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ABSTRACT

The Optimal Power Flow (OPF) problem, as a critical component of power system operations,
becomes increasingly difficult to solve due to the variability, intermittency, and unpredictability of
renewable energy brought to the power system. Although traditional optimization techniques,
such as stochastic and robust optimization approaches, can be leveraged to address the OPF
problem, in the face of renewable energy uncertainty, i.e., the dynamic coefficients in the opti-
mization model, their effectiveness in dealing with large-scale problems remains limited. As a
result, deep learning techniques, such as neural networks, have recently been developed to
improve computational efficiency in solving OPF problems with the utilization of data. However,
the feasibility and optimality of the solution may not be guaranteed, and the system dynamics
cannot be properly addressed as well. In this article we propose an optimization Model-Informed
Generative Adversarial Network (MI-GAN) framework to solve OPF under uncertainty. The main
contributions are summarized into three aspects: (i) to ensure feasibility and improve optimality of
generated solutions, three important layers are proposed: feasibility filter layer, comparison layer,
and gradient-guided layer; (ii) in the GAN-based framework, an efficient model-informed selector
incorporating these three new layers is established; and (iii) a new recursive iteration algorithm is
also proposed to improve solution optimality and handle the system dynamics. The numerical
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results on |EEE test systems show that the proposed method is very effective and promising.

1. Introduction

The national electricity sector has witnessed a dramatic
change in renewable energy penetration in recent years, and
its share is expected to continue growing rapidly in the next
few decades. On a federal level, the U.S. Energy Information
Administration predicts that renewable energy resources will
provide 38% of electricity energy by 2050, with solar and
wind energy accounting for 17.5% and 12.54%, respectively
(Outlook, 2009). With such a high penetration of renewable
energy, it is critical and urgent for power system operators
to learn how to effectively and securely operate power sys-
tems in the face of high variability, intermittency, and
unpredictability of renewable energy output.

Optimal Power Flow (OPF), as an essential component of
power system operations and management, aims to minim-
ize the total generation cost while satisfying a series of sys-
tem constraints and operational requirements, achieving
economic power system operation in day-ahead and real-
time markets. As a key building block of many complex
power system problems, the optimization approaches for
solving OPF problems has been extensively studied in recent
years. The most common approach to formulating the OPF
problem with renewable energy uncertainties is stochastic
OPF (e.g., Yong and Lasseter, (2000) and Kimball et al.
(2003) among others), in which the uncertain renewable

energy output is characterized by a finite number of scen-
arios, or is assumed to follow a particular probability distri-
bution, and then sampling approaches are typically used to
finalize the formulation. The robust optimization approach,
e.g., Delage and Ye (2010) and Martinez-Mares and Fuerte-
Esquivel (2013) among others, is another traditional
approach to addressing the OPF problem with renewable
energy uncertainties. Its key idea is to construct an OPF
solution that is optimal for the worst-case realization of
renewable energy output in a predefined uncertainty set.
Recently, the distributionally robust OPF problem, e.g.,
Zhang et al. (2016) and Guo et al. (2018) among others, has
also been proposed for hybrid stochastic and robust
approaches, by considering the worst-case distribution of
renewable energy output. The obtained OPF decisions are
expected to be less conservative than the ones from the
robust approach and more reliable than the ones from the
stochastic approach.

Despite the great success of these approaches in effect-
ively addressing the OPF problem with renewable energy
uncertainty, the practical use of these methods remains lim-
ited, due to scalability issues for large-scale power systems.
In recent years, the staggering advances obtained in deep
learning make it possible to quickly find the optimal strategy
of computationally intensive power system optimization
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problems with the utilization of data. Over the last decade,
various deep learning approaches have been used to address
OPF problems; they can be divided into two major catego-
ries. One is based on the training of neural networks, such
as deep neural networks (Fioretto et al., 2020; Yang et al.,
2021; Nellikkath and Chatzivasileiadis 2022;), Convolutional
Neural Network (CNN) (Jia and Bai, 2021; Zhao et al,
2023) and graph neural networks (Owerko et al., 2020;
Falconer and Mones, 2022; Liu et al., 2022), to learn a high-
dimensional mapping between net load (i.e., load minus
renewable energy output) inputs and corresponding dispatch
and transmission decisions from historical records.
However, they primarily depend on supervised learning
techniques and massive simulations obtained ahead of time
to train the neural networks. As for the approaches that
could quickly acquire the solutions (Chatzos et al, 2021;
Donti et al, 2021; Mak, and Van Hentenryck 2021), they
still need to be re-trained with updated feasible solutions as
the net loads vary in the power systems. The other direction
is to utilize deep Reinforcement Learning (RL) to generate
instantaneous OPF decisions corresponding to the real-time
change of net load inputs (Yan and Xu, 2020; Zhou et al.,
2020). However, since RL algorithms are known as learning
by trial and error, the obtained OPF controls also lack a
safety guarantee.

To address the OPF problems, we propose a novel opti-
mization Model-Informed Generative Adversarial Network
(MI-GAN) framework in this article. The emerging
Generative Adversarial Network (GAN) was first proposed
by Goodfellow (Goodfellow et al., 2020). It was originally
designed for image augmentation (Tanaka and Aranha,
2019), but it is now applied to a variety of fields, including
manufacturing (Li et al., 2021), business fraud detection
(Fiore et al., 2019), and healthcare (Liu et al., 2019). GAN
trains two networks, generator G and discriminator D,
based on a minimax game for V(D, G) shown in (1):

min max V(D, G) = Ey_p,,, ) [108(D(x))]

+ Eyp,m[log(1 = D(G(2)))] (1)

where G generates artificial samples G(z) based on noise z
generated at random. Then D differentiates between artificial
samples G(z) and actual samples x. Following that, G and D
compete against each other. The ultimate goal of GAN is to
make it nearly impossible for D to tell whether the gener-
ated samples are actual data or artificial data. Then the arti-
ficial data is sufficiently similar to the actual data
(Goodfellow et al., 2020). In this way, even when the data is
complex and high-dimensional, a GAN-based framework
can learn the underlying relationships among the data. Deep
convolutional GAN (Radford et al,), for example, could
generate high-dimensional images with competitive perform-
ance by incorporating a CNN. Furthermore, conditional
GAN (Douzas and Bacao, 2018) makes the training process
more stable and controllable by using target classification
variables as a reference in iterations.

