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ISOMETRIC DEFORMATIONS OF SURFACES OF
TRANSLATION

HUSSEIN NASSAR

ABSTRACT. A surface of translation is a sum (u,v) — o(u) + B(v) of two
space curves: a path o and a profile 3. A fundamental problem of differential
geometry and shell theory is to determine the ways in which surfaces deform
isometrically, i.e., by bending without stretching. Here, we explore how sur-
faces of translation bend. Existence conditions and closed-form expressions for
special bendings of the infinitesimal and finite kinds are provided. In particu-
lar, all surfaces of translation admit a purely torsional infinitesimal bending.
Surfaces of translation whose path and profile belong to an elliptic cone or to
two planes but never to their intersection further admit a torsion-free infinites-
imal bending. Should the planes be orthogonal, the infinitesimal bending can
be integrated into a torsion-free (finite) bending. Surfaces of translation also
admit a torsion-free bending if the path or profile has exactly two tangency
directions. Throughout, smooth and piecewise smooth surfaces, i.e., surfaces
with straight or curved creases, are invariably dealt with and some extra care
is given to situations where the bendings cause new creases to emerge.

1. INTRODUCTION

A surface of translation is the Minkowski sum of two space curves: to construct
it, take every point of one curve and add it, as a vector, to every point of the other
curve. Alternatively, it is a surface swept by translating one curve, the profile,
along another, the path;' in this construction, path and profile play equivalent
roles. Should the profile and the path be discrete, i.e., piecewise linear, their sum
becomes polyhedral with parallelogram faces. Polyhedral surfaces of translation
are sometimes referred to as “zonoids” and have found their way into design and
architecture [1, 2]. Other examples of surfaces of translation include cylinders
and, more surprisingly, helicoids. Cloth, modeled as a net of inextensible fibers,
embraces in static equilibrium certain surfaces of translation; see, e.g., [3, 4]. In
structural engineering, the most recognizable surfaces of translation are the folded
corrugations used in roof panels and in sandwich panels [5-7].

Speaking of folds, several origami tessellations, including the notorious “Miura
ori”, are periodic polyhedral surfaces of translation. Their appeal resides in the
fact that they can deploy from densely-packed states into spread-out states that
shade large areas,? simply by folding and unfolding along crease lines. Remarkably,

This work is funded by NSF CMMI CAREER award no. 2045881. The author has no conflicts
of interest. Data availability is not applicable as no data was generated.

IThis is CAD terminology. Fancier, classical, terms are “generatrix” and “directrix”.

2See, e.g., the recently deployed sunshield of the JWST:
https://webb.nasa.gov/content/observatory/sunshield.html
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throughout the deployment, these origami tessellations remain surfaces of transla-
tion [8]. Investigating how this property carries over to other, smooth and piecewise
smooth, surfaces of translation is a main goal of the present work.

More generally, compliant shell mechanisms are shell structures ornate with folds
and corrugations that can “morph” in order to adapt to changes in environment
and loading conditions, for locomotion purposes or for deployment purposes [9-13].
Accordingly, they admit multiple, or even a continuum of, low-energy configurations
wildly different in terms of spans, curvatures and overall shapes. Ideally, the low-
energy configurations of a shell correspond to surfaces that are mutually isometric.
Indeed, shell deformations due to bending and stretching contribute energies of
different orders of magnitude. Their a priori ratio is proportional to h?/R?, where
h is the thickness of the shell and R is a characteristic radius of curvature [14]. Thus,
in the limit of infinitely thin shells, low-energy configurations are stretch-free, i.e.,
they have the same metric as the natural state. This is why understanding how
surfaces deform isometrically can be beneficial for the design and modeling purposes
of compliant shell mechanisms.

Beyond these applications, the above energy argument?® shows that a thin shell
will favor isometric deformations if available. In that case stretching energy vanishes
and can be discarded; the resulting model is that of a “flexural shell”. By contrast,
if the shell geometry, in conjunction with the boundary conditions, does not allow
for isometric deformations, then stretching energy will always dominate bending
energy. Accordingly neglecting the latter leads to the model of a “membrane shell”.
Rigorous asymptotic considerations suggest that there is in fact a hierarchy of shell
models depending on the magnitude of the applied loads; see discussions in [17]
and [18].

