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ABSTRACT 

The Optimal Power Flow (OPF) problem, as a critical component of power system operations, 
becomes increasingly difficult to solve due to the variability, intermittency, and unpredictability of 
renewable energy brought to the power system. Although traditional optimization techniques, 
such as stochastic and robust optimization approaches, can be leveraged to address the OPF 
problem, in the face of renewable energy uncertainty, i.e., the dynamic coefficients in the opti-
mization model, their effectiveness in dealing with large-scale problems remains limited. As a 
result, deep learning techniques, such as neural networks, have recently been developed to 
improve computational efficiency in solving OPF problems with the utilization of data. However, 
the feasibility and optimality of the solution may not be guaranteed, and the system dynamics 
cannot be properly addressed as well. In this article we propose an optimization Model-Informed 
Generative Adversarial Network (MI-GAN) framework to solve OPF under uncertainty. The main 
contributions are summarized into three aspects: (i) to ensure feasibility and improve optimality of 
generated solutions, three important layers are proposed: feasibility filter layer, comparison layer, 
and gradient-guided layer; (ii) in the GAN-based framework, an efficient model-informed selector 
incorporating these three new layers is established; and (iii) a new recursive iteration algorithm is 
also proposed to improve solution optimality and handle the system dynamics. The numerical 
results on IEEE test systems show that the proposed method is very effective and promising.
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1. Introduction

The national electricity sector has witnessed a dramatic 

change in renewable energy penetration in recent years, and 

its share is expected to continue growing rapidly in the next 

few decades. On a federal level, the U.S. Energy Information 

Administration predicts that renewable energy resources will 

provide 38% of electricity energy by 2050, with solar and 

wind energy accounting for 17.5% and 12.54%, respectively 

(Outlook, 2009). With such a high penetration of renewable 

energy, it is critical and urgent for power system operators 

to learn how to effectively and securely operate power sys-

tems in the face of high variability, intermittency, and 

unpredictability of renewable energy output.
Optimal Power Flow (OPF), as an essential component of 

power system operations and management, aims to minim-

ize the total generation cost while satisfying a series of sys-

tem constraints and operational requirements, achieving 

economic power system operation in day-ahead and real- 

time markets. As a key building block of many complex 

power system problems, the optimization approaches for 

solving OPF problems has been extensively studied in recent 

years. The most common approach to formulating the OPF 

problem with renewable energy uncertainties is stochastic 

OPF (e.g., Yong and Lasseter, (2000) and Kimball et al. 

(2003) among others), in which the uncertain renewable 

energy output is characterized by a finite number of scen-

arios, or is assumed to follow a particular probability distri-

bution, and then sampling approaches are typically used to 

finalize the formulation. The robust optimization approach, 

e.g., Delage and Ye (2010) and Martinez-Mares and Fuerte- 

Esquivel (2013) among others, is another traditional 

approach to addressing the OPF problem with renewable 

energy uncertainties. Its key idea is to construct an OPF 

solution that is optimal for the worst-case realization of 

renewable energy output in a predefined uncertainty set. 

Recently, the distributionally robust OPF problem, e.g., 

Zhang et al. (2016) and Guo et al. (2018) among others, has 

also been proposed for hybrid stochastic and robust 

approaches, by considering the worst-case distribution of 

renewable energy output. The obtained OPF decisions are 

expected to be less conservative than the ones from the 

robust approach and more reliable than the ones from the 

stochastic approach.
Despite the great success of these approaches in effect-

ively addressing the OPF problem with renewable energy 

uncertainty, the practical use of these methods remains lim-

ited, due to scalability issues for large-scale power systems. 

In recent years, the staggering advances obtained in deep 

learning make it possible to quickly find the optimal strategy 

of computationally intensive power system optimization 
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problems with the utilization of data. Over the last decade, 

various deep learning approaches have been used to address 

OPF problems; they can be divided into two major catego-

ries. One is based on the training of neural networks, such 

as deep neural networks (Fioretto et al., 2020; Yang et al., 

2021; Nellikkath and Chatzivasileiadis 2022;), Convolutional 

Neural Network (CNN) (Jia and Bai, 2021; Zhao et al., 

2023) and graph neural networks (Owerko et al., 2020; 

Falconer and Mones, 2022; Liu et al., 2022), to learn a high- 

dimensional mapping between net load (i.e., load minus 

renewable energy output) inputs and corresponding dispatch 

and transmission decisions from historical records. 

However, they primarily depend on supervised learning 

techniques and massive simulations obtained ahead of time 

to train the neural networks. As for the approaches that 

could quickly acquire the solutions (Chatzos et al., 2021; 

Donti et al., 2021; Mak, and Van Hentenryck 2021), they 

still need to be re-trained with updated feasible solutions as 

the net loads vary in the power systems. The other direction 

is to utilize deep Reinforcement Learning (RL) to generate 

instantaneous OPF decisions corresponding to the real-time 

change of net load inputs (Yan and Xu, 2020; Zhou et al., 

2020). However, since RL algorithms are known as learning 

by trial and error, the obtained OPF controls also lack a 

safety guarantee.
To address the OPF problems, we propose a novel opti-

mization Model-Informed Generative Adversarial Network 

(MI-GAN) framework in this article. The emerging 

Generative Adversarial Network (GAN) was first proposed 

by Goodfellow (Goodfellow et al., 2020). It was originally 

designed for image augmentation (Tanaka and Aranha, 

2019), but it is now applied to a variety of fields, including 

manufacturing (Li et al., 2021), business fraud detection 

(Fiore et al., 2019), and healthcare (Liu et al., 2019). GAN 

trains two networks, generator G and discriminator D, 

based on a minimax game for VðD, GÞ shown in (1):

min
G

max
D

VðD, GÞ ¼ Ex�PdataðxÞ logðD xð ÞÞ
� �

þ Ez�PZðzÞ½logð1 − DðG zð ÞÞÞ� (1) 

where G generates artificial samples GðzÞ based on noise z 

generated at random. Then D differentiates between artificial 

samples GðzÞ and actual samples x: Following that, G and D 

compete against each other. The ultimate goal of GAN is to 

make it nearly impossible for D to tell whether the gener-

ated samples are actual data or artificial data. Then the arti-

ficial data is sufficiently similar to the actual data 

(Goodfellow et al., 2020). In this way, even when the data is 

complex and high-dimensional, a GAN-based framework 

can learn the underlying relationships among the data. Deep 

convolutional GAN (Radford et al.,), for example, could 

generate high-dimensional images with competitive perform-

ance by incorporating a CNN. Furthermore, conditional 

GAN (Douzas and Bacao, 2018) makes the training process 

more stable and controllable by using target classification 

variables as a reference in iterations.
GAN-based approaches, in particular, could also be used 

