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The analysis of factors that influence the occurrence of roadway crashes within a specified locality have his-
torically been reliant on the assessment of physical infrastructure, historical crash frequency, environmental
factors and driver characteristics. The consensus over the years has been drawn to the idea that human factors,
specifically regarding driving behaviors, account for the majority of crash outcomes on our roadways. With the
emergence of connected vehicle data in the last few years, the capacity to analyze real time driving behavior has
become a possibility for safety analysts. Driving volatility has emerged as a valuable proxy for driving behavior
and indicator of safety. In this study, evidence of the spatial relationship between driving volatility and historical
crash hotspots is uncovered. Utilizing an entropy-based analysis, this study discovered generally strong positive
spatial relationships between locations of volatile driving events and historical crashes, with R? values ranging
from 0.015 to 0.970 and a mean of 0.612 for hard accelerations, and 0.048 to 0.996 and a mean of 0.678 for hard
decelerations. Including temporal context presented insights showing that the relationships are significant for
over 60 % of the coverage area usually between the hours of 7 am to 7 pm, with average R? values of 0.594 for

hard accelerations, and 0.629 for hard decelerations.

Introduction

Roadway travel is still by far one of the most preferred modes of
transport as reported by the National Household Travel Survey, as
Americans take 1.1 billion trips per day of which 87 percent is carried
out using personal vehicles (Santos et al., 2011). Effective and efficient
roadway travel options are thus the lifeblood of the social and economic
landscape for the average American. Assessing the crash risk implication
of the roadway network in real time presents a valuable framework for
making sure that roadway users are protected during their daily
commute. This framework can include, but is not limited to, a more
proactive and rapid response to crashes and the situations that allow
them to occur or escalate. Missourians are estimated to incur a cost of
3.3 billion dollars each year as the hidden cost to operating and main-
taining a roadway vehicle (TRIP, 2010). Another 4.8 billion dollars are
incurred yearly as the safety cost for roadway travel as a result of motor
vehicle crashes, which includes medical costs, lost workplace and
household productivity, property damage, congestion costs and legal
costs (Blincoe et al., 2015, TRIP, 2010). This high cost to travel is a great
burden to the economic situation of the state and the people. Dealing
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with the issues that degrade the safety and efficiency of the state’s
roadway network remains paramount. The field of transportation safety
has evolved over the years into a more systems approach domain, which
not only investigates seeking safety through vehicle or roadway design
and operational changes, but also relying on behavioral changes of
roadway users in their daily interactions within the transportation
network system. The National Highway Traffic Safety Administration
(NHTSA) with support from many state departments of transportation,
have moved towards adopting the Vision Zero initiative which aims to
achieve a highway system with no fatalities or serious injuries involving
road traffic. At the heart of the Vizion Zero initiative is the human
centered systems approach, with efforts being made over the years to
collect comprehensive data on driver behavior. Programs such as the
second Strategic Highway Research Program (SHRP-2) and the Ann
Arbor Connected Vehicle Test Environment (AACVTE) have provided an
incredible amount of data on roadway user interactions, which include
but is not limited to, kinematic vehicle data, driver perspective video
data, as well as driver-facing video feed. With this renewed focus on
exploring the intricacies of the different forms of interactions between
roadway users and the safety implications thereof, many researchers
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have defined and explored new metrics which can be used in identifying
the needs and areas of improvements of our transportation networks.
This study will begin with a literature review which will investigate the
existing work carried out in this new domain of traffic and trans-
portation safety, and then follow up with the research contributions.

Literature review

Driving volatility, which describes rapid changes in driving kine-
matics, as a proxy indicator of driving behavior has been extensively
researched for its real-world safety implication (Wang et al., 2014, Liu
et al., 2017, Wali et al., 2019). With the understanding that minute
details in the way individuals drive can be extracted in real time and
measured against a baseline to determine the possible consequence of
any sort of deviations from the norm due to the emergence of connected
vehicle (CV) data, a major direction of research has focused on
advancing vehicle to vehicle (V2V) and vehicle to infrastructure (V2I)
technologies (Osman and Ishak, 2015). Other areas of research have
focused primarily on accounting for these deviations, by introducing
safety systems that can counteract them, such as lane keep assist (Guo
et al., 2021), brake assist and cooperative adaptive cruise controls
(Milanés et al., 2013). The most prevalent systems designed to assess
and characterize driver behavior usually factor for over speeding,
although much focus has now been drawn to other behaviors such as
hard accelerations and decelerations, both in the longitudinal and
lateral directions of motion, as well as jerk, a measure of the rate of
change of acceleration with time (Kamrani et al., 2017).

