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Frustration propagation in tubular
foldable mechanisms

A. Reddy, A. Karami and H. Nassar*

Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO,
United States

Shell mechanisms are patterned surface-like structures with compliant
deformation modes that allow them to change shape drastically. Examples
include many origami and kirigami tessellations as well as other periodic truss
mechanisms. The deployment paths of a shell mechanism are greatly constrained
by the inextensibility of the constitutive material locally and by the compatibility
requirements of surface geometry globally. With notable exceptions (e.g., Miura-
ori), the deployment of a shell mechanism often couples in-plane stretching and
out-of-plane bending. Here, we investigate the repercussions of this kinematic
coupling in the presence of geometric confinement, specifically in tubular states.
We demonstrate that the confinement in the hoop direction leads to a frustration
that propagates axially, as if by buckling. We fully characterize this phenomenon in
terms of amplitude, wavelength, and mode shape in the asymptotic regime, where
the size of the unit cell of the mechanism r is small compared to the typical radius
of curvature p. In particular, we conclude that the amplitude and wavelength of the
frustration are of order +/r/p and that the mode shape is an elastica solution.
Derivations are carried out for a particular pyramidal truss mechanism. The
findings are supported by numerical solutions of the exact kinematics.
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1 Introduction

Origami tessellations are sheets of paper folded following a repetitive crease pattern. Beyond
their artistic value, they now constitute a prototyping platform for a remarkable array of foldable
and deployable structures useful in engineering [1]. Origami tessellations are often modeled as
linkages: assemblies of rigid elements representing the facets of the origami, hinged along edges
representing the crease lines. From this point of view, the kinematics of origami are no different
from truss mechanisms. Thus, more generally, we call tessellation any linkage that is periodic
(i.e., that is invariant by translation along a two-dimensional lattice of vectors), and we call folding
any inextensional deformation that is compatible with the linkage kinematics. We suppose that
the tessellation undergoes a uniform folding, i.e., a folding where fold angles remain periodic even
if the linkage does not. Then, generically, the tessellation embraces a curved, often cylindrical,
midsurface. Examples include the waterbomb tessellation, the Yoshimura pattern and the Ron
Resch pattern [2], as well as the pyramidal truss mechanism illustrated in Figure 1A. Hence, it
appears that the in-plane stretch, or contraction, due to the folding of a single unit cell is coupled
to an out-of-plane bending motion that is necessary to maintain geometric compatibility among
consecutive unit cells. We refer to tessellations that conform to this description as coupled.
However, exceptions exist: there are tessellations that fold uniformly while maintaining a planar
midsurface; we refer to them as planar. Examples of planar tessellations include the Miura-ori
(Figure 1B), the eggbox pattern, and Chebyshev nets.
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FIGURE 1

Coupled vs. planar tessellations. (A, B) Uniform foldings of a coupled (A) and planar (B) tessellation. (C, D) Demonstration of size effects, or lack
thereof: finer coupled tessellations reveal finer features (c, this paper); finer planar tessellations stabilize (d, see [3-5]). It is to be noted that (C) and (D)
feature non-uniformly folded states, i.e., states where folding angles vary in space.

Planar tessellations have received considerable attention in recent
years and have been studied in the context of “geometric mechanics” by
several authors. Schenk and Guest [6] and Wei et al. [7] computed
Poisson’s coefficient of the Miura-ori and showed that it is equal to the
ratio of normal curvatures observed in its anticlastic bending. Similar
results were then obtained for the eggbox pattern [3], for the “morph”
pattern [8], and, more recently, for a whole class of smooth and
polyhedral surfaces of translation with straight or curved creases [5,
9-11]. Nassar et al. systematically leveraged the Poisson coefficient
identity and classical differential geometric tools to compute the tubular
states folded out of the Miura-ori [4], the eggbox pattern [3, 12], and the
“Mars” tessellation [5]. Other origami tubes were designed and
investigated by Tachi and Miura [13] and by Filipov et al. [14] with
a focus on axial deployment. The foregoing results are remarkable but
can hardly be extended to coupled tessellations mainly because of one
difficulty: size dependence. Indeed, the midsurface geometry of a
coupled tessellation greatly depends on the size of the creases: finer
crease patterns produce tighter midsurfaces, with divergent curvatures
(Figure 1C). Similarly, the waterbomb tessellation, the Ron Resch
pattern, and the Yoshimura pattern all admit pairs of flat-unfolded
and maximally-folded states, but the paths from one to the other
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necessarily go through curved states the curvatures of which are
inversely proportional to the size of the creases. By contrast, the
midsurface geometry of a planar tessellation, e.g., the Miura-ori,
depends far more on the folding angles than on the size of the
creases: finer crease patterns rapidly converge to a limit, non-
singularly curved surface (Figure 1D).