Evidently, isometric deformations are also interesting intrinsically as a purely
geometric topic. Hereafter, a few results from the literature are recounted mainly
for the benefit of the newcomer and the curious reader. But first, it will prove
convenient to introduce a terminology that permits to distinguish different notions
of isometric deformations. An isometry is a deformation that preserves the lengths
of curves. An isometry is trivial if it is a Euclidean motion, i.e., the composition of
a translation and a rotation; otherwise, it is non-trivial. A non-trivial isometry is
further called a warping. A (finite) bending is a (continuous) one-parameter family
of isometries that starts with the identity and includes a warping. An infinitesimal
bending is a velocity field that preserves the lengths of curves up to first order in
time, and that is not the velocity field of a Euclidean motion. If a surface does not
admit a warping, then it is globally rigid. If it does not admit a bending, then it
is rigid; otherwise it is flexible. Last, if it does not admit an infinitesimal bending,
then it is infinitesimally rigid; otherwise it is infinitesimally flexible.

The earliest rigidity result of significance is Cauchy’s theorem: convex polyhedra
with the same net are congruent. Equivalently, there exists no warping of a convex
polyhedron that preserves convexity. Clearly then, there exists no bending that
preserves convexity either. Later, Dehn showed that a convex polyhedron® cannot

3Rayleigh [15] appears to be the first to formulate the argument. See also the brief historical
note in Love’s Treatise [16].

4There is an interesting generalization of Dehn’s theorem to non-convex polyhedra with vertices
in convex position [19].
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bend infinitesimally except when it has flat vertices.® This leaves open two ques-
tions: (i) whether a convex polyhedron with flat vertices can bend “inwards” into a
non-convex polyhedron; and, (¢i) whether non-convex polyhedra are rigid. Connelly
answered both questions: he demonstrated that a convex polyhedron with flat ver-
tices is rigid and therefore that all convex polyhedra are rigid; he also constructed
the first flexible non-convex polyhedron. For precise statements, see [20, 21].

In this context of polyhedral surfaces, it was implicitly understood that isome-
tries are trivial face-wise; that is, each face moves like a rigid body. There is a
stronger version of Cauchy’s theorem, due to Alexandrov, that makes no a priori
assumptions regarding the deformation of the faces. An even stronger theorem is
due to Pogorelov: isometric compact convex surfaces are congruent [21, 22]. Here,
the convex surfaces need not be polyhedral or regular beyond whatever regularity
is implied by convexity. Evidently there could be warpings that do not preserve
convexity. Even more, by a result due to Kuiper, convex, and in fact all, C'-smooth
surfaces admit a C'-smooth bending. Note that this bending leads to non-convex
surfaces that are, loosely speaking, corrugated on an infinitely fine scale; see, e.g.,
the illustration in [23]. In particular, the image surfaces are not C2-smooth and
lack the notion of Gaussian curvature. Hereafter, smooth surfaces and isometries
are understood to be at least of class C2.

Several results on the rigidity of smooth compact convex surfaces preceded
Pogorelov’s theorem. A first proof of infinitesimal rigidity® was attempted by
Jellett” [24] but the first rigorous proof is attributed to Liebmann [25]. Later,
Cohn-Vossen proved that isometric smooth compact convex surfaces are congruent.
As a direct consequence, smooth compact convex surfaces are globally rigid since
the sign of Gaussian curvature encodes convexity and is an isometric-invariant.
Cohn-Vossen is also credited with the first non-trivial example of an infinitesimally
flexible smooth compact (non-convex) surface. No flexible smooth compact surfaces
appear to be known however.

There are other interesting rigidity, and flexibility, results based on convexity,
e.g., for closed non-compact convex surfaces and for compact convex surfaces minus
a small neighborhood; see [25]. Other results concern rigidity relative to a curve, i.e.,
with the image of a given curve prescribed, and local rigidity, i.e., in the vicinity
of a point. In fact, many classical results belong to this local category whereas
global results in the spirit of “geometry in the large” came later.® In that regard,
polyhedral surfaces are somewhat exceptional: Cauchy’s and Dehn’s theorems came
first, and local characterizations of flexibility, or “foldability” as it is called in the
context of origami, have only been sought relatively recently [28-30].

5If a vertex is flat, then a displacement normal at the vertex and vanishing everywhere else
provides a, somewhat uninteresting, infinitesimal bending.

6Just as for Dehn’s theorem, infinitesimal rigidity holds except when it trivially does not, i.e.,
for surfaces with planar neighborhoods.

