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ABSTRACT

Let N be the algebra of all n × n dominant block upper triangu-
lar matrices over a field. In this paper, we explicitly describe all Lie
triple centralizers ofN . We also describe Lie triple centralizers of the
algebra B of block upper triangular matrices over a field.
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1. Introduction

Let g be an algebra over a field F. A linear map φ : g → g is called Lie centralizer of g if

φ([a, b]) = [φ(a), b] (1)

for all a, b ∈ g, where [a, b] = ab − ba is the usual Lie product of a and b. It is easy to check

that φ is a Lie centralizer on g if and only if φ[a, b] = [a,φ(b)] for any a, b ∈ g.

Fošner and Jing studied the Lie centralizers on triangular rings and nest algebras in [1]

and presented characterizations of Lie centralizers on triangular rings and nest algebras.

Ghomanjani and Bahmani dealt with the structure of Lie centralizers of trivial extension

algebras in [2]. In [3] Ahmed characterized the non-additive Lie centralizers of strictly

upper triangular matrices over a field of zero characteristic. Recently, Ghimire explicitly

described linear Lie centralizers of the algebra of dominant block upper triangularmatrices

in [4] and of the strictly block upper triangular matrices in [5]. The Lie centralizer on the
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2 P. GHIMIRE ET AL.

algebras is also called Lie centroid, which play an important role in studying the structure

of algebras see [6,7].

Another important class of mappings on algebras is Lie triple centralizers. Let g be an

algebra over a field F. A linear map f : g → g is called Lie triple centralizer of g if

f ([[a, b], c]) = [[f (a), b], c] (2)

for all a, b, c ∈ g. It is easy to check thatφ is a Lie triple centralizer on g if and only if f([[a, b],

c]) = [[a, f(b)], c] for any a, b, c ∈ g. Lie triple centralizers were first introduced by Behrooz

et al. in [8] and characterized the Lie triple centralizers of the generalized matrix algebra.

It is clear that each Lie centralizer is a Lie triple centralizer, but the converse may not be

true in general see ( Example 1.2, [8]). Therefore, the concept of the Lie triple centralizer

generalizes the concept of the Lie centralizer.

Themain goal of this paper is to explicitly describe the Lie triple centralizers of the alge-

bra of dominant block upper triangular matrices and the algebra of block upper triangular

matrices over a field F. In recent years, significant progress has been made in studying the

subalgebras of the algebra of upper triangular matrices over a field or a ring. Some results

on the study of the subaglebras of the algebra of upper triangular matrices are given in

[4,5,9,10–15].

Fix a fieldF. LetMm,n be the set of allm × nmatrices overF, and putMn = Mn,n. LetN

(resp.B) denote the set of all dominant block upper triangular matrices (resp. block upper

triangular matrices) inMn relative to a given partition. ThenN and B are subalgebras of

gl(n,F), i.e. Mn with the usual matrix multiplication. In this paper, we explicitly describe

the Lie triple centralizers of B andN over F, which are as follows:

• Theorem 2.1 shows that every Lie triple centralizer of B is a sum of a linear mapping

γ : B → B given by γ (A) = λA where λ ∈ F and a linear mapping that maps B to its

center and vanishes at [[B,B],B].

• Theorem 2.2 shows that every Lie triple centralizer of N is a sum of a linear mapping

γ : N → N given by γ (A) = λA where λ ∈ F, a linear mapping that maps N to its

center and vanishes at [[N ,N ],N ], and two special linear mappings.

The main motivation of this work comes from Behrooz et al. result on the Lie triple cen-

tralizers on generalized matrix algebras in [8], Ghimire and Huang’s work on the Lie triple

derivations of the Lie algebra of dominant block upper triangular matrices in [11], and

Ghimire’s work on the Linear Lie centralizers of the algebra of dominant block trian-

gular matrices in [4]. Our work on the Lie triple centralizers of N not only generalizes

the result of Behrooz et al., but also uses a promising new approach for finding the Lie

triple centralizers of othermatrix algebras with appropriate block forms. The essential tools

are Lemmas 3.1–3.3, where four types of product preserving linear maps between matrix

spaces are determined.

Section 2 gives the basic notations and presents the main results, i.e. characterizations

of the Lie triple centralizers of B andN . Section 3 determines four types of product pre-

serving linear maps between matrix spaces that will play essential roles in finding the Lie

triple centralizers ofN . Section 4 presents some other lemmas and proves Theorem 2.2.
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2. Main results

The Lie triple centralizers of the algebraN (resp. B ) of dominant block upper triangular

matrices (resp. of block upper triangular matrices) will be determined in this section.

