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Abstract
Object recognition and depth perception are two tightly coupled tasks that are indispensable for situational awareness. Most
autonomous systems are able to perform these tasks by processing and integrating data streaming from a variety of sensors.
The multiple hardware and sophisticated software architectures required to operate these systems makes them expensive to
scale and operate. This paper implements a fast, monocular vision system that can be used for simultaneous object recogni-
tion and depth perception. We borrow from the architecture of a start-of-the-art object recognition system, YOLOv3, and
extend its architecture by incorporating distances and modifying its loss functions and prediction vectors to enable it to mul-
titask on both tasks. The vision system is trained on a large database acquired through the coupling of LiDAR measurements
with complementary 360-degree camera to generate a high-fidelity labeled dataset. The performance of the multipurpose
network is evaluated on a test dataset consisting of a total of 7,634 objects collected on a different road network. When
compared with ground truth LiDAR data, the proposed network achieves a mean absolute percentage error rate of 11% on
the passenger car within 10 m and a mean error rate of 7% or 9% on the truck within 10 m and beyond 10 m, respectively. It
was also observed that adding a second task (depth perception) to the modeling network improved the accuracy of object
detection by about 3%. The proposed multipurpose model can be used for the development of automated alert systems, traf-
fic monitoring, and safety monitoring.
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Recent advances in deep learning algorithms have
enabled autonomous systems to recognize objects at
unprecedented accuracies across multiple domains
including healthcare, agriculture, transportation, and
many more. In transportation, these systems are used to
assist with everyday driving, traffic monitoring, infra-
structure assessment, and developing alert systems to
improve safety on roadways. Object recognition alone,
however, is not sufficient; there is also a need to perceive
the respective depths of each object to enable autono-
mous systems to understand their environment. The cur-
rent study develops a multipurpose model that
implements a framework for simultaneous object recog-
nition and depth perception at online speeds.

The prevalent depth perception approaches normally
utilize three types of sensors: monocular camera, stereo
camera, and light detection and range (LiDAR). LiDAR
point cloud data provides accurate, long-range, and

short-range 3D information of its environment and is by
far the most popular technique, especially among systems
where high levels of precision are required. Although the
costs associated with using LiDAR have significantly
reduced over the years, they are still prohibitively expen-
sive compared with other alternatives such as camera-
based depth perception systems (1). Additionally, the
accuracy of LiDAR-based object recognition algorithms
is relatively low (especially for smaller objects); as a result
most systems rely on cameras, which have more intuitive
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information for object recognition. This adds to the com-
plexity, latency, and cost of deploying such systems.

To overcome the limitations of LiDAR for object rec-
ognition and the lack of meaningful depth perception
from cameras, many researchers have proposed
approaches that enable the fusion of outputs from both
systems. For example, Kumar et al. integrated camera
and LiDAR data by first estimating the camera’s intrin-
sic parameters (optical, digital, and geometric character-
istics) via the well-known checkerboard approach (2).
Thereafter, the extrinsic parameters of the LiDAR were
estimated with a planar 3D marker. After the calibration
processes, the LiDAR points were successfully projected
onto a camera image with 2D bounding box proposals
extracted. Although this approach is efficient, and most
likely to achieve better results, it also introduces some
new challenges, such as the need to calibrate two sensors
with the camera intrinsic parameters and the camera and
LiDAR extrinsic parameters each time they are set up
(2). Some of the old issues, such as prices and not being
intuitive enough to the public, still exist. Multiview video
processing has also been proposed as a low-cost alterna-
tive to LiDAR because of its ability to generate compa-
rable 3D point cloud data by analyzing video feeds in
stereo or through triangulation. They are, however,

easily corrupted at night and by inclement weather con-
ditions such as snow and heavy rainfall. In addition,
their ability to perceive depth at long-range distances is
limited. The requirement for precise calibration of intrin-
sic and extrinsic camera parameters (orientation of cam-
eras) are also required for stereo processing, which adds
to the complexities of setup and maintenance.

To address the above-mentioned limitations of current
approaches for object recognition and depth perception,
we propose the framework of a multipurpose model for
fast, 360-degree monocular camera-based object detec-
tion, classification, and depth perception, as depicted in
Figure 1. The 360-degree monocular camera is adopted
because it can provide a comprehensive understanding of
the surroundings with only one sensor, which will sim-
plify and reduce the complexities of setup. To be able to
obtain depth information for regions of interest (ROI), a
novel pipeline for integrating 360-degree camera and
LiDAR data is proposed. The integrated data is used to
create a training dataset for building a multipurpose
model for simultaneous object recognition and depth per-
ception. The resulting model can simultaneously recog-
nize objects and their corresponding depths from 360-
degree camera alone without a need for LiDAR data cap-
ture. The pipeline adopted is fast, as it only relies on

Figure 1. Proposed pipeline: (a) data fusion and synchronization to generate the training data with the application of You Only Look
Once (YOLO) and scale invariant feature transform algorithm and (b) train a modified YOLOv3 architecture model for depth perception
and model evaluation.
Note: IR = infrared; LiDAR = light detection and range.
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camera data and does not require LiDAR data fusion
during inferencing. In summary, the main contributions
of the current study are as follows:

1) It develops a framework for spatial-temporal
fusion of 360-degree video and LiDAR data. This
framework enables us to associate each bounding
box proposal in 2D video domain with actual dis-
tances or depths generated from mobile LiDAR
data.

