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A B S T R A C T   

The analysis of factors that influence the occurrence of roadway crashes within a specified locality have his-
torically been reliant on the assessment of physical infrastructure, historical crash frequency, environmental 
factors and driver characteristics. The consensus over the years has been drawn to the idea that human factors, 
specifically regarding driving behaviors, account for the majority of crash outcomes on our roadways. With the 
emergence of connected vehicle data in the last few years, the capacity to analyze real time driving behavior has 
become a possibility for safety analysts. Driving volatility has emerged as a valuable proxy for driving behavior 
and indicator of safety. In this study, evidence of the spatial relationship between driving volatility and historical 
crash hotspots is uncovered. Utilizing an entropy-based analysis, this study discovered generally strong positive 
spatial relationships between locations of volatile driving events and historical crashes, with R2 values ranging 
from 0.015 to 0.970 and a mean of 0.612 for hard accelerations, and 0.048 to 0.996 and a mean of 0.678 for hard 
decelerations. Including temporal context presented insights showing that the relationships are significant for 
over 60 % of the coverage area usually between the hours of 7 am to 7 pm, with average R2 values of 0.594 for 
hard accelerations, and 0.629 for hard decelerations.   

Introduction 

Roadway travel is still by far one of the most preferred modes of 
transport as reported by the National Household Travel Survey, as 
Americans take 1.1 billion trips per day of which 87 percent is carried 
out using personal vehicles (Santos et al., 2011). Effective and efficient 
roadway travel options are thus the lifeblood of the social and economic 
landscape for the average American. Assessing the crash risk implication 
of the roadway network in real time presents a valuable framework for 
making sure that roadway users are protected during their daily 
commute. This framework can include, but is not limited to, a more 
proactive and rapid response to crashes and the situations that allow 
them to occur or escalate. Missourians are estimated to incur a cost of 
3.3 billion dollars each year as the hidden cost to operating and main-
taining a roadway vehicle (TRIP, 2010). Another 4.8 billion dollars are 
incurred yearly as the safety cost for roadway travel as a result of motor 
vehicle crashes, which includes medical costs, lost workplace and 
household productivity, property damage, congestion costs and legal 
costs (Blincoe et al., 2015, TRIP, 2010). This high cost to travel is a great 
burden to the economic situation of the state and the people. Dealing 

with the issues that degrade the safety and efficiency of the state’s 
roadway network remains paramount. The field of transportation safety 
has evolved over the years into a more systems approach domain, which 
not only investigates seeking safety through vehicle or roadway design 
and operational changes, but also relying on behavioral changes of 
roadway users in their daily interactions within the transportation 
network system. The National Highway Traffic Safety Administration 
(NHTSA) with support from many state departments of transportation, 
have moved towards adopting the Vision Zero initiative which aims to 
achieve a highway system with no fatalities or serious injuries involving 
road traffic. At the heart of the Vizion Zero initiative is the human 
centered systems approach, with efforts being made over the years to 
collect comprehensive data on driver behavior. Programs such as the 
second Strategic Highway Research Program (SHRP-2) and the Ann 
Arbor Connected Vehicle Test Environment (AACVTE) have provided an 
incredible amount of data on roadway user interactions, which include 
but is not limited to, kinematic vehicle data, driver perspective video 
data, as well as driver-facing video feed. With this renewed focus on 
exploring the intricacies of the different forms of interactions between 
roadway users and the safety implications thereof, many researchers 
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have defined and explored new metrics which can be used in identifying 
the needs and areas of improvements of our transportation networks. 
This study will begin with a literature review which will investigate the 
existing work carried out in this new domain of traffic and trans-
portation safety, and then follow up with the research contributions. 