In the Treatise [16], Love references Jellett’s theorem in confirmation to the conclusion that
a complete spherical shell is infinitesimally rigid. Interestingly, in doing so, Love misquotes the
theorem and appears to believe that “closed surfaces” are infinitesimally rigid, be them convex or
not.

8Porhaups the issue with classical results is not that they are local per se, but that they seldom
informed on how different local behaviors can be sewed together; see, e.g., Spivak’s discussion of
the classical “classification” of developable surfaces [26, Chapter 5, Section 4]. See also [27].
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Results of a general character aside, significant efforts went into the derivation
and classification of bendings for specific classes of surfaces: ruled, constant curva-
ture, Weingarten, etc. The case of surfaces of revolution is particularly interesting,
in applications granted, but also for it provides conceptually-important counter-
examples to the plausible, but wrong, idea that flexibility comes from the boundary.
On one hand, Cohn-Vossen’s surface, referenced above, is an infinitesimally flexible
compact surface of revolution. On the other hand, there are surfaces of revolution
with boundaries that are infinitesimally rigid. See, e.g., [31] for illustrations and
for a tractable treatment.

It is to this effort of “derivation and classification” that the present paper con-
tributes. Throughout, closed-form expressions for certain infinitesimal bendings
and bendings are provided. Expressions for bendings of surfaces of translation
were first obtained by Bianchi. Interestingly, it was at this occasion that Bianchi
baptized them “superficie di traslazione” [32]. Bianchi’s bendings are available in
the case where the path and profile are smooth graphs with the same “y-axis” and
perpendicular “z-axes”. Here, similar bendings are investigated, namely

(i) bendings and infinitesimal bendings where path and profile belong to two
perpendicular planes (Proposition 1 and Theorem 4);
(i4) bendings and infinitesimal bendings where the profile has exactly two slopes
(Theorems 3 and 5);
(7i7) infinitesimal bendings where tangents to path and profile belong to an el-

liptic cone that potentially degenerates into two, non-orthogonal, planes
(Theorem 2),

all in the context of piecewise smoothness encompassing smooth surfaces as well as
surfaces with straight and curved creases.

2. PRELIMINARIES
First of all, a few definitions and examples are due.

Definition 1. Let Q C R” be a non-empty bounded open set and let Q be its
closure. A mapping x : 0 — R™ is piecewise smooth if it is continuous and if there
exists a finite number of disjoint connected open sets €; such that U;Q2; =  and x
is smooth over Q;. The €; are then called the pieces of x.

Thus, hereafter, continuity is implicitly presumed in piecewise smoothness. The
restriction to compact domains of definition might not be necessary but certainly
simplifies technical statements especially where integration is needed. In the same
fashion, the following definition of a surface is not the usual one but is suitable for
the present purposes.

Definition 2. A surface is a piecewise smooth mapping
x:R?D>0Q—R?
(u,v) = x(u,v)

(1)

such that the partial derivatives x; = x, and x5 = x, are everywhere linearly
independent.

A surface can therefore exhibit at the boundary of pieces discontinuities in the
tangent plane that can be understood as crease lines. The concept of “pieces” will
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be useful to keep track of where creases are or of where they could appear as a
result of a deformation.

Definition 3. Let I, I;, J and J; be non-empty bounded open intervals such
that I = J, /; and J = Uj Jj. A surface x defined over Q = I x J with pieces
Qi ; = I x J; and such that x(u,v) = a(u) + B(v) is a surface of translation. The

space curves « and 3 are the path and the profile of the surface.

For instance, x(u,v) = (cos(u) + cos(v),sin(u) + sin(v),u + v) is a surface of
translation that is part of a helicoid. Note that the path and the profile describe
the same helix. It does not escape the mindful reader that x, and x, are equal
for u = v [27] and the domain © must avoid these lines. It is worth recalling here
that the helicoid is a minimal surface. Other minimal surfaces of translation are
Scherk’s surfaces [33].

A surface of translation is solution to x,, = 0. In particular, its second funda-
mental form is diagonal and the coordinate curves are said to be conjugate. For
«a and (3 piecewise linear, the surface of translation is polyhedral. The rectangu-
lar pieces of x then get mapped to parallelograms. In the language of discrete
differential geometry, a quadrilateral surface whose quadrilaterals are planar is a
discrete conjugate net [34]. Polyhedral surfaces of translation are therefore par-
ticular discrete conjugate nets. Examples include the “Miura ori” and “eggbox”
patterns.