The purpose of the present paper is to alleviate to some extent
this difficulty: we propose a differential geometric framework for
the characterization of the curved midsurfaces embraced by
coupled tessellations under non-uniform foldings and provide
their
geometry. The framework is relevant for tessellations where

appropriate asymptotic scalings for size-dependent
the size r of the unit cell is small compared to the typical
radius of curvature p of the embraced surface. Analysis of the
folding of tubular states in particular reveals that confinement in
the hoop direction causes bulges to develop at equal intervals in
the axial direction, a phenomenon referred to here as “frustration
propagation.” This phenomenon was recently studied
numerically by Imada and Tachi [15] as a dynamical system
with an area-preserving quality that explains periodicity. Here,
we focus on the size-dependence of the frustration. Specifically,
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FIGURE 2
Annotated unit cell of the pyramidal truss mechanism: the truss is equilateral with side length r.

we show that, generically, the amplitude and wavelength of the
frustration are of order +/r/p and that the profile of the frustration
is an elastica solution. Previous hints of the size-dependent
behavior of coupled tessellations can also be inferred from the
boundary layers observed in [3] and in [2].

The paper begins by introducing one particular coupled
tessellation in the form of a pyramidal truss mechanism.
Uniform foldings and corresponding stretch-bend kinematics are
explored first. Then, non-uniform foldings are described using the
differential geometry of the midsurface. The key element is an
equation that determines the metric of the midsurface in
function of its curvatures and of a characteristic length scale. The
theoretical implications are explored for tubular states, and the main
results regarding frustration propagation are proven. Numerical
solutions of the exact kinematics are shown to match the
theoretical predictions.

2 Theory
2.1 Uniform foldings

Consider the pyramidal truss mechanism of Figure 1A initially
introduced in [3]. Its unit cell is a spherical four-bar linkage with a
single degree of freedom (DOF) assigned to either of the two central
angles, 6 and 6* (Figure 2). Let O designate the apex of a pyramid
with side length 7, and let (A, B, C, D) be the vertices at its base. Let
(e;, €, n) be an orthonormal basis such that e, and e, are,
respectively, aligned with DB and AC. Then, with O as the
origin, the remaining vertices are given by the coordinates

0 s 0 -s
—s*:|, [B]=r|:0:|, [C]:r|: s* :I, [D]=r|:0:|,
—c* —C —c* -

(1)

[A] =7

with
s=sin(6/2), c= cos(6/2), s*= sin(9*/2), = cos(@”/Z).
(2)
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Lastly, 0 and 6* depend on one another through the constraint
AB = r, which yields

2cc* = 1. (3)

A uniform folding is characterized by three elements: angle 6 and
two rotations L and R that map a unit cell to two of its neighbors.
Compatibility requires that L and R commute, as shown in
Figure 3A. Therefore, L and R share the same axis of rotation
given by some unit vector t. Furthermore,

— — — —
DC=LAB, BC=RAD. (4)

Thus, compatible axes of rotation t must be in the bisector plane of
— — — —

the dyad (AB, DC) as well as in that of (AD, BC). These two planes

contain e; and e, and are, in fact, the same. Therefore, the axis of

rotation is given by some angle ¢ such that

t=e cosp+esing. (5)

Once ¢ is given, R and L are uniquely determined through (4). By
iterating L and R, the whole folded state can be constructed out of a
single unit cell. Given that L and R share the same axis t, and that t is
invariant under the action of L and R, the folded state is found to be a
cylinder of axis t. In conclusion, uniformly folded states constitute a 2-
DOF family of cylinders parametrized by 6 and ¢: the former prescribes
the folding angles within a unit cell, whereas the latter prescribes the
folding angles between neighboring cells. For other tessellations that
embrace similar cylindrical states, see [2, 16].