2.1. Notations

Let [n] = {1, 2, . . . , n}. Fix a field F. LetMm,n (resp.Mn) be the set ofm × n (resp. n × n)

matrices over F. Let In denote the identity matrix inMn. A t × t block matrix form inMn is

represented by a sequence (n1, n2, . . . , nt), where ni ∈ Z
+ for i ∈ [t] and n1 + · · · + nt =

n. Fixing a t × t block matrix form inMn represented by a sequence (n1, n2, . . . , nt), each

A ∈ Mn can be expressed as

A =
[

Ai,j

]

t×t

where the (i, j) block Ai,j ∈ Mni,nj . The matrix A can also be expressed as

A =
∑

(i,j)∈[t]×[t]

Ai,j

such that each Ai,j ∈ Mn has Ai,j on the (i, j) block and 0’s elsewhere. A is called

• block upper triangular if Ai,j = 0 for all 1 ≤ j < i ≤ t,

• dominant block upper triangular if A is block upper triangular and Ai,i = 0 for i ∈ S,

where S is a subset of [t] that consists of nonconsecutive integers.

WhenA is not given in advance,Ai,j and similar expressionsmay be used to express generic

matrices inMn with 0’s outside of the (i, j) block.

LetBn̄
n = B (resp.N n̄

n = N ) denote the set of all block upper triangular matrices (resp.

dominant block upper triangular matrices) inMn with fixed t × t block matrix form n̄ =

(n1, . . . , nt). They are subalgebras of the algebraMn with the usual matrix multiplication.

For i, j ∈ [t], letM
i,j
n denote the set of matrices inMn with 0’s outside of the (i, j) block.

Define the block index set ofN as

�N = � ∪ �1, (3)

where

� := {(i, j) ∈ Z
2 | 1 ≤ i < j ≤ t} and

�1 := {(i, i) ∈ Z
2 | 1 ≤ i ≤ t} \ {(i, i) ∈ Z

2 | N ii = 0}.

2.2. Lie triple centralizers ofN

We describe the Lie triple centralizers of N when t ≥ 3. The main results are given in

Theorem 2.1 and in Theorem 2.2 below. Theorem 2.1 describes the Lie triple centralizers

of the algebra B of block upper triangular matrices.
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Theorem 2.1: Let B be the algebra of block upper triangular matrices over a field F. Let

f : B → B be a Lie triple centralizer. Then

f (A) = λA + τ(A) (4)

for all A ∈ B, where λ ∈ F and τ : B → Z(B), Z(B) is the center of B, is a linear mapping

that vanishes at [[B,B],B].

Proof: LetB be the algebra of block upper triangular matrices. ThenB is a triangular alge-

bra (see [16], Block upper triangular matrix algebras’ in Section 4). Since B is a triangular

algebra, by ([8], Corollary 3.4 and Remark 4.3), we have

f (A) = λA + τ(A) (5)

for all A ∈ B, where λ ∈ F and τ : B → Z(B) is a linear map satisfying τ [[B,B],B] =

0. �

The next theorem explicitly describes the Lie triple centralizers of the algebra N of

dominant block upper triangular matrices.

Theorem 2.2: Let t ≥ 3 and let N be the algebra of dominant block upper triangular

matrices over a field F. Let f : N → N be a Lie triple centralizer. Then

f (A) = λA + δ(A) + φ1(A) + φ2(A) (6)

for all A ∈ N , where λ ∈ F and other summand components are given below:

(1) δ : N → Z(N ), Z(N ) is the center ofN , is a linear map that vanishes at [[N ,N ],N ].

(2) φ1 is an element of End (N ) that satisfies:

(a) whenN 2,2 �= 0 orN t,t �= 0, φ1 = 0;

(b) whenN 2,2 = 0,N t,t = 0, and n1 ≥ 2, φ1 = 0;

(c) whenN 2,2 = 0,N t,t = 0, and n1 = 1,N i,j ⊆ Kerφ1 for all (i, j) /∈ {(1, 1), (1, 2)},

Imφ1 ⊆ N 1,t + N 2,t, and E121j f (E
11
11)

2t = −E1111f (E
12
1j )

1t, j ∈ [n2].

(3) φ2 is an element of End (N ) that satisfies:

(a) whenN 1,1 �= 0 orN t−1,1−t �= 0, φ2 = 0;

(b) whenN 1,1 = 0,N t−1,t−1 = 0, and nt ≥ 2, φ2 = 0;

(c) when N 1,1 = 0, N t−1,t−1 = 0, and nt = 1, N i,j ⊆ Kerφ2 for all (i, j) /∈ {(t −

1, t), (t, t)}, Imφ2 ⊆ N 1,t−1 + N 1,t, and f (Ett11)
1,t−1Et−1,t

i,1 = −f (Et−1,t
i1 )1,tEt,t1,1,

i ∈ [nt−1].

