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Abstract

Zebrafish (Danio rerio) larvae are emerging as high-
throughput, chemical screening assays for investigating
congenital cardiomyopathies. Despite distinct anatomical and
genomic differences with humans, zebrafish share a
conserved regulatory network of transcription factors modu-
lating heart development with mammals. Consequently,
external embryonic fertilization and optical transparency in
conjunction with fluorescent reporters localizing endogenous
proteins provide an ideal platform for studying molecular
mechanisms underlying complex human heart development. In
this regard, recent advances in light sheet microscopy (LSM)
have enabled non-invasive, in vivo reconstruction of dynamic
cardiac biomarkers during early stages of embryonic zebrafish
heart development. In this review, we discuss the development
of cardiovascular disease progression pipelines using zebra-
fish and LSM to identify genetic and molecular drivers of
human cardiac disease.
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Introduction

Cardiovascular disease (CVD) has endured as the
leading cause of mortality in US residents for nearly a
century, since 1933 [1]. Furthermore, CVD has resulted
in approximately 18 million deaths globally in 2020 [2—
4]. Despite the development of novel diagnostic tools
and therapies improving CVD prognosis over the last
decade, CVD incidence remains prevalent in aging
populations worldwide and is further exacerbated by
exposure to contributory risk factors [1-—3].

Furthermore, the complexity of molecular signaling
pathways and modulation of cardiac output to renal and
nervous systems result in the manifestation of CVD as a
plethora of clinical pathologies [5]. Hence, there is a
need for bona fide high throughput, # vivo modeling
platforms to identify biomarkers associated with the
disruption of cardiac output or biomechanical abnor-
malities [6,7].

Commonly occurring CVDs include hypertension,
atherosclerosis, cardiomyopathies (hypertrophic,
dilated, and non-compaction), congenital heart defects
(CHD), and arrhythmia [2,3,8,9%]. Moreover, CVDs
have been wunderstood to alter cardiac mechano-
transduction in the form of impaired blood flow,
contractility, or hemodynamic shear stress [10,11].
Structural phenotypes of CVD include abnormal cardiac
chamber size, shape, myocyte eccentricity, or defects in
myocyte orientation to ventricular myocardial thickness
[8,9%,12—14*]. As a result, accurate mutagenesis
models are required for the effective clinical translation
of pharmaceutical compounds [15].

"Traditionally, higher-order animals such as canines,
porcine, or sheep have been used to study tissue
remodeling associated with human CVD/CHD and for
therapeutic drug screening, due to conserved molecular,
metabolic, hemodynamic, and # viwo cardiac biome-
chanics. However, large animal models pose several
challenges, including the very high cost of infrastructure
for animal husbandry, long breeding cycles, and the need
for skilled technicians for complicated animal surgery
[16]. These factors result in challenging study
throughput and negatively impact clinical reproduc-
ibility [15,17,18]. Furthermore, the lack of transgenic
models or gene editing tools capable of  vivo spatio-
temporal genetic modulation limits the utility of large
animals in validating developmental signaling pathways
regulating progenitor cell fate or lineage-specific con-
tributions [19].

In this regard, zebrafish are emerging as very high
throughput and genetically tractable vertebrate models
for replicating the developmental environment of dis-
ease progression in CVD pathophysiology [20]. Inter-
estingly, despite exhibiting divergent or complementary
characteristics, the zebrafish genome contains paralo-
gous pairs of genes for every set of mammalian orthologs.
Moreover, approximately 70% of human genes have at
least one zebrafish ortholog. In this regard, a wide array
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of gene editing tools has been developed to propagate
modified contractile apparatus or CVD pathophysiology
in multiple zebrafish generations, allowing to produce
multiple, stable zebrafish generations for studying
mutagenesis [21,22]. Forward genetic screens, which are
aided by transposon-mediated mutagenesis, and reverse
genetic screens, which involve gene targeting/ablation
using morpholino-mediated gene knockdown or target-
ing induced local lesions (TILLING), have been
developed [21]. In addition, transient gene over-
expression is achieved through the injection of mRNA or
DNA, and stable gene overexpression using transgenesis
[21].