2) It defines a novel architecture that extends the
output prediction vectors of Darknet-like back-
bone with information about depth. We also
introduce a new loss function that enables the
network to simultaneously generate bounding
box proposals and corresponding depth of each
object in a single shot.

3) It generates a large database of annotations for
machine learning (ML) model development and
comparative analysis.

The outline of the paper is organized as follows. First,
an overview of the current trends and best practices in
depth estimation from cameras and LiDAR is presented.
In the next section, a brief background on the datasets
used, and a discussion of the methodology proposed is
highlighted. Then, we evaluate the performance of the
proposed architecture for simultaneous object recogni-
tion and depth perception. A comparative analysis with
benchmarked datasets from LiDAR data is also per-
formed. Lessons learned, concluding remarks, recom-
mendations, and additional research needs are presented
in the final section of the paper.

Related Work

Existing methods for depth perception can be broadly
grouped into two categories: relative depth estimation
approaches which use monocular or stereo vision cam-
eras to construct scene disparity maps which correspond
to the relative distance of objects in a scene; and absolute
distance estimators which use LiDAR to estimate the
actual distance of objects. Whatever the approach, inte-
gration of camera data is crucial for simultaneous object
recognition and depth perception. The following sections
describe methods that have been developed to enable
simultaneous automatic object detection and depth
perception.

Camera-LiDAR Fused Object Detection and Depth
Estimation

Vision systems which rely on a fusion of camera and
LiDAR data are by far the most popular for precise

object recognition and depth perception (3). There are
two main ML-based approaches used for fusing camera
and LiDAR data. The first class of techniques fuses the
outputs of 2D detection frameworks such as Cascade
region-based convolutional neural network (R-CNN),
multi-scale CNN (MS-CNN), Recurrent Rolling
Convolution (RRC), and 3D detection frameworks
including PointRCNN, PointPillars, and PV-RCNN (4–
9). For example, Pang et al. proposed an approach that
fuses 2D and 3D object detection candidates as joint
detection candidates before non-maximum suppression
(3). Then, several 2D CNN layers and max-pooling tech-
nique are applied to the joint detection candidates to
output the final 3D detection results. The authors tested
their framework on KITTI datasets and results showed
that the combination of the 2D detection framework
with the 3D detection network achieved the highest aver-
age precision scores in 3D object detection (10).

Bai et al. found out that the fusion of camera-LiDAR
using object proposals alone is susceptible to the quality
of the images and the accuracy of the object detection
models (11). This introduced the second class of algo-
rithms for fusing LiDAR and camera data. The algo-
rithms perform data fusion by using ML to manipulate
the raw point cloud and image features. TransFusion is a
two-layer ML-fusion framework proposed by Bai et al.
to overcome the limitations of the first class of algo-
rithms (11). It has a first layer that extracts a 3D bird’s
eye view (BEV) and 2D image features maps using a
transformers network, and a second layer that uses a
soft-association mechanism to determine which image
features need to be fused with the 3D BEV feature map
(12). Extensive experiments were conducted on the pro-
posed network to demonstrate its robustness to poor-
quality images. This framework, however, only focused
on the improvement of 3D object detection. To obtain a
depth map of the surrounding environment, proposed a
deep fusion architecture which leverages ResNet-50 as an
encoder and Residual Up-Projection blocks as decoder
(13). The LiDAR and RGB images are fused into four
channels as input to the ResNet-50 encoder. Then, a skip
connection technique is adopted to add more details tex-
tures and features to the output depth map.

Stereo and Monocular Object Detection and Depth
Estimation

LiDAR devices are prohibitively expensive; stereo and
monocular depth estimation and object recognition
approaches have been explored to provide a low-cost and
fast alternative (1). Some of the most high-performing
stereo-based depth estimators have been explored by
Weng and Kitani, and Wang et al. who used a monocular
depth estimator called DORN (14–16). Qian et al. have
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also explored a stereo depth network (1, 17). Their accu-
racy compared with laser-based methods has been
explored in You et al. (17). The increasing accuracy of
depth maps generated from stereo cameras has led to the
emergence and development of the so-called ‘‘pseudo-
LiDAR’’ point cloud data which has recently attracted
the attention of many researchers (15). To obtain
pseudo-LiDAR, depth map images must first be gener-
ated. The Weng and Kitani LiDAR can then be created
by transforming estimated depths with the camera’s
extrinsic matrix which enables a depth map to be pro-
jected into a real LiDAR coordinate system to obtain the
pseudo-LiDAR (14). Subsequent application of 3D
object detection algorithms on pseudo-LiDAR, supple-
mented with image-based 2D object recognition algo-
rithms such as Mask R-CNN, can be used to achieve
similar accuracy to real LiDAR data in big objects detec-
tion (18). Weng and Kitani, and Wang et al., however,
pointed out that a limitation of pseudo-LiDAR is in the
detection of distant and small objects such as pedestrians
and cyclists (14, 15).

