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Abstract

We argue that the standard classification of isometric deformations into infinites-
imal v.s. finite is inadequate for the study of compliant shell mechanisms. In-
deed, many compliant shells, particularly ones that are periodically corrugated,
exhibit low-energy deformations that are far too large to be infinitesimally iso-
metric and far too rich to be finitely isometric. Here, rather than abandon
the geometric standpoint in favor of a full theory of elastic shells, we introduce
the concept of effective isometric deformations defined as deformations that are
first-order isometric in a small scale separation parameter given by the ratio
of the size of the corrugation to the size of the shell. The main result then
states that effective isometries are solutions to a quasilinear second-order PDE
whose type is function of an effective geometric Poisson’s ratio. The result is
based on a self-adjointness property of the differential operator of infinitesimal
isometries; it holds for periodic surfaces that are smooth, piecewise smooth or
polyhedral, i.e., periodic surfaces with or without straight and curved creases.
In particular, it unifies and generalizes a series of previous results regarding the
effective Poisson’s ratio of parallelogram-based origami tessellations. Numerical
simulations illustrate and validate the conclusions.

Keywords: isometric deformation, bending, periodic shell, surface of
translation, origami tessellation, Poisson’s ratio, homogenization

1. Introduction

The flexure and membrane strain energies of a thin elastic shell occur in a
ratio of order (¢/p)? where t is thickness and p is a typical radius of curvature [1].
Thus, in the limit ¢/p — 0, the deformation of a shell is, ideally, inextensional [2].
In mathematical jargon, an inextensional deformation defines an isometry of the
shell’s midsurface, namely a deformation that preserves lengths as measured on
the midsurface. In the case of small deflections, the relevant notion is that of an
infinitesimal isometry, i.e., a deformation that preserves lengths up to first order
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in the deflection’s amplitude; see [3-6] for a comprehensive introduction to the
topic. The assumption of inextesional deformations is at the basis of the flezure
theory of shells which proceeds in two steps: first, determine the isometric de-
formations that are compatible with the imposed boundary conditions; second,
determine, among isometric deformations, the one that minimizes strain energy.
Evidently, for the flexure theory to be fruitful, non-trivial isometric deforma-
tions must exist. Should they not, meaning that all deformations involve some
extension, then the shell is better described by a membrane theory where flex-
ure energy is neglected, it being infinitesimally smaller than membrane energy.
Nonetheless, this dichotomy is an oversimplification of the behavior of elastic
shells, particularly so in cases where a small extension coexists with a large
flexion. If so, then a complete theory of thin elastic shells, one where extension
competes with bending, becomes necessary, e.g., Foppl-von Kéarméan theory of
plates or Koiter’s theory of shells [7, 8].

Modern investigations carried into the design and modeling of compliant
shell mechanisms provide further instances where the “flexure v.s. membrane”
dichotomy fails [9-12]. Indeed, it has been observed that compliant shell mecha-
nisms exhibit low-energy deformation modes that involve large flexure-dominant
yet non-strictly inextensional deflections; see, e.g., [13, 14]. These deformations
are neither infinitesimally nor finitely isometric meaning that the use of flexure
theory is not justified. At the same time, these deformations remain dominated
by flexure in a way that invalidates the use of membrane theory. Short of us-
ing a complete theory of thin elastic shells where all deformations are equally
likely a priori, it is desirable to have an alternative, more insightful, descrip-
tion of the low-energy deformation modes, one that establishes how they are
related to isometric deformations and clarifies if and how they emerge under
given boundary conditions. Thus, the main purpose of the present contribu-
tion is to introduce a notion of “approximately isometric but non-infinitesimal”
deformations specifically in the context of periodic shells.

Previous attempts to characterize the low-energy deformation modes of com-
pliant shell mechanisms have focused on origami tessellations. Typically, the ob-
served deformations are explained by the emergence of ad-hoc mid-facet “faint”
creases that enrich the space of admissible deformations to restore strict inexten-
sibility at the cost of smoothness, see, e.g., [15]. On one hand, origami models
folded out of paper and thin plastic shims appear to contradict this hypothesis.
On the other hand, it is unclear how to adapt the idea of emergent faint creases
to shells with no planar facets, e.g., to origami tessellations with curved creases
or even to smoothly corrugated shells. Here, we propose a geometric theory of
low-energy deformation modes that makes no a priori ad-hoc assumptions. The
theory is applicable to smooth and piecewise smooth periodic shells, including
shells with or without straight and curved creases. The key idea, inspired by ho-
mogenization theory, is to define low-energy deformations, henceforth referred
to as effectively isometric deformations, as deformations that are isometric up
to first order in the periodicity wavelength, rather than in the deflection’s am-
plitude. As mentioned, the theory remains purely geometrical; the fact that
effective isometries are indeed of low energy is formally justified by the small-



ness of any potential extensional deformations.