Given the advancements of V2I and V2V technologies in the last
decade, CV data is now available in real time to aid roadway manage-
ment and safety agencies to make real world, instantaneous decisions on
developing situations on the roadway network. This has opened the way
for researchers to not only be able to look at the specific situations which
lead to safety critical outcomes at the macro-level, but also micro-level
analysis of individual behaviors that contribute to a wider range of is-
sues within the transportation system, such as vehicle emissions (Fer-
reira et al., 2021). The importance of the collective consequence of
driving behaviors on the transportation network system cannot be
overstated as many studies have drawn correlates between definable
and quantifiable metrics of driving instances and crash outcomes (Wang
et al., 2014, Liu et al., 2017, Wali et al., 2019, Wali and Khattak, 2020).

With the emergence of large quantities of vehicle kinematic data,
driving video data and driver characteristic data, insights into abnormal
driving can be separated into two main fields. The first approach deals
with information on driver actions based on video feeds and other forms
of sensors that collect information which describe their behaviors during
their trips. One such study is the distracted driving behavior study car-
ried out by and expanded on by Halley Sutton (2017), analyzed data
from over 3 million drivers, who carried out up to 570 million trips,
covering 5.6 billion miles of travel. Findings indicated that drivers used
their phones in up to 88 percent of the trips analyzed, a worrying sta-
tistic. Other studies such as Papazikou et al. (2017, 2019) having
extensively investigated a combination of both video data and the cor-
responding vehicle kinematics from naturalistic driving data, were able
to look into how specific behaviors reflected in the signal from the ki-
nematic information. The other approach to driver behavior analysis
involves analyzing only kinematic information to quantify instanta-
neous driving decisions. With a large enough pool of driver kinematic
information, it then becomes possible to define thresholds of deviations
from normal driving. Wang et al. (2014), and Liu et al. (2017) have
explored how vehicle trajectory information can be harnessed at both
the individual trip level, and over the whole transportation network to
define volatile driving behaviors, which have huge safety implications.
The conclusions drawn from these studies provide insight into how
specific forms of connected vehicle data can be harnessed in the push to
improve on the safety of transportation network system. In considering
driving volatility from streaming data as a viable surrogate of crash
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detection and prediction signals, it is paramount that the spatial and
temporal nature of the assessed variables under consideration to be
taken into account.

Analysis of spatial approaches in road safety has been carried out in
recent years given that spatial heterogeneity and the transferability of
defined model have become important. Ziakopoulos and Yannis (2020)
carried out an extensive study looking into factors that influence the
outcome of spatial analysis such as the boundary problem, the modifi-
able areal unit problem and spatial proximity. This investigation also
presented the advantages and disadvantages of the different spatial
modeling approaches including statistical, bayesian and machine
learning approaches. Ziakopoulos (2021) followed up with an investi-
gation of the spatial analysis of hard braking (deceleration) events in
urban environments, concluding that spatial autocorrelation is detected
in harsh event frequencies. Unobserved heterogeneity and spatial
autocorrelation have thus been established as an important factor to
investigate in the analysis of crash data and crash surrogates (Cai et al.,
2021, Ziakopoulos et al., 2022, Wei et al., 2021).

Consequently, temporal correlation cannot be discounted when
spatial analysis of crashes is being investigated. analysis of crash data,
where variables allow for, have also provided much useful insight into
the changing dynamics of the influence of contributory factors to crash
events, with respect to when and where they occur. Wen et al. (2019)
understanding the effects of the dynamic nature of weather factors,
explored the use of models to measure their associations with crash
events. The study showed significant correlations in the interactions of
many weather-related variables and geometric factors on the outcome of
crashes on freeways. The implications of the findings of all the studies
presented above draw a vivid presentation of the importance of inves-
tigating the spatial, as well as temporal nature of crash risk factors on
crash outcome to ensure accuracy in the outcomes of potential future
analyses.