Literature review 

Driving volatility, which describes rapid changes in driving kine-
matics, as a proxy indicator of driving behavior has been extensively 
researched for its real-world safety implication (Wang et al., 2014, Liu 
et al., 2017, Wali et al., 2019). With the understanding that minute 
details in the way individuals drive can be extracted in real time and 
measured against a baseline to determine the possible consequence of 
any sort of deviations from the norm due to the emergence of connected 
vehicle (CV) data, a major direction of research has focused on 
advancing vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) 
technologies (Osman and Ishak, 2015). Other areas of research have 
focused primarily on accounting for these deviations, by introducing 
safety systems that can counteract them, such as lane keep assist (Guo 
et al., 2021), brake assist and cooperative adaptive cruise controls 
(Milanés et al., 2013). The most prevalent systems designed to assess 
and characterize driver behavior usually factor for over speeding, 
although much focus has now been drawn to other behaviors such as 
hard accelerations and decelerations, both in the longitudinal and 
lateral directions of motion, as well as jerk, a measure of the rate of 
change of acceleration with time (Kamrani et al., 2017). 

Given the advancements of V2I and V2V technologies in the last 
decade, CV data is now available in real time to aid roadway manage-
ment and safety agencies to make real world, instantaneous decisions on 
developing situations on the roadway network. This has opened the way 
for researchers to not only be able to look at the specific situations which 
lead to safety critical outcomes at the macro-level, but also micro-level 
analysis of individual behaviors that contribute to a wider range of is-
sues within the transportation system, such as vehicle emissions (Fer-
reira et al., 2021). The importance of the collective consequence of 
driving behaviors on the transportation network system cannot be 
overstated as many studies have drawn correlates between definable 
and quantifiable metrics of driving instances and crash outcomes (Wang 
et al., 2014, Liu et al., 2017, Wali et al., 2019, Wali and Khattak, 2020). 

With the emergence of large quantities of vehicle kinematic data, 
driving video data and driver characteristic data, insights into abnormal 
driving can be separated into two main fields. The first approach deals 
with information on driver actions based on video feeds and other forms 
of sensors that collect information which describe their behaviors during 
their trips. One such study is the distracted driving behavior study car-
ried out by and expanded on by Halley Sutton (2017), analyzed data 
from over 3 million drivers, who carried out up to 570 million trips, 
covering 5.6 billion miles of travel. Findings indicated that drivers used 
their phones in up to 88 percent of the trips analyzed, a worrying sta-
tistic. Other studies such as Papazikou et al. (2017, 2019) having 
extensively investigated a combination of both video data and the cor-
responding vehicle kinematics from naturalistic driving data, were able 
to look into how specific behaviors reflected in the signal from the ki-
nematic information. The other approach to driver behavior analysis 
involves analyzing only kinematic information to quantify instanta-
neous driving decisions. With a large enough pool of driver kinematic 
information, it then becomes possible to define thresholds of deviations 
from normal driving. Wang et al. (2014), and Liu et al. (2017) have 
explored how vehicle trajectory information can be harnessed at both 
the individual trip level, and over the whole transportation network to 
define volatile driving behaviors, which have huge safety implications. 
The conclusions drawn from these studies provide insight into how 
specific forms of connected vehicle data can be harnessed in the push to 
improve on the safety of transportation network system. In considering 
driving volatility from streaming data as a viable surrogate of crash 

detection and prediction signals, it is paramount that the spatial and 
temporal nature of the assessed variables under consideration to be 
taken into account. 

Analysis of spatial approaches in road safety has been carried out in 
recent years given that spatial heterogeneity and the transferability of 
defined model have become important. Ziakopoulos and Yannis (2020) 
carried out an extensive study looking into factors that influence the 
outcome of spatial analysis such as the boundary problem, the modifi-
able areal unit problem and spatial proximity. This investigation also 
presented the advantages and disadvantages of the different spatial 
modeling approaches including statistical, bayesian and machine 
learning approaches. Ziakopoulos (2021) followed up with an investi-
gation of the spatial analysis of hard braking (deceleration) events in 
urban environments, concluding that spatial autocorrelation is detected 
in harsh event frequencies. Unobserved heterogeneity and spatial 
autocorrelation have thus been established as an important factor to 
investigate in the analysis of crash data and crash surrogates (Cai et al., 
2021, Ziakopoulos et al., 2022, Wei et al., 2021). 