GAN-based approaches, in particular, could also be used
in optimization. For instance, Tan and Shi (2019) proposed

Generative Adversarial Optimization (GAO) based on the
GAN model, which is also applied in many applications,
including acute lymphocytic leukemia detection (Tuba and
Tuba, 2019), and crowdsensing (Guo et al., 2020). It consid-
ers the output of the generator as generated solutions while
the discriminator estimates the probability that the gener-
ated solution is better than the current solution. However,
the performance of GAO may be limited when the optimiza-
tion problem is complex, due to its functionality by reducing
the radius of the solution search space. In addition, Wang
and Srikantha (2022) also proposed a novel generative
framework for OPF problems. It utilizes a generator to gen-
erate feasible solutions and verifies the feasibility of solutions
using a discriminator. However, it requires an autoencoder
to handle the optimality. Therefore, a natural idea to apply
the GAN-based framework for handling both feasibility and
optimality is demonstrated as follows: The output of gener-
ator G could be generated solutions, whereas the actual data
could be the historical solutions, i.e., the actual solutions
centered on the optimal solution. As a result, the distribu-
tion of generated solutions could gradually approach to the
distribution of historical solutions. Then the near-optimal
solution could be obtained. However, if the historical solu-
tions do not exist, or are not centered on optimal solutions,
updating the generated solutions to move forward to the
optimal solution becomes a challenge. In addition, ensuring
that the generated solutions by G satisfy the constraints is
difficult.

In this article, inspired by our previous work of aug-
mented time-regularized GAN (Li et al., 2021), we leverage
the proposed MI-GAN framework to address the OPF prob-
lems with uncertainties. Specifically, the uncertainties in the
power system are demonstrated from the dynamic changes
of the net loads in the direct current OPF (DC-OPF) prob-
lem. The proposed novel MI-GAN differs from traditional
deep learning approaches in two major ways.

First, rather than learning the mapping between the net
load and control decisions, the GAN architecture can learn
the underlying distribution of optimal OPF decisions and
directly generate corresponding solutions for different real-
izations of net load. In this manner, solutions can be quickly
generated from the learned distribution without involving
the neural network. Second, unlike traditional neural net-
work-based methods, including the conventional GAN,
which ignore the model structure, the proposed MI-GAN
incorporates the model constraints and gradient information
during the training of the GAN in the following ways: (i) to
ensure the feasibility, a new feasibility filter layer is added to
the model-informed selector to check if the solution meets
all the physical constraints. If not, the solution will be fil-
tered out, and this information will be synthesized to
MI-GAN to discourage similar solutions from being gener-
ated again; (ii) to utilize the information from the objective
function and further improve the solution optimality, the
resultant objective function value and gradient information
are also integrated into the generator training to guide
MI-GAN to search for better solutions; and (iii) MI-GAN
does not require a large number of data samples, since it



can guide the search and improve its solution quality using
self-generated data.

To summarize, the contributions of the proposed method
consist of three parts:

1. To address OPF problems with dynamic net loads, three
critical new layers are designed to ensure the feasibility
and improve the optimality of generated solutions: the
feasibility filter layer, the comparison layer, and the gra-
dient-guided layer.

2. A new GAN-based learning framework, MI-GAN, is
proposed by incorporating an efficient model-informed
selector, which is designed to integrate the three pro-
posed novel layers.

3. A new recursive iteration algorithm is also proposed to
further reduce the bias between selected solutions and
optimal solutions.

Furthermore, the performance of the proposed MI-GAN
framework is investigated using multiple testing cases, and the
results show the supreme performance and efficiency of our
proposed method compared with optimization and the state-
of-the-art Al-optimization approaches on OPF problems.

The rest of this article is organized as follows: In Section
2, the general mathematical formulation of the DC-OPF
problem is presented. In Section 3, MI-GAN is proposed to
solve the DC-OPF problems. Numerical results and compar-
isons on IEEE test systems are presented in Section 4 to
demonstrate the effectiveness of the proposed method.
Finally, conclusions are drawn in Section 5.

2. The OPF problem

In this study, the DC-OPF problem with dynamic power
load is applied for the purpose of concept proof. In the fol-
lowing DC-OPF problem, we assume that the voltages are
constants at all buses. Then there are two groups of varia-
bles: the power generation, p,, and the power voltage phase
angles, 0. Denote n;, and n, as the numbers of buses and
power generators, respectively. Then pg:{pgl, Pg2> s
Pen,} Where pg; is the power generation for generator i, and
0={0,, 0,, ..., 0,,} where 0, is the phase angle for bus i.
In addition, denote that the power load is p; and there are
ny buses that have the net load.

Specifically, to quantify the uncertainties in the DC-OPF
model, the power load p, has a coefficient p. p is considered
to have a value of one when starting to solve this DC-OPF
model. Afterwards, p may also change to other values in
(0, +00) so that the net loads may change due to the
renewable energy uncertainty. Thus, the level of uncertainty
can be quantified by the scale of p. Under such circumstan-
ces, the OPF problem may contain a series of optimization
models to be solved where p corresponds to different values.

In addition, based on the lines between different buses,
the power output could be sent following one matrix M,
and the power load could be received following another
matrix My. The size of My is ny x ny whereas the size of My
is np x nyg. Then, the formulation of the DC-OPF problem
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can be expressed by (2)-(5):

. T
i ®
s.t.
M,p, — Ma(pp,) = Bous0 3)
Pﬁﬁg S Blinea S p]rrr?; (4)
Py <p, <pi™ (5)

Equation (2) is the function to minimize the power gen-
eration cost where the coefficients used to calculate the cost
for all the generators are denoted as c. Following that, the
minimization is constrained by the power balance equation,
the transmission line capacity constraints, and the gener-
ation operation limits. Equation (3) means that the power
output should balance the net load, and the in- and
out-going flows for all the buses where By, is the bus
admittance matrix. In addition, (4) shows the minimum and
maximum active line flow limits based on the line admit-
tance matrix Byn.. Equation (5) demonstrates the minimum
and maximum power generation limits.

To simplify the expressions, the solution is denoted as x
and the objective function is denoted as f(-). Since the
DC-OPF problem is a linear programming problem, the
constraints are represented by Ax <'b in Section 3. Notably,
the constraints for AC-OPF problems could also be
addressed by the proposed MI-GAN if considering the con-
straints as g(x) < b instead.

3. Research methodology
3.1. MI-GAN

As illustrated in Figure 1, the MI-GAN is proposed to
involve the OPF model in the training of GAN. It includes
two key components, a MI generator G, and a discrimin-
ator D. Based on the adversarial architecture in GAN, G,,
will first generate the OPF solutions, and D will identify if
the input solutions are generated or actual. G,, and D will
compete until the distribution of generated solutions resem-
bles the distribution of actual solutions. In this framework,

——————{ Model-informed GAN  }———————

———————————————————————— -

1

|

| / Historical
Solution X,

Model-informed
Selector M

pdated Generated
Solution X,,

Figure 1. The overview of the proposed MI-GAN.
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the historical OPF solutions, Xj, i.e., the optimal or near
optimal solutions of the previous/solved OPF models, are
considered as the actual solutions to feed D. In addition, a
preserved matrix is also applied to save the generated solu-
tions from the proposed MI-GAN, and this matrix is
defined as saved solutions, i.e., X;.