We will give a proof of Theorem 2.2 in Section 4.

3. Linear maps preservingmatrix products

The Lie triple centralizer property (2) over a matrix algebra is closely related to some

matrix product preserving properties. These relationships are much more obvious when

the algebra consists of block matrices. Here we will determine linear maps that preserve
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four different types of matrix products. These maps play essential roles in exploring the

Lie triple centralizers ofN as well as other algebras of block matrices.

In Lemmas 3.1–3.3, let E
p,q
m×n denote the m × nmatrix that has the only nonzero entry

1 in the (p, q) position.

Lemma 3.1: Suppose F is an arbitrary field. If X ∈ Mm and Y ∈ Mn satisfy that

XA = AY (7)

for all A ∈ Mmn, then X = λIm and Y = λIn for some λ ∈ F.

Proof: Suppose X = (xip) ∈ Mm and Y = (yqj) ∈ Mn, where i, p ∈ [m] and q, j ∈ [n]. For

any (i, j) ∈ [m] × [n], by (7),

XE
i,j
m×n = E

i,j
m×nY . (8)

Comparing the (i, j) entry of the matrices in (8), we get xii = yj,j. Similarly, comparing the

(p, j) entry for p �= i, we get xpi = 0; and comparing the (i, q) entry for q �= j, we get 0 = yjq.

Therefore, X = λIm and Y = λIn for some λ ∈ F. �

Lemma 3.2: If linear maps φ : Mm,p → Mm,q and ϕ : Mn,p → Mn,q satisfy that

φ(AB) = Aϕ(B) for all A ∈ Mm,n, B ∈ Mn,p,

then there is X ∈ Mp,q such that φ(C) = CX for C ∈ Mm,p and ϕ(D) = DX for D ∈ Mn,p.

Proof: For any j ∈ [n] and B ∈ Mn,p,

φ(E
1,j
m×nB) = E

1,j
m×nϕ(B).

Let R1m,p denote the subspace of Mm,p consisting of matrices with 0’s outside of the first

row. Similarly for R1m,q. Then for every j ∈ [n], R1
m,p = E

(1,j)
m×nMn,p, so that

φ(R1m,p) = φ(E
(1,j)
m×nMn,p) = E

(1,j)
m×nϕ(Mn,p) ⊆ R1m,q.

There exists an X ∈ Mp,q such that the linear transformation φ|R1m,p
: R1m,p → R1m,q can be

expressed as

φ|R1m,p
(T) = TX, for all T ∈ R1m,p.

Then for every B ∈ Mn,p,

E
(1,j)
m×nϕ(B) = φ(E

(1,j)
m×nB) = E

(1,j)
m×nBX.

Therefore, ϕ(B) = BX for B ∈ Mn,p. Hence φ(AB) = Aϕ(B) = ABX for every A ∈ Mm,n

and B ∈ Mn,p. The linear combinations of all such AB form Mm,p. So φ(C) = CX for all

C ∈ Mm,p. �
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Lemma 3.3: If linear maps φ : Mm,p → Mn,p and ϕ : Mm,q → Mn,q satisfy that

φ(BA) = ϕ(B)A for all A ∈ Mq,p, B ∈ Mm,q,

then there is X ∈ Mn,m such that φ(C) = XC for C ∈ Mm,p and ϕ(D) = XD for D ∈ Mm,q.

Proof: The proof (omitted) is similar to that of Lemma 3.2. �

4. Proofs of main results

The main goal of this section is to prove Theorem 2.2. We always assume that t ≥ 3 and

N �= B except where explicitly noted otherwise.

4.1. Lie triple centralizer image locations

First, we will give several auxiliary results on the image locations of f (N i,j) for a Lie triple

centralizer f and N i,j ⊆ N . Recall N i,j refers to the collection of matrices in N whose

entries outside the (i, j) block are 0. We will observe the following interesting fact: most

nonzero blocks of f (Ai,j) for Ai,j ∈ N i,j are located on the (i, j)th block and the center

Z(N ) =

⎧

⎪

⎨

⎪

⎩

FI ifN = B;

N 1,t ifN 1,1 = 0 andN t,t = 0;

0 otherwise.

ofN .

The first lemma discusses the Lie triple centralizer image onN 1,1 andN t,t .