Consequently, temporal correlation cannot be discounted when 
spatial analysis of crashes is being investigated. analysis of crash data, 
where variables allow for, have also provided much useful insight into 
the changing dynamics of the influence of contributory factors to crash 
events, with respect to when and where they occur. Wen et al. (2019) 
understanding the effects of the dynamic nature of weather factors, 
explored the use of models to measure their associations with crash 
events. The study showed significant correlations in the interactions of 
many weather-related variables and geometric factors on the outcome of 
crashes on freeways. The implications of the findings of all the studies 
presented above draw a vivid presentation of the importance of inves-
tigating the spatial, as well as temporal nature of crash risk factors on 
crash outcome to ensure accuracy in the outcomes of potential future 
analyses. 

Research objectives and contribution 

Like most states, the state of Missouri collects and manages a 
comprehensive roadway crash database. Roadway crash data is 
invaluable in the analysis and assessment of the safety implications of 
the roadway network, and the decision-making process to improve on it. 
The usual historic precedent with roadway safety analysis is reliant on 
modeling variables that dwell with the interaction of the physical 
infrastructure, environmental factors and human behavior. Safety 
treatments thus tend to be usually reactive and applied when crash data 
is gathered over a long period of time. The Turner-Fairbank Research 
Center reports that in over 90 percent of roadway crashes, driver 
behavior serves as the critical reason (FHWA, 2021). Driving behaviors 
which have been labeled as aggressive constitute a large proportion of 
these situations that lead to potentially dangerous outcomes on our 
roadway. Aggressive driving consists of, following too closely, driving at 
excessive speeds, weaving through traffic, and running stop lights and 
signs, among other acts. With the advent of connected vehicle (CV) data 
that provides real time driving metrics, driving volatility has emerged as 
a useful proxy for driving behavior that deviates from the norm. Vola-
tility can be quantified in multiple ways from speeding, aggressive or 
hard acceleration and deceleration, as well as other dispersion from 
generally acceptable driving behaviors. The challenge therefore in the 
pursuit of a proactive safety system, which can identify and mitigate 
latent risks in the transportation system before they occur, rather than 
reacting afterwards, begins with exploring the different available real 
time variables and selecting which proxy indicators of driving behavior 
correlate best with crash occurrences. The focus of this paper is to 
explore the spatial and temporal correlations of volatility as a proxy of 
driving behavior, and crashes, within the transportation network that 
overlays Saint Louis City of the state of Missouri. By analyzing the 
number of historical crash events in conjunction with the number of 
observed volatile events and specific location, insights into the 
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relationship between the two occurrences can be gleamed. Expanding 
the analysis further within an hourly context also allows us to observe 
the changes in the development of the relationships and their magni-
tudes at different times of the day. The potential benefit of this study will 
help researchers by presenting variables which will aid in developing 
proactive safety systems and a more efficient response to safety critical 
outcomes on the roadways, towards an effective allocation of risk 
reduction and alleviation resources. 

Methodology and data 

Conceptual framework 

With ten years’ worth of geocoded historical crash data provided by 
the Missouri Department of Transportation (MoDOT) between the years 
of 2010 to 2019, and 2 months’ worth of CV data for roughly 373,000 
unique vehicle IDs at a resolution of 3 s, sourced from Otonomo tech-
nologies, a car data service platform, the general spatial and temporal 
context of where and when crashes usually occur, as well as where and 
when specific driving behaviors are observed on the roadway network 
can be scrutinized in deeper context to explore areas for potential 
necessary safety modifications, as well as proactive countermeasures. 

This study begins with an initial optimized analysis to define areas of 
statistically significant spatial clusters of high crash counts, as a means 
of narrowing down the area of observation if necessary. Similarly, the 

local analysis tool in ArcGIS Pro software (v. 2.8.3) is utilized to quantify 
the relationship between areas of where crash occur and whether it is 
dependent on or influenced by areas where different volatility measures 
occur as well as if these relationships vary over geographic space within 
the Saint Louis City boundary. 