The main result of the theory is a quasi-linear Partial Differential Equation
(PDE) satisfied by the parametrization of the effective surface of the shell, i.e.,
the surface obtained by averaging out any periodic corrugations or creases. An
appealing feature of origami tessellations, and compliant shell mechanisms more
generally, is how approximately inextensional deformations on the level of the
shell can lead to large effective extensions and curvatures on the level of the
effective surface [16]. The PDE informs precisely on that: it constrains the
effective curvatures relative to the effective extensions. In particular, the type
of the PDE is function of the sign of an effective Poisson’s ratio defined as the
ratio of principal effective strains. Moreover, the PDE states that the effective
Poisson’s ratio is equal to the ratio of normal curvatures in the principal direc-
tions of effective strain. This property has been demonstrated, numerically or
analytically, for a number of origami and origami-like tessellations including the
Miura-ori [17, 18], the “eggbox” pattern [19], the “morph” pattern [20], “zigzag
sums” [21], and, more recently, a class of curved-crease origami tessellations [22].
The present theory unifies these instances and further shows that they are but
particular cases of a more general theory valid for all periodic shells.

The first part of the paper introduces necessary preliminaries and motivates
a restricted theory through a heuristic analysis of smooth surfaces that are
Cartesian graphs of some function. Lemma 2 is the crucial ingredient of this re-
stricted theory: it proves a self-adjointness property of the differential operator
of infinitesimal isometries, i.e., the linearized two-dimensional Monge-Ampére
operator. This property is somewhat elementary but does not appear to be well-
known; thus, we take the time to introduce it and justify it. Theorem 1 is the
main result of the restricted theory: it places a linear constraint on the effective
curvatures and twist of smooth periodic graphs. The first part is concluded by
a brief case study of graphs of translation: Corollaries 1, 2 and 3 describe how
graphs of translation can or cannot bend; Example 1 describes Finite Element
simulations that validate the theoretical prediction regarding the effective Pois-
son’s ratio and the effective normal curvatures. This first part of the paper is
self-sufficient and should be enough to communicate the main findings of the
theory as well as its main use cases. The second part of the paper is some-
what more involved and is dedicated to the complications that arise in dealing
with immersed surfaces that are not graphs and/or not smooth. It necessitates
the use of two-scale asymptotic expansions; here too, a crucial ingredient is a
self-adjointness property of a relevant differential operator (Lemma 4). The
main result of the paper is Theorem 2: it generalizes Theorem 1 to the case of
piecewise smooth periodic surfaces. Concluding remarks follow last.



2. Heuristic theory for smooth graphs

2.1. Definitions

Definition 1. Let Q be a non-empty connected open set. We call surface a
piecewise smooth mapping

x:RZ>O - R?
(u,v) = x(u,v)

(1)

such that the partial derivatives x; = 0x/0u and xo = 9x/0v are linearly
independent wherever they exist.

This, certainly reductive, definition of a surface shall be enough for the
present purposes. A surface can have discontinuities in its tangent plane that
correspond to creases. Note however that continuity is implied by piecewise
smoothness. We reserve the term piecewise differentiable for mappings that are
not necessarily continuous.

Definition 2. Let x be a surface and X be a piecewise smooth mapping that is
smooth wherever x is smooth. The infinitesimal strain € of x deflected by x is
the 2 x 2 matriz of components

(G %) + (%0, X)) - (2)

N |

Epv
Then, x is an infinitesimal isometry if € vanishes everywhere.

Thus, admissible deformations X are restricted to ones that have the same
regularity as x: they cannot create new creases.

Definition 3. To each infinitesimal isometry x of a surface x, there corre-
sponds a unique [4] field w such that

Xy =WAX,. (3)

We call w the field of infinitesimal rotations of X. If w is constant, then X is the
initial velocity of a euclidean motion and is trivial; otherwise, it is non-trivial.

We are mainly concerned with periodic surfaces.

Definition 4. Let R C R? be a non-empty rectangle. A surface x is R-periodic
if it takes the form
x(u,v) = upy + vp2 + X(u, v) (4)

where X 15 a piecewise smooth periodic mapping defined over R? with unit cell
R, and p1 and py are two linearly independent vectors in R3. Then, the p,, are
the support vectors of x, mapping X is the corrugation and

L = (Pus Pv) (5)

defines the effective metric I of x.