Lemma 4.1: Let f be a Lie triple centralizer ofN . Then

f (N 1,1) ⊆ N 1,1 + N 2,t + Z(N ) (9)

f (N t,t) ⊆ N t,t + N 1,t−1 + Z(N ) (10)

where Z(N ) is the center ofN . Furthermore,

(1) ifN 2,2 �= 0 orN t,t �= 0, then f (A1,1)2,t = 0.

(2) ifN 1,1 �= 0 orN t−1,t−1 �= 0, then f (At,t)1,t−1 = 0.

Proof: Suppose A1,1 ∈ N 1,1 and i, j ∈ [t]. To prove (9), we consider the following cases:

(1) We first investigate f (A1,1)j,j. We now consider the following two sub-cases:

• t=3: By definition ofN , (2, 2) ∈ �N or (3, 3) ∈ �N . Suppose (3, 3) ∈ �N . Then

for A23 ∈ N 23 and A33 ∈ N 33,

0 = f ([[A1,1,A23],A33])23 = ([[f (A1,1),A23],A33])23

= f (A1,1)22A23A33 − A23f (A1,1)33A33
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Therefore,

f (A1,1)22A23 = A23f (A1,1)33 for A23 ∈ N 23. (11)

Lemma 3.1 implies f (A1,1)22 = λI22n and f (A1,1)33 = λI33n for some λ ∈ F. By

the assumption N �= B, N 22 = 0, which forces f (A1,1)22 = 0. Thus, by (11),

f (A1,1)33 = 0 as well. Similarly, we can conclude that f (A1,1)22 = f (A1,1)33 = 0

if (2, 2) ∈ �N . Thus f (A1,1)j,j = 0 for all 1 < j ≤ 3.

• t ≥ 4: Suppose 1 < j < r ≤ t. Then for A11 ∈ N 11, Ajr ∈ N j,r, and Art ∈ N rt ,

[[A11,Aj,r],Art] = 0, so that

0 = f ([[A1,1,Ajr],Art])jt = ([[f (A1,1),Ajr],Art])jt

= −Ajrf (A1,1)rrArt + f (A1,1)jjAjrArt

Therefore,

f (A1,1)j,jAj,r = Aj,rf (A1,1)r,r for Aj,r ∈ N j,r. (12)

Lemma 3.1 implies f (A1,1)j,j = λI
j,j
n and f (A1,1)r,r = λIr,rn for some λ ∈ F. In the

situationN �= B, there exists (p, p) ∈ [t] × [t] such thatN p,p = 0, which forces

f (A1,1)p,p = 0. Thus f (A1,1)j,j = 0 for all 1 < j ≤ t.

(2) Next we show that f (A1,1)i,j = 0 for A1,1 ∈ N 1,1, (i, j) ∈ �N , i< j, and (i, j) /∈

{(2, t)}. By assumption, either i>2 or j< t.

• Suppose i>2. For A2,i ∈ N 2,i and Aj,t ∈ N j,t

0 = f ([[A1,1,A2,i],Aj,t])2,t = [[f (A1,1),A2,i],Aj,t]2,t = −A2,if (A1,1)i,jAjt ,

which implies that f (A1,1)i,j = 0.

• Suppose j< t. By assumption j>1. For A1,i ∈ N 1,i and Aj,t ∈ N j,t ,

0 = f ([[A1,1,A1,i],Ajt])1,t = [[f (A1,1),A1,i],Ajt]1,t = −A1if (A1,1)i,jAj,t

which implies that f (A1,1)i,j = 0.

• It remains to show that f (A1,1)1,t = 0. Suppose (i, j) = (1, t). For A1,1, I1,1n ∈

N 1,1,

0 = f ([[A1,1, I1,1n ], I1,1n ])1,t = [f (A1,1), I1,1n ], I1,1n ]1,t = f (A1,1)1,t .

Thus f (A1,1)1,t = 0 for A1,1 ∈ N 1,1, proving (9).

Next, whenN 2,2 �= 0 orN t,t �= 0, we show that f (A1,1)2,t = 0. SupposeN 2,2 �= 0.

Then for I2,2n ,A2,2 ∈ N 2,2,

0 = f ([[A1,1,A2,2], I2,2n ])2,t = [[f (A1,1),A2,2], I2,2n ]2,t = A2,2f (A1,1)2,t

which implies that f (A1,1)2,t = 0. Simliarly, we can show that f (A1,1)2,t = 0 when

N t,t �= 0.

The proofs of (10) and f (At,t)1,t−1 = 0 whenN 1,1 �= 0 orN t−1,t−1 �= 0 are similar.

�
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The next lemma discusses the Lie triple centralizer image onN k,k ⊆ N when 1 < k <

t.

Lemma 4.2: Let f be a Lie triple centralizer ofN and 1< k< t. Then

f (N k,k) ⊆ N k,k + Z(N ), (13)

where Z(N ) is the center ofN .