in optimization. For instance, Tan and Shi (2019) proposed 

Generative Adversarial Optimization (GAO) based on the 

GAN model, which is also applied in many applications, 

including acute lymphocytic leukemia detection (Tuba and 

Tuba, 2019), and crowdsensing (Guo et al., 2020). It consid-

ers the output of the generator as generated solutions while 

the discriminator estimates the probability that the gener-

ated solution is better than the current solution. However, 

the performance of GAO may be limited when the optimiza-

tion problem is complex, due to its functionality by reducing 

the radius of the solution search space. In addition, Wang 

and Srikantha (2022) also proposed a novel generative 

framework for OPF problems. It utilizes a generator to gen-

erate feasible solutions and verifies the feasibility of solutions 

using a discriminator. However, it requires an autoencoder 

to handle the optimality. Therefore, a natural idea to apply 

the GAN-based framework for handling both feasibility and 

optimality is demonstrated as follows: The output of gener-

ator G could be generated solutions, whereas the actual data 

could be the historical solutions, i.e., the actual solutions 

centered on the optimal solution. As a result, the distribu-

tion of generated solutions could gradually approach to the 

distribution of historical solutions. Then the near-optimal 

solution could be obtained. However, if the historical solu-

tions do not exist, or are not centered on optimal solutions, 

updating the generated solutions to move forward to the 

optimal solution becomes a challenge. In addition, ensuring 

that the generated solutions by G satisfy the constraints is 

difficult.
In this article, inspired by our previous work of aug-

mented time-regularized GAN (Li et al., 2021), we leverage 

the proposed MI-GAN framework to address the OPF prob-

lems with uncertainties. Specifically, the uncertainties in the 

power system are demonstrated from the dynamic changes 

of the net loads in the direct current OPF (DC-OPF) prob-

lem. The proposed novel MI-GAN differs from traditional 

deep learning approaches in two major ways.
First, rather than learning the mapping between the net 

load and control decisions, the GAN architecture can learn 

the underlying distribution of optimal OPF decisions and 

directly generate corresponding solutions for different real-

izations of net load. In this manner, solutions can be quickly 

generated from the learned distribution without involving 

the neural network. Second, unlike traditional neural net-

work-based methods, including the conventional GAN, 

which ignore the model structure, the proposed MI-GAN 

incorporates the model constraints and gradient information 

during the training of the GAN in the following ways: (i) to 

ensure the feasibility, a new feasibility filter layer is added to 

the model-informed selector to check if the solution meets 

all the physical constraints. If not, the solution will be fil-

tered out, and this information will be synthesized to 

MI-GAN to discourage similar solutions from being gener-

ated again; (ii) to utilize the information from the objective 

function and further improve the solution optimality, the 

resultant objective function value and gradient information 

are also integrated into the generator training to guide 

MI-GAN to search for better solutions; and (iii) MI-GAN 

does not require a large number of data samples, since it 
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can guide the search and improve its solution quality using 

self-generated data.
To summarize, the contributions of the proposed method 

consist of three parts:

1. To address OPF problems with dynamic net loads, three 

critical new layers are designed to ensure the feasibility 

and improve the optimality of generated solutions: the 

feasibility filter layer, the comparison layer, and the gra-

dient-guided layer.
2. A new GAN-based learning framework, MI-GAN, is 

proposed by incorporating an efficient model-informed 

selector, which is designed to integrate the three pro-

posed novel layers.
3. A new recursive iteration algorithm is also proposed to 

further reduce the bias between selected solutions and 

optimal solutions.

Furthermore, the performance of the proposed MI-GAN 
framework is investigated using multiple testing cases, and the 

results show the supreme performance and efficiency of our 

proposed method compared with optimization and the state- 

of-the-art AI-optimization approaches on OPF problems.
The rest of this article is organized as follows: In Section 

2, the general mathematical formulation of the DC-OPF 
problem is presented. In Section 3, MI-GAN is proposed to 

solve the DC-OPF problems. Numerical results and compar-

isons on IEEE test systems are presented in Section 4 to 

demonstrate the effectiveness of the proposed method. 

Finally, conclusions are drawn in Section 5.

2. The OPF problem

In this study, the DC-OPF problem with dynamic power 

load is applied for the purpose of concept proof. In the fol-

lowing DC-OPF problem, we assume that the voltages are 

constants at all buses. Then there are two groups of varia-

bles: the power generation, pg , and the power voltage phase 

angles, h: Denote nb and ng as the numbers of buses and 

power generators, respectively. Then pg¼fpg1, pg2, … , 
pgng

g where pgi is the power generation for generator i, and 

h¼fh1, h2, … , hnb
g where hi is the phase angle for bus i:

In addition, denote that the power load is pd and there are 

nd buses that have the net load.
Specifically, to quantify the uncertainties in the DC-OPF 

model, the power load pd has a coefficient q: q is considered 
to have a value of one when starting to solve this DC-OPF 

model. Afterwards, q may also change to other values in 

ð0, þ1Þ so that the net loads may change due to the 

renewable energy uncertainty. Thus, the level of uncertainty 

can be quantified by the scale of q: Under such circumstan-

ces, the OPF problem may contain a series of optimization 

models to be solved where q corresponds to different values.
In addition, based on the lines between different buses, 

the power output could be sent following one matrix Mg 

and the power load could be received following another 

matrix Md: The size of Mg is nb � ng whereas the size of Md 

is nb � nd: Then, the formulation of the DC-OPF problem 

can be expressed by (2)-(5): 

min
pg , h

cTpg (2) 

s.t. 

Mgpg − MdðqpdÞ ¼ Bbush (3) 

pmin
line � Blineh � pmax

line (4) 

pmin
g � pg � pmax

g (5) 

Equation (2) is the function to minimize the power gen-

eration cost where the coefficients used to calculate the cost 

for all the generators are denoted as c: Following that, the 

minimization is constrained by the power balance equation, 

the transmission line capacity constraints, and the gener-

ation operation limits. Equation (3) means that the power 

output should balance the net load, and the in- and 

out-going flows for all the buses where Bbus is the bus 

admittance matrix. In addition, (4) shows the minimum and 

maximum active line flow limits based on the line admit-

tance matrix Bline: Equation (5) demonstrates the minimum 

and maximum power generation limits.
To simplify the expressions, the solution is denoted as x 

and the objective function is denoted as f ð�Þ: Since the 

DC-OPF problem is a linear programming problem, the 

constraints are represented by Ax � b in Section 3. Notably, 

the constraints for AC-OPF problems could also be 

addressed by the proposed MI-GAN if considering the con-

straints as gðxÞ � b instead.

3. Research methodology

3.1. MI-GAN

As illustrated in Figure 1, the MI-GAN is proposed to 

involve the OPF model in the training of GAN. It includes 

two key components, a MI generator Gm and a discrimin-

ator D: Based on the adversarial architecture in GAN, Gm 

will first generate the OPF solutions, and D will identify if 

the input solutions are generated or actual. Gm and D will 

compete until the distribution of generated solutions resem-

bles the distribution of actual solutions. In this framework, 

Figure 1. The overview of the proposed MI-GAN.
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the historical OPF solutions, Xh, i.e., the optimal or near 

optimal solutions of the previous/solved OPF models, are 

considered as the actual solutions to feed D: In addition, a 

preserved matrix is also applied to save the generated solu-

tions from the proposed MI-GAN, and this matrix is 

defined as saved solutions, i.e., Xs:

According to (1) in Section 1, the minimax game for the 

MI-GAN, i.e., VðD, GmÞ, is formulated in (6):

min
Gm

max
D

V D, Gmð Þ ¼ Exh�Pdata xhð Þ log D xhð Þ
� �� �

þ Ez�PZðzÞ½logð1 − DðGm zð ÞÞÞ� (6) 

where xh is the historical solution while z is the input noise 

for Gm: Accordingly, the loss of Gm, i.e., LGm
, and the loss 

of D, LD, can be demonstrated in (7):