Other benefits of using zebrafish as model organisms
include very high breeding capability (~ 100 embryos
per cycle), ease of fluorescence transgene insertion into
zebrafish genome, and conserved vasoconstrictor/dilator
pharmaceutical drug response among others [7,21,23—
25]. Moreover, optically transparent zebrafish embryos
mature externally through passive oxygen and nutrient
diffusion. These characteristics provide access to single-
micron scale and sub-second frame rate # vivo image
acquisition via Optical Sectioning Fluorescence Micro-
scopy (OSM) [9%, 26].

Recent advances in opto-mechanics have resulted in the
evolution of two-dimensional light microscopy into
multidimensional [3d, 4d (3d + time)] OSM in the
form of confocal and light sheet microscopes (LLSM)
[27—31]. Consequently, biologists have leveraged
micron-scale spatial resolution and millisecond temporal
resolution offered by OSM to reconstruct dynamic
processes such as embryogenesis or angiogenesis in
zebrafish with high throughput and reproducibility
[26,32—34]. However, planar one-dimensional excita-
tion of LLSM has emerged as the preferred method over
two-dimensional point scanning in confocal microscopes
[35]. This is attributed to abilities such as sample
acquisition in multiple views, integration of multiple
emission channels, minimal photobleaching, and pene-
tration depth in the order of millimeters without sacri-
ficing spatiotemporal resolution [29,36,37*].
Furthermore, excitation strategies such as structured
illumination microscopy (SIM) or axial/oblique sweep-
ing LSM have enabled access to nanometer spatial res-
olution [29,38,39].

The objective of this review is to assess the suitability of
zebrafish as an 2 vivo genetic toolbox and evaluate novel
gene functions or phenotypic characterization of human
CVD/CHD (Figure 2). Furthermore, the study aims to
demonstrate the potential of LSM as an imaging toolbox
for i sifico, multidimensional reconstruction of  vivo
cardiac morphogenesis and image-based signaling
pathway study or biomechanics analysis in embryonic
zebrafish.

Biomechanical modeling of cardiac
phenotypes and genotypes

Two chambered zebrafish hearts exhibit unique struc-
tural differences with respect to a mammalian heart,
such as the absence of chamber septation or a His-
Purkinje system, besides the presence of a specialized
outflow tract, i.e. bulbus arteriosus (BA) [8,9]*.

However, the zebrafish heart consists of myocardium
and endocardium like other vertebrates, besides having
orthologs with human CVD genes [8,9%, 39]. The well-
annotated zebrafish genome has made it possible to
characterize a wide array of phenotypes, such as
abnormal cardiac function, valve morphology, chamber
volume, or contractility phenotypes [9%, 11,40,41.
Recent zebrafish imaging studies suggest that biome-
chanical cues are involved in deciding the cell fate of
cardiac progenitor cells (CPCs) into specialized tissue,
such as endothelium-derived mesenchymal cells for
endocardial cushions or trabeculation [8,40,43]. Conse-
quently, abnormalities in contractility, blood flow-
induced shear forces, or mechanosensitive pathways
result in embryonic lethality or cardiac malformations
such as CHD’s and cardiomyopathies [8§—10] (Figure 1).
In this regard, LSM has emerged as a powerful imaging
modality for investigating zebrafish pathophysiology,
due to ability to perform cellular scale 4d (3d + time)
volumetric reconstruction at rapid frame rates.

Mechanical efficiency of developing
zebrafish ventricle

Heart development begins with a peristaltic linear heart
tube (LHT) at two days post-fertilization (dpf) that
undergoes looping to form a morphologically separate
atrium and ventricle at approximately 4 dpf [8,9[8,9*].
Any cardiac malformations during these developmental
stages such as migration of mesodermal CPCs during
peristaltic LHT formation, endocardial cushion forma-
tion, or myocardial compaction adversely affect the he-
modynamic performance of embryonic heart [11,43].
Hence, there is a need to characterize the mechanical
pumping efficiency of developing zebrafish heart.

Salehin et al. demonstrate the versatility of LSM mo-
dality by characterizing embryonic zebrafish ventricular
pressure-volume (PV) loop and other cardiovascular
phenotypes across 3—5 dpf, using the Tg(cmbc2:mCher-
ry;flila:GFP) zebrafish lines [44%*]. Optical sections
were acquired in an orthogonal perspective to the
camera to reconstruct ventricular volumes by sample
translation through the static light sheet at discrete
steps (2 um) using mechanical actuators [43]. Because
of non-gated 7z vivo image acquisition, authors recon-
structed dynamic ventricular volumes @ posteriori by
minimizing the error in the least squared intensity of
adjacent optical sections. Authors highlight the impli-
cations of estimating the cardiac cycle period during 4d
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Figure 1