The current paper is inspired by recent monocular
depth estimation approaches which are able to learn
object distances directly from camera images (19–21).
The main idea is to modify the architecture of 2D object
recognition architectures by incorporating distances
obtained from disparity images. These models are typi-
cally trained using the KITTI 3D object detection dataset
which has associated depth information for each bound-
ing box proposal (10). Alternatively, Beltrán et al. devel-
oped multiple regression models using width and height
from YOLO detection bounding box as independent
variables to predict depth information (21). Based on the
adjusted R square, the linear regression model had the
most accurate prediction results, with an estimation
accuracy of more than 80%. All these monocular depth
estimation approaches produced real-time processing
capability ranging between 25 and 45 frames per second
(20, 21, 22). Reported average prediction errors were
11% in Vajgl et al. including all eight classes, 80.4%
average precision in Beltrán et al., and 71.68% prediction
accuracy in Yu and Choi (20–22).

The vast majority of monocular depth estimation
techniques are trained on unidirectional, front-facing
images. Autonomous systems, however, require omnidir-
ectional depth prediction to navigate complex scenes
with precision. A limited number of research studies have
attempted to address this challenge from a purely vision-
based approach. Zhou et al., Zioulis et al., Zou et al., Su
and Grauman, and Li et al., for example, focused on
indoor depth estimation using omnidirectional images
(23–27). The study leveraged spherical convolutional
neural networks (CNNs) to learn rotational representa-
tions to estimate depth information while overcoming

camera lens distortion problems (28). In Li et al., per-
spective patches are decomposed into multiple perspec-
tive patches, and geometric features are integrated to
estimate depth from the perspective patches (27). Zou
et al., on the other hand, proved that depth perception
can be estimated using an omnidirectional image with-
out decomposition (25). Rather than decomposing the
perspective image multiple times, the authors applied a
modified RoomNet directly to the omnidirectional
image, which resulted in comparable depth estimation
accuracy (29).

Building on the success of these studies, we developed
a fast framework for monocular, omnidirectional depth
perception and object recognition. We coupled LiDAR
measurements with complementary 360-degree camera to
generate a high-fidelity labeled dataset for training deep
neural network architectures for simultaneous depth per-
ception and object recognition. We borrow from the
YOLOv3 object recognition framework and incorporate
distance prediction vectors and loss functions to enable
the model to learn and predict object depths from any
direction.

Data Collection

In this study, an Ouster OS1-64 LiDAR sensor with 64
channels (360-degree horizontal field of view, 45-degree
vertical field of view, 120m detection range) was utilized
for 3D spatial information collection, and an Insta360
One X2 360-degree monocular camera (360-degree hori-
zontal field of view, 180-degree vertical field of view,
.120m detection range) was used for video streaming.
With recent advances in LiDAR technology, the LiDAR
sensor used in this study can output not only 360-degree
field of view spatial information, but also four structured
2D fixed resolution image layers, such as near-infrared
(IR), range, reflectivity, and signal, which are perfectly
spatially correlated with the point clouds. The monocular
camera sensor can record 360-degree video streaming.

Figure 2 shows how the 360-degree camera-LiDAR
system was assembled and mounted on the top of a vehi-
cle for real-world data collection. Because both sensors
are collecting 360-degree data, the camera is mounted on
the top of the LiDAR to avoid them blocking each
other. To have more training dataset, the planned data
collection route was along E Broadway, Downtown,
Columbia, MO, U.S., because of the high volume of traf-
fic and street parking facilities. The LiDAR device oper-
ates at a rotation rate of 10Hz and outputs images with
a default fixed resolution of 1024 3 64. For the 360-
degree monocular camera, it can record videos with dif-
ferent resolutions and frame rates, but, in this study,
videos were recorded with 1440 3 720 resolution and 30
frames per second.
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Methodology

The methodological framework developed to achieve
high-fidelity omnidirectional depth prediction from
monocular cameras involved five main steps: 1) LiDAR
and video data are collected concurrently and data from
both sensors are pre-processed to enhance their edges
and features that are used for data fusion; 2) An image-
matching algorithm—scale invariant feature transform
(SIFT)—is used to find corresponding features between
the camera and LiDAR data (30). This step results in a
perspective transformation matrix which is used to align
both datasets and subsequently project detected objects
from the video onto the LiDAR domain to obtain depth
information for each object; 3) YOLO is employed to
detect objects in 360-degree videos, while the extracted
depth information of each object from LiDAR is fused
with the detection results; 4) A multipurpose network is
built using a modified YOLOv3 architecture; 5) Fused
object information from video and LiDAR depth infor-
mation were used to build a training dataset for training
the multipurpose network for simultaneous object recog-
nition and depth perception. The following sections pro-
vide a detailed description of each step of the framework.