According to (1) in Section 1, the minimax game for the
MI-GAN, ie., V(D,G,,), is formulated in (6):

rrGlinn max V(D, Gin) = Ex,pyua(x) [108 (D(%1)) |

+ Epopy(z) [log(1 = D(Gu(2)))]  (6)

where xj, is the historical solution while z is the input noise
for G,,. Accordingly, the loss of G,,, ie., Lg,, and the loss
of D, Lp, can be demonstrated in (7):

Lg, = —Epup,2)(D(Gn(z)))

Lp = EZNPz(Z) (D(Gm(l>)) - EXhNPdm(Xh) (D(Xh)) @)

G, consists of a regular generator G and a new MI selector
M. As shown in (8) in each training iteration, G will first
generate solutions, i.e., G(z), and then it will be sent to M.
Afterwards, based on the OPF constraints, M will select and
update the feasible solutions among the generated solutions,
based on the saved solution, X, and historical solution X,:

Gm(z) = M(G(2)[Xs, Xp) (8)

Subsequently, both Xj and the selected generated solu-
tions i.e., X,, will be sent to D. Based on the output of D,
the losses Lg, and Lp can be obtained to update the model
during iteration. X, will be saved and applied as X; in next
iteration. In this way, X; and (D, G,,) can be updated itera-
tively until it converges.

Specifically, the input of the regular generator G is ran-
domly generated noise z and the output is the solution
G(z). In addition, the input of the discriminator D is G(z)
and x;,, while the output is a vector to measure the similar-
ity between actual and generated solutions. Since the map-
ping from input to output in both G and D are not hard to
quantify, both G and D are designed using the MultiLayer
Perceptron (MLP) architecture, with fully-connected hidden
layers. In practice, the design of neural networks could also
be further tailored depending on the specific situation. The
parameters in both G and D will be updated according to
the losses. In addition, G(z) is considered as the sampled
solution from the updating distribution Pz(z). As the model
converges, Pz(z) will be similar to Pga,. Instead of inform-
ing optimization parameters in G and D, the optimization
parameters are sent into the MI selector to ensure the feasi-
bility and improve the optimality. In this way, the solutions
generated from Gy, i.e., the solutions sampled from Pyata,
should be feasible and be close to the optimal solution.

3.2. MI selector

As mentioned in Section 3.1, the MI selector M is proposed to
select and update the feasible solutions among the generated
solutions. Hence, the feasibility of generated solutions should

4[ Model-Informed Selector ]—

aved Solution
X

Generated Feasibility New Saved
Solution X filter layer Solution X}
L1

{Comparison layer

i

New Saved
Solution X2

Historical Gradient-guided New Saved
Solution X, layer Solution X3
Feasibility
filter layer

Updated Generated
Solution X,,

Figure 2. A demonstration of a Ml selector.

be checked first. Afterwards, the filtered feasible solutions are
further updated based on the objective function values and the
gradient information, respectively. Accordingly, three different
categories of new layers, including feasibility filter layer, com-
parison layer, and gradient-guided layer, are proposed to estab-
lish M in G,,. The demonstration of M is shown in Figure 2.

In Figure 2, M involves four steps to update the generated
solutions. First, one feasibility filter layer is applied to check
whether the solutions satisfy the given OPF constraints, i.e.,
feasibility check. Then a comparison layer compares the
objective function values based on the saved solutions and
feasible generated solutions. Afterwards, the gradient-guided
layer updates the solutions according to the available gradi-
ent information. Since the feasibility of updated solutions
may not be guaranteed, one more feasibility layer is applied
to determine if the updated solutions are still feasible.

3.2.1. Feasibility filter layer

The feasibility filter layer is used to check if the input solutions
satisfy the constraints. Two identical feasibility filter layers are
needed in M. Figure 3(a) provides a framework overview of
the feasibility filter layer. Initially, the generated solutions X
and saved solution X are sent to this layer as pairs. One solu-
tion in the pair is a generated solution, while the other is a
saved solution. Afterwards, each pair will select one solution to
be passed to the updated saved solution set X!.

In particular, as shown in Figure 3(a), the ith pair of gen-
erated solution and saved solution, ie., (X, X(), may
have four cases: (i) feasible X! and infeasible Xgi); (ii) feas-
ible XV and feasible Xgi); (iii) infeasible XV and infeasible
Xgi) also infeasible, as well as (iv) infeasible X! and feasible
Xgi). For cases (i) and (iv), the feasible solution will be
passed to the updated saved solution set X!. However, in
cases (ii) and (iii), the feasibility of the generated solution
and saved solution is the same. Since the generated solution
is obtained from G,, in the current iteration, it is more
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Figure 3. The framework of the feasibility filter layer (a), comparison layer (b), and gradlent gwded layer (c) in the MI selector.

representative than the saved solution to show the effective-
ness of G,. Hence, the generated solution should be passed
to X! in cases (ii) and (iii). In this way, under the first three
cases, the generated solutions from X will be passed to Xsl.
Otherwise, the solutions from X; will be passed to X!.
Notably, the feasibility of each pair (X7, X)) is also
recorded as a label, i.e., which feasibility case it belongs to,
denoted as S; (S; =1,2,3,4) in a label sequence S, and it
will be sent to the comparison layer.

The algorithm for the feasibility filter layer can be dem-
onstrated by Algorithm 1 below. For the ith pair, only when
X is infeasible and X" is feasible, XV is passed to X! as
Xsl(i). Otherwise, XV is assigned as X1 . Thus, in each iter-
ation, all the solutions in X! are essentlally the generated
solutions either synthesized from current iteration or previ-
ous iterations. In this way, the feasibility of the solutions
which will be sent to D could be guaranteed. The feasibility
of X and X, is also recorded as labels in S, which will be
applied in the comparison layer.

S

Algorithm 1: Feasibility filter algorithm.
x {xW,x®, ,xM},  x, {x{V,
A b
Step 1: Define a new saved solution set as X!
Step 2: Generate a n-element sequence S : {0,0, ...,
Fori=1 to n do

Step 3: Calculate b — AX)

Ifb-AX" <o and b- AX W >

2)

Input: X§ s e Xgn)},

0}

Step 4: A551§ ) to X1 and set S =1
Else if b — AX") < O and b AX) W <

Step 5: Asmg ) to X1 and set S =2
Else if b — AX") > O and b AX

Step 6: A551§ to X1 and set S =3
Else: A551gn X to X1 and set §; =4

Output X!, §

3.2.2. Comparison layer

The comparison layer is used to compare the objective func-
tion values between XS1 and X,. Figure 3(b) depicts the
framework of the comparison layer in M. Initially, X! and
X; are also sent as pairs to the comparison layer. One solu-
tion in the pair is from X! while the other is from X.

Similar to the feasibility filter layer, each pair will select one
solution to be passed to the newly saved solution set X.
Denote that the objective function is f(-). The ith pair of

the generated solution and the saved solution, (X!, X)),
may have two cases, as shown in (9):
@)
FE) > FxD)s G x) < fxD). ©)

Under such circumstances, a natural idea is to pass the
solution with the smaller objective function value to XZ.
However, the feasibility of X and X should also be consid-
ered in the comparison layer. Hence, cases (i) and (ii) are
discussed separately based on the feasibility of X and Xi:

(a) For the case (1) if XA is feasible, i.e., S; has a value of
one or two X w111 be assigned as XZ( ; Otherwise,
X! will be sent to X2 as X20).