Research objectives and contribution

Like most states, the state of Missouri collects and manages a
comprehensive roadway crash database. Roadway crash data is
invaluable in the analysis and assessment of the safety implications of
the roadway network, and the decision-making process to improve on it.
The usual historic precedent with roadway safety analysis is reliant on
modeling variables that dwell with the interaction of the physical
infrastructure, environmental factors and human behavior. Safety
treatments thus tend to be usually reactive and applied when crash data
is gathered over a long period of time. The Turner-Fairbank Research
Center reports that in over 90 percent of roadway crashes, driver
behavior serves as the critical reason (FHWA, 2021). Driving behaviors
which have been labeled as aggressive constitute a large proportion of
these situations that lead to potentially dangerous outcomes on our
roadway. Aggressive driving consists of, following too closely, driving at
excessive speeds, weaving through traffic, and running stop lights and
signs, among other acts. With the advent of connected vehicle (CV) data
that provides real time driving metrics, driving volatility has emerged as
a useful proxy for driving behavior that deviates from the norm. Vola-
tility can be quantified in multiple ways from speeding, aggressive or
hard acceleration and deceleration, as well as other dispersion from
generally acceptable driving behaviors. The challenge therefore in the
pursuit of a proactive safety system, which can identify and mitigate
latent risks in the transportation system before they occur, rather than
reacting afterwards, begins with exploring the different available real
time variables and selecting which proxy indicators of driving behavior
correlate best with crash occurrences. The focus of this paper is to
explore the spatial and temporal correlations of volatility as a proxy of
driving behavior, and crashes, within the transportation network that
overlays Saint Louis City of the state of Missouri. By analyzing the
number of historical crash events in conjunction with the number of
observed volatile events and specific location, insights into the
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relationship between the two occurrences can be gleamed. Expanding
the analysis further within an hourly context also allows us to observe
the changes in the development of the relationships and their magni-
tudes at different times of the day. The potential benefit of this study will
help researchers by presenting variables which will aid in developing
proactive safety systems and a more efficient response to safety critical
outcomes on the roadways, towards an effective allocation of risk
reduction and alleviation resources.

Methodology and data
Conceptual framework

With ten years’ worth of geocoded historical crash data provided by
the Missouri Department of Transportation (MoDOT) between the years
of 2010 to 2019, and 2 months’ worth of CV data for roughly 373,000
unique vehicle IDs at a resolution of 3 s, sourced from Otonomo tech-
nologies, a car data service platform, the general spatial and temporal
context of where and when crashes usually occur, as well as where and
when specific driving behaviors are observed on the roadway network
can be scrutinized in deeper context to explore areas for potential
necessary safety modifications, as well as proactive countermeasures.

This study begins with an initial optimized analysis to define areas of
statistically significant spatial clusters of high crash counts, as a means
of narrowing down the area of observation if necessary. Similarly, the

local analysis tool in ArcGIS Pro software (v. 2.8.3) is utilized to quantify
the relationship between areas of where crash occur and whether it is
dependent on or influenced by areas where different volatility measures
occur as well as if these relationships vary over geographic space within
the Saint Louis City boundary.

With the initial spatial exploratory analysis carried out, the next
stage of this study investigates exploring the additional temporal context
of when these behaviors are most prevalent whilst keeping their spatial
context of where they happen in mind. It is hypothesized that certain
confounding factors, such as the changing density of traffic at different
times of the day (exposure) and lighting conditions, have a relatively
large effect on the outcome of the number of observed volatile driving
events, as well as crash outcomes, which can be accounted for to some
degree with an inclusion of the temporal context. Exploring the spatial
and temporal correlation of these variables under observation will allow
us to be more exact in analyzing the dynamic relationship of their in-
fluence and how that can be leveraged to improve the safety of our
roadways. The conceptual framework of how the analysis was carried
out in this paper is presented in Fig. 1.