With the initial spatial exploratory analysis carried out, the next 
stage of this study investigates exploring the additional temporal context 
of when these behaviors are most prevalent whilst keeping their spatial 
context of where they happen in mind. It is hypothesized that certain 
confounding factors, such as the changing density of traffic at different 
times of the day (exposure) and lighting conditions, have a relatively 
large effect on the outcome of the number of observed volatile driving 
events, as well as crash outcomes, which can be accounted for to some 
degree with an inclusion of the temporal context. Exploring the spatial 
and temporal correlation of these variables under observation will allow 
us to be more exact in analyzing the dynamic relationship of their in-
fluence and how that can be leveraged to improve the safety of our 
roadways. The conceptual framework of how the analysis was carried 
out in this paper is presented in Fig. 1. 

Data 
With ten years’ worth of geocoded historical crash data, numbering 

122,151 crashes, provided by the Missouri Department of Trans-
portation (MoDOT) between the years of 2010 to 2019, and 2 months’ 

worth of CV data, numbering over 36 million data points, from roughly 

Fig. 1. Conceptual Framework of Analysis.  

Fig. 2. Scatter density plots (at two levels of magnification) of calculated acceleration and deceleration 2-sigma thresholds defined by 5 km/h speed bins 
(black bars). 

A. Rashid Mussah and Y. Adu-Gyamfi                                                                                                                                                                                                     



Transportation Research Interdisciplinary Perspectives 24 (2024) 101051

4

373,000 unique vehicle IDs at a resolution of 3 s, sourced from Otonomo 
technologies, a car data service platform, the general spatial and tem-
poral context of where and when crashes usually occur, as well as where 
and when specific driving behaviors are observed on the roadway 
network can be scrutinized in deeper context to explore areas for po-
tential necessary safety modifications, as well as proactive counter-
measures. As the data streamed from the connected vehicles are highly 
granular and do not provide information specifically on the volatility 
metrics, large scale processing of the data is carried out as the first step. 

Exploratory spatial and temporal analysis 
The analysis begins with exploring the spatial and temporal nature of 

the crashes and volatility metrics. Understanding that different hours of 
the day account for different volumes of traffic on the roadway, and as 
such different driving behaviors is necessary to our analysis. The 
different environmental factors, such as lighting conditions, also influ-
ence the behaviors of drivers (Yannis et al., 2013). As such, plotting the 
locations of where and when crashes and volatilities happen will allow 
us to find a unique perspective about the roadway network. 

Driving volatility 
With the advantage of the real time stream of connected vehicle data, 

instantaneous driving volatility can be defined and measured. In this 
study, as speed data in the longitudinal direction is available at a reso-
lution of every 3 s, allowing us to calculate the rate of change of speed 
(acceleration/deceleration) as well in real time, by finding the differ-
ence between the current state speed st and previous state speed st−1 
over the time interval t for every unique vehicle, during every unique 
trip carried out by the vehicle. 

A threshold for normal acceleration and deceleration behavior is 
then computed for different speed bins within 2 standard deviations of 
the observed values. Value points that exceed the threshold values are 
thus labeled as highly volatile events, with positive values defined as 
hard accelerations and negative values defined as hard decelerations. 
Fig. 2 below shows the scatter density plot of the values of acceleration 
or decelerations against the respective vehicle speed value and bounded 
by the defined thresholds set to separate normal driving from volatile 

driving. 
Exploring the plot in detail, we notice that for most vehicles driving 

at speeds of up to 40 km/h (~25 mph), acceleration and deceleration 
rates of up to 7.5 feet per second squared are observed, this falls within 
reasonable range of vehicles traveling on low-speed roadway segments 
such as local and minor roads/arterials. As the vehicle speeds increase, 
the general acceleration and deceleration rates are seen to be within a 
lowered range of 5 feet per second squared, indicating that progressive 
braking is more preferred approach for safety and comfort reasons. 