Cardiac biomechanics in zebrafish model Teranikar et al. 3
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(a) lllustrative representation of the zebrafish cardiovascular system at 2 dpf. (a’) Outflow tract (OFT), atrioventricular canal (AVC), ventricle, and atrium
of the zebrafish endocardium. Red arrow represents flow-related forces through the chambers of the heart. (a’) The zebrafish dorsal aorta experiences

pulsatile flow-related forces, represented by the wavy-shaped red arrow. Flow

-related forces through the caudal vein are laminar, represented by the

straight red arrow. (b’) lllustrative representation of contractile stress by the myocardium and fluid shear stress caused by blood flow. (b”) Repre-
sentation of fluid shear stress and pressure within the vasculature. (¢) Transgenic zebrafish with removal of cardiac contractility genes results in
reduction or even elimination of blood flow through blue vasculature region. (d) Genetic alteration of hematopoiesis genes, represented by grey
vasculature region, results in changes in red blood cell quantities. (e) Representation of donor cell transplant into wildtype vasculature cells (grey cells

— green cells, respectively). (f) Schematic of cerebral cavernous malformation
and reduced blood flow, represented by blue vasculature region. Blood flow is

(CCM) in the zebrafish heart. Krit1(ccm1) mutation causes heart defects
restored through expression of krit1 protein and variations in blood flow

through blue-green vasculature region can be examined [11]. (For interpretation of the references to color in this figure legend, the reader is referred to

the Web version of this article.)

(3d + time) synchronization to ensure neighboring
image slices are in phase with the cardiac cycle. In this
respect, acquiring multiple optical sections requires
camera pixel exposure time (10 ms) reset. Intraven-
tricular pressure measurements [peak systolic ventric-
ular pressure (PSVP) and end-diastolic ventricular
pressure (EDVP)] were acquired using a standalone
servo-null micropressure system. An offset in electrical

resistance of a pre-calibrated borosilicate-tipped glass
electrode was recorded with respect to variation in
ventricular  pressure. mCherry-labeled myocardial
volume was used for the separation of endocardial
boundary from ventricular blood volume. The region-of-
interest (ROI) confined within GFP-labeled ventricular
endocardium was reconstructed for calculating end-
systolic volume (ESV), end-diastolic volume (EDV),
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stroke volume (SV = EDV — ESV), stroke work
(SW = fp.d (vol)), ejection fraction (EF = EDV —
ESV/EDV), and cardiac output [CO = SV x heart rate
(HR)]. In addition, authors demonstrate the time de-
rivative of ventricular volume as a surrogate for ven-
tricular blood flow rate, enabling the characterization of
cardiac chamber driving potential or impedance to blood
influx.

Authors reported a 50% increase in PSVP from
7.52 £ 0.77 mmHg at 3 dpf to 11.26 + 1.31 mmHg at 5

Figure 2

dpf, with a 3% decrease in EDVP from
1.36 £ 0.52 mmHg to 1.32 £ 0.19 mmHg. ESV was
found to increase from 0.08 + 0.01 nL at 3 dpf to
0.18 + 0.01 nL at 5 dpf, along with an increase in EDV
from 0.18 £ 0.02 nL from 3 dpf to 0.40 £ 0.03 nL. at 5
dpf. Authors also reported 23% increase in HR from
112.87 £ 8.58 beats/min to 139.16 & 6.70 beats/min,
along with a 178% increase in CO from 10.5 £ 0.6 nL/
min to 29.1 £ 2.18 nL/min across 3 to 5 dpf, respectively.
SW was also observed to increase 222% from 0.062+
0.008 nJ at 3 dpf to 0.200 £ 0.023 nJ at 5 dpf. Thus, the

Transgenic zebrafish line

Embryonic zebrafish
developmental stage
[days post fertilization (dpf)]

Phenotype of transgenes
and study performed

Tg (cmlc2: mCherry; flila: GFP)
formation)

2 dpf (primitive cardiac valve
5 dpf (cardiac
trabeculation and complete

chamber development)

GFP fluorescence localized in
endothelial cells lining the
blood vessels and heart and
mCherry fluorescence
localized in myocardial heart
muscle, was acquired to
quantify intra-ventricular
pressure, ventricular volume,
stroke  volume, ejection
fraction, cardiac output, and
blood flow rate.