Data

With ten years’ worth of geocoded historical crash data, numbering
122,151 crashes, provided by the Missouri Department of Trans-
portation (MoDOT) between the years of 2010 to 2019, and 2 months’
worth of CV data, numbering over 36 million data points, from roughly
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Table 1
Descriptive Statistics of Key Variables from Connected Vehicle (CV) data.
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All CV Data Hard Accelerations Hard Decelerations
N= 36,522,722 281,876 804,901
Variable Mean SD Min/Max Mean SD Min/Max Mean SD Min/Max
Speed (km/hr) 39.34 40.41 0/129.98 58.85 26.46 1/129.94 17.05* 25.86 0/129.64*
Longitudinal Acc/Dec (ft/sec) -23.14 2.2 —109.83/109.83 8.25 8.37 2.05/109.83 5.64* 5.4 2.55%/109.82*
Lateral Acc/Dec (ft/sec) 2.62 18.63 —29.07/134.38 0.75 5.42 -23.88/134.38 0.32 5.57 —26.25/138.38
NB: negative values of lateral acceleration denote movement from right to left
" Computed absolute values of deceleration magnitudes
Table 2
Crash Data for Saint Louis City for 2010-2019.
All Crashes Crashes by Year
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
N= 122,151 10,626 10,165 8,530 8,847 10,290 13,969 15,577 14,774 13,992 15,385
Crash Type
Rear End 29,829 2,452 2,380 2,157 2,358 2,575 3,537 3,774 3,620 3,326 3,620
Parking or Parked Car 18,127 1,675 1,619 1,171 1,169 1,611 2,125 2,305 2,179 1,986 2,263
Out of Control 15,606 1,565 1,396 988 1,123 1,381 1,723 1,861 1,824 1,817 1,909
Passing 13,200 827 814 931 925 1,015 1,487 1,718 1,828 1,652 1,988
Right Angle 13,034 1,029 1,062 887 915 1,018 1,416 1,677 1,648 1,683 1,681
Roadway Geometry Type
Straight 114,425 9,902 9,571 7,901 8,169 9,552 13,089 14,623 13,876 13,180 14,562
Curve 7,545 702 577 622 648 719 854 927 881 804 811
373,000 unique vehicle IDs at a resolution of 3 s, sourced from Otonomo driving.

technologies, a car data service platform, the general spatial and tem-
poral context of where and when crashes usually occur, as well as where
and when specific driving behaviors are observed on the roadway
network can be scrutinized in deeper context to explore areas for po-
tential necessary safety modifications, as well as proactive counter-
measures. As the data streamed from the connected vehicles are highly
granular and do not provide information specifically on the volatility
metrics, large scale processing of the data is carried out as the first step.

Exploratory spatial and temporal analysis

The analysis begins with exploring the spatial and temporal nature of
the crashes and volatility metrics. Understanding that different hours of
the day account for different volumes of traffic on the roadway, and as
such different driving behaviors is necessary to our analysis. The
different environmental factors, such as lighting conditions, also influ-
ence the behaviors of drivers (Yannis et al., 2013). As such, plotting the
locations of where and when crashes and volatilities happen will allow
us to find a unique perspective about the roadway network.

Driving volatility

With the advantage of the real time stream of connected vehicle data,
instantaneous driving volatility can be defined and measured. In this
study, as speed data in the longitudinal direction is available at a reso-
lution of every 3 s, allowing us to calculate the rate of change of speed
(acceleration/deceleration) as well in real time, by finding the differ-
ence between the current state speed s; and previous state speed s; 1
over the time interval t for every unique vehicle, during every unique
trip carried out by the vehicle.

A threshold for normal acceleration and deceleration behavior is
then computed for different speed bins within 2 standard deviations of
the observed values. Value points that exceed the threshold values are
thus labeled as highly volatile events, with positive values defined as
hard accelerations and negative values defined as hard decelerations.
Fig. 2 below shows the scatter density plot of the values of acceleration
or decelerations against the respective vehicle speed value and bounded
by the defined thresholds set to separate normal driving from volatile

Exploring the plot in detail, we notice that for most vehicles driving
at speeds of up to 40 km/h (~25 mph), acceleration and deceleration
rates of up to 7.5 feet per second squared are observed, this falls within
reasonable range of vehicles traveling on low-speed roadway segments
such as local and minor roads/arterials. As the vehicle speeds increase,
the general acceleration and deceleration rates are seen to be within a
lowered range of 5 feet per second squared, indicating that progressive
braking is more preferred approach for safety and comfort reasons.