For the case (ii), only when X! is infeasible and X"
is feasible, i.e. S; is one, X\ will be assigned as X2,
Otherwise, X1 will be sent to X2 as Xz()

(b)

Based on the above two cases, the algorithm for the com-
parison layer is demonstrated in Algorithm 2 below. Two
cases are considered separately with the help of f(Xsl(i)),
f(XEi)), and S. In this way, the feasible solutions with
smaller objective function values could be passed to X2.

Algorithm 2: Objective function value algorithm.
Input: X! {X!W,x!@ _x"1 x, {x,x®,  x{"1,
fE), S
Step 1: Define a new saved solution set as X?

Fori=1 to n do
Step 2: Calculate f (X! and £(X)

S

) <fxf): 4 ,
IfS;=1: A531gn X to X2, Else: Assign X!
to Xfw

Else if S; > 2 : Assign X51<i> to X§<i>; Else: Assign Xgi)

to Xf<i)

Output X?

3.2.3. Gradient-guided layer
The gradient-guided layer is used to update the generated
solutions based on the available gradient information.
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Figure 3(c) depicts the framework of the gradient-guided
layer in M. Initially, this layer is fed by X? and historical
solution X, where both X? and X, have the same number
of solutions. Hence, X? and X, are also combined as pairs
in thls layer. The ith pair consists of the ith solution of X2,
X2 , and the ith solutlon of Xh, X (1) Afterwards X2 w1ll
be updated to X3 based on X( Then X3 will be sent to
the updated saved solution set Xf as the zth solution.

The solutions in X? are updated using the Gradient
Descent (GD) algorithm (Ruder, 2017). However, due to the
complex formats of objective functions in OPF, Vf may be

hard to calculate. Hence, for X2(), Vf is estimated by calcu-

lating  the slope  between <X52( ) f (Xf< )) > and

(X,(j) f (X?)) in this work. Afterwards, the step size of the

GD algorithm is denoted as #, which can be determined
through experimental trials. In this way, the solutions in X?
can be updated toward the direction with smaller objective
function values. Notably, the gradient-guided layer is not
mandatory in MI-GAN, but it could significantly accelerate
the training process due to the guidance from gradient.
Hence, MI-GAN will also work without this layer if the
OPF model is highly complex and the gradient is hard to

quantify.

Algorithm 3: Model-informed selector algorithm.

Input:
X{X()X() 1, X, (X0, x2, L x,
X, {x{V, } f(-), A, b, parameter 5
Step 1 Obtam Xsl, S by sending X, X, A, b to algo-
rithm 1
Step 2: Obtain X? by sending X!, X,, f(-), S to algo-
rithm 2

Step 3: Replicate X? as X?

Fori=1ton do .
Step 4: Calculate f (XEI’)) and f (x?(i))

If <f(x2<">) - f(x“”)? <0

Step 5 Obtain X3 = X204y (F(X20)-f (X

/ (XZ (’))
Else:
Step 6 Obtain X230 = X200 —yy  (F(x20)-f (X\)
/ (XZ (’))
Step 7: Obtain X, by sending X2, X2, A, b to algo-
rithm 1
Output X,

In summary, based on the above-mentioned three new
layers, the algorithm to implement M in G,, is demonstrated
in Algorithm 3. The generated solution set X is updated as
X! in the first feasibility filter layer. Afterwards, X! is
updated as X? in the comparison layer, and then XZ
is updated as X? in the gradient-guided layer. Finally, X? is
updated as X, in the second feasibility filter layer. Notably,
the input in the second feasibility filter layer is X? and X?
rather than X and X. In this way, X,, is considered as the
output of the MI selector. Thus, in each iteration, the gener-
ated solutions could be updated as feasible solutions towards

the direction with smaller (i.e., better) objective function
values.

3.3. Property of MI-GAN and its requirement

Based on the proposed MI-selector, the algorithm for
MI-GAN is shown in Algorithm 4. The actual solution set,
i.e., the historical solution set, X, and the initialized saved
solution set, i.e., the saved solution set X, are sent to the
MI-GAN. With the support of historical solutions, when Lp
and Lg, converge, the generated solutions should be similar
to the historical solutions. In addition, the objective function
values of the saved solutions decrease with each of the itera-
tions. In this way, the generated solutions can gradually
approach the optimal solution.

Algorithm 4: MI-GAN algorithm for OPF
X, (XU, x%, x"y, x (x0,x0),
f(-), A, b, f, parameter 5, n
Repeat
Step 1: Randomly generate noise Z
Step 2: Generate n fake solutions by generator
as X {XW,x®, X"}
Step 3: Obtain X, by inputting X;,, f(-), A, b, f to
algorithm 3
Step 4: Send X, and X, into discriminator D to get
output label results D(X) and D(X,),
respectively
Step 5: Optimize the model parameters based on the
output of discriminator
Step 6: Assign X, to X,
Until both the Lossg,, —D(X), and Lossp, D(X)—
D(X,), converge
Output G,,, D

Input: Xgn) 2

In the MI-GAN, the initialization requires the pre-definition
of the saved solution set in the first iteration. Under such
circumstances, an initialized saved solution set is considered,
among which each solution is set as a vector with extremely
large values. In this way, based on the feasibility layer and
comparison layer, the initialized solutions in the initialized
saved solution set can be replaced by the generated solutions
in the first iteration. Then in the following iterations, all the
solutions in X, are the generated solutions from MI-GAN,
either synthesized from the current iteration or previous
iterations. Hence, the initialized saved solutions will not
interfere with the updating of MI-GAN.

It is worth noting that MI-GAN can also work well even
if the historical solutions are not available. If there are no
historical solutions, with the given OPF problem, sampling
from the feasible region could be applied to obtain the feas-
ible solutions, which could be considered as actual solutions.
However, in the large-scale OPF models, the sampling for
feasible solutions may take a long time. Under such circum-
stances, in order to reduce the sampling time, the con-
straints could be partially relaxed. The case studies in
Section 4 will show that the proposed method can still work
well with the relaxed constraints.



Considering that the proposed MI-generator, G, is
employed, it is also essential to prove that, as shown in
Proposition 1, the convergence property is similar to GAN.

Proposition 1. The convergence property of MI-GAN is simi-
lar to GAN, i.e., when Pgaa = Pz (Goodfellow et al., 2020), it
will converge.