Hot Spot analysis 
The initial spatial exploratory analysis carried out in this study in-

volves identifying statistically significant hot spots and cold spots using 
the Getis-Ord Gi* statistic. Hot spots and cold spots are defined as areas 
of significant clusters of high values and low values respectively. The 
local sum for a feature and its neighbors is compared proportionally to 
the sum of all features, a statistically significant z-score results when the 
local sum is very different from the expected local sum, and when that 
difference is too large to be the result of random chance (Getis and Ord, 
1992, Anselin, 1995). False Discovery Rate (FDR) correction is applied 
to account for multiple testing and spatial dependency and control the 
proportion of false positive results (type 1 errors). The general equation 
for the Getis-Ord local statistic is presented below by equation (1). 
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where xj is the attribute value for feature j, wij is the spatial weight 
between feature i and j, n is equal to the total number of features such 
that 
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and 

Table 1 
Descriptive Statistics of Key Variables from Connected Vehicle (CV) data.   

All CV Data Hard Accelerations Hard Decelerations 
N = 36,522,722 281,876 804,901 
Variable Mean SD Min/Max Mean SD Min/Max Mean SD Min/Max 
Speed (km/hr)  39.34  40.41 0/129.98  58.85  26.46 1/129.94  17.05*  25.86 0/129.64* 
Longitudinal Acc/Dec (ft/sec)  –23.14  2.2 −109.83/109.83  8.25  8.37 2.05/109.83  5.64*  5.4 2.55*/109.82* 
Lateral Acc/Dec (ft/sec)  2.62  18.63 −29.07/134.38  0.75  5.42 –23.88/134.38  0.32  5.57 −26.25/138.38 

NB: negative values of lateral acceleration denote movement from right to left 
* Computed absolute values of deceleration magnitudes 

Table 2 
Crash Data for Saint Louis City for 2010–2019.    

All Crashes Crashes by Year             
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019  

N = 122,151 10,626 10,165 8,530 8,847 10,290 13,969 15,577 14,774 13,992 15,385  

Crash Type           
Rear End  29,829 2,452 2,380 2,157 2,358 2,575 3,537 3,774 3,620 3,326 3,620 
Parking or Parked Car 18,127 1,675 1,619 1,171 1,169 1,611 2,125 2,305 2,179 1,986 2,263 
Out of Control 15,606 1,565 1,396 988 1,123 1,381 1,723 1,861 1,824 1,817 1,909 
Passing  13,200 827 814 931 925 1,015 1,487 1,718 1,828 1,652 1,988 
Right Angle 13,034 1,029 1,062 887 915 1,018 1,416 1,677 1,648 1,683 1,681  

Roadway Geometry Type           
Straight  114,425 9,902 9,571 7,901 8,169 9,552 13,089 14,623 13,876 13,180 14,562 
Curve  7,545 702 577 622 648 719 854 927 881 804 811  
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Given that the Gi* statistic is a z-score, no further calculations are 
thus required. 

Entropy based local spatial analysis 
Given that the relationship between two variables may change over 

geographical space, either in regression coefficients or relational form, it 
begs that specific local relationships at a given location need to be 
analyzed independently over defined spatial boundaries. The approach 
carried out in this study is explained in detail by Guo (2010), capital-
izing on an approximation of the Renyi entropy for the multivariate data 
in each locally defined geographical region. According to the work done 

Fig. 3. Spatial Density plot of a) volatility locations and b) crash locations. As well as corresponding heatmaps showing the temporal distribution of both c) volatile 
driving and d) crashes at different hours of the day for different days of the week. Note a strong spatial and temporal relationship between crashes and highly 
volatile events. 
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by Guo, each value of local entropy is converted to a p-value by 
comparing to a distribution of permutation entropy values for the same 
region. The final few steps in the process involve processing the p-values 
for each region using several statistical tests to control for the multiple- 
testing problem, and then mapping locations of statistical significance 
with the definition of the relationship form between the variables under 
observation. 

For a real-valued d-dimensional data space Rd, the entropy is defined 
by equation (4) as: 

Hλ =
1

1 − λ
log

(
∫

Rd

f (x)λ
dx

)

, λ ≥ 0, λ ∕= 1 

where x is a d-dimensional vector, f(x) is the probability density 
function, and λ ≥ 0 is the order of the Renyi entropy. 