Hot Spot analysis

The initial spatial exploratory analysis carried out in this study in-
volves identifying statistically significant hot spots and cold spots using
the Getis-Ord Gi* statistic. Hot spots and cold spots are defined as areas
of significant clusters of high values and low values respectively. The
local sum for a feature and its neighbors is compared proportionally to
the sum of all features, a statistically significant z-score results when the
local sum is very different from the expected local sum, and when that
difference is too large to be the result of random chance (Getis and Ord,
1992, Anselin, 1995). False Discovery Rate (FDR) correction is applied
to account for multiple testing and spatial dependency and control the
proportion of false positive results (type 1 errors). The general equation
for the Getis-Ord local statistic is presented below by equation (1).

n v n
o Wi — XD Wiy
G =

where x; is the attribute value for feature j, wy is the spatial weight
between feature i and j, n is equal to the total number of features such
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Given that the Gi* statistic is a z-score, no further calculations are
thus required.

Entropy based local spatial analysis

Given that the relationship between two variables may change over

geographical space, either in regression coefficients or relational form, it
begs that specific local relationships at a given location need to be
analyzed independently over defined spatial boundaries. The approach
carried out in this study is explained in detail by Guo (2010), capital-
izing on an approximation of the Renyi entropy for the multivariate data
in each locally defined geographical region. According to the work done
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Table 3
Crash Optimized Hotspot Analysis Summary.

Initial Data Assessment

There are 122,151 valid input features.

There were 1432 outlier locations; these will not be used to compute the hexagon size.
The total study area is 171441572.1358 Meters.

Incident Aggregation

Using a hexagon of width 308.3050 Meters and height 267.0000 Meters, the
aggregation process resulted in 4745 weighted polygons.

Incident Count Properties

Min 0
Max 650
Mean 25.74
Std. Dev. 51.73

Scale of Analysis

The optimal fixed distance band is based on peak clustering found at
1254.1454 Meters

Hot Spot Analysis

There are 1887 output features statistically significant based on an FDR correction for
multiple testing and spatial dependence. 0 % of features had less than 8 neighbors
based on the distance band of 1254.1454 Meters

by Guo, each value of local entropy is converted to a p-value by
comparing to a distribution of permutation entropy values for the same
region. The final few steps in the process involve processing the p-values
for each region using several statistical tests to control for the multiple-
testing problem, and then mapping locations of statistical significance
with the definition of the relationship form between the variables under
observation.

For a real-valued d-dimensional data space R?, the entropy is defined
by equation (4) as:

1
l_llog(/Rdf(x)Adx) 1>0,4 41

where x is a d-dimensional vector, f(x) is the probability density
function, and 4 > 0 is the order of the Renyi entropy.

The outcome of the process as defined by Guo (2010) is a non-
parametric approach that defines spatially varying multivariate re-
lations which can take many different functional forms. A ‘good’
multivariate relationship exists when one variable is dependent on the
other, and as such one may be used to predict the other. Some common
relationship expected from the entropy based local bivariate spatial
analysis, are linear relationships, quadratic polynomials, and in some

H, =
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cases, complex functions (Guo, 2010).
Results and discussion
Descriptive statistics

Table 1 represents the descriptive statistics of the CV data with the
key variables employed in the analysis. The general statistics such as the
mean, standard deviation, minimum and maximum values of the vari-
ables help in presenting a context to the general nature of the distribu-
tions of the selected variables. From the table it can be inferred that hard
decelerations tend to occur more frequently on the roadways, this is
consistent with literature (Wang et al., 2014, Kamrani et al., 2017). The
standard deviation, a measure of variability, is smaller for the hard
decelerations than hard accelerations. Several factors may account for
this observation as deceleration occur more frequently on roadways,
especially with regards to interactions with traffic control measures such
as stop signs and traffic signals. From the context of driver safety, the
instinctive response to a safety critical situation for most drivers is to
slow down or come to a stop, in order to avoid serious bodily injury or
harm. Further exploration of the data shows that of the 372,721 vehicle
IDs present in the data set, 40,391 (10.84 %) were involved in hard
acceleration events and 146,580 (39.33 %) were involved in hard
deceleration events. A total of 150,952 (40.5 %) of the vehicle IDs were
involved in a highly volatile driving event. Table 2 presents the general
overview of the nature of the roadway crash events for the last 10 years
in Saint Louis City. Most of the crashes happen on straight roadway
segments, and of the top five most frequent crash types, rear end crashes
were the most prevalent.