Tg (flila: GFP)
formation)

2 dpf (primitive cardiac valve
— 5 dpf (cardiac
trabeculation and complete

chamber development)

The GFP signal detected in
endothelial cells, allowing for
the assessment of ventricular
strain and ejection fraction.

Tg (tpl1: GFP)
formation)

2 dpf (primitive cardiac valve
— 5 dpf (cardiac | in cells that
trabeculation and complete

chamber development)

The GFP signal was observed
contained
activated Tpl promoter with
Notch-responsive elements,
enabling the investigation of
the role of Notchlb in
regulating VB valve
morphogenesis through
contractile force.

Tg (cmlic2: GFPnuc)
formation)

2 dpf (primitive cardiac valve

trabeculation
chamber development)

— 5 dpf (cardiac | on cardiomyocyte nuclei.
and complete | Thus, ventricular
contractility, ventricular

The GFP signal was localized

myocardial nuclei count, area
and eccentricity were
measured. .
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Transgenic zebrafish (Danio rerio) models are used for creating forward genetics human CVD/CHD phenotypic screens.
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imaging study demonstrates the utility of LSM for
quantifying hemodynamic parameters # vivo across
distinct developmental stages of zebrafish cardiogenesis
(LHT at 24 dpf with no valve formation to the specifi-
cation of atrium, ventricle, and valve leaflets at ~ 96—
120 dpf) [44**].

In this regard, Salehin et al. describe the significance
of having the ability to synchronize discrete hemody-
namic parameters to interpolate global CO, as well as
consequently assess phenotypes that are exhibited in
CVD [44**]. This is often complicated by the small
size of the zebrafish (~4 mm). The synchronization
of intraventricular pressure and ventricular volume
was achieved by identifying distinct events in the
cardiac cycle and matching in time. Isovolumic relax-
ation and end diastole were used for AV valve opening
and closing, and the start and end of ejection were
marked by the opening and closing of ventriculobulbar
(VB) wvalve. Hence, improvement in mechanical
function during embryonic heart development is
attributed to increasingly efficient hemodynamic pa-
rameters due to valve leaflet formation from endocar-
dial cushions [11,39,43].

Figure 3

Cardiac biomechanics in zebrafish model Teranikar et al. 5

Effect of contractility and fluid flow on valve
formation

While cardiomyocyte or valve maturation contributes to
improvement in the pumping efficiency of embryonic
zebrafish, mechanosensitive signaling pathways are
hypothesized to regulate valvulogenesis [10]. Hsu et al.
sought to investigate the effect of ventricular contrac-
tility and fluid flow-induced shear stress on
endocardial—mesenchymal transition (EndoMT) in AV
and VB valve formation [43] (Figure 3). Authors
demonstrate the utility of the zebrafish animal model
as a genetic toolkit and 4d (3d + time) LLSM as an
m vivo dynamic volume acquisition toolkit [11,43].
Pharmacological modulation of zebrafish ventricular
contractility and HR using a nonselective B-receptor
agonist (isoproterenol hydrochloride, (increase)), se-
lective Pl-receptor antagonist (metoprolol tartrate,
(reduction)), or BDM ((2,3-butanedione monoxime
[BDM] was performed. In addition, blood viscosity and
hematopoiesis were downregulated by microinjections
of Gatala morpholino oligonucleotide (MO), while £PO
mRNA upregulated viscosity. Furthermore, TwnntZa MO
was administered for arresting atrial and ventricular
contractility, while Ply/MOs were used for inhibition
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Orthogonal optical pathway for single-sided illumination and dual detection represented as (a) a schematic diagram and (b) a photograph. (¢) Bright-
field image of a 5 dpf zebrafish, with heart outlined in green and inflow tract (IFT) and outflow tract (OFT) represented with red arrows. (d) Schematic of
heart depicting AV and VB valve leaflets, atrium (A), ventricle (V), OFT, and BA. (e) Light-sheet fluorescence microscopy (LSFM) image of 5 dpf heart
during systole with VB valve open. (f) LSFM image of 5 dpf heart during diastole with AV valve open. (g) The heart during systole, represented as a 3D
reconstruction with the VB valve in red and AV valve in orange [43]. (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)
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of ventricular contractility only. Authors relied on the
well-annotated zebrafish genome for visualizing varying
effects of genetic manipulations. Tg(ffila: GFP) line
was used for endothelial and endocardial cells, 7g(ga-
tal:dsRed) for red blood cells, Tg(zp1:GFP) for reporting
Notch1 activity, and Tg(emlc:mCherry) for reconstruction
myocardial cardiomyocytes and c/ocke zebrafish mutants
with lacking endocardium. Authors report upregulation
of myocardial contractility and hemodynamic wall shear
stress (WSS) using isoproterenol cause enlarged,
abnormal valve leaflets, whereas the inhibition of
contractility using BDM, TwntZa, or PleyIMOs led to
the absence of AV and VB valves. Interestingly, meto-
prolol vs control zebrafish line did not result in any
significant abnormalities due to conserved myocardial
contractility and Nozc/hl) signaling. Similarly, pharma-
ceutical modulation of blood viscosity using EPO
mRNA resulted in enlarged leaflets for increased vis-
cosity and WSS. On the other hand, no significant
effect on Notchlb signaling and valve structures was
observed for Gatala MO microinjection.