3. INFINITESIMAL BENDINGS

A small deformation of a surface x can be described by a velocity field x. The
deformed surface is then x + tx where time ¢ is understood to be a small scalar.
The strains brought by the deformation, to leading order in ¢, are therefore

(0] + (5,5,

Epy = - 2 ——E, (n,v) €41, 2}2' (2)
For these strains to vanish, X must move the basis (x,,%,) as a rigid body, i.e.,
there must exist a field of infinitesimal rotations w such that x, = w A x,. Should
w be constant, then the whole surface undergoes the same infinitesimal rotation
and there is no actual “bending”. This motivates the following definitions.

Definition 4. A FEuclidean velocity of x is a mapping x = v + w A x where v and
w are constants.

Definition 5. An infinitesimal isometry of a surface x is a piecewise smooth map-
ping x with the same pieces as x such that

<>.(u7xu> = <X’U7X’U> = <quxv> + <XU7X’U,> =0. (3)
If x is not a Euclidean velocity then it is an infinitesimal bending.
Theorem 1. All surfaces of translation are infinitesimally flexible. A “universal”
infinitesimal bending is

X(u,v):a(u)/\,@(v)—l—/ua/\a/—/vﬁ/\ﬁ’. (4)

Proof. The candidate x is piecewise smooth since any jumps in o’ and @3’ are
overcome by integration. The partial derivatives x, = (o — 8) A & and %, =
(a — B) A 3 describe an infinitesimal rotation. Last, X,, = &’ A 3’ # 0 implies
that x is not a Euclidean velocity. O
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The provided infinitesimal bending twists the coordinate curves without “bend-
ing” them; in other words, it is a pure torsion. This is most easily seen for the
plane x(u, v) = (u,v,0) for which x = (0,0, uv). More generally, the velocity of the
unit normal n is n = (a — B) A n since a — 3 is the infinitesimal rotation of the
infinitesimal bending. Thus, letting

€= <qu7n> + <XUU7h>7 g= <5<vvan> + <vauh>7 f: <5Cuu,n>, (5)

be the changes inflicted to the coeflicients of the second fundamental form, it is
easily seen that

¢=g=0, f=la'np (6)
In fact, solving the linearized Gauss-Codazzi-Mainardi equations under the assump-
tion é = g = 0 is what lead to the discovery of x in the first place.

One might object to the “universality” of the above infinitesimal bending for, in
the case of polyhedral surfaces, it does not preserve the planarity of the faces. But
this should not be concerning in a setting where one of the goals is to invariably
treat surfaces with, say, curved and straight creases. A more concerning objection
would be as follows: suppose 3 describes a closed curve over an interval [v1,vs],
i.e., such that B(v1) = B(v2) as it would for a “tube of translation” for instance.
Then, it would be natural to ask of an infinitesimal bending to satisfy a similar
constraint of closure, namely, x(u,v1) = x(u,vq). Clearly, the above “universal”
infinitesimal bending does not satisfy said constraint and produces a “dislocation”
with a “Burger’s vector”

b:—/:ﬁAﬁ’. (7)

The infinitesimal bendings described below are more hopeful in these regards but
are not as universal.

Proposition 1. Let x = a+ 3 be a surface of translation where o and 3 are not
both straight lines. Suppose further that o and 3 belong to two perpendicular planes
such that o and B’ are never in each other’s plane. Then, up to a change of basis
of R3,

a/ = (:I;ouoazoz)u /8/: (Ouyﬂuzﬂ)u Loy 7507 y,@ #07 (8)

% = / X, +/ X, (9)
2 22

Xu = (Z_au 07 _Zoz) ) X’U = 07 __57 ZB ) (10)
Lo Yp

defines an infinitesimal bending.

and

where

Proof. Let P and @ be the planes in which lie &’ and @', respectively. Let p €
Qt C P,qe Pt c Qandr € PNQ be unit vectors. Clearly, (p,q,r) is an
orthonormal basis of R?® with (a’,q) = (8',p) = 0 as required. Furthermore,
zo = (&/,p) # 0 since otherwise a’ belongs to Q; similarly yz # 0. Thus, x is
well-defined and is easily checked to be an infinitesimal isometry. Last, x is not a
Euclidean velocity. Indeed, suppose it was; then the infinitesimal rotation

w = (_ﬂ “o _ﬁ> (1)