Analysis results

To practically examine whether any type of relationship exists be-
tween the two variables under observation, spatial bins are defined to
aggregate the events of crashes and volatilities to a quantifiable context.
The process carried out begins first with plotting the locations of all
crash events and volatility events (Fig. 3), and as observed, there exists
strong spatial correlation between the two variables. Optimized Hotspot
analysis is carried out using the ArcGIS Pro software (v. 2.8.3) in order to
create spatial hexagons for which the crash and volatility events will
then be aggregated into. The Optimized Hotspot analysis also allows us
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Fig. 5. Analysis Results. Locations of (a) statistically significant crash hotspots and coldspots; and bivariate relationships of crash counts with (b) volatile de-
celerations and (c) volatile accelerations from CV data with (d) examples of underlying observed linear and quadratic relationships.

Table 4

Local Bivariate Analysis Results for Hard Accelerations and Hard Deceleration with Crash counts.

Hard Accelerations and Crash Count

Hard Decelerations and Crash Count

CategoricalSummary # features % features CategoricalSummary # features % features
Positive Linear 2333 67.64 Positive Linear 2368 63.21
Negative Linear 0 0 Negative Linear 0 0
Concave 417 12.09 Concave 763 20.37
Convex 523 15.16 Convex 533 14.23
Undefined Complex 5 0.14 Undefined Complex 0 0
Not Significant 171 4.96 Not Significant 82 2.19
Total 3449 100 Total 3746 100
Entropy Results Min Max Mean Median Entropy Results Min Max Mean Median
Summary Summary
Entropy 0.26 1.19 0.66 0.64 Entropy 0.22 1.12 0.54 0.52
p-value 0.005 0.875 0.0223 0.005 p-value 0.005 0.605 0.0126 0.005
R? 0.015 0.970 0.612 0.629  R? 0.048 0.996 0.678 0.708
FDR Comparison # % FDR Comparison # %
significant significant significant significant
Without FDR 3288 95.33 Without FDR 3664 97.81
FDR 3278 95.04 FDR 3664 97.81

to explore the spatial relationship of crash hotspots within the area of
interest. The results of the analysis are presented in Table 3 below.
Given that the crash data utilized in this study is a multiyear data, in
order to account for temporal variations in the travel patterns, geometric
improvements, operational improvements as well as vehicle technology,
the Optimized Hotspot Analysis is carried out on 1 year and 5 years’
worth of crash data to explore whether changing patterns in the general

hotspot locations will be observed as influenced by the aforementioned
factors. Fig. 4 below is a side-by-side comparison of the Optimized
Hotspot Analysis for the different crash data collection ranges discussed.
It can be observed that the general locations of the hotspots and cold-
spots do not change much irrespective of how many years of data is used.
The difference in intensity and quantity of the hotspots and coldspots
can be attributed to the difference in quantity of crashes. The number of
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of the day.

crashes observed within the 10-year period is 122,151, whilst that for
the 5-year period is 73,697 and for the 1-year period we had a total of
15,385 crashes.

The outcome of the Optimized Hotspot analysis created 4745 spatial
hexagons with crash data aggregated within raging from values of a
minimum of O crashes to a maximum of 650 crashes for the 10 years’
worth of crash data utilized in the final analysis. Statistically significant
clusters of hotspots and coldspots are observed in 1887 of the spatial
hexagons, accounting for 39.77 % of the area of interest and this can be
observed in Fig. 5 (a) below. The next step, as discussed, is to employ the
local bivariate analysis of counts of hard accelerations, as well as hard
decelerations, with crash counts within the defined spatial hexagons.
The results of these analyses are observed in Fig. 5 (b) and (c) and
summarized in Table 4 below. Hard decelerations show higher statisti-
cally significant relationships with crash counts, with a coverage area of
97.81 % of locations within the study area of observed data.