The outcome of the process as defined by Guo (2010) is a non- 
parametric approach that defines spatially varying multivariate re-
lations which can take many different functional forms. A ‘good’ 

multivariate relationship exists when one variable is dependent on the 
other, and as such one may be used to predict the other. Some common 
relationship expected from the entropy based local bivariate spatial 
analysis, are linear relationships, quadratic polynomials, and in some 

cases, complex functions (Guo, 2010). 

Results and discussion 

Descriptive statistics 

Table 1 represents the descriptive statistics of the CV data with the 
key variables employed in the analysis. The general statistics such as the 
mean, standard deviation, minimum and maximum values of the vari-
ables help in presenting a context to the general nature of the distribu-
tions of the selected variables. From the table it can be inferred that hard 
decelerations tend to occur more frequently on the roadways, this is 
consistent with literature (Wang et al., 2014, Kamrani et al., 2017). The 
standard deviation, a measure of variability, is smaller for the hard 
decelerations than hard accelerations. Several factors may account for 
this observation as deceleration occur more frequently on roadways, 
especially with regards to interactions with traffic control measures such 
as stop signs and traffic signals. From the context of driver safety, the 
instinctive response to a safety critical situation for most drivers is to 
slow down or come to a stop, in order to avoid serious bodily injury or 
harm. Further exploration of the data shows that of the 372,721 vehicle 
IDs present in the data set, 40,391 (10.84 %) were involved in hard 
acceleration events and 146,580 (39.33 %) were involved in hard 
deceleration events. A total of 150,952 (40.5 %) of the vehicle IDs were 
involved in a highly volatile driving event. Table 2 presents the general 
overview of the nature of the roadway crash events for the last 10 years 
in Saint Louis City. Most of the crashes happen on straight roadway 
segments, and of the top five most frequent crash types, rear end crashes 
were the most prevalent. 

Analysis results 

To practically examine whether any type of relationship exists be-
tween the two variables under observation, spatial bins are defined to 
aggregate the events of crashes and volatilities to a quantifiable context. 
The process carried out begins first with plotting the locations of all 
crash events and volatility events (Fig. 3), and as observed, there exists 
strong spatial correlation between the two variables. Optimized Hotspot 
analysis is carried out using the ArcGIS Pro software (v. 2.8.3) in order to 
create spatial hexagons for which the crash and volatility events will 
then be aggregated into. The Optimized Hotspot analysis also allows us 

Table 3 
Crash Optimized Hotspot Analysis Summary.  

Initial Data Assessment  
There are 122,151 valid input features.  
There were 1432 outlier locations; these will not be used to compute the hexagon size. 

The total study area is 171441572.1358 Meters. 
Incident Aggregation  
Using a hexagon of width 308.3050 Meters and height 267.0000 Meters, the 

aggregation process resulted in 4745 weighted polygons. 
Incident Count Properties  
Min 0 
Max 650 
Mean 25.74 
Std. Dev. 51.73 
Scale of Analysis  
The optimal fixed distance band is based on peak clustering found at 

1254.1454 Meters  
Hot Spot Analysis  
There are 1887 output features statistically significant based on an FDR correction for 

multiple testing and spatial dependence. 0 % of features had less than 8 neighbors 
based on the distance band of 1254.1454 Meters  

Fig. 4. Comparison of Optimized Hotspot Analysis for (a) 1-year of crash data (b) 5-years of crash data and (c) 10-years of crash data, for the City of St. Louis.  
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to explore the spatial relationship of crash hotspots within the area of 
interest. The results of the analysis are presented in Table 3 below. 