The imaging group relied on SV and EF for contractility
analysis in conjunction with blood velocity and time-
averaged wall shear stress (TAWSS) for hemodynamic
analysis. Dynamic blood flow simulation required
endocardial boundary segmentation using intensity-
based thresholding. Edges of binarized images were
deformed according to # vivo endocardial groove and
ridge topology using level set advection techniques and
finally converted into a triangulated surface mesh for
computational fluid domain (CFD) analysis. Moreover,
authors relied on minimizing an intensity-based non-
rigid deformable objective function based on
Eopj = Ein(/(x), J(T(x))) + 7\Ereg(’c(x)) for ensuring
synchronized optical sections across the cardiac cycle.
Briefly, the sum of squared differences (SSD) similarity
function was used for calculating Eg,, and free-form
transformation deformation model (FFD) based on
cubic B splines for mapping endocardial ROI across
different parts of the cardiac cycle. The squared norm
of the FFD transformation gradient (E., = A
|Vt (x)||* was used for controlling the degree of defor-
mation. Authors relied on interface tracking arbitrary
Lagrangian—Eulerian (ALE) methods for tracking
endocardial displacement and blood domain within
ventricular endocardial cavity. The endocardial wall
velocity was computed using the deformation map
obtained during image registration.

Furthermore, the imaging group observed upregulation
of mechanotransducive Nozchlb signaling pathway by
administering isoproterenol and EPO mRNA led to
valve hyperplasia, and downregulation by adminis-
tering BDM, TwuntZa, or PleyIMO’s led to valve hypo-
plasia. To investigate the impact of biomechanical
transduction on EndoM'T, the Hsu et al. utilized im-
munostaining against DM-GRASP, a mesenchymal

marker, to quantify cell count and volume of VB valve.
This allowed them to elucidate the effect of biome-
chanical force-mediated Notchlb activity on valve
cells. By administering isoproterenol and EPO mRNA,
which increased myocardial contractility and TAWSS,
the authors observed an increase in DM-
GRASP + cells using Tg(cmlec2: mcherry) to visualize the
VB valvular regions, as cmlc2 (cardio myosin light chain 2)
highlights myocardium. Interestingly, an increase in
WSS led to a slightly larger volume of cell adhesion
molecules. Conversely, when contractility was atten-
uated with BDM, no DM-GRASP + cells were
observed in the VB canal region.

Hence, authors conclude the inhibition of contractility
to be primarily responsible for abnormal valve leaflet
maturation or hyperplasia [43]. However, coordination
with shear stress, blood velocity, and mechano-
transducive Notchlb is required for the initiation and
remodeling of endocardial cushions into mature valves
[10,40,43]. Hence, the imaging study highlights the
dynamic spatiotemporal resolution of LSM modality for
the reconstruction of fluid flow environment or other
biomechanical cues using non-ionizing, non-gated L.SM
optical sectioning.

Effect of contractility on cardiomyocyte
morphology

Specification of CPCs into diverse cardiac lineages has
been observed to be regulated by local blood flow ve-
locity and contractility, as described in previous sections
[9%, 13%, 39,42,43. This is evident by abnormal valve
growth because of impaired blood flow or improper
crosstalk between signaling pathways in AVC or outflow
(OFT) tract [40,43]. Hence, in addition to mechanical
properties, it is essential to characterize dynamic cardiac
cell deformation in response to blood flow and contrac-
tile forces [13%*, 45%*].