Data Pre-Processing

The default resolution of the images output from the
LiDAR (1024 3 64) is resized by a factor of 2 to a new res-
olution of 1024 3 128 using bicubic interpolation of 4 3 4
neighborhood. Furthermore, to make the LiDAR image
layers near-IR provide more information and improve
visual effects, a computer vision technique called ‘‘histogram
equalization’’ is applied to increase the contrast by spread-
ing out the pixel intensity values (31). Finally, the LiDAR
image layer near-IR, with histogram equalization applied
and a resolution of 1024 3 128, is used for later data fusion
and synchronization. Figure 3 shows, from top to bottom,

the LiDAR image layer Near-IR with default resolution,
resized resolution, and histogram equalization applied.

For video dataset preprocessing, since the vertical
field of view of the 360-degree monocular camera is
wider than that of LiDAR, the video dataset had to be
cropped to a similar view to the LiDAR using a multi-
scale approach, shown in Figure 4. It can be noticed that
the vertical field of view of LiDAR is 45-degree and that
of the 360-degree monocular camera is 180 degrees. The
perfect quadruple relationship provides us a clue to crop
the video dataset. The proposed multiscale approach
resizes and crops the height of the original video image
to achieve better matching with the LiDAR vertical field
of view. The pre-processing of the video datasets is cru-
cial for later fusion with the LiDAR datasets.

After preprocessing the LiDAR and video datasets,
we obtain a high-contrast, real-world view of LiDAR
image layers and a cropped and resized video view that
is close to the LiDAR view. In this research, only two
image layers of LiDAR datasets are used, near-IR and
range. The image layer near-IR is used to align the
LiDAR data with the 360-degree camera data, while the
range is used for depth information extraction after the
fusion. In Figure 5, the top image is the cropped and
resized video image from 360-degree monocular camera;
the following four in order are high-contrast resized
near-IR, range, reflectivity, and signal.

Figure 3. The light detection and range (LiDAR) output image
layers: default resolution (1024 3 64) (top), resized (stretched)
resolution (1024 3 128) (middle), and histogram equalization
applied resolution (1024 3 128) (bottom). (After processing, the
resolution becomes 1024 3 128 which matches the real-world
view. The histogram equalization technique is applied to the
stretched image layer near-infrared [IR] to increase the contrast.)

Figure 4. The pipeline for preprocessing the 360-degree video
dataset.

Figure 2. The 360-degree camera-light detection and range
(LiDAR) system was assembled and mounted on the top of a
vehicle for real-world data collection.
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Data Fusion and Synchronization

Although we obtain similar field of views of the 360-
degree camera and LiDAR datasets through preproces-
sing, there are still discrepancies because of the differ-
ences in sampling rates: 30 frames per second for the
camera and 10 frames per second for the LiDAR.
Spatial and temporal data alignment and synchroniza-
tion techniques were, therefore, developed to address this
discrepancy.

Temporal data alignment maps each LiDAR image to
three camera images (since the camera sample rate is 3x
higher than LiDAR). This step is straightforward, as
each LiDAR and video image are timestamped (Unix
timestamp) during data acquisition. Temporal data
alignment is, however, not enough: since the camera is
mounted on top of the LiDAR sensor, the relative posi-
tion of objects on the road to the sensors constantly
changes as the car moves on the roadway. Therefore, the
result of temporal alignment (1:3 mapping) is passed
through a spatial alignment procedure to correct for this
discrepancy.

Data Fusion Spatially. The conventional approach for cam-
era-LiDAR data alignment as shown in Kumar et al. can
be complicated and time-consuming as it relies on cali-
bration of intrinsic and extrinsic parameters of both
devices (2). In this study, since both the camera and
LiDAR are capable of outputting 360-degree images of

the environment, a computer vision-based image match-
ing algorithm, SIFT, is adopted to compute a perspective
transformation matrix between the images from 360-
degree video and 2D near-IR images from the LiDAR
dataset (30). The SIFT algorithm is used because it is
invariant to images rotation, affine distortion, illumina-
tion, and viewpoint changes (32, 33). Additionally,
Karami et al. observed that SIFT performs better than
other image matching techniques such as speed-up robust
feature (SURF), and oriented FAST, rotated BRIEF
(ORB) in most scenarios (32, 34, 35). The perspective
transformation matrix resulting from the application of
SIFT captures translational and rotational differences
between the 360-degree video and LiDAR datasets.
However, the perspective transformation matrix has pro-
ven to be sensitive to the quality of the data that passes
to it. Thus, RANSAC regressor is used to filter inliers
and eliminate outliers used in the perspective transforma-
tion matrix calculation process. Figure 6 summarizes the
perspective transformation matrix calculation algorithm.