LGm
¼ −Ez�PZ zð ÞðDðGmðzÞÞÞ

LD ¼ Ez�PZ zð ÞðDðGmðzÞÞÞ − Exh�Pdata xhð ÞðDðxhÞÞ (7) 

Gm consists of a regular generator G and a new MI selector 

M: As shown in (8) in each training iteration, G will first 

generate solutions, i.e., GðzÞ, and then it will be sent to M:

Afterwards, based on the OPF constraints, M will select and 

update the feasible solutions among the generated solutions, 

based on the saved solution, Xs, and historical solution Xh:

Gm zð Þ ¼ M GðzÞjXs, Xhð Þ (8) 

Subsequently, both Xh and the selected generated solu-

tions i.e., Xu, will be sent to D: Based on the output of D, 

the losses LGm 
and LD can be obtained to update the model 

during iteration. Xu will be saved and applied as Xs in next 

iteration. In this way, Xs and D, Gmð Þ can be updated itera-

tively until it converges.
Specifically, the input of the regular generator G is ran-

domly generated noise z and the output is the solution 

GðzÞ: In addition, the input of the discriminator D is GðzÞ
and xh, while the output is a vector to measure the similar-

ity between actual and generated solutions. Since the map-

ping from input to output in both G and D are not hard to 

quantify, both G and D are designed using the MultiLayer 

Perceptron (MLP) architecture, with fully-connected hidden 

layers. In practice, the design of neural networks could also 

be further tailored depending on the specific situation. The 

parameters in both G and D will be updated according to 

the losses. In addition, GðzÞ is considered as the sampled 

solution from the updating distribution PZ zð Þ: As the model 

converges, PZ zð Þ will be similar to Pdata: Instead of inform-

ing optimization parameters in G and D, the optimization 

parameters are sent into the MI selector to ensure the feasi-

bility and improve the optimality. In this way, the solutions 

generated from Gm, i.e., the solutions sampled from Pdata, 

should be feasible and be close to the optimal solution.

3.2. MI selector

As mentioned in Section 3.1, the MI selector M is proposed to 

select and update the feasible solutions among the generated 

solutions. Hence, the feasibility of generated solutions should 

be checked first. Afterwards, the filtered feasible solutions are 

further updated based on the objective function values and the 

gradient information, respectively. Accordingly, three different 

categories of new layers, including feasibility filter layer, com-

parison layer, and gradient-guided layer, are proposed to estab-

lish M in Gm: The demonstration of M is shown in Figure 2.
In Figure 2, M involves four steps to update the generated 

solutions. First, one feasibility filter layer is applied to check 

whether the solutions satisfy the given OPF constraints, i.e., 

feasibility check. Then a comparison layer compares the 

objective function values based on the saved solutions and 

feasible generated solutions. Afterwards, the gradient-guided 

layer updates the solutions according to the available gradi-

ent information. Since the feasibility of updated solutions 

may not be guaranteed, one more feasibility layer is applied 

to determine if the updated solutions are still feasible.

3.2.1. Feasibility filter layer

The feasibility filter layer is used to check if the input solutions 

satisfy the constraints. Two identical feasibility filter layers are 

needed in M: Figure 3(a) provides a framework overview of 

the feasibility filter layer. Initially, the generated solutions X 

and saved solution Xs are sent to this layer as pairs. One solu-

tion in the pair is a generated solution, while the other is a 

saved solution. Afterwards, each pair will select one solution to 

be passed to the updated saved solution set X1
s :

In particular, as shown in Figure 3(a), the ith pair of gen-

erated solution and saved solution, i.e., ðXðiÞ, XðiÞ
s Þ, may 

have four cases: (i) feasible XðiÞ and infeasible XðiÞ
s ; (ii) feas-

ible XðiÞ and feasible XðiÞ
s ; (iii) infeasible XðiÞ and infeasible 

XðiÞ
s also infeasible, as well as (iv) infeasible XðiÞ and feasible 

XðiÞ
s : For cases (i) and (iv), the feasible solution will be 

passed to the updated saved solution set X1
s : However, in 

cases (ii) and (iii), the feasibility of the generated solution 

and saved solution is the same. Since the generated solution 

is obtained from Gm in the current iteration, it is more 

Figure 2. A demonstration of a MI selector.
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representative than the saved solution to show the effective-

ness of Gm: Hence, the generated solution should be passed 

to X1
s in cases (ii) and (iii). In this way, under the first three 

cases, the generated solutions from X will be passed to X1
s :

Otherwise, the solutions from Xs will be passed to X1
s :

Notably, the feasibility of each pair ðXðiÞ, XðiÞ
s Þ is also 

recorded as a label, i.e., which feasibility case it belongs to, 

denoted as Si (Si ¼ 1, 2, 3, 4) in a label sequence S, and it 

will be sent to the comparison layer.
The algorithm for the feasibility filter layer can be dem-

onstrated by Algorithm 1 below. For the ith pair, only when 

X ið Þ is infeasible and X ið Þ
s is feasible, X ið Þ

s is passed to X1
s as 

X1 ið Þ
s : Otherwise, X ið Þ is assigned as X1 ið Þ

s : Thus, in each iter-

ation, all the solutions in X1
s are essentially the generated 

solutions either synthesized from current iteration or previ-

ous iterations. In this way, the feasibility of the solutions 

which will be sent to D could be guaranteed. The feasibility 

of X and Xs is also recorded as labels in S, which will be 

applied in the comparison layer.

Algorithm 1: Feasibility filter algorithm.  
Input: X fX 1ð Þ, X 2ð Þ, :::, X nð Þg, Xs fX 1ð Þ

s , X 2ð Þ
s , :::, X

nð Þ
s g, 

A, b 

Step 1: Define a new saved solution set as X1
s 

Step 2: Generate a n-element sequence S : f0, 0, :::, 0g
For i ¼ 1 to n do   

Step 3: Calculate b − AX ið Þ

If b − AX ið Þ � 0 and b − AX ið Þ
s > 0:    

Step 4: Assign XðiÞ to X1ðiÞ
s and set Si ¼ 1   

Else if b − AX ið Þ � 0 and b − AX ið Þ
s � 0:    

Step 5: Assign XðiÞ to X1ðiÞ
s and set Si ¼ 2   

Else if b − AX ið Þ
> 0 and b − AX ið Þ

s > 0:    
Step 6: Assign XðiÞ to X1ðiÞ

s and set Si ¼ 3   
Else: Assign X ið Þ

s to X1ðiÞ
s and set Si ¼ 4 

Output X1
s , S 

3.2.2. Comparison layer 

The comparison layer is used to compare the objective func-

tion values between X1
s and Xs: Figure 3(b) depicts the 

framework of the comparison layer in M: Initially, X1
s and 

Xs are also sent as pairs to the comparison layer. One solu-

tion in the pair is from X1
s while the other is from Xs:

Similar to the feasibility filter layer, each pair will select one 
solution to be passed to the newly saved solution set X2

s :

Denote that the objective function is f ð�Þ: The ith pair of 
the generated solution and the saved solution, ðX1ðiÞ

s , XðiÞ
s Þ, 

may have two cases, as shown in (9): 
(i) 

f ðX1ðiÞ
s Þ � f ðXðiÞ

s Þ; ðiiÞf ðX1ðiÞ
s Þ < f ðXðiÞ

s Þ: (9)  