Proof: Suppose Ak,k ∈ N k,k and i, j ∈ [t]. To prove (13), we consider the following cases:

(1) We first investigate f (Ak,k)j,j. Suppose r < k < j ≤ t. Then forAr,j ∈ N r,j andAj,t ∈

N j,t , [[Ar,j,Ak,k],Aj,t] = 0, so that

0 = f ([[Ar,j,Ak,k],Aj,t])r,t = ([[Ar,j, f (Ak,k),Aj,t])r,t

= Ar,jf (Ak,k)j,jAj,t − f (Ak,k)r,rAr,jAj,t

Therefore,

f (Ak,k)r,rAr,j = Ar,jf (Ak,k)j,j for Ar,j ∈ N r,j. (14)

Lemma 3.1 implies f (Ak,k)j,j = λI
j,j
n and f (Ak,k)r,r = λIr,rn for some λ ∈ F.

Equation (14) is also true for j< k. In the situation N �= B, there exists (p, p) ∈

[t] × [t] such thatN p,p = 0, which forces f (Ak,k)p,p = 0. Thus f (Ak,k)j,j = 0 for all

j ∈ [t] and k �= j. WhenN = B, we have f (Ak,k)j,j = λI
j,j
n for all j ∈ [t] and k �= j.

(2) Next we show that f (Ak,k)i,j = 0 for Ak,k ∈ N k,k, (i, j) ∈ �N , and (i, j) /∈

{(k, k), (1, t)}. We consider the following subcases:

• First we show that f (Ak,k)i,j = 0 for Ak,k ∈ N k,k, (i, j) ∈ �N , i �= k, j �= k, and

(i, j) �= (1, t). Either i>1 or j< t. Suppose j< t. Then for A1,i ∈ N 1,i and Aj,t ∈

N j,t ,

0 = f ([[A1,i,Ak,k],Aj,t])1,t = ([[A1,i, f (Ak,k)],Aj,t])1,t = A1,if (Ak,k)i,jAj,t . (15)

So f (Ak,k)i,j = 0.Similarly, we can conclude that f (Ak,k)i,j = 0 if i>1.

• Now we show that f (Ak,k)i,k = 0 for 1 ≤ i < k and f (Ak,k)k,j = 0 for k < j ≤ t.

Suppose 1 ≤ i < k. Then for Ik,kn ∈ N k,k, Ak,r ∈ N k,r and k < r ≤ t,

f (Ak,r)i,t = f ([[Ak,k,Ak,r], Ik,kn ])i,t = [[Ak,k, f (Ak,r)], Ik,kn ]i,t = 0. (16)

By (16),

0 = f (Ak,r)i,r = f ([[Ak,k,Ak,r],Ar,t])i,t = [[f (Ak,k),Ak,r],Ar,t]i,t

= f (Ak,k)i,kAk,rAr,t for Ar,t ∈ N r,t

So, f (Ak,k)i,k = 0 for 1 ≤ i < k.Similarly, f (Ak,k)kj = 0 for k < j ≤ t.

(3) Finally, if (1, 1) ∈ �N or (t, t) ∈ �N , say (1, 1) ∈ �N , then for k /∈ {1, t},

0 = f ([[A1,1,Ak,k], I1,1n ])1,t = [[A1,1, f (Ak,k)], I1,1n ]1,t = A1,1f (Ak,k)1,t .
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So, f (Ak,k)1,t = 0.

Thus, (13) has been proved. �

Next, we consider the Lie triple centralizer image onN 1,2 andN t−1,t .

Lemma 4.3: Let f be a Lie triple centralizer ofN . Then

f (N 1,2) ⊆ N 1,2 + N 1,t , (17)

f (N t−1,t) ⊆ N t−1,t + N 1,t . (18)

Furthermore,

(1) ifN 2,2 �= 0 orN t,t �= 0, then f (A1,2)1,t = 0.

(2) ifN 1,1 �= 0 orN t−1,t−1 �= 0, then f (At−1,t)1,t = 0.

Proof: We first prove (17). By definition of N , (1, 1) ∈ �N or (2, 2) ∈ �N . Suppose

(1, 1) ∈ �N . Then N 1,2 = N 1,1N 1,2 = [N 1,1,N 1,2]. For I1,1n ,A1,1 ∈ N 1,1 and A1,2 ∈

N 1,2, according to Lemma 4.1,

f [A1,1,A1,2] = f [[A1,1,A1,2], I1,1n ] = [[f (A1,1),A1,2], I1,1n ] ∈ N 1,2 + N 1,t . (19)

Thus, (17) is proved. Similarly, we can prove (17) if (2, 2) ∈ �N .