Given that the crash data utilized in this study is a multiyear data, in 
order to account for temporal variations in the travel patterns, geometric 
improvements, operational improvements as well as vehicle technology, 
the Optimized Hotspot Analysis is carried out on 1 year and 5 years’ 

worth of crash data to explore whether changing patterns in the general 

hotspot locations will be observed as influenced by the aforementioned 
factors. Fig. 4 below is a side-by-side comparison of the Optimized 
Hotspot Analysis for the different crash data collection ranges discussed. 
It can be observed that the general locations of the hotspots and cold-
spots do not change much irrespective of how many years of data is used. 
The difference in intensity and quantity of the hotspots and coldspots 
can be attributed to the difference in quantity of crashes. The number of 

Fig. 5. Analysis Results. Locations of (a) statistically significant crash hotspots and coldspots; and bivariate relationships of crash counts with (b) volatile de-
celerations and (c) volatile accelerations from CV data with (d) examples of underlying observed linear and quadratic relationships. 

Table 4 
Local Bivariate Analysis Results for Hard Accelerations and Hard Deceleration with Crash counts.  

Hard Accelerations and Crash Count Hard Decelerations and Crash Count 
CategoricalSummary # features % features   CategoricalSummary # features % features   
Positive Linear 2333 67.64   Positive Linear 2368 63.21   
Negative Linear 0 0   Negative Linear 0 0   
Concave 417 12.09   Concave 763 20.37   
Convex 523 15.16   Convex 533 14.23   
Undefined Complex 5 0.14   Undefined Complex 0 0   
Not Significant 171 4.96   Not Significant 82 2.19   
Total 3449 100   Total 3746 100   
Entropy Results 

Summary 
Min Max  Mean  Median Entropy Results 

Summary 
Min Max  Mean  Median 

Entropy 0.26 1.19  0.66  0.64 Entropy 0.22 1.12  0.54  0.52 
p-value 0.005 0.875  0.0223  0.005 p-value 0.005 0.605  0.0126  0.005 
R2 0.015 0.970  0.612  0.629 R2 0.048 0.996  0.678  0.708 
FDR Comparison # 

significant 
% 
significant   

FDR Comparison # 
significant 

% 
significant   

Without FDR 3288 95.33   Without FDR 3664 97.81   
FDR 3278 95.04   FDR 3664 97.81    
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crashes observed within the 10-year period is 122,151, whilst that for 
the 5-year period is 73,697 and for the 1-year period we had a total of 
15,385 crashes. 

The outcome of the Optimized Hotspot analysis created 4745 spatial 
hexagons with crash data aggregated within raging from values of a 
minimum of 0 crashes to a maximum of 650 crashes for the 10 years’ 

worth of crash data utilized in the final analysis. Statistically significant 
clusters of hotspots and coldspots are observed in 1887 of the spatial 
hexagons, accounting for 39.77 % of the area of interest and this can be 
observed in Fig. 5 (a) below. The next step, as discussed, is to employ the 
local bivariate analysis of counts of hard accelerations, as well as hard 
decelerations, with crash counts within the defined spatial hexagons. 
The results of these analyses are observed in Fig. 5 (b) and (c) and 
summarized in Table 4 below. Hard decelerations show higher statisti-
cally significant relationships with crash counts, with a coverage area of 
97.81 % of locations within the study area of observed data. 

The relationships observed within the spatial bins are mostly positive 
linear in 63.21 % for hard decelerations within 3746 spatial bins, and 
67.64 % for hard accelerations within 3449 spatial bins. High values of 

the coefficient of determination (bivariate correlation) for the observed 
relationships, denoted by R2, which provide a measure of how well 
observed outcomes are replicated based on the proportion of total 
variation of outcomes explained by the defined relationship were 
observed. Further observation of the output Fig. 5(b) and 5(c), for both 
analyses, show that the relationships where they exist, are similar in the 
spatial bins for both volatility metrics. Finally, the analysis involved 
including temporal context in exploring how these observed relation-
ships change at different hours of the day, as influenced by assumed 
confounders such as exposure (higher traffic) and lighting conditions. 
Fig. 6 below defines the changing values of the percentage significance 
of the analysis as carried out for data for different hours of the day. As 
expected, significant relationships between the variables and crash 
counts are highest during hours of higher economic activity and traffic 
volumes. Fig. 7 presents a visual representation of the change in R2 value 
for different hours of the day, and as speculated, the association between 
locations of volatile driving and crash events are not only more preva-
lent during hours of high activity, but also show significantly greater 
values in the range of correlation coefficients. 

