, so that platooning opportunities appear suf-
ficient if the market penetration of the technology is

100%. Assume that the platooning technology is imple-
mented in the truck tractors whose average driving mile-
age until the replacement is 700,000mi (Table 2). If the
maximum platoon size is two, a truck owner cannot
recover her technology cost by energy savings under ad-
hoc platooning. Nevertheless, either by introducing
scheduled platooning or by increasing the maximum pla-
toon size, a truck owner can recover her technology cost
before vehicle replacement.

However, one can see that the exact values of break-
even miles largely depend on the technology cost, which,
however, is ambiguous at the technology’s infant stage.
Thus, we further provide the break-even price, which can
be viewed as the net present value of the energy-saving
benefits under the given driving miles, gas price, and
maximum platoon size. Figure 12a shows that when the
maximum platoon size is fixed to be two, the break-even
price increases with the increase of driving miles and gas
price. Here, we assume that the driving miles before the
replacement vary from 500,000mi to 1,000,000mi, and
the gas price changes from $2/gal to $4/gal. Still, the driv-
ing years before replacement are 7 years and the inflation
rate is 1.8%. The maximum and minimum of the break-
even price are $27,994 and $6,998, respectively. Similarly,
Figure 12b presents the variation of break-even price to
the driving miles and the maximum platoon size with gas
price $2.85/gal. In this case, the break-even price varies
from $9,727 to $33,946. As truck owners will be willing
to purchase the platooning technology only if the cost is

Table 5. Break-Even Miles of Truck Platooning Technology ($12,000 per Truck)

Max platoon size 2 3 4 5 6 7

Scheduled: 10min 601,640 452,018 402,434 377,823 363,183 353,506
Ad-hoc 879,321 683,477 625,470 600,586 588,152 581,398

Figure 12. Break-even price for the technology: (a) varying gap price and miles and (b) varying maximum platoon size and miles.
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less than the break-even price, the higher the break-even
price (i.e., energy-saving benefits), the more truck owners
would like to equip their vehicles with platooning technol-
ogy. The break-even price then provides a reference for
pricing in respect of the technology cost and planning cost.

Conclusion

In this study, we utilize real truck demand data to
explore truck platooning opportunities and the associ-
ated energy-saving potentials over the U.S. highway
freight network. Specifically, scheduled platooning for
the recurrent daily truck OD demand is determined by
the truck itinerary planning model. An approximation
algorithm is applied to efficiently generate a feasible
solution with an acceptable degree of optimality.

The numerical results reveal that the energy-saving
potentials are promising in general. The exact values are
determined by a set of variables, including the reduction
rate of energy consumption, platoon size limit, schedule
flexibility, fuel efficiency, gas price, and so forth. When
using a piece-wise linear function for fuel consumption with
a reduction rate of 10%, the average energy savings per
truck over the whole network achieve 8.38% if the maxi-
mum platoon size is seven. By comparing the result with
that from ad-hoc platooning, we can conclude that truck
itinerary planning greatly improves the energy-saving
figure. Specifically, nation-wide planning benefits longer-
distance trips more than shorter-distance trips. The
cost–benefit analysis indicates that truck platooning is finan-
cially viable for truck owners, even if the energy savings are
considered the only economic benefit. It can be expected that
with the introduction of labor-cost savings, the truck pla-
tooning market will be more promising in the future.

A few extensions can be made to this study. First of
all, the fuel consumption model can be further refined by
considering road slopes, weather conditions, and traffic
conditions, which have been revealed as explanatory
variables of fuel efficiency (23, 24). Moreover, the energy
consumption during the assembly and disassembly of
platoons needs to be considered: previous research has
indicated that the energy consumption can largely
depend on the position at which a fleet joins or leaves a
platoon (25). Second, as this study intends to provide an
overall insight into energy-saving potentials, the truck
itineraries generated may not be appropriate to be
directly utilized in truck operations. Other practical lim-
itations, such as truck drivers’ rest hour regulations, sto-
chastic truck demand, heterogeneous travel windows,
and disassembly and re-assembly processes resulting
from traffic congestion and highway on- and off-ramps
(26), can be included in the optimization model to pro-
duce more workable itineraries. Third, as the analysis is
conducted based on the current demand and technology

level, many of the data and parameters can be revised to
consider future developments, such as increased truck
demands, fuel efficiency, fuel price, and so forth.

Finally, as this empirical study is conducted on all
truck demands of the whole U.S. highway freight system,
we would like to emphasize that the result is obtained
under the assumptions that the market penetration rate
of truck platooning technology is 100%, and a central
controller can coordinate all trucking companies to facil-
itate truck platooning, which are unattainable in reality.
For practical consideration, these two critical assump-
tions can also be addressed. Bridgelall et al. have studied
the adoption uncertainty of truck platooning via the
logistic model for technology diffusion, which has a
closed-form formulation and can be used in a future
planning model (27). Benefit redistribution mechanisms
perform as facilitators that promote inter-organizational
cooperation for platoon purposes. These mechanisms
have been studied in other papers, for instance (28).
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