Next we show that f (A1,2)1,t = 0 when N 2,2 �= 0 or N t,t �= 0. Suppose N 2,2 �= 0 or

N t,t �= 0. By Lemma 4.1, f (A1,1)2,t = 0. So, (19) implies that f (A1,2)1,t = 0.

The proofs of (18) and f (At−1,t)1,t = 0 whenN 1,1 �= 0 orN t−1,t−1 �= 0 are similar. �

By Lemmas 4.1 and 4.3, we know that the (2, t) block of f (N 1,1) and (1, t) block of

f (N 1,2) are zero whenN 2,2 �= 0 orN t,t �= 0. The next lemma explicitly describes the (2, t)

block of f (N 1,1) and (1, t) block of f (N 1,2)whenN 2,2 = 0 andN t,t = 0.

Lemma 4.4: Let f be a Lie triple centralizer ofN ,N 2,2 = 0, andN t,t = 0. Then the image

f (N 12)1t and f (N 11)2t satisfy the following:

(1) If n1 ≥ 2, then f (N 12)1t = f (N 11)2t = 0.

(2) If n1 = 1, then E121j f (E
11
11)

2t = −E1111f (E
12
1j )

1t , j ∈ [n2].

Furthermore, any f ∈ EndN that satisfiesN i,j ⊆ Ker f for all (i, j) /∈ {(1, 1), (1, 2)}, Im f ⊆

N 1,t + N 2,t, and the hypothesis (1) and (2) is a Lie triple centralizer.

Proof: Let f be a Lie triple centralizer ofN . Since N 2,2 = 0, by definition ofN , (1, 1) ∈

�N . Then for I1,1n ,A1,1 ∈ N 1,1 and A1,2 ∈ N 1,2,

f [[A1,2,A1,1], I1,1n ]1,t = [[f (A1,2),A1,1], I1,1n ]1,t (20)

and

f [[A1,2,A1,1], I1,1n ]1,t = [[A1,2, f (A1,1)], I1,1n ]1,t (21)
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By (20) and (21), we get

[f (A1,2),A1,1], I1,1n ]1,t = [[A1,2, f (A1,1)], I1,1n ]1,t (22)

(22) implies that A11f (A12)1,t = −A12f (A11)2,t . In particular,

E11rs f (E
12
i,j )

1,t = −E1,2i,j f (E
1,1
r,s )

2,t (23)

We now consider the following two cases:

(1) when n1 ≥ 2, for any E1,2i,j ∈ N 1,2 we can chose r ∈ [n1] \ {i}. So, (23) implies that

f (E1,2i,j )1,t = 0. Thus, f (A1,2)
1,t = 0 and f (A1,1)

2,t = 0.

(2) when n1 = 1, by (23) we get E121j f (E
11
11)

2t = −E1111f (E
12
1j )

1t for j ∈ [n2].

The last statement is easy to verify. �

The next lemma describes the (1, t) block of f (N t−1,t) and (1, t − 1) block of f (N t,t)

whenN 1,1 = 0 andN t−1,t−1 = 0.

Lemma 4.5: Let f be a Lie triple centralizer of N , N 1,1 = 0, and N t−1,t−1 = 0. Then the

image f (N t−1,t)1,t and f (N t,t)1,t−1 satisfy the following:

(1) If nt ≥ 2, then f (N t−1,t)1t = f (N t,t)1,t−1 = 0.

(2) If nt = 1, then f (Et,t11)
1,t−1tEt−1,t

i,1 = −f (Et−1,t
i,1 )1tEt,t1,1, i ∈ [nt−1].

Furthermore, any f ∈ EndN that satisfies N i,j ⊆ Ker f for all (i, j) /∈ {(t − 1, t), (t, t)},

Im f ⊆ N 1,t−1 + N 1,t, and the hypothesis (1) and (2) is a Lie triple centralizer.

Proof: The proof (omitted) is similar to that of Lemma 4.4. �

We now discuss the Lie triple centralizer image on N 2,3,N 3,4, . . . ,N t−2,t−1 in next

Lemma.