Yg To Talyp
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is constant, and so are zg/yg and z,/x, meaning that both o and B are straight
lines. g

Perhaps the most pressing question is how does one come up with such an infin-
itesimal bending. Here is one way: it is known that the infinitesimal bendings of a
smooth graph (u, v, f(u,v)) correspond to solutions g of the linear PDE

,f'uvguu - 2fuvguv + fuug'uv =0. (12)

When the graph is a surface of translation, i.e., f(u,v) = a(u)+ 8(v), the equation
simplifies into

B" guu + " guy = 0. (13)
The symmetry then immediately inspires the solution g(u,v) = a(u) — 5(v). Work-
ing the way back to x leads to the infinitesimal bending provided above.

The above infinitesimal bending is pleasant in many ways: it preserves conjugacy
of the coordinate curves, i.e., it is free of torsion. Indeed, x + tX remains a surface
of translation. Moreover, X,, X, and w are constant wherever o’ and 3’ are
constant. Hence, if x is polyhedral, then so is x + tx. Last, if o’ and @' are
periodic, then %, and x, are periodic with the same respective periods. There is a
“trick”, or two, that allows to construct similar infinitesimal bendings for surfaces
of translation where o’ and 3’ belong to two, not necessarily orthogonal, planes
or, more generally in a sense, to a single elliptic cone. On one hand, infinitesimal
flexibility is a linear invariant: if x is an infinitesimal bending of x, then A~Tx
is an infinitesimal bending of Ax where A is any invertible matrix. On the other
hand, if x is an infinitesimal bending of x, then it is also an infinitesimal bending
of x +w Ax for any constant w. Combining these two transformations leads to the
following.

Theorem 2. Let x = a+ 3 be a surface of translation where oc and B are not both
straight lines. Suppose further that o and B’ belong to an elliptic cone C. If

e C is non-degenerate; or
e C is the union of two planes and o’ and B’ each belong to one plane and
never to the other plane,
then x admits an infinitesimal bending that preserves conjugacy, planarity and pe-
riodicity.
Proof. Let M be a plane of mirror symmetry such that C N M contains two lines;
let p and q be unit vectors along these lines and let r be a unit normal to M. Then,
there exists s € R such that
C={zp+yq+zr, zy=sz}. (14)
Let
' = 24P +yad+2ar, B’ =P +ysa+ zpr, (15)
and let (p*, q*,r*) be the basis dual to (p,q,r). Then, by hypothesis,
e cither C is non-degenerate and s # 0, in which case let

Xu = yfp* - Zozr*a XU = _x?ﬁq* + ZBI‘*; (16)
e or C is degenerate, s = 0 but 2, # 0 and yg # 0 in which case let
22 22
Xy = 2p* — 241", %, = ——ﬁq* + zgr’. (17)

T Ys



8 HUSSEIN NASSAR

Either way, x is an infinitesimal bending that preserves conjugacy, planarity and

periodicity. O
The above infinitesimal bending corresponds to the infinitesimal rotation
1 z z ZaZ
1— Saays \UB Za Tals

Note that w belongs either to a hyperbolic paraboloid (s = 0) or to a one-sheeted
hyperboloid (s # 0), both of which are doubly ruled surfaces. This correspondence
between conjugacy-preserving infinitesimal bendings of surfaces of translation and
doubly ruled surfaces can be foreseen as follows. Suppose x is smooth. By definition,
X, = W Ax,. Then, integrability of x,, implies

Xuw — WA Xy = Wy A Xy = Wy A Xy (19)
Assuming, x and x 4 tx are both surfaces of translation, it comes that
Wy A Xy = Wy AXy = 0. (20)
That is: there exist two functions a and b such that
Wy (u,v) = alu, v)x,(v), wWy(u,v) = b(u,v)x,(u), (21)

meaning that a point following the coordinate lines of w, along w,, or w,,, moves in
a straight line. Thus, the surface to which w belongs must be doubly ruled. This
property was observed by Smith [35] as he attempted to characterize surfaces of
translation with conjugacy-preserving bendings rather than infinitesimal bendings.
More generally, Bianchi calls associate two surfaces with parallel tangent planes
such that a conjugate net on one corresponds to an asymptotic net on the other
[36]. Here, x and w are associate. Indeed, on one hand, w, A w, is parallel to
X, A X, so that the planes tangent to w and x, for equal (u,v), are parallel. On
the other hand, both w,, = a,x, and w,, = b,X, are tangent vectors so that the
coordinate curves on w form an asymptotic net whereas they formed a conjugate
net on x. The study of associate surfaces, their existence conditions in particular,
becomes synonymous to the study of certain classes of infinitesimal bendings. For
an x that is piecewise smooth, w is not even continuous and the correspondence
becomes more involved. See, e.g., [34] in the polyhedral setting.