Hereafter, periodicity is always to be understood relative to a particular unit
cell; thus, R-periodic will be shortened to periodic. Furthermore, in this first
part, we focus on smooth periodic graphs. Cases where the graph is piecewise
smooth, rather than smooth, are better dealt with in the context of the general
theory of the next part.

Definition 5. The graph x of a piecewise smooth function z is the surface
given by
x(u,v) = (u, v, 2(u,v)). (6)

The function z is the profile of x. The graph is periodic (resp. smooth) if the
profile is periodic (resp. smooth).

2.2. Motivation
Let x be a smooth periodic graph of profile z and let

x=(%,9,2) (7)

be an infinitesimal isometry of x. Then, it is well-known that Z is solution to
the linear PDE
M2 = 211290 + 200211 — 2212212 = 0, (8)

where indices denote partial derivatives. The above equation translates the fact
that Gaussian curvature is an isometric invariant. The differential operator M,
is the Monge-Ampere operator linearized at z; see [8]. Equation (8) admits
several trivial solutions. In particular, a constant Z corresponds to a vertical
translation and a linear Z corresponds to an infinitesimal rotation. Here, we are
interested in solutions of the form

. - - 1 1

2(u,) = 5u,0) + a(0,0) = 2w 0) + pew? + fuvt sg?, (9)
where Z is periodic and ¢ is a quadratic form of coefficients (e, f,g). The
quadratic form ¢ describes an effective bending of surface x or, in other words,
how x bends and twists “on average”. Specifically, let

x(u,v) = ex(u/e,v/e) (10)

define a surface with refined corrugations for 0 < € < 1. Then, an infinitesimal
isometry of x¢ is given by

5%(u,v) = €2(ufe,v/e) = €2z(u/e,v/e) + 2q(u/e,v/e) = €Z(u/e,v/€) + q(u,v),

(11)
since ¢ is quadratic. Thus, should 2 exist, then ¢ is an infinitesimal isometry
of x¢ up to an error of order €?; this is what we will refer to as an effective
infinitesimal isometry. Indeed, |2 — glloc = O(€®) because Z is continuous
periodic and therefore bounded.



Definition 6. A quadratic form q is an effective infinitesimal isometry of a
smooth periodic graph of profile z if there exists a smooth periodic mapping z
such that M,(Z + q) = 0. In that case, Z is the corrector of q.

Now it is desirable to characterize the effective infinitesimal isometries ¢
without referring to the corrector Z. Hereafter, a necessary condition on ¢ is
obtained. It relies on a self-adjointness property of the linearized Monge-Ampere
operator.

2.8. Self-adjointness

The equation to be solved, namely M, (Z + ¢) = 0, amounts to solving the
linearized Monge-Ampere equation with a non-zero right-hand side. Typically,
for a solution to exist, the right hand side must satisfy a compatibility condition
as in the Fredholm alternative. Here, the compatibility condition says that the
right hand side, function of ¢, must be orthogonal to all periodic solutions z of
M,z =0.

Definition 7. An infinitesimal isometry X of a smooth periodic graph X is pe-
riodic if it is of the form x = (&,9,2) where % is periodic, and & and y are
periodic modulo linear forms. Then, the effective infinitesimal strain E is the
2 x 2 matrixz of coefficients

Ep,y — <f).(,u7fxl/> ; <f).(l/;fx,u>. (12)

Above and throughout, the non-annotated symbol of integration [ refers to
the mean value over the unit cell R:

| = et J, et (13)

The effective infinitesimal strain E quantifies how the unit cell, as immersed
in R3, deforms. In other words, it defines the effective stretch and shear of
and among the directions of periodicity, as immersed in R3. In particular, in
reference to the support vectors p,, (Definition 4) and to their deflections p,,,
the effective infinitesimal strain is

<p;u pu> + <puv p;t>

B, = . . (14)

Alternatively, the following form of E will prove particularly useful. It involves
the gradient operator V.

Lemma 1. Let x = (&,9,2) be a periodic infinitesimal isometry of a smooth
periodic graph X of profile z. Then, the effective infinitesimal strain is

E = f%/ (Viviz+VvavTs). (15)



PROOF. Set the infinitesimal strain to 0 to find

1+ 2121 =0, P2+222=0, Z2+y +22+2:4H=0 (16)
Note that the derivative of a smooth periodic function has zero average. In
particular,
/Zﬂz/zuzo, (17)
Therefore,

X2>+</X2,/X1>=/$2+/§/12—/212'2—/22217
(18)

as claimed.