Lemma 4.6: For a Lie triple centralizer f ofN and 1< i< t−1,

f (N i,i+1) ⊆ N i,i+1 (24)

Proof: Suppose 1< i< t−1. By definition ofN , (i, i) ∈ �N or (i + 1, i + 1) ∈ �N . With-

out loss of generality, suppose (i, i) ∈ �N . Then for Ii,in ∈ N i,i andAi,i+1 ∈ N i,i+1, accord-

ing to Lemma 4.2,

f (Ai,i+1) = f [[Ai,i+1, Ii,in ], I
i,i
n ] = [[Ai,i+1, f (Ii,in )], Ii,in ] ∈ N i,i+1. (25)

Thus,(24) is proved. �

Now we consider the Lie triple centralizer image on the otherN i,j.
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Lemma 4.7: For a Lie triple centralizer f ofN and i, j ∈ [t] and j> i+1, the image f (N i,j)

satisfies

f (N i,j) ⊆ N i,j. (26)

Proof: Suppose j> i+1. By definition of N , (i, i) ∈ �N or (i + 1, i + 1) ∈ �N . Without

loss of generality, suppose (i, i) ∈ �N . Then for Ii,in ∈ N i,i, Ai,i+1 ∈ N i,i+1 and Ai+1,j ∈

N i+1,j, according to Lemma 4.6,

f (Ai,j) = f [[Ii,in ,A
i,i+1],Ai+1,j] = [[Ii,in , f (A

i,i+1)],Ai+1,j] ∈ N i,j. (27)

Thus,(26) is proved. �

The above lemmas determine all possibly nonzero blocks of f (Ai,j) for a Lie triple

centralizer f andAi,j ∈ N i,j ⊆ N . The next goal is to describe the f -images on these blocks.

Lemma 4.8: Let f be a Lie triple centralizer ofN . Then there exist λ ∈ F such that

f (Ai,j)i,j = λAi,j for all Ai,j ∈ N i,j ⊆ N . (28)

Proof: Suppose 1 ≤ i < j ≤ t. By definition of N , (i, i) ∈ �N or (i + 1, i + 1) ∈ �N .

Without of loss generality, suppose (i, i) ∈ �N . For any Iiin ,A
i,i ∈ N i,i and Ai,j ∈ N i,j,

f (Ai,iAi,j)i,j = f [[Ai,j,Ai,i], Ii,in ]
i,j = [[Ai,j, f (Ai,i)], Ii,in ]

i,j = f (Ai,i)i,iAi,j.

Applying Lemma 3.3, there exist Xi,i ∈ Mi,i
n such that

f (Ai,i)i,i = Xi,iAi,i for all Ai,i ∈ N i,i,

f (Ai,j)i,j = Xi,iAi,j for all Ai,j ∈ N i,j.
(29)

Since f is a Lie triple centralizer, for any 1 ≤ i < j ≤ t, Ii,in ,A
i,i ∈ N i,i and Ai,j ∈ N i,j,

f (Ai,iAi,j)i,j = f [[Ai,j,Ai,i], Ii,in ]
i,j = [[f (Ai,j),Ai,i], Ii,in ]

i,j = Ai,if (Ai,j)i,j.

Applying Lemma 3.2, there exist Xj,j ∈ M
j,j
n such that

f (Ai,j)i,j = Ai,jXj,j for all Ai,j ∈ N i,j, (30)

By (29) and (30), we have

Xi,iAi,j = Ai,jXj,j for Ai,j ∈ N i,j.

Applying Lemma 3.1, there exists λ ∈ F such that Xi,i = λIi,i and Xj,j = λIj,j.

Therefore, f (Ai,i)i,i = λAi,i forAi,i ∈ N i,i and f (Ai,j)i,j = λAi,j forAi,j ∈ N i,j, i < j. �
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4.2. Proof of Theorem 2.2

We are ready to prove our main result.

Proof of Theorem 2.2: By Lemma 4.8, there exists λ ∈ F such that

f (Ai,j)i,j = λAi,j for Ai,j ∈ N i,j ⊆ N .

Define f0 := f − λIn. Thus, f0 is a Lie triple centralizer. Then (28) implies that f0(A
i,j)i,j = 0

for all Ai,j ∈ N i,j ⊆ N . By Lemmas 4.1 and 4.2, for any N i,i ⊆ N , the possibly non zero

blocks of f0(N
i,i) are the following:

• (1, t) block whenN 1,1 = N t,t = 0,

• (2, t) block when (i, i) = (1, 1), and

• (1, t − 1) block when (i, i) = (t, t).

and by Lemmas 4.3, 4.6, and 4.7, for anyN i,j ⊆ N , i< j, the only possibly non zero block

of f0(N
i,j) is the (1, t) block when (i, j) ∈ {(1, 2), (t − 1, t)}.

Define φ1,φ2 ∈ EndN such that for A ∈ N ,

φ1(A) := f0(A
1,1)2,t + f0(A

1,2)1,t = f (A1,1)2,t + f (A1,2)1,t

φ2(A) := f0(A
t,t)1,t−1 + f0(A

t−1,t)1,t = f (At,t)1,t−1 + f (At−1,t)1,t .