Teranikar et al. demonstrate the use of Tg(cmilc:GFPnuc)
zebrafish line for quantifying ventricular contractility
across 2—5 dpf using non-gated 7z vivo image acquisition
as discussed previously [13%, 45**] (Figure 4).
Furthermore, authors were able to characterize dynamic
change in nuclei eccentricity and volume across the
cardiac cycle. Furthermore, ventricular myocardial
nuclei were quantified through several phases of em-
bryonic development. At 2, 3, 4, and 5 dpf, nuclei count
was observed to be 159 + 13, 222 + 17, 260 £ 13, and
284 £ 10, respectively, indicating ventricular maturation
as observed by increasing hemodynamic efficiency in
previous sections. Analysis of the innermost curvature
(IC) and outermost curvature (OC) ventricular regions
as a function of time revealed that the OC region has a
greater area ratio than IC. Moreover, the volumes of OC
nuclei during systole and diastole were larger than that
of the nuclei within the IC region. In addition to greater

Current Opinion in Biomedical Engineering 2023, 27:100459
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Figure 4

Cardiac biomechanics in zebrafish model Teranikar et al. 7
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Reconstruction of ventricular myocytes during systole at (a) 2 dpf, (b) 3 dpf, and (c) 4 dpf, as well as during diastole at (d) 2 dpf, (e) 3 dpf, and (f) 4 dpf.
(9) lllustrative representation of ventricular nuclei sampling in the region of interest. Green markers: Innermost curvature contractility. Red markers:
Outermost curvature contractility. Blue windows: Light sheet sections. (h) Area ratio for innermost curvature at 2, 3, 4, and 5 dpf was found by tracking
three cardiomyocytes as indicated in green in panel G, which demonstrate increasing contractility as development progresses. (i) Area ratio for
outermost curvature at 2, 3, 4, and 5 dpf was found by tracking three cardiomyocytes as indicated in red in panel G, which show more pronounced
contractility compared to innermost curvature. (j) Starting at 3 dpf, the outermost curvature has significantly higher area ratio than innermost curvature
(n=3, p=0.05, one-tailed t-test) [13]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this

article.)

volume, the OC nuclei were found to have a more
ellipsoid morphology, averaging a 0.71 elongation index.
Cardiomyocyte nuclei in the IC; on the other hand,
displayed a smaller, spherical morphologies with an
average elongation index of 0.91.

The data from this study suggest that cardiomyocyte
nuclei deformation is unique to different regions of the
ventricle and is dependent upon the amount of me-
chanical exertion experienced in those regions. While
previous sections relied on tracking blood flow domain
for quantifying hemodynamic forces, this study focuses
on tracking dynamic cardiomyocyte nuclei across the
cardiac cycle. Authors relied on the area ratio to repre-
sent ventricular deformation between selected nuclei
markers. The study hypothesizes that larger, elongated
nuclei volumes on the outermost curvature are due to
direct blood flow from AVC and higher area ratio in

comparison to spherical nuclei in the inner curvature
[13*].

"This study illustrates the viability of the zebrafish heart
as a model for contractility-mediated morphology, as
well as the efficacy of LSM for imaging at the nuclear
level.

Conclusion

The zebrafish has become an increasingly popular
vertebrate model for studying human CVD’s, due to low
cost, convenient animal husbandry, and ability to rapidly
screen novel therapeutic compounds. Furthermore, ad-
vancements in whole genome modification techniques
have made it possible to generate stable transgenic or
mutant zebrafish models that closely mimic the devel-
opmental environment of human CVD/CHD. This has
allowed researchers to study the effects of specific
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genetic mutations or environmental factors more accu-
rately on disease development and progression.

Overall, the review highlights the synergistic effect of
LLSM in analyzing biomechanics of dynamic fluorescent
signals within embryonic zebrafish. The fluorescence
modality’s ability to optically section fluorescent bio-
markers at millimeter penetration depth with high
spatiotemporal resolution has pushed the boundaries in
elucidating developmental biomechanical cues m vivo.
In addition, minimal phototoxicity, ability to perform
time-lapse imaging from multiple perspectives, and
rapid volume acquisition (in milliseconds) with cellular
resolution have enabled the characterization of cardio-
genesis from cellular to organ level. As a result, LSM in
conjunction with zebrafish models has great potential as
an automated, multi-dimensional pipeline for facili-
tating the clinical translation of developmental bio-
markers to higher-level animal models.
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