Under such circumstances, a natural idea is to pass the 
solution with the smaller objective function value to X2

s :

However, the feasibility of X and Xs should also be consid-
ered in the comparison layer. Hence, cases (i) and (ii) are 
discussed separately based on the feasibility of X and Xs:

(a) For the case (i), if XðiÞ
s is feasible, i.e., Si has a value of 

one or two XðiÞ
s will be assigned as X2ðiÞ

s ; Otherwise, 
X1ðiÞ

s will be sent to X2
s as X2ðiÞ

s :

(b) For the case (ii), only when X1ðiÞ
s is infeasible and XðiÞ

s 

is feasible, i.e., Si is one, XðiÞ
s will be assigned as X2ðiÞ

s , 
Otherwise, X1ðiÞ

s will be sent to X2
s as X2ðiÞ

s :

Based on the above two cases, the algorithm for the com-
parison layer is demonstrated in Algorithm 2 below. Two 
cases are considered separately with the help of f ðX1 ið Þ

s Þ, 
f ðX ið Þ

s Þ, and S: In this way, the feasible solutions with 
smaller objective function values could be passed to X2

s :

Algorithm 2: Objective function value algorithm.  
Input: X1

s fX1 1ð Þ
s , X1 2ð Þ

s , :::, X
1 nð Þ
s g, Xs fX 1ð Þ

s , X 2ð Þ
s , :::, X

nð Þ
s g, 

f ð�Þ, S 
Step 1: Define a new saved solution set as X2

s 

For i ¼ 1 to n do   

Step 2: Calculate f ðX1 ið Þ
s Þ and f ðX ið Þ

s Þ
If f ðX1 ið Þ

s Þ < f ðX ið Þ
s Þ :

If Si ¼ 1 : Assign X ið Þ
s to X2 ið Þ

s ; Else: Assign X1 ið Þ
s 

to X2 ið Þ
s   

Else if Si > 2 : Assign X1 ið Þ
s to X2 ið Þ

s ; Else: Assign X ið Þ
s 

to X2 ið Þ
s 

Output X2
s 

3.2.3. Gradient-guided layer 

The gradient-guided layer is used to update the generated 
solutions based on the available gradient information. 

Figure 3. The framework of the feasibility filter layer (a), comparison layer (b), and gradient-guided layer (c) in the MI selector.
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Figure 3(c) depicts the framework of the gradient-guided 
layer in M: Initially, this layer is fed by X2

s and historical 
solution Xh, where both X2

s and Xh have the same number 
of solutions. Hence, X2

s and Xh are also combined as pairs 
in this layer. The ith pair consists of the ith solution of X2

s , 
X2ðiÞ

s , and the ith solution of Xh, X
ðiÞ
h : Afterwards, X2ðiÞ

s will 
be updated to X3ðiÞ

s based on X
ðiÞ
h : Then X3ðiÞ

s will be sent to 
the updated saved solution set X3

s as the ith solution. 
The solutions in X2

s are updated using the Gradient 
Descent (GD) algorithm (Ruder, 2017). However, due to the 
complex formats of objective functions in OPF, rf may be 

hard to calculate. Hence, for X2ðiÞ
s , rf is estimated by calcu-

lating the slope between X2 ið Þ
s , f X2 ið Þ

s

� �� �

and 

X
ðiÞ
h , f X

ðiÞ
h

� �� �

in this work. Afterwards, the step size of the 

GD algorithm is denoted as g, which can be determined 

through experimental trials. In this way, the solutions in X3
s 

can be updated toward the direction with smaller objective 
function values. Notably, the gradient-guided layer is not 
mandatory in MI-GAN, but it could significantly accelerate 
the training process due to the guidance from gradient. 
Hence, MI-GAN will also work without this layer if the 
OPF model is highly complex and the gradient is hard to 
quantify. 

Algorithm 3: Model-informed selector algorithm.  
Input: 

X fX 1ð Þ, X 2ð Þ, :::, X nð Þg, Xh fX 1ð Þ
h , X 2ð Þ

h , :::, X
nð Þ

h g,  
Xs fX 1ð Þ

s , X 2ð Þ
s , :::, X

nð Þ
s g, f ð�Þ, A, b, parameter g 

Step 1: Obtain X1
s , S by sending X, Xs, A, b to algo-

rithm 1

Step 2: Obtain X2
s by sending X1

s , Xs, f ð�Þ, S to algo-

rithm 2

Step 3: Replicate X2
s as X3

s 

For i ¼ 1 to n do    

Step 4: Calculate f ðX ið Þ
h Þ and f ðX2 ið Þ

s Þ

If f X2 ið Þ
s

� �

− f X ið Þ
h

� �

� �

� 0:    

Step 5: Obtain X3 ið Þ
s ¼ X2 ið Þ

s þ g (f ðX2ðiÞ
s Þ-f (X

ið Þ
h )) 

/ (X2ðiÞ
s -X ið Þ

h Þ
Else:    

Step 6: Obtain X3 ið Þ
s ¼ X2 ið Þ

s − g (f ðX2 ið Þ
s Þ-f (X

ið Þ
h )) 

/ (X2ðiÞ
s -X

ið Þ
h Þ

Step 7: Obtain Xu by sending X3
s , X2

s , A, b to algo-

rithm 1

Output Xu  

In summary, based on the above-mentioned three new 
layers, the algorithm to implement M in Gm is demonstrated 
in Algorithm 3. The generated solution set X is updated as 
X1

s in the first feasibility filter layer. Afterwards, X1
s is 

updated as X2
s in the comparison layer, and then X2

s 

is updated as X3
s in the gradient-guided layer. Finally, X3

s is 
updated as Xu in the second feasibility filter layer. Notably, 
the input in the second feasibility filter layer is X3

s and X2
s 

rather than X and Xs: In this way, Xu is considered as the 
output of the MI selector. Thus, in each iteration, the gener-
ated solutions could be updated as feasible solutions towards 

the direction with smaller (i.e., better) objective function 
values. 

3.3. Property of MI-GAN and its requirement 

Based on the proposed MI-selector, the algorithm for 
MI-GAN is shown in Algorithm 4. The actual solution set, 
i.e., the historical solution set, Xh, and the initialized saved 
solution set, i.e., the saved solution set Xs, are sent to the 
MI-GAN. With the support of historical solutions, when LD 

and LGm 
converge, the generated solutions should be similar 

to the historical solutions. In addition, the objective function 
values of the saved solutions decrease with each of the itera-
tions. In this way, the generated solutions can gradually 
approach the optimal solution. 

Algorithm 4: MI-GAN algorithm for OPF 
Input: Xh fX 1ð Þ

h , X 2ð Þ
h , :::, X

mð Þ
h g, Xs fX 1ð Þ

s , X 2ð Þ
s , :::, X

nð Þ
s g, 

f ð�Þ, A, b, f , parameter g, n 
Repeat    

Step 1: Randomly generate noise Z    

Step 2: Generate n fake solutions by generator 
as X fX 1ð Þ, X 2ð Þ, :::, X nð Þg

Step 3: Obtain Xu by inputting Xh, f ð�Þ, A, b, f to 
algorithm 3

Step 4: Send Xh and Xu into discriminator D to get 
output label results DðXÞ and D Xuð Þ, 
respectively   

Step 5: Optimize the model parameters based on the 
output of discriminator   

Step 6: Assign Xu to Xs 

Until both the LossGm
, −D Xð Þ, and LossD, D Xð Þ − 

DðXuÞ, converge    
Output Gm, D   

In the MI-GAN, the initialization requires the pre-definition 
of the saved solution set in the first iteration. Under such 
circumstances, an initialized saved solution set is considered, 
among which each solution is set as a vector with extremely 
large values. In this way, based on the feasibility layer and 
comparison layer, the initialized solutions in the initialized 
saved solution set can be replaced by the generated solutions 
in the first iteration. Then in the following iterations, all the 
solutions in Xs are the generated solutions from MI-GAN, 
either synthesized from the current iteration or previous 
iterations. Hence, the initialized saved solutions will not 
interfere with the updating of MI-GAN. 