Theorem 2 applies to an x that describes the lateral surface of a triangular prism
and thus provides an infinitesimal bending % that preserves planarity. Of course,
in this case, x does not preserve closure. In general, should C be degenerate and 3
describe a closed plane curve over [v1, v2], then % produces a dislocation of Burger’s

vector
Vo 22
b=— / Lqr. (22)
v YB

Remarkably, if C is non-degenerate, then xgyg = szg enforces b = 0 by the closure
of B. In that case, X preserves closure as well. There are other cases where closure
is preserved, e.g., whenever the closed curve is centrosymmetric.

There is a particular case of Theorem 2 that is worth highlighting as it admits
an interesting generalization that goes beyond the theorem itself. Recall first that
checking whether a finite set of lines belong to an elliptic cone amounts to checking
whether a certain linear system of equations in 6 unknowns admit non-trivial solu-
tions, the unknowns being the coefficients of a homogeneous polynomial of degree
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2 in 3 indeterminates.” In particular, 5 lines always belong to an elliptic cone.
Hence, Theorem 2 potentially applies to surfaces of translation x where, say, a has
at most three distinct slopes and (3 has at most 2 distinct slopes. Now here is the
generalization.

Theorem 3. Let x = o+ 3 be a surface of translation where 3 has exactly two
slopes and o' never belongs to the plane of B'. Then, x admits an infinitesimal
bending that preserves conjugacy, planarity and periodicity.

Note that since 3 has two slopes, its tangent 3’ lies in a plane, namely the span
of the two slopes.

Proof. Let 31 and B3 be the two unit slopes of 3 so that

B =x1(8',81)B1 + x2(8', B2) B2 (23)
where the y;’s are indicator functions and let
Bi=(BLAB)ABL, Ba=—(BLAB2)ABe. (24)

Then, since (&, 81 A B2) # 0 by hypothesis,
Xy = X1<5/751>51 =+ X2<5/,52>527

A A S AT p— )
X, = ( (o, —{(a, —,
o V)T o, B A Ba)
define an infinitesimal bending x that preserves conjugacy, planarity and periodic-
ity. 0

What Theorem 3 really is saying is that if 3 has two slopes only, then « is
capable of following its lead. This is why ﬁl and 62 are chosen at first, somewhat
randomly, and x, is constructed afterwards so as to produce zero infinitesimal
strains. In fact, (Bl,Bg) belongs in principle to the 4D space Bi x B3, but 3 of
its dimensions correspond to rigid body rotations of 3 that extend into rigid body
rotations of x; the remaining dimension extends into the x provided above. Last,
note that if 3 describes a closed curve, then x preserves its closure. The same does
not hold for « in general; exceptions include cases where a has at most two slopes
as well.

Theorem 1 aside, cases where, say, a is planar and 3’ is parallel to the plane
of a have been avoided. Should that occur, two possibilities present themselves.
On one hand, suppose 3’ is parallel to the plane of e at an isolated point v. The
surface then contains a curve a 4+ 3(v) that completely lies in a tangent plane and
at which, generically, the Gaussian curvature changes sign. Such a curve, with
vanishing normal curvature, would be “rigidifying” since it is minimally bent and
cannot bend further infinitesimally; see the discussion in [31]. Note that theorem 1
remains indifferent: the infinitesimal bending it provides does not bend the curves
of the conjugate net but twists them. On the other hand, suppose 3’ is parallel to
the plane of av over an open interval. The surface then contains an open portion
of a plane and any normal displacement compactly supported within that portion
provides a somewhat uninteresting infinitesimal bending. That said, the following
is potentially of interest.

e, P(z,y,2) = ax? + by? + c22 + dyz + ezz + fay.
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Proposition 2. Let x = a+ 3 be a surface of translation where a is planar but not
straight and where 3’ is parallel to the plane of a over a union of pieces. Then, x
admits an infinitesimal bending that preserves conjugacy, planarity and periodicity.