To gain further insight, let us explore the particular case ¢ = 0,
i.e., where the axis of rotation t aligns with e;. Then, by symmetry,
whatever rotation maps AB to DC also maps AD to BC. In other
words, R = L. The common angle of rotation denoted « can be
deduced algebraically from Eq. 4 or geometrically from Figures 3B,
C, namely,

c—c*
. (6)

tan (w/2) =
Hence, based on the same figure, the radius of the embraced

cylinder, as measured from the cylinder axis to the base of a
pyramid, is expressed as
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FIGURE 3

Analysis of uniform foldings. (A) Compatibility of rotations: arrows denote transitions between neighboring unit cells and not the axes of rotation. (B)
Axis and angle of rotation in the particular case ¢ = 0. (C) Another view of (B) in the plane normal to t showing the radius of the cylindrical state: reported
angles and lengths are measured in the normal plane assuming r = 1. For the full cylindrical state, refer to Figure 1B.

FIGURE 4

AD[ \BC

AB RAD

Geometry of a general uniformly folded state: (A) schematic view of the state; (B) axial view featuring quantities relevant to the determination of p; (C)

same view featuring quantities relevant to the determination of a.

cr/2 r ¢

= =— : 7
Plo=0 = lsin(a/2)] ~ 2 Jc— | @

More generally, consider how a unit cell paves a cylinder by the
repeated action of rotations, as shown in Figure 4A. By inspection of
Figure 4B, the radius of curvature is

[E-Giof

2|sin (ar/2)| ®)
where « is the angle of rotation R and is given by
(AD - (AD, t)t, BC - (BC, tyty
cosa = )

35— .o~ .o
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(see Figure 4C). Expanding the various dot products leads to

r \/1 - (s*sin(p+scos<p)2\/1 ~ (s*sing - scos ¢)’
T2 lc = c*| ’

(10)

A generic uniform folding is illustrated in Figure 5A. Profiles of the
normalized curvature r/p vs. angle ¢ are depicted in Figure 5B for
various folding angles 0. The curvature is smallest (globally or locally) at
¢ =0and at ¢ = 71/2, i.e,, the least curved states are cylinders of axes e, or
e,. Furthermore, the radius of curvature p becomes comparable to r as
soon as O departs significantly from 7/2. For 0 = /2, there is a
singularity: in that case, all ¢ # + 71/4 lead to the same planar state
with zero curvature. For ¢ = +7/4, the axis of the cylinder aligns with
either side of the base and radius p can take any value larger than r.
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Variations of p relative to ¢: (A) annotated generic uniform folding; (B) plot of r/p vs. ¢ for 6 increasing from 0° to 90° by increments of 5° (as coded by
line thickness). For 8 = 90" and ¢ = 45° (marked with a circle), the curvature is indeterminate and can take any value smaller than 1

2.2 Linearization

The aforementioned derivations show that any extension in
direction e; or e,, as measured by angle 6, is coupled to bending
about some axis t with a radius of curvature p. Furthermore, p scales
like 7. In other words, for equal 6, finer tessellations wind more
tightly. The divergence of the curvature in 1/r toward infinity as r
decreases can only be avoided by limiting the magnitude of the
folding angle 6 to values close to 71/2. Thus, henceforth, focus is on
states such that

9:71/2—)/, 9*:71/2+y, y<1, (11)

where y represents a small relative extension. The idea behind
this restriction is that it enforces r <« p in a way that makes it
possible to speak of a smooth midsurface for more general, non-
uniformly folded states. However, it is not clear how small y
should or will be compared to r/p, and both are kept as small
independent parameters for the time being. Then, to leading
order, the radius of curvature is

_ |cos (2¢)]
2V2

i

Beyond p, it will prove convenient to compute how the

(12)

midsurface bends relative to directions e; and e,. Specifically, let

(LRe; — €;,n) F
AC ’

(LTRe1 — €, n>
DB ’

(LRe; — e, n)
AC ’

E G

(13)

Therein, E is the normal change in e, transported to the next cell
over in direction e; across a distance DB; thus, it quantifies the
normal curvature of the midsurface in direction e;; refer to
Figure 3A for notations. Similarly, G quantifies the normal
curvature in direction e, and F quantifies the torsion of the
midsurface. The angles of rotations L and R, called « and §,
respectively, are given by Eq. 4 and read

Frontiers in Physics

05

2 2
a=— T g (14)
cos ¢ —sin ¢ cos ¢ +sin ¢
to leading order in y. Therefore,
— in2
E:a ﬁsin(,o:zy\/7 o (P.
rv2 r cos(2¢)
2
G=(X+ﬁcosgo=2y\/5 cos (P, (15)
rv2 r cos(2¢)
292 i
_ a+ﬁsin<p= y\/—coqusmq)'
V2 r cos(2¢)

It appears then that (Er/y, Gr/y, Fr/y) depend solely on ¢,
meaning that these quantities must satisfy two algebraic
constraints, namely,

2yV2
G_p-2V2
r

EG-F*=0. (16)
These algebraic constraints define the accessible bent states as prescribed
solely by the angular extension y, regardless of ¢ # + 7/4. The latter
constraint, in particular, says that the Gaussian curvature vanishes,
which is expected since cylinders have zero Gaussian curvature. The
case ¢ = 71/4 has been avoided, but should it arise, the restriction r < p
implies y = 0 and both algebraic constraints remain valid.