It is worth noting that MI-GAN can also work well even 
if the historical solutions are not available. If there are no 
historical solutions, with the given OPF problem, sampling 
from the feasible region could be applied to obtain the feas-
ible solutions, which could be considered as actual solutions. 
However, in the large-scale OPF models, the sampling for 
feasible solutions may take a long time. Under such circum-
stances, in order to reduce the sampling time, the con-
straints could be partially relaxed. The case studies in 
Section 4 will show that the proposed method can still work 
well with the relaxed constraints. 
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Considering that the proposed MI-generator, Gm, is 

employed, it is also essential to prove that, as shown in 

Proposition 1, the convergence property is similar to GAN. 

Proposition 1. The convergence property of MI-GAN is simi-

lar to GAN, i.e., when Pdata ¼ PZ (Goodfellow et al., 2020), it 

will converge.  

Proof. Actual solutions are from the distribution of his-

torical solutions, Pdata: The artificial solutions are generated 

and selected from another distribution, PZ: When Gm is 

fixed, the optimal discriminator D can be shown as 

D�
G xð Þ ¼

PdataðxÞ

Pdata xð Þ þ PZðxÞ
(10) 

Then the minimax game when Gm is fixed is reformulated 

as

max
D

VðD, GmÞ ¼ Ex�PdataðxÞ
PdataðxÞ

Pdata xð Þ þ PZðxÞ

" #

þ Ex�PZ xð Þ
PZðxÞ

Pdata xð Þ þ PZðxÞ

" #

(11)  

Afterwards, only when Pdata ¼ PZ, the global minimum 

value of maxD VðD, GmÞ shown in (11) can be achieved 

(Goodfellow et al., 2020). In this way, the distribution of the 

generated solutions will gradually approach the distribution 

of the historical solutions. w 

Based on the convergence property, PZ should be similar 

to Pdata: When the model converges, the solutions can be 

sampled from the MI generator and the best solution can be 

chosen. Denote that the optimal solution is x�
: Hence, if x�

locates in Pdata, the generated solutions from Gm, i.e., X, 

should be around x�
: Following that, the solution with the 

smallest objective function values among X can be selected 

as the output solution from the MI-GAN. 
However, if x� does not locate in Pdata, X may not be 

around x�
: Hence, a new algorithm to improve the training 

of MI-GAN, called the recursive iteration algorithm, is 

developed in Section 3.4 to address this issue. 

3.4. Recursive iteration algorithm 

As described in Section 3.3, when the historical solutions 

Xh are not available, the sampled actual feasible solutions 

applied to train the MI-GAN may be far away from x�
:

Denote such an actual solution set as Xa: Though the 

MI-GAN converges, the generated solutions X probably are 

still not close enough to x�: Under such circumstances, it is 

important to make sure that the generated solutions X will 

approach to x�
: Hence, as shown in Figure 4, a recursive 

iteration algorithm for MI-GAN update is proposed to grad-

ually bring X closer to x�
: Since the X are similar to Xa, a 

natural idea is to select the solutions with smallest objective 

function values from both X and Xa: Such updated solu-

tions, namely, X0
a, should be closer to x� than Xa:

Afterwards, X0
a continue to train MI-GAN until the losses 

converge again. Each loop, which could be considered as 

one recursive iteration, will make newly generated solutions 

closer to x� than the previously generated solutions. It is 

also important to note that, only the feasible generated solu-

tions X are selected to next recursive iteration after they 

pass the feasibility filter layer in the MI selector. Specifically, 

the feasibility filter layer is directly informed by the OPF 

constraints so that the feasibility of X is not influenced by 

Xa: Therefore, X0
a selected from X and Xa must be a better 

actual solution set than Xa since it is both feasible and hav-

ing smaller objective function values. To further demon-

strate the effectiveness of the recursive iteration, Proposition 

2 is presented below. 

Proposition 2. Denote that the output solution from the kth 

trained MI-GAN with the smallest f ðxÞ is x̂k: Then x̂k will 

not be worse than x̂k−1: That is,

f ðx̂kÞ � f ðx̂k−1Þ (12)   

Proof. Denote that the actual solution set and generated 

solution set of the kth trained MI-GAN is Xak 
and Xk:

According to Figure 4, Xak 
are selected among Xak−1 

and 

Xk−1: Since the selection principle is to compare the object-

ive function values, Xak 
are better than Xak−1

: Therefore, for 

any solution xk from Xak
, there must exist at least one solu-

tion xk−1 from Xak−1 
such that f ðxkÞ � f ðxk−1Þ:

Based on Proposition 2, more importantly, to show the 

convergence property of the proposed recursive iteration 

algorithm for MI-GAN, Proposition 3 is obtained below as 

well. 

Proposition 3. x̂k will gradually converge to optimal solution 

x� as k increases.  

Proof. Due to Proposition 2, f ðx̂kÞ monotonically 

decreases as k increases. In addition, f ðx̂kÞ is bounded by 

f ðx�Þ: According to the monotone convergence theorem 

(Kolmogorov, 1957), x̂k could converge to x� as k increases.  

In practice, since the optimal solution is unknown, it is 

critical to define the stopping criteria for the recursive iter-

ation algorithm. Due to the gradient-guided layer, the out-

put solutions of MI-GAN will typically outperform Xa:

Then (13) could be satisfied in most recursive iterations, 

which will make x̂k gradually approach to x�
:

Figure 4. The framework of the recursive iteration algorithm.
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However, when x̂k is around x�, then (13) may not be 
satisfied. Hence, based on (13), the stopping criteria can be 
developed as follows: if f ðx̂kÞ does not decrease in the next 
two consecutive iterations, i.e., no better solutions, the itera-
tive process will be terminated: 

jx� − x̂kj � jx�
− x̂k−1j (13)  

According to Figure 4 and the stopping criteria, the 
pseudo code for the recursive iteration algorithm is demon-
strated in Algorithm 5 below. In each of the iterations, the 
MI-GAN is trained according to Xa and generates X after 
the model converges. Then m solutions are selected as X0

a 

among Xa and X: X0
a is applied in the next recursive iter-

ation, and the iteration will be terminated based on the pro-
posed stopping criteria. In this way, this recursive iteration 
algorithm could help to find a solution close to optimal. 