Proof. Let N be a constant unit normal to the the plane of . Let .J; be the
intervals where 3’ is parallel to the plane of a; let x; be their respective indicator
functions and let ¢; be constants. Then,

%, =0, %, =Y c;\;N, (26)

J
provides the sought infinitesimal bending. O

It is implicitly understood here that the constants are chosen in a way that is
compatible with periodicity where applicable. Evidently, the infinitesimal bending
exploits the pieces boundaries to dissimulate or create creases. Interestingly, as
soon as that happens, 3’ is “kicked” out of the plane of « in a way that could
allow for the other results of the present section to apply. More on that in the next
section.

4. BENDINGS

In exceptional cases, it is possible to pursue the infinitesimal bendings of the
previous section so as to produce a finite bending. These are cases where the
infinitesimal bending happens to preserve whatever conditions gave it birth in the
first place. But before stating the results, two definitions are due.

Definition 6. Two surfaces x and y are isometric if they have the same pieces
and the same metric, namely,

(X, %0) = (¥ ¥0), (mv) € {1,2}° (27)
They are congruent if there exist an orthogonal matrix R and a vector T such that
y = Rx+ T. Otherwise, they are warpings of one another.

Definition 7. Let I be an interval and x be a surface. A continuous one-parameter
family of surfaces I o ¢t — y(¢) is a bending of x if y(t) and x are identical for some ¢,
warpings of one another for some ¢, and isometric for all ¢.

Revisiting Proposition 1, provided @ and 3 are in perpendicular planes, it is seen
that an infinitesimal bending exists and keeps a and 3 in perpendicular planes.
By integration, the following “groomed” version of Bianchi’s original result [32] is
obtained; see also [37] for a recent treatment in the context of “T-surfaces”.

Theorem 4. Let x = o+ B be a surface of translation where o and (3 belong to
two perpendicular planes and are not both straight lines. Suppose further that the
domain where &' and B' are in the intersection of their planes is either empty or
a union of pieces and piece boundaries. Then, x admits a bending that preserves
conjugacy, planarity and periodicity.

Proof. For simplicity, reparametrize o and 3 by arc length and let
!

a' = (24,0,24), B =(0,yp,25). (28)
Note then that |z,| and |zg| are both smaller than 1 and cannot both reach 1 since
otherwise o/(u) = £3'(v) holds for some (u,v). Thus, I = Jmax|z,|,1/ max|zg|[
is non-empty and 1 € I. Now let sgn(z,) be a piecewise constant function, with
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the same pieces as x, that returns the sign of z, where x,, # 0 and +1 otherwise.
Define sgn(yg) in the same fashion. Then,

Valt) = (sgn(xa)m - zg/tQ,O,za/t) :
yo(t) = (O,sgn(y5)1 /1 —1223, t25) :

defined over I is the sought bending. O

(29)

Here too, regularity is recovered by integration. The only difficulty resides in
the fact that the points where z, (or yg) reaches 0 could be regular at ¢t = 1
and become singular at ¢t % 1. This means that y, for ¢t # 1, could exhibit some
bending-induced creases; the difficulty is resolved by anticipating the emergence
of these creases and by making suitable assumptions regarding the pieces of x.
On a similar note, it could be surprising that the above theorem is slightly more
general than, say, Proposition 1, for it allows for the presence of the “rigidifying”
curves discussed at the end of the previous section. However, the “initial velocity”,
ie., dy/dt at t = 1, is singular in such cases and does not define an infinitesimal
bending.

It is worth noting that there is a degree of arbitrariness in the way sgn(z,) and
sgn(yg) were defined. Should different choices be possible, different bendings would
be available, each distinguished by the set of creases it produces. Furthermore,
different “chunks” of these different bendings could be stitched together at t = 1 to
provide other bendings. In cases where periodicity is to be preserved, only periodic
choices of sgn(z,) and sgn(yz) would be acceptable. Last, note that y(¢) does
not preserve closure in general; exceptions include cases where the closed curve is
centrosymmetric.

Back to the thread of the present section, the other category of surfaces where
the infinitesimal bending preserves its existence condition is the one in Theorem 3.
Before stating the second main theorem of the section, a few preliminaries are
needed.