Then Lemmas 4.4 and 4.5 show that φ1 and φ2 are Lie triple centralizers. Define f1 := f0 −

φ1 − φ2 = (f − λIn) − φ1 − φ2. Thus, f1 is a Lie triple centralizer, and only the possible

non-zero block of f1(N
i,i) is the (1, t) block when N 11 = N tt = 0 and also f1(A

i,j) = 0

for i< j.

Define a linear map δ : N → N such that for A ∈ N ,

δ(A) :=
∑

(i,i)∈�N

f1(A
i,i)1,t =

∑

(i,i)∈�N

f (Ai,i)1,t .

Then δ(A) ∈ Z(N ) and δ[[N ,N ],N ] = 0. Thus, δ is a Lie triple centralizer. Now we get

a new Lie triple centralizer

f2 := f1 − δ = (f − λIn) − φ1 − φ2,

where f2(A
i,j) = 0 for Ai,j ∈ N i,j ⊆ N . Therefore,

f (A) = λA + φ1(A) + φ2(A) + δ(A)

for A ∈ N . Hence Theorem 2.2 is proved. �

Acknowledgments

We would like to thank the National Research Experience for Undergraduates Program (NREUP)
for supporting this project. The NREUP is a program of the Mathematical Association of America
(MAA).



LINEAR ANDMULTILINEAR ALGEBRA 13

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Support is provided by the National Science Foundation (NSF), Award # DMS-1950644.

References

[1] Fošner A, JingW. Lie Centralizers on the triangular rings and nest algebras. Adv Oper Theory.
2019;4(2):342–350. doi: 10.15352/aot.1804-1341

[2] Ghomanjani J, BahmaniMA.A note on Lie centralizermaps. Palest JMath. 2018;7(2):468–471.
[3] Ahmed DAH. Non-additive Lie centralizer of strictly upper triangular matrices. Extr Math.

2019;34(1):77–83.
[4] Ghimire P. Linear Lie centralizers of the algebra of dominant block upper triangular matrices.

Linear Multilinear Algebra. 2022;70(20):5040–5051. doi: 10.1080/03081087.2021.1902465
[5] Ghimire P. Linear Lie centralizers of the algebra of strictly block upper triangular matrices.

Oper Matrices. 2021;15(1):303–311. doi: 10.7153/oam-2021-15-21
[6] Jacobson N. Lie algebras. New York: Interscience Publishers; 1962.
[7] McCrimmon K. A taste of Jordan algebras. New York: Springer; 2004.
[8] Behrooz F, Hoger G, Wu J. Lie triple centralizers on generalized matrix algebras. Quaest Math.

2023;46(2):281–300. doi: 10.2989/16073606.2021.2013972
[9] Bounds J. Commuting maps over the ring of strictly upper triangular matrices. Linear Algebra

Appl. 2016;507:132–136. doi: 10.1016/j.laa.2016.05.041
[10] Ghimire P. Lie triple derivations of the Lie algebra of strictly block upper triangular matrices.

J General Lie Theory Appl. 2017;11(1). doi: 10.4172/1736-4337.1000265
[11] Ghimire P, Huang H. Lie triple derivations of the Lie algebra of dominant block upper

triangular matrices. Algebra Colloq. 2018;25(3):475–492. doi: 10.1142/S1005386718000329
[12] Ghimire P, Huang H. Derivations of the Lie algebra of strictly block upper triangular matrices.

J Lie Theory. 2020;30(4):1027–1046.
[13] Ou S,Wang D, Yao R. Derivations of the Lie algebra of strictly upper triangular matrices over a

commutative ring. Linear AlgebraAppl. 2007;424(2-3):378–383. doi: 10.1016/j.laa.2007.02.003
[14] Wang D, Yu Q. Derivation of the parabolic subalgebras of the general linear Lie

algebra over a commutative ring. Linear Algebra Appl. 2006;418(2–3):763–774. doi:
10.1016/j.laa.2006.03.010

[15] Wang H, Li Q. Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a
commutative ring. Linear Algebra Appl. 2009;430(1):66–77. doi: 10.1016/j.laa.2008.06.032

[16] Xaio Z, Wei F. Lie triple derivations of triangular algebras. Linear Algebra Appl.
2012;437(5):124–1249.


	1. Introduction
	2. Main results
	2.1. Notations
	2.2. Lie triple centralizers of N

	3. Linear maps preserving matrix products
	4. Proofs of main results
	4.1. Lie triple centralizer image locations
	4.2. Proof of Theorem 2.2

	Acknowledgments
	Disclosure statement
	Funding
	References