The relationships observed within the spatial bins are mostly positive
linear in 63.21 % for hard decelerations within 3746 spatial bins, and
67.64 % for hard accelerations within 3449 spatial bins. High values of

the coefficient of determination (bivariate correlation) for the observed
relationships, denoted by R?, which provide a measure of how well
observed outcomes are replicated based on the proportion of total
variation of outcomes explained by the defined relationship were
observed. Further observation of the output Fig. 5(b) and 5(c), for both
analyses, show that the relationships where they exist, are similar in the
spatial bins for both volatility metrics. Finally, the analysis involved
including temporal context in exploring how these observed relation-
ships change at different hours of the day, as influenced by assumed
confounders such as exposure (higher traffic) and lighting conditions.
Fig. 6 below defines the changing values of the percentage significance
of the analysis as carried out for data for different hours of the day. As
expected, significant relationships between the variables and crash
counts are highest during hours of higher economic activity and traffic
volumes. Fig. 7 presents a visual representation of the change in R? value
for different hours of the day, and as speculated, the association between
locations of volatile driving and crash events are not only more preva-
lent during hours of high activity, but also show significantly greater
values in the range of correlation coefficients.
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In summary, the analysis presented in this study shows that during
daylight hours, a larger percentage of the study area shows a significant
defined relationship between volatility and crashes with very strong
correlation, and this is important in helping define and develop models
to access the safety situation of roadways more efficiently. Studies that
have employed volatility metrics, especially hard braking/deceleration
in safety analyses conclude with high certainty the positive correlation
these metrics and crash outcomes (Wen et al., 2019, Desai et al., 2021,
Hunter et al., 2021, Ziakopoulos et al., 2022, Mussah et al., 2022).
Comparatively, Desai et al. (2021) concluded with an R? of 0.85 and
significant positive correlation between hard braking and crash out-
comes. Hunter et al. (2021) utilized 4.5 years of rear-end crash data and
one month of hard braking data at 8 intersections to conclude that strong
correlations occurred in specific locations at particular times of day.
Unlike the earlier mentioned studies, this study explores both spatial and
temporal correlation across the whole expanse of the defined study area.

Conclusion

Connected vehicle data presents a new era for traffic safety analysis,
with realtime information from vehicles in motion. Driving volatility has
emerged as a useful indicator of driver behavior and given that driver
behavior accounts for the greater majority of causes of roadway crashes,
it is important to explore how we can capitalize on CV data to draw on
developing proactive safety countermeasure to developing situation on
our roadways. This study contributes by analyzing and exploring the
importance of the spatially varying multivariate relationships between
defined driving volatility metrics and roadway crashes, as well as how
these relationships vary in intensity over different hours of the day.

Creating a unique data set that provides realtime driving context on
the roadway, with regards to driving behavior, from over 36 million data
points from 373,000 unique vehicle IDs, the potential of exploring the
landscape of how these behaviors relate with areas of crash occurrences
is explored in this study. A simple measure of driving volatility is
quantified as the 2-sigma rate of change of driving speed over time both
in the positive and negative domains and are labeled as hard accelera-
tions and hard decelerations respectively. The provided spatial infor-
mation from both historically archived crash data collected over ten
years, and the generated volatility data set, reveals an observable spatial
correlation between the locations of where both sets of events occur.
Employing an entropy based spatial analytical framework, the under-
lying spatially varying bivariate relationships between the defined
driving volatility metric and roadway crashes is computed. To partially
account for unobserved confounding influence of some safety critical
variables, particularly the effect of exposure (intensity of traffic) and
lighting conditions, the temporal context of the dynamism of the
bivariate relationships is also explored. The analysis shows that driving
volatility has a strong association with crash location occurrences and
can serve as a great indicator of realtime crash risk. With the application
of statistical, bayesian and machine learning approaches that can factor
spatial and temporal influence into the analysis, hard decelerations are
becoming a very useful and preferred proxy for exploring realtime crash
risks of roadway segments (Ziakopoulos et al., 2022, and Adu-Gyamfi
2022).

The implication of this study draws on the need to provide proactive
safety warnings to drivers about potential safety critical situations in
specific areas of the transportation network, through advanced warning
systems transmitted via connected vehicle technologies. Future studies
will look into defining crash risk at a roadway segment level capitalizing
on the insights of this study to develop a realtime crash risk dashboard
that can help drivers and traffic management organizations respond to
situations on the roadways as they develop, in a more efficient and
effective manner.
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