While the vehicle is in motion, the 360-degree camera
and LiDAR may shake slightly because of wind and
uneven road conditions. This could cause significant
deviations between the two datasets, and, therefore, a
need to update the perspective transformation matrix. To
account for this effect, we computed a perspective trans-
formation matrix every 2 s, on rolling bases. Figure 7
shows the process used to update the perspective trans-
formation matrix to account for camera shaking. There

Figure 5. The top image is from 360-degree video datasets and is a resized and cropped image. The following four images are from light
detection and range (LiDAR) datasets and are, in order: high-contrast stretched near-infrared (IR), stretched range, stretched reflectivity,
and stretched signal from LiDAR sensor.
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were cases, however, where a perspective transformation
matrix could not be computed within 2 s because of insuf-
ficient matching feature points between the two datasets.
In such cases, we extrapolated by using the perspective
transformation matrix from the closest, successive
frames. After the list of perspective transformation
matrices have been obtained for corresponding video and
LiDAR dataset, there are two ways to apply it on video
and LiDAR datasets: 1) apply the updates every 2 s per-
spective transformation matrix and 2) combine the list of
matrixes to a fixed perspective transformation matrix by
calculating the median values for each element among
the list of matrixes and apply for whole datasets. The

results show that the fixed matrix outperforms the
updated matrix. Therefore, the fixed perspective transfor-
mation matrix is adopted in this paper.

Object Detection and Depth Information Extraction

Accurate, fast, and comprehensive objection detection
will play a crucial role in improving the accuracy of
depth information extraction. In this paper, the popular
unified, multiscale, anchor-based object detection algo-
rithm, YOLO, is adopted because of its ability to process
images quickly at higher accuracy rates, while producing
generalizable representations (36). Originally introduced

Figure 7. Obtain a list of perspective transformation matrix from corresponding video and light detection and range (LiDAR) datasets.

Figure 6. The perspective transformation matrix calculation algorithm.
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by Redmon et al., YOLO and its variants have outper-
formed previous object detection algorithms such as R-
CNN, fast R-CNN, and faster R-CNN (36–42).

Using the projection matrix obtained from the data
alignment algorithm, object detection results from
YOLO can be successfully projected onto and fused with
the LiDAR depth data. Figure 7 shows the outcome of
projection of a bounding box from video to LiDAR
domain. Each vehicular object has been associated with
a corresponding bounding box. Each pixel in the 2D
near-IR image shown is perfectly spatially correlated
with 3D point clouds, which significantly simplifies the
depth information extraction process. As a result, we
only need to know the position of the pixel of interest on
the 2D near-IR image layer to find the corresponding
3D point in the point cloud. Each point in the point
cloud contains location information x, y, z½ �. Therefore,
the distance from that point to the sensor can be calcu-

lated as d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
.

Modified YOLOv3 Architecture for Depth Perception

Figure 8 shows the default architecture of the YOLOv3
algorithm. Darknet-53 is adopted as a backbone of
YOLOv3. The backbone can also be taught as an enco-
der that serves as a feature extractor. This component of
YOLOv3 can be replaced with any backbone, such as
ResNext, ResNet-101, or ResNet-152. In comparison,
although Darknet-53 has similar classification accuracy,
it has faster computational speed and fewer layers (40).
Instead of using max-pooling, stride-2 convolution is
used to implement down sampling. The features
extracted by the backbone are decoded on three

succeeding scales into three output grids. This enables
the architecture to detect objects at different scale—
small, medium, and large—a concept that is adopted
from feature pyramid networks (43). A grid is composed
of cells responsible for detecting one of three objects
(also called anchors) the center of which lies inside the
cell. An object is detected if its intersection over union
(IoU) with an anchor box is maximized.

The default architecture of YOLOv3 cannot be used
to estimate the distance of an object. To extend the
YOLOv3 architecture to accommodate depth prediction,
training datasets were reconfigured by incorporating
information about object depths, the loss functions are
updated to take the depth of the object into account, and
prediction vectors were extended to produce the distance
of an object for each cell in the image.