Proof. Actual solutions are from the distribution of his-
torical solutions, Pga. The artificial solutions are generated
and selected from another distribution, Pz. When G, is
fixed, the optimal discriminator D can be shown as

DE(X) o Pdata(x)

B Pdata(x) +PZ(X) (10)

Then the minimax game when G,, is fixed is reformulated
as

Pdata (X)
max V(D,Gy) =By oppx) | 5—
D ( m) Piata (X) lpdata(x) 4 Pz(X)

PZ (X)
+ EXNPZ (x) [Pdata (X) + PZ (X)] ( 1 1)

Afterwards, only when Pga, = Pz, the global minimum
value of maxp V(D,G,) shown in (11) can be achieved
(Goodfellow et al., 2020). In this way, the distribution of the
generated solutions will gradually approach the distribution
of the historical solutions. [

Based on the convergence property, Pz should be similar
to Pgata- When the model converges, the solutions can be
sampled from the MI generator and the best solution can be
chosen. Denote that the optimal solution is x*. Hence, if x*
locates in Pgata, the generated solutions from Gy, ie., X,
should be around x*. Following that, the solution with the
smallest objective function values among X can be selected
as the output solution from the MI-GAN.

However, if x* does not locate in Pgu,, X may not be
around x*. Hence, a new algorithm to improve the training
of MI-GAN, called the recursive iteration algorithm, is
developed in Section 3.4 to address this issue.

3.4. Recursive iteration algorithm

As described in Section 3.3, when the historical solutions
X, are not available, the sampled actual feasible solutions
applied to train the MI-GAN may be far away from x*.
Denote such an actual solution set as X,. Though the
MI-GAN converges, the generated solutions X probably are
still not close enough to x*. Under such circumstances, it is
important to make sure that the generated solutions X will
approach to x*. Hence, as shown in Figure 4, a recursive
iteration algorithm for MI-GAN update is proposed to grad-
ually bring X closer to x*. Since the X are similar to X,, a
natural idea is to select the solutions with smallest objective
function values from both X and X,. Such updated solu-
tions, namely, X/, should be closer to x* than X,.
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4[ Recursive Iteration Algorithm ]7

Updated Actua
Solution X,

Select m solutions
with smallest f(+)

Figure 4. The framework of the recursive iteration algorithm.

Afterwards, X/, continue to train MI-GAN until the losses
converge again. Each loop, which could be considered as
one recursive iteration, will make newly generated solutions
closer to x* than the previously generated solutions. It is
also important to note that, only the feasible generated solu-
tions X are selected to next recursive iteration after they
pass the feasibility filter layer in the MI selector. Specifically,
the feasibility filter layer is directly informed by the OPF
constraints so that the feasibility of X is not influenced by
X,. Therefore, X, selected from X and X, must be a better
actual solution set than X, since it is both feasible and hav-
ing smaller objective function values. To further demon-
strate the effectiveness of the recursive iteration, Proposition
2 is presented below.

Proposition 2. Denote that the output solution from the kth
trained MI-GAN with the smallest f(x) is X;. Then %; will
not be worse than X,_;. That is,

f&e) < f(Re-1) (12)

Proof. Denote that the actual solution set and generated
solution set of the kth trained MI-GAN is X, and Xj.
According to Figure 4, X, are selected among X, , and
Xj—1. Since the selection principle is to compare the object-
ive function values, X,, are better than X,,_,. Therefore, for
any solution x; from X,,, there must exist at least one solu-
tion x4 from X,,_, such that f(x;) < f(xx_1).

Based on Proposition 2, more importantly, to show the
convergence property of the proposed recursive iteration
algorithm for MI-GAN, Proposition 3 is obtained below as
well.

Proposition 3. x; will gradually converge to optimal solution
x" as k increases.

Proof. Due to Proposition 2, f(X;) monotonically
decreases as k increases. In addition, f(Xx) is bounded by
f(x*). According to the monotone convergence theorem
(Kolmogorov, 1957), X; could converge to x* as k increases.

In practice, since the optimal solution is unknown, it is
critical to define the stopping criteria for the recursive iter-
ation algorithm. Due to the gradient-guided layer, the out-
put solutions of MI-GAN will typically outperform X,.
Then (13) could be satisfied in most recursive iterations,
which will make X, gradually approach to x*.
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However, when X is around x*, then (13) may not be
satisfied. Hence, based on (13), the stopping criteria can be
developed as follows: if f(Xx) does not decrease in the next
two consecutive iterations, i.e., no better solutions, the itera-
tive process will be terminated:

|x* — Xi| < |x* — Xpy | (13)

According to Figure 4 and the stopping criteria, the
pseudo code for the recursive iteration algorithm is demon-
strated in Algorithm 5 below. In each of the iterations, the
MI-GAN is trained according to X, and generates X after
the model converges. Then m solutions are selected as X
among X, and X. X/ is applied in the next recursive iter-
ation, and the iteration will be terminated based on the pro-
posed stopping criteria. In this way, this recursive iteration
algorithm could help to find a solution close to optimal.

Algorithm 5: Recursive iteration algorithm

Input: X, {X!!, X2, X"}, parameter 6, h
Step 1: Set k =1
Loop
Step 2: Train MI-GAN by X,
Step 3: Generate h artificial samples X from the trained
MI-GAN
Step 4: Select m solutions with smallest objective function
value as X/ among X, and X
Step 5: Assign X/, to X,
Step 6: Calculate the minimum objective function value
of X,, fX. and its output solution %
Step 7: k =k+1
Until f%2 < gkl and fho2 < fk

min — Jmin *

min — Jmi
Output f*2 and %4,

4. Case studies
4.1. Data introduction and experimental setup

The experimental setups in this work are based on Venzke
et al. (2020), and six DC-OPF cases are demonstrated. The
detailed setup of each case is shown in Table 1
(Zimmerman et al., 2010). As the number of buses, i.e., n,,
increases from 9 to 162, so does the number of constraints,
from 24 to 592. Due to the significantly different scale of
the cases, it could comprehensively demonstrate the effect-
iveness of the proposed method.

In order to obtain the sampled actual solutions for the
proposed method, as the input, 3000 feasible solutions are
initially sampled for each case before training the proposed
method. In the sampling process, p, is first uniformly
sampled from the range defined in (5). Afterwards, 6 is cal-
culated based on (3) and sent to (4) for feasibility check.
Such sampled feasible solutions may elongate the training
time due to the large number of recursive iterations.
However, in the real-world applications of OPF problems,
the historical solutions for the optimization models from
previous operating days are usually available, which could
be applied for the optimization model of the current operat-
ing day. Specifically, such historical solutions could usually
be considered as the solutions sampled from a distribution

Table 1. Experiment setup for DC-OPF cases.

Cases
Setup Case9 Case30 Case39 Case57 Casel18 Casel62
ny 9 30 39 57 118 162
ng 3 2 10 4 19 12
ng 3 21 21 42 99 113
Njine 9 41 46 80 186 284
Max. loading (MW) 315.0 2834 62542 1250.8 42420 7239.1
Number of constraints 24 86 112 168 410 592
Number of relaxed 0 0 6 1 19 49

constraints

that is in proximity to the optimal solution unless there are
big changes in the operating decisions. Therefore, the train-
ing time could be significantly reduced in real-world
applications.