Algorithm 5: Recursive iteration algorithm 
Input: Xa fX 1ð Þ

a , X 2ð Þ
a , :::, X

mð Þ
a g, parameter d, h 

Step 1: Set k ¼ 1 
Loop  

Step 2: Train MI-GAN by Xa  

Step 3: Generate h artificial samples X from the trained 
MI-GAN  

Step 4: Select m solutions with smallest objective function  

value as X0
a among Xa and X  

Step 5: Assign X0
a to Xa  

Step 6: Calculate the minimum objective function value  

of Xa, f k
min and its output solution x̂k  

Step 7: k ¼ k þ 1 

Until f k−2
min � f k−1

min and f k−2
min � f k

min :

Output f k−2
min and x̂k−2 

4. Case studies 

4.1. Data introduction and experimental setup 

The experimental setups in this work are based on Venzke 
et al. (2020), and six DC-OPF cases are demonstrated. The 
detailed setup of each case is shown in Table 1
(Zimmerman et al., 2010). As the number of buses, i.e., nb, 
increases from 9 to 162, so does the number of constraints, 
from 24 to 592. Due to the significantly different scale of 
the cases, it could comprehensively demonstrate the effect-
iveness of the proposed method. 

In order to obtain the sampled actual solutions for the 
proposed method, as the input, 3000 feasible solutions are 
initially sampled for each case before training the proposed 
method. In the sampling process, pg is first uniformly 
sampled from the range defined in (5). Afterwards, h is cal-
culated based on (3) and sent to (4) for feasibility check. 
Such sampled feasible solutions may elongate the training 
time due to the large number of recursive iterations. 
However, in the real-world applications of OPF problems, 
the historical solutions for the optimization models from 
previous operating days are usually available, which could 
be applied for the optimization model of the current operat-
ing day. Specifically, such historical solutions could usually 
be considered as the solutions sampled from a distribution 

that is in proximity to the optimal solution unless there are 

big changes in the operating decisions. Therefore, the train-

ing time could be significantly reduced in real-world 

applications. 
As nb increases in each case, the difficulties in sampling 

the feasible solutions also increase, resulting in a significant 

increase in sampling time. In addition, it will also be more 

difficult for the proposed method to learn the data distribu-

tion and synthesize feasible solutions in the initial training 

stage. Hence, to reduce the sampling time and the difficul-

ties to obtain sufficient feasible solutions, the constraints can 

be randomly relaxed as the number of variables is relatively 

large. The number of relaxed constraints for each case is 

also shown in Table 1, which is determined by experimental 

trials. The smallest number of relaxed constraints that 

ensures the proposed method MI-GAN can learn the actual 

data distribution is selected. It is also worth noting that, 

though some constraints are relaxed during the training pro-

cess, the selected solution from the model are still needed to 

satisfy all the constraints after the model converges. 
Notably, the proposed MI-GAN is compatible with most 

of the popular GAN architectures. In this study, MI-GAN is 

built by incorporating the popular Wasserstein GAN 

(WGAN) (Arjovsky et al., 2017) since WGAN could make 

the training process more stable than the conventional 

GAN. In addition, the MLP network is applied in both the 

generator and discriminator of the proposed MI-GAN. All 

the above cases have the same parameter setups when using 

the proposed MI-GAN. The generator consists of five fully 

connected layers, whereas the discriminator consists of three 

fully connected layers. The last layer in the generator does 

not use the activation function whereas all the other layers 

incorporate Leaky ReLU as the activation function. 

TensorFlow 2.12.0 (Abadi et al., 2016) is applied for the 

training of the proposed method MI-GAN. The batching 

size is set as 50 while the number of iterations is set as 

2000. Each case involves five trials. In each trial, the output 

is one feasible solution with the smallest objective function 

value. Afterwards, the mean of the output solutions from 

different trials are calculated for discussion. The experiments 

were conducted on the Google colab with Python 3.10.12 

(Bisong, 2019). 
According to (3) in Section 2, if pg is obtained, h can 

also be calculated. Hence, to simplify the generation process 

of feasible solutions, pg is generated in the generator of the 

proposed method instead of fpg , hg: Then prior to passing 

Table 1. Experiment setup for DC-OPF cases.

Setup

Cases

Case9 Case30 Case39 Case57 Case118 Case162

nb 9 30 39 57 118 162
ng 3 2 10 4 19 12
nd 3 21 21 42 99 113
nline 9 41 46 80 186 284
Max. loading (MW) 315.0 283.4 6254.2 1250.8 4242.0 7239.1
Number of constraints 24 86 112 168 410 592
Number of relaxed  

constraints
0 0 6 1 19 49
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the variables to the layers in the MI selector, h is initially 

calculated. In this way, the discriminator in the proposed 

MI-GAN will still distinguish the entire solution. 
In this study, to comprehensively demonstrate the effect-

iveness of the proposed method MI-GAN, two different 

scenarios are considered. Section 4.2 shows the performance 

of MI-GAN for a given fixed OPF problem whereas Section 

4.3 shows the performance of MI-GAN for the OPF prob-

lem with uncertainties, i.e., OPF problem with dynamic net 

loads. 

4.2. MI-GAN performance for given fixed OPF problems 

4.2.1. MI-GAN performance under small-scale DC-OPF 

problems 

The performance of the proposed MI-GAN for the six given 

cases where q ¼ 1 is shown in Table 2. In this study, under 

each case, the feasible solution generated from the MI-GAN 

with the smallest objective function value is considered as 

its output solution. The accuracy of the output solution is 

measured in terms of the Mean Absolute Error (MAE) in 

percentage from the objective function values of the output 

solution and the actual optimal solution. The MAEs for dif-

ferent cases are shown in the first row of Table 2, with the 

values in the brackets representing the standard deviations. 

Based on the MAEs, it is shown that the bias between the 

optimal objective function values from MI-GAN and the 

actual optimal objective function value can be less than 5% 

in most cases. Specifically, under the case30 and case57 con-

ditions, the bias of the objective function values from the 

proposed method can be less than 1%. For case162, it is 

worth noting that the Euclidean distance between the output 

solution from MI-GAN and the actual optimal solution does 

not significantly increase, compared with the Euclidean dis-

tance calculated under other cases. Hence, though the MAE 

calculated under case162 is greater than 5%, it is still com-

parable. Therefore, the solutions obtained from the proposed 

method are very close to the actual optimal solutions, dem-

onstrating the method’s effectiveness. In addition, the stand-

ard deviations under each case are less than 3%. Hence, it 

shows that MI-GAN could generate desired solutions accur-

ately and consistently. 
In addition, to demonstrate the effectiveness of the pro-

posed recursive iteration algorithm, the number of recursive 

iterations is also shown in Table 2, where the values in the 

brackets are also the standard deviations. Except for case162, 

all cases can obtain near-optimal solutions within three 

recursive iterations. Although the number of recursive itera-

tions in case162 is slightly larger, it is still less than four, 

which is comparable. Hence, it shows that the recursive 

iteration algorithm is beneficial and essential to improve 

MI-GAN. 
Also, the experimental running time of MI-GAN was 

recorded to demonstrate the efficiency of the proposed 

method for use in online power systems. Specifically, the 

running time for one recursive iteration under each case is 

collected from five replicates. Then the average running 

time is calculated. The running time and its standard devia-

tions of the proposed method are also shown in Table 2. 

The running time gradually increases as the number of vari-

ables increases, due to the matrix calculations in the MI 

selector becoming increasingly complex. 
Additionally, we conducted a comparative analysis by cal-

culating the running time of the classic simplex algorithm 

(Dantzig, 1990) when applied to solve identical OPF models. 