Loss Function. Object recognition models are designed to
minimize four main losses: the bounding box center,
width and height, prediction confidence, and classifica-
tion loss. We introduce a new loss function to allow for
depth loss minimization. For each scale of prediction,
the loss function implemented in the current paper is des-
ignated as Equation 1:

l =
XCw, h

m= 0

XBa

n= 0
c m, nð Þ l1 � L1 m, nð Þ+ l2 � L2 m, nð Þ½

+ l3 � L3 m, nð Þ+ l4 � L4 m, nð Þ+ l5 � L5 m, nð Þ� ð1Þ

where
l1�5 = a penalizing factor for each respective part of the
loss (in the current paper, we penalized bounding box
and depth losses higher [by 5x] than classification and

Figure 8. The default You Only Look Once Version 3 (YOLOv3) architecture.
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confidence losses; the loss function iterates over Cw, h grid
cells and Ba anchors),
c m, nð Þ = whether the mth cell and the nth anchor con-
tains an object (the first four losses are defined according
to Redmon and Farhadi) (38),
L1 m, nð Þ = the mean square of center prediction com-
puted for image cells with an object,
L2 m, nð Þ = the mean width prediction computed for
image cells with an object,
L1 m, nð Þ = the mean height prediction computed for
image cells with an object, and
L2 m, nð Þ = a binary cross entropy loss for class
predictions.
The output of each anchor box is designed as:

L3 (m,n)L4 (m,n) bx =s txð Þ; by =s ty
� �

– the sigmod of x

and y coordinates, bw = Pwetw; bh =Pheth – where Pw

and Ph are anchor width and height. The depth loss intro-
duced in this paper is defined as Equation 2: Pw

L5 m, nð Þ=
Xc

p= 0
Cm, n, p

�dm, n, p � dm, n, p

� �2 ð2Þ

where
Cm, n, p = the pth class probability of the mth cell and nth

anchor box.

Modified Prediction Vector. For object recognition only, the
prediction vector for each cell is defined by: the object-
ness Pi—indicating whether a cell contains an object or
not; bounding box coordinates x, y,w, h½ �—center, width,
and height of box; and the class prediction vector
C1,C2, . . . ,Cn½ �. The length of the prediction vector per
cell is therefore defined as: (number of classes + 5)

multiplied by the number of anchor boxes. We extend
the prediction vector to incorporate depth information.
The modified vector will therefore be Pi, x, y,w, h, d,½
C1,C2, . . . ,Cn�. The length of the vector for each cell will
be (number of classes + 6) multiplied by the number of
anchor boxes used.

Training Data Generation

To obtain the training dataset, we processed four 360-
degree video datasets and their corresponding LiDAR
datasets. For the classes of object recognition, two classes
were selected from 80 classes in the YOLO training data-
set: car and truck. Based on the fusion and synchroniza-
tion of datasets from the 360-degree monocular camera
and LiDAR sensor, the YOLO object recognition bound-
ing boxes were projected to the LiDAR datasets and the
corresponding depth information was extracted from the
LiDAR datasets directly.

Since the range of LiDAR distance detection is
between 0 and 120m, and LiDAR was mounted on the
center of the top of a vehicle with a width 1.8m, some
outliers with a distance greater than 120m or less than
1m were removed. Finally, a training dataset containing
45,964 samples was generated. Figure 9 shows the pro-
cess of generating the training dataset.

Evaluation of Predicted Depth Accuracy
and Model Comparison

Evaluation of Predicted Depth Accuracy

The performance of the multipurpose network was eval-
uated on a test dataset collected on a different road

Figure 9. The training data generation.
Note: IR = infrared; LiDAR = light detection and range.
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network. The test data consisted of a total of 7,634
objects with their corresponding depth information. The
mode of data capture and data fusion was similar to the
process followed for generating the training data.
Figure 10 shows example object detection and depth pre-
diction results for a sequence of frames. Visual assess-
ment of the figure shows consistency in depth prediction
as the ego vehicle passes or is overtaken by vehicles.

The models’ performance is evaluated quantitatively
using two main criteria: the F-1 score, and the mean
absolute percentage error (MAPE) defined by Equations
3 to 6. The F-1 score measures the accuracy of the pre-
dicted bounding boxes, whereas MAPE measures the
accuracy of the depth predictions.

MAPE=
1

N

Xn

t = 1

dt � dt

dt

����
���� ð3Þ

where
N = the number of samples,
d = the ground truth depth, and
�d = the predicted depth.

MAPE is calculated for predictions with bounding box
IoU greater than 0.5.

F1= 2 � precision � recall

precision+ recall
ð4Þ

precision=
True Positive

True Positive+False Positive
ð5Þ

recal =
True Positive

True Positive+False Negative
ð6Þ

A true positive prediction must have an IoU of 0.5 or
more with the ground truth, and their predicted labels
must also match.

Table 1 shows the error rates for different classes of
vehicle at different distances from the ego vehicle. In gen-
eral, the error rates associated with distant objects are
much higher than for objects closer to the ego vehicle.
There were, however, instances where, for an object
which was less than 10m from the ego vehicle, the pre-
dicted depth was 87% higher. These outlier predictions
were sometimes caused by matching errors: a distant

Figure 10. Multipurpose model object detection and depth estimation.