As ny increases in each case, the difficulties in sampling
the feasible solutions also increase, resulting in a significant
increase in sampling time. In addition, it will also be more
difficult for the proposed method to learn the data distribu-
tion and synthesize feasible solutions in the initial training
stage. Hence, to reduce the sampling time and the difficul-
ties to obtain sufficient feasible solutions, the constraints can
be randomly relaxed as the number of variables is relatively
large. The number of relaxed constraints for each case is
also shown in Table 1, which is determined by experimental
trials. The smallest number of relaxed constraints that
ensures the proposed method MI-GAN can learn the actual
data distribution is selected. It is also worth noting that,
though some constraints are relaxed during the training pro-
cess, the selected solution from the model are still needed to
satisfy all the constraints after the model converges.

Notably, the proposed MI-GAN is compatible with most
of the popular GAN architectures. In this study, MI-GAN is
built by incorporating the popular Wasserstein GAN
(WGAN) (Arjovsky et al., 2017) since WGAN could make
the training process more stable than the conventional
GAN. In addition, the MLP network is applied in both the
generator and discriminator of the proposed MI-GAN. All
the above cases have the same parameter setups when using
the proposed MI-GAN. The generator consists of five fully
connected layers, whereas the discriminator consists of three
fully connected layers. The last layer in the generator does
not use the activation function whereas all the other layers
incorporate Leaky_ReLU as the activation function.
TensorFlow 2.12.0 (Abadi et al., 2016) is applied for the
training of the proposed method MI-GAN. The batching
size is set as 50 while the number of iterations is set as
2000. Each case involves five trials. In each trial, the output
is one feasible solution with the smallest objective function
value. Afterwards, the mean of the output solutions from
different trials are calculated for discussion. The experiments
were conducted on the Google colab with Python 3.10.12
(Bisong, 2019).

According to (3) in Section 2, if P, is obtained, € can
also be calculated. Hence, to simplify the generation process
of feasible solutions, p, is generated in the generator of the
proposed method instead of {p,, 6}. Then prior to passing



the variables to the layers in the MI selector, 0 is initially
calculated. In this way, the discriminator in the proposed
MI-GAN will still distinguish the entire solution.

In this study, to comprehensively demonstrate the effect-
iveness of the proposed method MI-GAN, two different
scenarios are considered. Section 4.2 shows the performance
of MI-GAN for a given fixed OPF problem whereas Section
4.3 shows the performance of MI-GAN for the OPF prob-
lem with uncertainties, i.e., OPF problem with dynamic net
loads.

4.2. MI-GAN performance for given fixed OPF problems

4.2.1. MI-GAN performance under small-scale DC-OPF
problems

The performance of the proposed MI-GAN for the six given
cases where p = 1 is shown in Table 2. In this study, under
each case, the feasible solution generated from the MI-GAN
with the smallest objective function value is considered as
its output solution. The accuracy of the output solution is
measured in terms of the Mean Absolute Error (MAE) in
percentage from the objective function values of the output
solution and the actual optimal solution. The MAEs for dif-
ferent cases are shown in the first row of Table 2, with the
values in the brackets representing the standard deviations.
Based on the MAEs, it is shown that the bias between the
optimal objective function values from MI-GAN and the
actual optimal objective function value can be less than 5%
in most cases. Specifically, under the case30 and case57 con-
ditions, the bias of the objective function values from the
proposed method can be less than 1%. For casel62, it is
worth noting that the Euclidean distance between the output
solution from MI-GAN and the actual optimal solution does
not significantly increase, compared with the Euclidean dis-
tance calculated under other cases. Hence, though the MAE
calculated under casel62 is greater than 5%, it is still com-
parable. Therefore, the solutions obtained from the proposed
method are very close to the actual optimal solutions, dem-
onstrating the method’s effectiveness. In addition, the stand-
ard deviations under each case are less than 3%. Hence, it
shows that MI-GAN could generate desired solutions accur-
ately and consistently.

In addition, to demonstrate the effectiveness of the pro-
posed recursive iteration algorithm, the number of recursive
iterations is also shown in Table 2, where the values in the
brackets are also the standard deviations. Except for casel62,
all cases can obtain near-optimal solutions within three
recursive iterations. Although the number of recursive itera-
tions in casel62 is slightly larger, it is still less than four,
which is comparable. Hence, it shows that the recursive

Table 2. Performance of the proposed method for DC-OPF cases.
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iteration algorithm is beneficial and essential to improve
MI-GAN.

Also, the experimental running time of MI-GAN was
recorded to demonstrate the efficiency of the proposed
method for use in online power systems. Specifically, the
running time for one recursive iteration under each case is
collected from five replicates. Then the average running
time is calculated. The running time and its standard devia-
tions of the proposed method are also shown in Table 2.
The running time gradually increases as the number of vari-
ables increases, due to the matrix calculations in the MI
selector becoming increasingly complex.

Additionally, we conducted a comparative analysis by cal-
culating the running time of the classic simplex algorithm
(Dantzig, 1990) when applied to solve identical OPF models.
This comparison was essential to highlight the superior time
efficiency of MI-GAN. To ensure a fair comparison, the
simplex method is implemented by the linprog function in
Python. The comparisons are demonstrated in Figure 5(a)
and (b) depict the average running time and the fitted curve
of the running time for both approaches. The running time
of the simplex method is exponential growth since the worst
case needs to inspect all of the vertices. Hence, it is fitted by
an exponential regression model. As for the proposed
method, the neural network does not significantly change
for different cases and the increase in the running time is
mostly due to the dimension increment in the matrix calcu-
lations. Then the running time of the proposed MI-GAN is
fitted by a linear regression model. It is well known that a
simplex algorithm for linear programming has an exponen-
tial worst-case time complexity, as it requires inspection of
all vertices in the worst-case scenario (Klee and Minty,
1972). We can also observe from Figure 5(a) and (b) that
the running time of the simplex method exhibits exponential
growth. As for the proposed MI-GAN, the neural network
architecture does not significantly change for different cases
and the increase in the running time is primarily attributed
to the expansion in matrix calculations, due to varying prob-
lem dimensions. Then the running time of the proposed
MI-GAN was appropriately modeled using a linear regres-
sion model. As shown in Figure 5(a), since R* of the fitted
running time curve for both approaches are greater than
90%, the equations to demonstrate the running time for
both approaches are convincing. Hence, the running time of
the proposed MI-GAN increases linearly whereas the run-
ning time of the simplex method increases exponentially.
For the current cases, due to the essential matrix calcula-
tions within the neural networks, the proposed MI-GAN
requires more time to execute than the simplex method.
However, when analyzing the fitted running time curve, it
becomes evident that the extended runtime of the MI-GAN