Fig. 6. Space time analysis percentage significant plot. Note the observed change in percentage significance of spatial association of the local bivariate analysis 
results at different hours of the day. 

Fig. 7. Boxplots of R2 value distribution of defined spatial associations between crashes and (a) hard accelerations, as well as (b) hard decelerations at different hours 
of the day. 
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In summary, the analysis presented in this study shows that during 
daylight hours, a larger percentage of the study area shows a significant 
defined relationship between volatility and crashes with very strong 
correlation, and this is important in helping define and develop models 
to access the safety situation of roadways more efficiently. Studies that 
have employed volatility metrics, especially hard braking/deceleration 
in safety analyses conclude with high certainty the positive correlation 
these metrics and crash outcomes (Wen et al., 2019, Desai et al., 2021, 
Hunter et al., 2021, Ziakopoulos et al., 2022, Mussah et al., 2022). 
Comparatively, Desai et al. (2021) concluded with an R2 of 0.85 and 
significant positive correlation between hard braking and crash out-
comes. Hunter et al. (2021) utilized 4.5 years of rear-end crash data and 
one month of hard braking data at 8 intersections to conclude that strong 
correlations occurred in specific locations at particular times of day. 
Unlike the earlier mentioned studies, this study explores both spatial and 
temporal correlation across the whole expanse of the defined study area. 

Conclusion 

Connected vehicle data presents a new era for traffic safety analysis, 
with realtime information from vehicles in motion. Driving volatility has 
emerged as a useful indicator of driver behavior and given that driver 
behavior accounts for the greater majority of causes of roadway crashes, 
it is important to explore how we can capitalize on CV data to draw on 
developing proactive safety countermeasure to developing situation on 
our roadways. This study contributes by analyzing and exploring the 
importance of the spatially varying multivariate relationships between 
defined driving volatility metrics and roadway crashes, as well as how 
these relationships vary in intensity over different hours of the day. 

Creating a unique data set that provides realtime driving context on 
the roadway, with regards to driving behavior, from over 36 million data 
points from 373,000 unique vehicle IDs, the potential of exploring the 
landscape of how these behaviors relate with areas of crash occurrences 
is explored in this study. A simple measure of driving volatility is 
quantified as the 2-sigma rate of change of driving speed over time both 
in the positive and negative domains and are labeled as hard accelera-
tions and hard decelerations respectively. The provided spatial infor-
mation from both historically archived crash data collected over ten 
years, and the generated volatility data set, reveals an observable spatial 
correlation between the locations of where both sets of events occur. 
Employing an entropy based spatial analytical framework, the under-
lying spatially varying bivariate relationships between the defined 
driving volatility metric and roadway crashes is computed. To partially 
account for unobserved confounding influence of some safety critical 
variables, particularly the effect of exposure (intensity of traffic) and 
lighting conditions, the temporal context of the dynamism of the 
bivariate relationships is also explored. The analysis shows that driving 
volatility has a strong association with crash location occurrences and 
can serve as a great indicator of realtime crash risk. With the application 
of statistical, bayesian and machine learning approaches that can factor 
spatial and temporal influence into the analysis, hard decelerations are 
becoming a very useful and preferred proxy for exploring realtime crash 
risks of roadway segments (Ziakopoulos et al., 2022, and Adu-Gyamfi 
2022). 

The implication of this study draws on the need to provide proactive 
safety warnings to drivers about potential safety critical situations in 
specific areas of the transportation network, through advanced warning 
systems transmitted via connected vehicle technologies. Future studies 
will look into defining crash risk at a roadway segment level capitalizing 
on the insights of this study to develop a realtime crash risk dashboard 
that can help drivers and traffic management organizations respond to 
situations on the roadways as they develop, in a more efficient and 
effective manner. 
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