Table 1. Measurement of Error Rate (ER)

Class Gt distance range Sample size

Abs (predicted-ground truth)/ground truth

ER min. ER mean ER max. ER SD

Car \ =10 m 2,490 0.000 0.1071 0.8659 0.1106
. 10 m 854 0.0005 0.2357 0.9533 0.1471

Truck \ = 10 m 7 0.0047 0.0608 0.1855 0.0715
. 10 m 13 0.01730 0.0923 0.1928 0.0595

Note: Gt = ground truth; Abs = absolute value; min. = minimum; max. = maximum; SD = standard deviation.
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object may be associated with a nearer object if their
bounding box had a higher degree of overlap.

Figure 11 shows the box plot and scatter plot of the
error rate, ground truth depth, and predicted depth. The
x-axis in the box plot represents the grouped ground
truth depth values which are extracted from the LiDAR
dataset. The y-axis represents the error rate, which is cal-
culated by the difference between the estimated depth val-
ues and their corresponding ground truth depth values
divided by the corresponding ground truth depth values.

In the scatter plot, the x-axis represents the ground
truth values and the y-axis represents the error rate val-
ues. It can be noticed that there is a moderate positive
relationship between two variables, meaning the accu-
racy of depth prediction decreases as the object distance
increases.

To further understand the models’ robustness for
omnidirectional depth prediction, we used heatmaps to
visualize depth prediction error rates across the different
directions of travel. From Figure 12, it is evident that
prediction error rates were relatively higher for vehicles
passing the ego vehicle than those ahead of or overtaken
by the ego vehicle. Several factors could contribute to
this: association with wrong ground truth labels, and
sensor placement, to name a few.

With respect to object recognition accuracy, we com-
pared the F-1 scores for a model built for a single task—
object recognition to a multipurpose model (object recog-
nition and depth perception). These results, shown in
Table 2, are mixed. For car recognition, it appears that
training a model to simultaneously recognize cars and
predict depth improves the model’s ability to recognize

Figure 12. Three different scenarios of heat map of depth prediction errors as a percentage of ground truth depths from light detection
and range (LiDAR).

Figure 11. Box plot (left) of the grouped ground truth depth information and the error rate, and scatter plot (right) in which two classes
are combined, since the truck sample size is small compared with the car sample size.
Note: class 0 = cars; class 2 = trucks; diff = difference; pred = predicted depth value; gt = ground truth depth value.
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objects. However, for trucks, the F-1 score dropped. The
drop in accuracy could be because of low training sam-
ples of trucks in our training data. The data was collected
on downtown streets and so we could not capture enough
trucks in the training dataset.

With respect to model speed, real-time inferencing at
batch size of 1, the model achieved 22 images per second
using 416 3 416 image at half-precision (FP16) on
NVIDIA GPU GTX 1080ti. This is about a 0.8x com-
pared with the original YOLOv3 implementation.

Comparison with the State-of-the-Art

This section implements a state-of-the art monocular
depth perception and compares its performance to the
framework developed in the current study. Miangoleh
et al.’s boosting monocular depth perception model is
selected for comparative analysis because of its superior
performance compared with other approaches described
in Ranftl et al., Godard et al. (2017), and Godard et al.
(2019) (44–47). The architecture of the boosting monocu-
lar depth model is such that a double-depth-estimation
network is analyzed that combines two depth estimations
of the same image at different resolutions adaptive to the

image content to generate a result with high-frequency
details while maintaining the structural consistency. It is
observed that the low-resolution input to the network
produces structurally consistent depth maps as they learn
the overall global content in the image, while the high-
resolution input captures the high-frequency details but
loses the overall structure of the scene, generating low-
frequency artifacts in the depth estimate. The proposed
model, therefore, embeds the high-frequency depth
details of the high-resolution patches into the structural
consistent depth of the small-resolution input that pro-
vides a fixed range of depths for the full image.

The performance of the boosting depth prediction
model is shown in Figure 13. Visual inspection of the
depth images shows that the relative distances of objects
from the ego vehicles are well captured by the model, as
it can clearly distinguish between near and distant
objects. To compare the predicted depths with the
ground truths from LiDAR, we superimposed bounding
box predictions on the depth images and used the aver-
age distance from a 10th percentile of pixels within the
bounding box. The reason for not using an average or
median of all pixels within the bounding box is that the
bounding box area sometimes includes portions of the
distant sky which can significantly increase the predic-
tion error if not isolated. A root mean squared error and
correlation coefficient against the ground truth data is
used for quantitative evaluation of the boosting depth
prediction model.

As shown in Figure 13, our panoramic, 360-degree
images were sectioned into three parts—left, center, and
right—to ensure that the monocular depth estimation
model was tested on images that are similar to the ones

Figure 13. The first row is the monocular depth estimation results of left, middle, and right panels. The second row is scatter plots of
the image intensities within the detected area versus ground truth depth: x-axis is the image intensity; y-axis is the ground truth.