This comparison was essential to highlight the superior time 

efficiency of MI-GAN. To ensure a fair comparison, the 

simplex method is implemented by the linprog function in 

Python. The comparisons are demonstrated in Figure 5(a) 

and (b) depict the average running time and the fitted curve 

of the running time for both approaches. The running time 

of the simplex method is exponential growth since the worst 

case needs to inspect all of the vertices. Hence, it is fitted by 

an exponential regression model. As for the proposed 

method, the neural network does not significantly change 

for different cases and the increase in the running time is 

mostly due to the dimension increment in the matrix calcu-

lations. Then the running time of the proposed MI-GAN is 

fitted by a linear regression model. It is well known that a 

simplex algorithm for linear programming has an exponen-

tial worst-case time complexity, as it requires inspection of 

all vertices in the worst-case scenario (Klee and Minty, 

1972). We can also observe from Figure 5(a) and (b) that 

the running time of the simplex method exhibits exponential 

growth. As for the proposed MI-GAN, the neural network 

architecture does not significantly change for different cases 

and the increase in the running time is primarily attributed 

to the expansion in matrix calculations, due to varying prob-

lem dimensions. Then the running time of the proposed 

MI-GAN was appropriately modeled using a linear regres-

sion model. As shown in Figure 5(a), since R2 of the fitted 

running time curve for both approaches are greater than 

90%, the equations to demonstrate the running time for 

both approaches are convincing. Hence, the running time of 

the proposed MI-GAN increases linearly whereas the run-

ning time of the simplex method increases exponentially. 

For the current cases, due to the essential matrix calcula-

tions within the neural networks, the proposed MI-GAN 

requires more time to execute than the simplex method. 

However, when analyzing the fitted running time curve, it 

becomes evident that the extended runtime of the MI-GAN 

Table 2. Performance of the proposed method for DC-OPF cases.

Results

Cases

Case9 Case30 Case39 Case57 Case118 Case162

MAE (%) 4.5 (2.9) 0.06 (0.3) 4.7 (1.6) 0.8 (0.4) 4.0 (2.6) 9.4 (2.0)
Number of recursive iterations 2.8 (1.6) 1.2 (0.4) 1.4 (0.5) 2.4 (0.5) 1.6 (0.8) 3.8 (1.9)
Running time (sec) 28.30 (1.91) 28.99 (1.58) 29.32 (0.17) 32.39 (1.24) 40.91 (0.80) 43.26 (0.97)
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is primarily influenced by certain persistent calculations that 

do not significantly increase with the number of variables. 

Therefore, as the number of variables increases to a larger 

scale, the running time of the proposed method can be 

much less than the simplex method, which is also proved in 

Section 4.2.2. In addition, the slopes of the running time for 

both approaches, as shown in Figure 5(b), can also demon-

strate an increasing trend in running time. The slope of the 

proposed method fluctuates, whereas the slope of the sim-

plex method increases. In case162, the slope of the simplex 

method is almost the same as the slope of the proposed 

method MI-GAN. Hence, MI-GAN may have a significantly 

shorter running time than the simplex method for large- 

scale cases. Since the proposed method can still obtain near- 

optimal solutions, it has the full potential to be applied in 

large-scale power systems. 

4.2.2. MI-GAN performance under large-scale and nonlin-

ear OPF problems 

As described in Section 4.2.1, the proposed method MI- 

GAN should have a better computational performance 

under large-scale power systems and be able to handle the 

nonlinear OPF problems as well. Therefore, to further dem-

onstrate the performance of the proposed method from 

these two aspects, two more cases are conducted in this 

subsection. 
The DC-OPF case2736 from the Polish system during 

summer 2004 peak conditions (Zimmerman et al., 2010) is 

applied to demonstrate the superior time efficiency of the 

proposed MI-GAN method under large-scale OPF problems. 

The detailed setup of case2736 is shown in Table 3. The 

number of buses has increased to 2736 while the number of 

generators has increased to 420, which is much larger than 

the other cases in Section 4.2.1. As described in Section 4.1, 

to reduce the sampling time and the difficulties to obtain 

sufficient feasible solutions, 1000 constraints are relaxed in 

this case. Regarding the time efficiency, the proposed 

method takes 265.89 seconds (with standard deviation 

2.11 seconds), which well fits the linear model of running 

time in Figure 5(a). As for the simplex method, 

50,000 seconds are still unable to obtain the optimal solu-

tion. Such a long time also shows that the running time of 

the simplex should be increasing exponentially. Therefore, 

the running time of the proposed method is much smaller 

than the simplex for this case, which fully demonstrates that 

MI-GAN has great potential to advance the computational 

efficiency of solving OPF problems. 
In addition, to validate the performance of the proposed 

method MI-GAN under nonlinear OPF problems, an 

Alternative Current OPF (AC-OPF) instance of case9 is also 

demonstrated (Zimmerman et al., 2010). The detailed setup is 

shown in Table 3. Specifically, compared with DC-OPF prob-

lems, two new groups of variables, including the reactive 

power generation (qg) and the voltage magnitude (v), are 

added to the AC-OPF problem, together with resulting non-

linear constraints. Therefore, there are 24 variables and 72 

constraints, which is much larger than the DC-OPF problem 

of case9 though there are still only nine buses. Besides, it is 

important to note that, since the gradient is hard to capture in 

the AC-OPF problems, the gradient-guided layer is not 

applied in this case. Therefore, the MI selector in the proposed 

MI-GAN consists of one feasibility filter layer and one com-

parison layer. In this case, though the number of variables and 

constraints has increased, the running time of the proposed 

method is still similar to the running time under DC-OPF of 

case9, i.e., about 30.65 seconds (with stand deviation 

0.25 seconds). Hence, it shows that the nonlinear constraints 

do not significantly influence the time efficiency. Specifically, 

the output solution from the proposed method is feasible and 

near the optimal solution since the average MAE between the 

objective function value calculated by the output solution 

from MI-GAN and by the optimal solution is about 6.7% 

(with standard deviation 2.9%). Based on the relatively small 

MAE, it also demonstrates the potential effectiveness of the 

proposed method MI-GAN to handle AC-OPF. 

4.3. Performance for OPF problem with uncertainties 

4.3.1. Solution accuracy 

Given that the intermittent nature of renewable energy may 

disturb power system stability, it is also important to dem-

onstrate the robustness of the proposed method to handle 

Figure 5. Comparison of MI-GAN and simplex method for running time (a) and the slope of running time (b).

Table 3. Experiment setup for DC-OPF case2736 and AC-OPF case9.

Setup

Cases

DC-OPF Case2736 AC-OPF Case9

nb 2736 9
ng 420 3
nd 2011 3
nline 3504 9
Number of constraints 7848 72
Number of relaxed constraints 1000 0
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OPF with uncertainties. Specifically, in our experiments, 

such uncertainties are considered as the dynamic changes of 

q, trying to investigate whether then proposed method MI- 

GAN can still have a good performance as q changes. The 

experiments are conducted based on case9 and case57 and 

are designed as follows: the proposed method is initially 

trained given the original net loads, pd: After the proposed 

method converges, the net loads are changed to qpd: Under 

the net loads of qpd, the feasible region will change and 

thus the optimal solution will be x�0, resulting in the new 

objective function value, i.e., f ðx�0Þ: To identify this new 

optimal solution, the existing trained MI-GAN undergoes an 

updating process to adapt to the altered net loads. Following 

this, the MI-GAN should yield a new output solution, which 

should be close to f ðx�0Þ, within a single recursive iteration. 
To better demonstrate the performance of the proposed 

MI-GAN, a benchmark approach based on the DNN regres-

sion (Falconer and Mones, 2022) and conventional GAN 

(Goodfellow et al., 2020), which has been applied in several 

existing related studies, is selected to compare with the pro-

posed MI-GAN. To make the comparison convincing, the 

network structure of the benchmark method is also opti-

mized. Specifically, in the benchmark method, MLP is also 

applied in both D and G: Through hyper-parameter tuning, 

G involves two fully-connected hidden layers whereas D 

involves only one fully-connected hidden layer. 