Definition 8. Let x;, x2 and x3 be three unit vectors. The triplet (x1,X2,X3) is
said to be flat-folded (resp. flat-unfolded) if x5 = axy + bxo with ab < 0 (resp.
ab > 0) or if x; = x2 (resp. if x; = —x3).

Lemma 1. Let x1, X2 and x3 be three unit vectors and let ¢y = (X2,%X3) and
s1 =+/1—c2 and so on. Then,
cica — 5182 < c3 < cicp + 8189, (30)

with equality to the left (resp. right) if and only if (x1,%2,%3) is flat-unfolded (resp.
flat-folded).

Proof. Left as an exercise. O

Theorem 5. Let x = a + 3 be a surface of translation where 3 has exactly two
slopes B1 and B2 and (B4, B2, ') is never flat-unfolded or never flat-folded. Suppose
further that the domain where (B1, B2, a’) is flat-folded or flat-unfolded is either
empty or a union of pieces and piece boundaries. Then, x admits a bending that
preserves conjugacy, planarity and periodicity.
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Proof. Re-parametrize, for simplicity, @ and 3 by arc length. Let 81 and 32 be
the two unit slopes of 3 so that

B =x1(B',81)B1 + x2(B', B2) B2 (31)

where the x;’s are indicator functions. Let

Cp = <a/7/6#>7 Sp = \/1_63.5 /L:1527 c= <617/62>' (32)

Then, by hypothesis and by Lemma 1,
either max(cieg — s182) < ¢ < min(ciee + $182), 23
or max(ciey — $182) < ¢ < min(cies + $182). (33)

In any case, I = Jmax(cica — 5152), min(cico + s182)[ is non-empty and ¢ € I. For
t €I, let B1(t) and Bz(t) be two unit vectors such that

Bi(c) =B, Ba2(c) = B2, (Bi(t), Ba2(t)) =1. (34)
The detail of this construction is not important. Let
a(t) = c102(t) — 251 (1),
b(t) = Bi(t) A Ba(t), (35)
J = (B1 A B2, '),

and let sgn(J) be a piecewise constant function, with the same pieces as x, that
returns the sign of J if J # 0 and 41 otherwise. Then,

J(t) = sgn(J)V/[b()[* — la(t)|?

36
:sgn(J)\/(clcg—i—slsg—t)(t—clcg—i—slsg) (36)
is well-defined for ¢ € I. Finally,
yo(t) = x1(8', B1)B1(t) + x2(B', B2) B2 (1),
_a(t) Ab(t) + J(t)b(t) (37)
el =T e
provide the sought bending. O

The above theorem affords the same discussion as Theorem 4 regarding the emer-
gence of new creases, its generality compared to Theorem 3, and the arbitrariness
in the definition of sgn(.J). Note that y(¢) preserves the closure of 3; it does not
necessarily preserve the closure of a.

For discrete «, the existence part in Theorem 5 could have been obtained dif-
ferently. Indeed, it is known [38] that a mesh of 3 x 3 planar quadrilaterals’® of
the “translational” type is flexible. Therein, being of the “translational” type is
equivalent to being a polyhedral surface of translation where the path or the pro-
file has exactly two slopes. Combine that with a theorem from [34] that states
that a “non-degenerate” discrete conjugate net is flexible if and only if its 3 x 3
complexes are flexible. The obtained result guarantees the existence of a bending
for “non-degenerate” discrete conjugate nets of translation where the path or the
profile has exactly two slopes. Theorem 5 generalizes this result to smooth and
piecewise smooth settings and provides an expression for the bending.

10Als0 known as a quad-based Kokotsakis mesh.
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5. CONCLUSION

To summarize, all surfaces of translation admit a purely torsional infinitesimal
bending. Surfaces of translation whose path and profile belong to an elliptic cone
or to two planes but never to their intersection further admit a torsion-free, i.e.,
conjugacy-preserving, infinitesimal bending. Should the planes be orthogonal, the
infinitesimal bending can be integrated into a torsion-free (finite) bending. Surfaces
of translation also admit a torsion-free bending if the path or the profile has exactly
two tangency directions. These existence conditions, as well as the corresponding
closed-form expressions, are equally valid for smooth and piecewise smooth surfaces,

ie.,

surfaces with straight or curved creases. It is not known if these conditions

exhaust all possibilities or guarantee uniqueness.
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