Now, since these states all reside in the vicinity of the planar state
(i.e., 0 = 71/2) and are accessible, a linear superposition should also be
accessible, even if non-uniformly folded. For instance, by combining
a state A bent about e; (i.e, ¢4 = 0 and y4 # 0) with a state B bent
about e, (i.e., ¢ = /2 and yg # 0), a doubly curved state is obtained
that is extended through y = y4 + yp and the curvatures of which are
given by E = Eg, G = G, and F = 0. Evidently, such a combined state
will no longer be cylindrical or even have zero Gaussian curvature
(i.e., EG — F* # 0), but, remarkably, it will still satisfy the first
constraint, namely, G — E = 2y\/f/r. More generally, this constraint
holds for uniformly folded states and is linear; therefore, it holds for
any linear combination of uniformly folded states. By contrast, the
second constraint, namely, EG — F* = 0, holds for uniformly folded
states but does not carry over to more general states.
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2.3 Differential geometry of the midsurface

Next, we make the scale transition in kinematic modeling from
the discrete level to the continuum level. Let (&, &)—x(&, &)
parameterize the midsurface of a general, non-uniformly folded
state. The in-plane deformations of the midsurface can be quantified
using the metric tensor g = g;; with

g,'j = <X,‘,Xj>, X; = f (17)
Here, we identify
DB AC
— ly - ly
= ——=(1-y/2)ep, = =(1 2)e;, 18
X; DB,y (1-y/2)er, x AC, (1+y/2)e,,  (18)
which implies, to first order in y, that
_|1=y 0
[g] - [ 0 1+ y ] : (19)

As aforementioned, and in the following sections, it is
y(&, &) can depend on space
coordinates so as to allow for the continuum description to

understood that y =

encompass non-uniformly folded states. The only restriction in
that regard is that variations in y should occur over length scales
larger than r.

As for out-of-plane deformations, they are captured by the

second fundamental form b = b,»j, where
’x X; A X,
bij = {xijn), X;j = 7= = —. (20)
! ! 170608 llx1 A xa|

Here too, we identify by, = E, by, = G, and b, = F so that the
constraint

b22 - bll =

1)
,
is systematically enforced point-wise, i.e., at all positions (&,
&,). Again, the other constraint, namely, detb = 0, only holds for
uniformly folded states (i.e., y = cste), but not in general.
Solving for the midsurface then amounts to finding surfaces
the metric and second form of which, g and b, satisfy Eqs 19, 21.
Alternatively, it is possible to combine both equations into one
statement: the tessellation embraces midsurfaces the metric of
which depends on the second form through

CRIE

It is worth highlighting that for several planar tessellations,

by, — by [—1 0 ] (22)

242 01

including the Miura-ori and the eggbox pattern, as well as other
patterns with no stretch-to-bend coupling, the coefficients of the
second fundamental form b still satisfy a linear metric-dependent
constraint similar to (21), albeit one that is homogeneous, e.g., of
the form p(y)b,, — q(y)b;; = 0 [3-5]. Here, by contrast, the
foregoing constraint exhibits a “source” term in y/r that is both
metric- and size-dependent.
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3 Results
3.1 Geometry of tubular states

We define a tubular state as one that embraces a midsurface of
revolution. Specifically, let

p(&;)cos(gé))
[x(&,8)] = |:P(fz)5in(q€1) :|a 0<& <W, (23)
z (&)

where p and z are to-be-determined functions, g = 27/W, and W is
the width of the tessellation in the flat reference state; see Figure 6A.
Then, computing X;, X,, and so on, we get

r p!/Z/ _P/ZII + qZPZ/

V=375 . (24)

i1 = q2P2> 82 = P,Z +2'%

p12 + le
where a prime denotes d/df,. The key Eq. 22 then yields two
ordinary differential equations (ODEs), namely,

For=1-y, p?+z*=1+y. (25)
In the following sections, we solve these equations in the asymptotic
regime that is consistent with the adopted continuum description,

i.e., in the limit where y — 0 and r/p — 0.