Cases
Results Case9 Case30 Case39 Case57 Casel18 Casel162
MAE (%) 4.5 (2.9) 0.06 (0.3) 4.7 (1.6) 0.8 (0.4) 4.0 (2.6) 9.4 (2.0)
Number of recursive iterations 2.8 (1.6) 1.2 (0.4) 1.4 (0.5) 2.4 (0.5) 1.6 (0.8) 3.8 (1.9)
Running time (sec) 28.30 (1.91) 28.99 (1.58) 29.32 (0.17) 32.39 (1.24) 40.91 (0.80) 43.26 (0.97)




10 Y. LI ET AL.

S aol(@)
&

; 30 tM]—GAN = 0.09x + 26.84
£ o (R2 = 99.97%)

g‘ — ,0.03x-2.84

e it Lsimplex = €

g (R? =90.72%)

(-4 np

60 80 100 120 140 160
Number of variable

20 40

® MIGAN (Proposed method)
Simplex method

n | m- ]

a0 60 100 120 140 160

80
Number of variables

Figure 5. Comparison of MI-GAN and simplex method for running time (a) and the slope of running time (b).

is primarily influenced by certain persistent calculations that
do not significantly increase with the number of variables.
Therefore, as the number of variables increases to a larger
scale, the running time of the proposed method can be
much less than the simplex method, which is also proved in
Section 4.2.2. In addition, the slopes of the running time for
both approaches, as shown in Figure 5(b), can also demon-
strate an increasing trend in running time. The slope of the
proposed method fluctuates, whereas the slope of the sim-
plex method increases. In casel62, the slope of the simplex
method is almost the same as the slope of the proposed
method MI-GAN. Hence, MI-GAN may have a significantly
shorter running time than the simplex method for large-
scale cases. Since the proposed method can still obtain near-
optimal solutions, it has the full potential to be applied in
large-scale power systems.

4.2.2. MI-GAN performance under large-scale and nonlin-
ear OPF problems

As described in Section 4.2.1, the proposed method MI-
GAN should have a better computational performance
under large-scale power systems and be able to handle the
nonlinear OPF problems as well. Therefore, to further dem-
onstrate the performance of the proposed method from
these two aspects, two more cases are conducted in this
subsection.

The DC-OPF case2736 from the Polish system during
summer 2004 peak conditions (Zimmerman et al., 2010) is
applied to demonstrate the superior time efficiency of the
proposed MI-GAN method under large-scale OPF problems.
The detailed setup of case2736 is shown in Table 3. The
number of buses has increased to 2736 while the number of
generators has increased to 420, which is much larger than
the other cases in Section 4.2.1. As described in Section 4.1,
to reduce the sampling time and the difficulties to obtain
sufficient feasible solutions, 1000 constraints are relaxed in
this case. Regarding the time efficiency, the proposed
method takes 265.89seconds (with standard deviation
2.11seconds), which well fits the linear model of running
time in Figure 5(a). As for the simplex method,
50,000 seconds are still unable to obtain the optimal solu-
tion. Such a long time also shows that the running time of
the simplex should be increasing exponentially. Therefore,
the running time of the proposed method is much smaller
than the simplex for this case, which fully demonstrates that

Table 3. Experiment setup for DC-OPF case2736 and AC-OPF case9.

Cases
Setup DC-OPF Case2736 AC-OPF Case9
Ny 2736 9
ng 420 3
Ng 2011 3
Niine 3504 9
Number of constraints 7848 72
Number of relaxed constraints 1000 0

MI-GAN has great potential to advance the computational
efficiency of solving OPF problems.

In addition, to validate the performance of the proposed
method MI-GAN under nonlinear OPF problems, an
Alternative Current OPF (AC-OPF) instance of case9 is also
demonstrated (Zimmerman et al., 2010). The detailed setup is
shown in Table 3. Specifically, compared with DC-OPF prob-
lems, two new groups of variables, including the reactive
power generation (qg) and the voltage magnitude (v), are
added to the AC-OPF problem, together with resulting non-
linear constraints. Therefore, there are 24 variables and 72
constraints, which is much larger than the DC-OPF problem
of case9 though there are still only nine buses. Besides, it is
important to note that, since the gradient is hard to capture in
the AC-OPF problems, the gradient-guided layer is not
applied in this case. Therefore, the MI selector in the proposed
MI-GAN consists of one feasibility filter layer and one com-
parison layer. In this case, though the number of variables and
constraints has increased, the running time of the proposed
method is still similar to the running time under DC-OPF of
case9, i.e., about 30.65seconds (with stand deviation
0.25 seconds). Hence, it shows that the nonlinear constraints
do not significantly influence the time efficiency. Specifically,
the output solution from the proposed method is feasible and
near the optimal solution since the average MAE between the
objective function value calculated by the output solution
from MI-GAN and by the optimal solution is about 6.7%
(with standard deviation 2.9%). Based on the relatively small
MAE, it also demonstrates the potential effectiveness of the
proposed method MI-GAN to handle AC-OPF.

4.3. Performance for OPF problem with uncertainties

4.3.1. Solution accuracy

Given that the intermittent nature of renewable energy may
disturb power system stability, it is also important to dem-
onstrate the robustness of the proposed method to handle



OPF with uncertainties. Specifically, in our experiments,
such uncertainties are considered as the dynamic changes of
p, trying to investigate whether then proposed method MI-
GAN can still have a good performance as p changes. The
experiments are conducted based on case9 and case57 and
are designed as follows: the proposed method is initially
trained given the original net loads, p;. After the proposed
method converges, the net loads are changed to pp,. Under
the net loads of pp,, the feasible region will change and
thus the optimal solution will be x*, resulting in the new
objective function value, ie., f(x*'). To identify this new
optimal solution, the existing trained MI-GAN undergoes an
updating process to adapt to the altered net loads. Following
this, the MI-GAN should yield a new output solution, which
should be close to f(x*'), within a single recursive iteration.

To better demonstrate the performance of the proposed
MI-GAN, a benchmark approach based on the DNN regres-
sion (Falconer and Mones, 2022) and conventional GAN
(Goodfellow et al., 2020), which has been applied in several
existing related studies, is selected to compare with the pro-
posed MI-GAN. To make the comparison convincing, the
network structure of the benchmark method is also opti-
mized. Specifically, in the benchmark method, MLP is also
applied in both D and G. Through hyper-parameter tuning,
G involves two fully-connected hidden layers whereas D
involves only one fully-connected hidden layer.
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Since the feasible regions for both the proposed method
MI-GAN and the benchmark method may change as the net
loads change, the applied actual data may be neither feasible
nor close to the optimal solution. Hence, when the net loads
change 1000 solutions that adhere to the updated constraints
are sampled. Then, they will be added to the existing actual
data to train the model. To fully show the capability of MI-
GAN, two cases to update p are considered, which are listed
as follows:

1. Increasing the net loads p; and p is selected among the
set {1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.4, 1.5}.

2. Decreasing the net loads p,; and p is selected among the
set {0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}.