Since the feasible regions for both the proposed method 

MI-GAN and the benchmark method may change as the net 

loads change, the applied actual data may be neither feasible 

nor close to the optimal solution. Hence, when the net loads 

change 1000 solutions that adhere to the updated constraints 

are sampled. Then, they will be added to the existing actual 

data to train the model. To fully show the capability of MI- 

GAN, two cases to update q are considered, which are listed 

as follows:

1. Increasing the net loads pd and q is selected among the 

set f1:05, 1:1, 1:15, 1:2, 1:25, 1:3, 1:4, 1:5g:
2. Decreasing the net loads pd and q is selected among the 

set f0:5, 0:6, 0:7, 0:75, 0:8, 0:85, 0:9, 0:95g:

Notably, research has extensively studied uncertainties in 

the day-ahead level using stochastic or robust optimization 

models. However, when it comes to the real-time level, 

resolving real-time OPF models has been the common prac-

tice when net loads increase or decrease. Our proposed MI- 

GAN provides a novel solution by directly incorporating 

these dynamic changes in net loads. While the initial train-

ing of MI-GAN is based on specific net loads, it possesses 

the ability to gradually update and adapt to find solutions 

for OPF problems with varying net loads. The MAEs and 

standard deviations of the proposed method and the 

Figure 6. The comparison between the proposed method and DNN regression þ Conventional GAN when increasing and decreasing the net loads for case9 (a-d) 
and case57 (e-h): (a) MAE when increasing the net loads under case9; (b) MAE when decreasing the net loads under case9; (c) standard deviations of MAE when 
increasing the net loads under case 9; (d) standard deviations of MAE when decreasing the net loads under case 9; (e) MAE when increasing the net loads under 
case57; (f) MAE when decreasing the net loads under case57; (g) standard deviations of MAE when increasing the net loads under case57; (d) standard deviations 
of MAE when decreasing the net loads under case57.
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benchmark approach for case9 are shown in Figure 6(a)-(d). 
The benchmark approach may have lower MAEs than the 

proposed method at the beginning when both increasing 
and decreasing the net loads. However, the MAEs of the 
benchmark approach will gradually increase and become 
larger than those of the proposed method as j1 − qj
increases. Hence, it shows that the proposed method is 
more robust than the benchmark approach. In addition, the 
benchmark approach’s standard deviations are generally 

higher than those of the proposed method and increase as 
j1 − qj increases, while the standard deviations of the pro-
posed MI-GAN remain similar. The comparisons among 

standard deviations also reveal that the proposed method 
MI-GAN has higher stability than the benchmark approach.

On the other hand, the MAEs and standard deviations of 
the proposed method and the benchmark approach for 
case57 are shown in Figure 6(e)-(h). It clearly shows that 
the MAEs of the benchmark approach will gradually 

increase and be larger than the proposed method regardless 
of the changing patterns of net loads. Furthermore, the 
MAEs and the standard deviations of the proposed method 

do not show any significantly increasing or decreasing trend 
as j1 − qj increases, i.e., as the dynamic changes become 
more dramatic, which also outperforms the benchmark 

method under case57. Overall, the experiments conducted 
under both case9 and case57 demonstrate that the proposed 
method is not sensitive to the dynamic changes of net loads. 
If a power system has uncertainties in dynamic changes of 

net loads (real-time level), the trained MI-GAN could still 
be applied and find the solutions effectively.

4.3.2. Needed recursive iterations

Since the proposed method employs the recursive iteration 

algorithm, it is also necessary to discuss the changes of 
recursive iterations as the power systems interfere. The 
number of recursive iterations for case9 and case57 are 

shown in Figure 7(a)-(b). For both case9 and case57, the 
number of recursive iterations is mostly around two to five, 
and it does not change significantly as j1 − qj increases. 
Hence, it shows the high robustness of the proposed 

method. Furthermore, despite the fact that the benchmark 
approach is optimized and has fewer layers than the pro-
posed method, the benchmark approach runs in about 

55 seconds in both cases 9 and 57. Compared with the run-
ning time of the proposed method in Table 2, the proposed 

method still outperforms the benchmark approach in terms 

of efficiency. Therefore, the experiments with different net 

loads fully demonstrate the superior performance of the pro-

posed method and its high potential to be applied in the 

large-scale OPF problems under uncertainty.

5. Conclusions

In this article a novel MI-GAN framework is proposed to 

address OPF problems with uncertainty, specifically, OPF 

problems with dynamic net loads, from a data-driven per-

spective. In comparison with the existing optimization mod-

els, the proposed MI-GAN has three major contributions:

1. Three important new layers, including the feasibility fil-

ter layer, comparison layer, and gradient-guided layer, 

are proposed and designed to ensure feasibility and 

improve the optimality of generated solutions.
2. An efficient MI selector in conjunction with the three 

new layers are developed, incorporating the GAN-based 

architecture as an important component of the gener-

ator, i.e., MI-generator.
3. A new recursive iteration algorithm is also proposed to 

further reduce the bias between selected solutions and 

optimal solutions. It is also worth noting that the pro-

posed MI-GAN framework is compatible with most of 

the popular GAN architectures, which could further 

improve its capability of solving different optimization 

problems in power systems.

The superior performance of MI-GAN is demonstrated 

by six DC-OPF cases, including case9, case30, case37, 

case57, case118, case162. Among these six cases, the MAEs 

between the objective function values obtained from the 

proposed method and the actual optimal objective function 

value demonstrate the effectiveness of the proposed MI- 

GAN. In addition, the running times of the proposed 

method are also discussed to show its potential of computa-

tional efficiency. The running time increases linearly as the 

number of variables increases, showing that the proposed 

MI-GAN is more efficient than the conventional optimiza-

tion techniques in solving OPF problems with uncertainties. 

Furthermore, the proposed method also performed well 

under a large-scale DC-OPF instance and an AC-OPF 

instance, which show its high computational efficiency for 

Figure 7. The number of recursive iterations when changing the power demands under case9 and case57: (a) the number of recursive iterations when increasing 
the power demands; (b) the number of recursive iterations when decreasing the power demands.
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large-scale power systems and strong capability for nonlinear 

optimization model. In addition, to demonstrate its capabil-

ity of handling uncertainties, experiments with increasing 

and decreasing net loads are also conducted under case9 

and case57. The lower MAEs of the proposed method than 

the benchmark approach demonstrate that the proposed 

method is effective to handle the power system dynamics. 

The relatively low standard deviations and relatively stable 

number of recursive iterations also show the high robustness 

of the proposed method. Therefore, the proposed method 

MI-GAN is very promising for finding the optimal solutions 

of the complex OPF-related problems with uncertainty.
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