3.2 Asymptotics of size dependence

We deal with Eq. 25 as algebraic equations to begin with. Then,
up to an error smaller than y,

gp=1- g, (26)
and there exists a function w = w(&,) such that
p =sinw, z'=cosw, (27)

since, now to the leading order in y, we have p'? + z'* = 1.
Substituting back into Eq. 24 for y then yields

w'+qcosw), (28)

_ T (
=3 NG
where terms in y* and in ygr = O(yr/p) are neglected, both being
small relative to y. Taking the derivative d/d¢, and replacing y’ with
its leading-order expression in terms of gp’ lead to

-2gsinw = - qu'sinw). (29)

o
AR

However, ' is of order by, < 1/1, meaning that, to the leading order,
w is the solution to the second-order ODE

4qV2
0" + q\/—sinw:O. (30)
r
Therefore, it appears that w oscillates at a length scale
T
L=\—F==0(Vr\w). 31
1/4q 5= 0(W) (31)
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FIGURE 6
Tubular states. (A) Notations. (B) Simple pendulum analogy. (C) Phase diagram: iso-contours of the analog to mechanical energy /. (D-1) Two views
of various tubular states for increasing /: (D, H) are uniformly folded states; the other states are non-uniformly folded.

Accordingly, it is appropriate to re-scale the &, coordinate and @" +sind = 0. (33)

introduce a function @ such that
Note that further linearization of the elastica ODE is not

w(&) = (& /L). (32) warranted in general since there is no reason for w to be

small unless further assumptions regarding the smallness of

Then, @ is a solution to the elastica ODE, also known as the simple  the initial conditions @, and @, are made. In any case, once a
pendulum ODE, solution to the elastica ODE is chosen by setting @, and @, at,
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FIGURE 7

Convergence analysis. (A) Schematics of the discrete solution algorithm: knowledge of zigzag i suffices to uniquely determine zigzag i + 1. (B)
Normalized folding angle y vs. normalized discrete curvilinear coordinate as measured by a nodal index i: curves are obtained for decreasing r (see
legend); the limit r — O is the solution to the elastica ODE. (C) Convergence speed: data points show the mean quadratic error e as obtained from (B); the

seamless line shows the trend e = r'/?

say, & = 0, the profile of the state can be determined by
integration as in

& &
p=p,+ I sinw(s/L)ds, z=2z,+ J cos @ (s/L)ds, (34)
0 0
or by re-scaling
EZ/L fz/L
p=p,+ LJ sin@(s)ds, z=2z,+ LJ- cosw(s)ds. (35)
0 0

By analogy with the simple pendulum (Figure 6B), we know that sin w, a
quantity analogous to the horizontal deflection of the pendulum,
oscillates  periodically with zero average. Hence, p oscillates
periodically with an amplitude of order L = O (+yW ). By contrast,
cos w, a quantity analogous to the vertical deflection of the pendulum,
oscillates periodically but does not necessarily have zero average. Hence,
generically, z increases linearly. In conclusion, tubular states exhibit a
periodic frustration the wavelength and amplitude of which are of order
\rW and the profile of which is an elastica solution.

Note that the initial value z, is arbitrary and inconsequential because it
amounts to a rigid body translation along the axis of revolution. As for p,,
it can be obtained by reconsidering the expression of y, namely,

re'

yzm:O(W),

(36)
where terms of order gr = O(r/W) are neglected in favor of terms of
order O (+/r/W ). This provides an alternative expression for p, i.e.,

re’

qp=1- m, (37)

and with it an expression for p, in function of @,. Note that, for the
sake of consistency, the initial condition @, must be of order O(1),
i.e., small relative to L/r = O (\VWT/r).

Lastly, it is worthwhile to shed some light on the normal
curvatures by, and by,. On one hand, @ = arctan(p'/Z) is the
incidence angle of the tangent plane relative to the axis of
revolution. Its derivative can directly be interpreted as the
normal curvature in the axial direction, specifically

Frontiers in Physics

. Analysis is carried out for @, = n/2, @9 = 0. Other states show similar trends.

b22 = zd), (38)
This normal curvature increases in the limit » — 0 and is of order
1/L = O(1//rW ). On the other hand, the normal curvature in the
hoop direction is

by = —qcos @, (39)

and remains finite, being of order 1/W.