Notably, research has extensively studied uncertainties in
the day-ahead level using stochastic or robust optimization
models. However, when it comes to the real-time level,
resolving real-time OPF models has been the common prac-
tice when net loads increase or decrease. Our proposed MI-
GAN provides a novel solution by directly incorporating
these dynamic changes in net loads. While the initial train-
ing of MI-GAN is based on specific net loads, it possesses
the ability to gradually update and adapt to find solutions
for OPF problems with varying net loads. The MAEs and
standard deviations of the proposed method and the

20%] ' 14% 2 -
(a) , s 5o (o)
15% - 12% L]
] - S 6%
s ¢ 3
10% 10%
= = T 4%
8% S
5% | '_‘\’—o-”\./”’/. £ 2%
o 6% Z
0%{ m--—-N : : | ke 0% }
0.1 0.2 0.3 0.a 0.5 0.1 0.2 0.3 0.a 0.5 o1 o3 o3 o4 YCH
| 11-pl 11-pl 11-pl
10% | m--B " 2} =
(7] - |
o o u 5% - 12% -
= 8%/ (d) = e " f
E ( ) 4% ( ) 10% ( )
S -
g %% g 3% < =
- o s - s 6% o w8
‘.‘f 4% { 2% B
2 . a%
2% ! 1% |
g 2%
: ‘ ! 0% o% | —t—t—p—t—o———¢
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
[1-pl [1-p| 11-pl
f = 3.0%
g 1.8% i g 3
6 1.5%) (g) m S 2.5% (h)
® 1.2%| = 2.0%
> B >
0 1.0%/ o
:o . : 1.3% g ® MIGAN (Proposed method)
g ® 1.0% . B DNN regression+Conventional GAN
T 0.5%) T - s
Sl M—v\‘ 8 - W‘
n
0.0% ! : 0.0% W~ .
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
[1-p| 11-p|

Figure 6. The comparison between the proposed method and DNN regression + Conventional GAN when increasing and decreasing the net loads for case9 (a-d)
and case57 (e-h): (@) MAE when increasing the net loads under case9; (b) MAE when decreasing the net loads under case9; (c) standard deviations of MAE when
increasing the net loads under case 9; (d) standard deviations of MAE when decreasing the net loads under case 9; (€) MAE when increasing the net loads under
case57; (f) MAE when decreasing the net loads under case57; (g) standard deviations of MAE when increasing the net loads under case57; (d) standard deviations

of MAE when decreasing the net loads under case57.
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benchmark approach for case9 are shown in Figure 6(a)-(d).
The benchmark approach may have lower MAEs than the
proposed method at the beginning when both increasing
and decreasing the net loads. However, the MAEs of the
benchmark approach will gradually increase and become
larger than those of the proposed method as |1 —p|
increases. Hence, it shows that the proposed method is
more robust than the benchmark approach. In addition, the
benchmark approach’s standard deviations are generally
higher than those of the proposed method and increase as
|1 — p| increases, while the standard deviations of the pro-
posed MI-GAN remain similar. The comparisons among
standard deviations also reveal that the proposed method
MI-GAN has higher stability than the benchmark approach.

On the other hand, the MAEs and standard deviations of
the proposed method and the benchmark approach for
case57 are shown in Figure 6(e)-(h). It clearly shows that
the MAEs of the benchmark approach will gradually
increase and be larger than the proposed method regardless
of the changing patterns of net loads. Furthermore, the
MAESs and the standard deviations of the proposed method
do not show any significantly increasing or decreasing trend
as |1 —p| increases, ie., as the dynamic changes become
more dramatic, which also outperforms the benchmark
method under case57. Overall, the experiments conducted
under both case9 and case57 demonstrate that the proposed
method is not sensitive to the dynamic changes of net loads.
If a power system has uncertainties in dynamic changes of
net loads (real-time level), the trained MI-GAN could still
be applied and find the solutions effectively.

4.3.2. Needed recursive iterations

Since the proposed method employs the recursive iteration
algorithm, it is also necessary to discuss the changes of
recursive iterations as the power systems interfere. The
number of recursive iterations for case9 and case57 are
shown in Figure 7(a)-(b). For both case9 and case57, the
number of recursive iterations is mostly around two to five,
and it does not change significantly as |1 — p| increases.
Hence, it shows the high robustness of the proposed
method. Furthermore, despite the fact that the benchmark
approach is optimized and has fewer layers than the pro-
posed method, the benchmark approach runs in about
55seconds in both cases 9 and 57. Compared with the run-
ning time of the proposed method in Table 2, the proposed
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method still outperforms the benchmark approach in terms
of efficiency. Therefore, the experiments with different net
loads fully demonstrate the superior performance of the pro-
posed method and its high potential to be applied in the
large-scale OPF problems under uncertainty.

5. Conclusions

In this article a novel MI-GAN framework is proposed to
address OPF problems with uncertainty, specifically, OPF
problems with dynamic net loads, from a data-driven per-
spective. In comparison with the existing optimization mod-
els, the proposed MI-GAN has three major contributions:

1. Three important new layers, including the feasibility fil-
ter layer, comparison layer, and gradient-guided layer,
are proposed and designed to ensure feasibility and
improve the optimality of generated solutions.

2. An efficient MI selector in conjunction with the three
new layers are developed, incorporating the GAN-based
architecture as an important component of the gener-
ator, i.e., MI-generator.

3. A new recursive iteration algorithm is also proposed to
further reduce the bias between selected solutions and
optimal solutions. It is also worth noting that the pro-
posed MI-GAN framework is compatible with most of
the popular GAN architectures, which could further
improve its capability of solving different optimization
problems in power systems.

The superior performance of MI-GAN is demonstrated
by six DC-OPF cases, including case9, case30, case37,
case57, casell8, casel62. Among these six cases, the MAEs
between the objective function values obtained from the
proposed method and the actual optimal objective function
value demonstrate the effectiveness of the proposed MI-
GAN. In addition, the running times of the proposed
method are also discussed to show its potential of computa-
tional efficiency. The running time increases linearly as the
number of variables increases, showing that the proposed
MI-GAN is more efficient than the conventional optimiza-
tion techniques in solving OPF problems with uncertainties.
Furthermore, the proposed method also performed well
under a large-scale DC-OPF instance and an AC-OPF
instance, which show its high computational efficiency for
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Figure 7. The number of recursive iterations when changing the power demands under case9 and case57: (a) the number of recursive iterations when increasing
the power demands; (b) the number of recursive iterations when decreasing the power demands.



large-scale power systems and strong capability for nonlinear
optimization model. In addition, to demonstrate its capabil-
ity of handling uncertainties, experiments with increasing
and decreasing net loads are also conducted under case9
and case57. The lower MAEs of the proposed method than
the benchmark approach demonstrate that the proposed
method is effective to handle the power system dynamics.
The relatively low standard deviations and relatively stable
number of recursive iterations also show the high robustness
of the proposed method. Therefore, the proposed method
MI-GAN is very promising for finding the optimal solutions
of the complex OPF-related problems with uncertainty.
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