Table 2. Influence of Multitasking on Overall Model Performance

Class
F1-score—detection

only F1-score—detection+ depth

0: cars 0.629 0.712
1: trucks 0.830 0.812
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used during training. The second row in Figure 13 shows
the correlation between the predicted depths and the
ground truths for the same training data as used in our
model. The results show that the left panel Mean Square
Error (MSE) value is 10.61, center panel MSE value is
12.76, right panel MSE value is 3.15, and the whole
panoramic image MSE value is 10.70 for the ground
truths within 30m. For the ground truths within 10m,
the left panel MSE value is 4.37, center panel MSE value
is 11.37, right panel MSE value is 1.89, and the whole
panoramic image MSE value is 7.93.

Comparing with our model with MSE values 5.91
within 30m and 1.53 within 10m, the conclusion can be
made that our model outperforms monocular depth esti-
mation algorithms for the ROI quantitative depth esti-
mation. The low performance of the monocular depth
technique compared with our proposed framework could
be for several reasons. First, small changes in relative dis-
tances are challenging for image-to-image-based depth
estimation methods. Our proposed framework learns to
predict absolute distance via regression on feature vec-
tors, making it robust enough to perceive small changes
in relative distance. Second, because monocular depth
perception methods rely on low- and high-resolution
inputs, they are highly sensitive to image resolution and
scene illumination.

Concluding Remarks, Applications, and
Open Challenges

This study developed an end-to-end framework for
simultaneous object recognition and omnidirectional
depth perception. Innovative data fusion pipelines were
used to seamlessly align and integrate LiDAR and 360-
degree camera information which were used to generate a
training dataset for multipurpose learning. The state-of-
the-art object recognition model, YOLOv3, was extended
by incorporating distance measurements to enable it to
detect vehicles and predict their respective distances from
all directions.

LiDAR and camera information were fused spatially
and temporally using SIFT with RANSAC regressors.
The data fusion technique enabled us to uniquely project
bounding box proposals in the video domain to LiDAR
domain. This resulted in the generation of a large train-
ing dataset that was used to develop the multipurpose
model. By modifying the training dataset, loss function,
and prediction vectors, the study was able to train a net-
work for object recognition and depth perception.
Results show less than 10% depth prediction error for
objects less than 10m from the ego vehicle and about
20% error for longer distances. The accuracy of predic-
tion for distant objects could be improved with more
training data, as the majority of objects used in the

current study fall within a range of less than 10 meters.
Further investigation into the model’s robustness showed
that prediction errors for passing vehicles were slightly
higher than for objects in any other direction.

A critical application of the proposed framework is
toward the development of automated alert systems for
truck-mounted attenuators (TMAs). TMA crashes have
been on the rise, especially in mobile work zones. To
date, alert systems used to warn distracted drivers in
these construction work zones are operated manually,
posing a risk to the operator and workers. The frame-
work developed can be used to develop an alert system,
which will process live feeds from a 360-degree camera,
simultaneously recognize approaching vehicles and their
distances, and automatically flag and alert accelerating
vehicles.

There remain several open challenges to the methodol-
ogy implemented in the current study. The first relates to
the transformation matrix that is used to project objects
in the video data to the LiDAR domain. Finding corre-
sponding features between the LiDAR IR-image and the
360-degree camera can be challenging, especially when
the scene does not contain objects with clearly defined
edges, such as large buildings and vehicles. To overcome
this, this paper searched for correspondence at different
scales of image resolution after applying image contrast
enhancement techniques. However, it is important to note
that the resizing technique employed in this process may
generate undetectable noises, even at critical positions.
Although the resizing operation did not significantly
affect the model’s performance in this study, future inves-
tigations should prioritize addressing the noise generated
by interpolation. To mitigate this issue, it is necessary to
leverage techniques for generating high-definition images
from low-resolution ones. Additionally, robust image-
matching techniques are needed for calculating high-
fidelity transformation matrices for data fusion.

Although the current study implemented class agnos-
tic loss functions, the improvement in depth perception
accuracy over a non-class agnostic approach was not sig-
nificant. This could be a result of high class imbalance in
our training dataset. However, the current study did not
comprehensively study the impact of the loss function on
the model outcomes. Another area that needs further
investigation is the impact of data augmentation on the
multipurpose model. In the current study, only contrast
enhancement, image inversion, and flipping augmenta-
tion strategies were used. Image zooming, stretching, and
any other techniques which changed the size of objects
were not used as they had the tendency to confuse the
model for depth perception. Further investigation into
augmentation approaches that can improve both detec-
tion and depth perception accuracies need to be investi-
gated. Building on the aforementioned challenges, an
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additional aspect that demands attention is the evalua-
tion of object-level depth. Exploring alternative methods
to calculate the depth from pixel-level to object-level and
assessing their effectiveness in reducing errors caused by
background pixels would represent a promising avenue
for future research in this domain.
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