3.3 Phase diagram

The elastica ODE admits an invariant analogous to the
mechanical energy of the simple pendulum

1.
I=-0"
2

—Ccos@ = %d)f — COS @,- (40)
The iso-contours of I define the solution orbits in the (@, ®") space,
each orbit being in correspondence with a tubular state (Figure 6C).
Two orbits in particular, namely, I = 1, degenerate into two fixed
points corresponding to (w =0, y = 0) and (w = 7, y = 0), respectively;
these are two cylindrical states with the pyramids pointing outward
and inward, respectively (Figures 6D, H). Since y = 0 in both cases, it
is insightful to seek the next order in its asymptotic expansion.
Reconsidering Eq. 24 and letting p be a constant lead to

yor T

V2 W

where the sign is positive for w = 0 and negative for w = 7. In other

=O(r/W), (41)

words, achieving a cylindrical state requires closing the pyramids slightly
(as seen in the axial direction) when the pyramids are pointing outward
and opening them slightly when they are pointing inward.
Interestingly, these two fixed points have different stability
properties. The cylindrical state with the pyramids pointing out is
stable: deviations lead to oscillations that increase throughout the profile
at once (Figures 6D-F). By contrast, the cylindrical state with the
pyramids pointing in is unstable: deviations lead to oscillations growing
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at localized intervals that, should self-penetration be precluded, cannot
exist except at the edges of the tubular state (Figures 6G-I). These edge
states correspond to a simple pendulum that remains near the top
(unstable) equilibrium position most of the time and that, however
swiftly, swings by the bottom (stable) equilibrium position.

3.4 Numerical solutions and error analysis

The tessellations produced throughout the paper and in Figure 6
in particular are rendered by solving the exact discrete kinematics.
The solution algorithm proceeds iteratively by constructing the
nodes of the folded state one “zigzag” at a time, as illustrated in
Figure 7A. Mainly, given the nodes that belong to zigzag number i,
the nodes of zigzag number i + 1 can be constructed by completing
the bases of the pyramids that are enclosed between zigzags i and i +
1, one pyramid at a time. This is possible because each enclosed
pyramid has a unique degree of freedom. Further details can be
found in [3, 4]. The algorithm is implemented in Python, and its
code is available online (see Data availability). Here, rotation
symmetry is leveraged and the algorithm can be initialized
simply by providing the three parameters (r/W, 60,, w,), where
0, = /2 — y,. Profiles of y are computed for small but finite r by
solving the discrete kinematics and are shown in Figure 7B. The
profile of y obtained by solving the elastica ODE is shown as well.
The plots demonstrate that the discrete solution, hereafter denoted
as Ydiscreter cONverges to the continuous one, hereafter denoted as
yope- The convergence error

e

1 |("]PLV2 2LV2 :
= ? \/J I YobE ~ Vdiscrete (42)
0 r

is further computed over a normalized r-independent range 0 < &/L < T
and is plotted in Figure 7C. Note that the y profiles are normalized as well
as anticipated by Eq. 36. The logarithmic scale shows that the error e
decays with the side length r like .

4 Conclusion

The paper proposes a differential geometric framework that
allows us to study the size-dependent kinematics of coupled
tessellations, i.e., of periodic foldable structures, where in-plane
folding is coupled to out-of-plane bending. The framework
succeeds in predicting size effects both qualitatively and
quantitatively for tubular states, where hoop confinement
produces a frustration that propagates axially. The convergence
of the framework is somewhat slow, with the error being of order
"2, where r is a small size parameter. Thus, improvements that
take higher-order corrections into account are desirable as they can
improve convergence speed. In principle, such corrections will
intervene at two places: in the linearization of the discrete
kinematics and in the asymptotics of the governing non-
linear ODE.

The main conclusion of the analysis, i.e., that axisymmetric
frustrations are an elastica-shaped periodic with wavelength and

1/2

amplitude of order r'/?, is not specific to the current pyramidal

truss mechanism and should be typical of coupled tessellations

Frontiers in Physics

10.3389/fphy.2023.1296661

that satisfy two properties: (i) the coupling is linear, meaning that
g = g(b) is linear (affine strictly speaking), and (i7) the tessellation
is rectangular so that the coordinate lines aligned with the axes of
symmetry deform without shearing. Under these conditions, Eq.
19 is generic and is sufficient for our conclusion to hold. That
being said, extensions to other potentially non-linearly coupled
or oblique tessellations are of interest as well and are yet to be
investigated.
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