It is time to state and prove the anticipated self-adjointness property of the
linearized Monge-Ampere operator.

Lemma 2. Let z, 2 and 2 be real smooth periodic functions defined over R2.

Then,
/2/\/122": /2"/\/122. (19)

PRrROOF. Use Schwarz theorem to rewrite
M.z =div (adj(H,)V32) (20)

where div is the divergence operator and adj(Hy) is the adjugate matrix of the
Hessian matrix of z. Then apply the divergence theorem twice in conjunction
with periodicity and the symmetry of adj(H,).

2.4. Main result for smooth graphs

Theorem 1. Let x be a smooth periodic graph that admits a periodic infinites-
1mal isometry of effective infinitesimal strain E. Let q be an effective infinites-
imal isometry of x of coefficient (e, f,g). Then

adj(H,) - E = 0. (21)

Ezxplicitly,
Ellg + EQQ@ — 2E12f = 0 (22)



PROOF. Let z be the profile of x, let Z be the corrector of q, and let Z be
the third component of the periodic infinitesimal isometry corresponding to E.
Then,

0= /éMZ(ZJrq) since M,(Z2+¢) =0
= /EMZZ' + /équ by self-adjointness
= /z'/\/lzq since M,Z=0

= /Zqu since M,b = Mya (23)

[
4
N

- /(Vé’, adj(H,)Vz) Dby the divergence theorem

= —adj(H,) - / V:iV7Tz since H, is constant
E

= adj(H,) - by symmetry and Lemma 1

The above theorem clarifies what quadratic surfaces can be embraced, on
average, upon an infinitesimal isometric deformation of a periodic smooth graph.
Remarkably, the more flexible the surface is in the plane, in the sense that
it admits multiple effective infinitesimal strains, the more rigid it is out-of-
plane, in the sense that the embraced surfaces have curvatures and torsion that
must satisfy multiple constraints of the kind imposed by the theorem. That
being said, “silent” infinitesimal periodic isometries, i.e., ones with E = 0, are
inconsequential. To interpret the constraint, it is best to choose the coordinate
axes so as to coincide with the axes of principal effective infinitesimal strains.
In that case, the constraint simplifies into

!

/
g+ Epe' =0, or — = 567 2

if algebra permits. The left hand side is a ratio of relative effective extensions
and defines an effective Poisson’s ratio; the right hand side is a ratio of effective
normal curvatures in the directions of principal effective infinitesimal strains.
The theorem proves that the two ratios are equal. Qualitatively, if a smooth
periodic graph shrinks laterally as it stretches longitudinally, all inextensibly,
then, should it bend on average, it bends into a dome; if, by contrast, it ex-
tends laterally then it bends into a saddle. Put succinctly: auzetic graphs bend
anticlastically; anauzetic graphs bend synclastically.

Another interpretation, in the style of classical geometers, goes as follows:
the effective infinitesimal strain defines a paraboloid p : (u,v) + Ep1u?/2 +
E1ouv+ E2v? /2 that is either elliptic (case det E > 0), cylindrical (case det E =
0) or hyperbolic (case det E < 0). Similarly, ¢ defines a paraboloid whose
nature depends on the sign of det H,. With that in mind, the constraint reads:
Mpq = 0, or equivalently Mgp = 0. That is: the paraboloid p admits ¢ as an
infinitesimal bending, or equivalently paraboloid ¢ admits p as an infinitesimal



bending. This, again, reduces to the invariance of Gaussian curvature of the
paraboloids p and ¢ this time. In fact, the Gaussian curvature of paraboloid ¢
is det H, and its invariance under deflection p reads

det(H, + tE) = det H, 4+ O(t?), (25)

which, using Jacobi’s formula, is the proven constraint. Now say that the
paraboloid p is elliptic; then, to bend it isometrically, one of its principal curva-
tures must increase and the other decrease, meaning that deflection g describes
a saddle. If paraboloid p is hyperbolic, both signed principal curvatures increase
or both decrease, since now the Gaussian curvature of p is negative; thus, deflec-
tion ¢ describes a dome. Last, if paraboloid p is cylindrical, one of its principal
curvatures stays null, meaning that deflection ¢ describes a cylinder as well.

2.5. Example: graphs of translation

Let a and b be two smooth periodic functions. Let x be the periodic graph
defined by
x(u,v) = (u,v,a(u) + b(v)). (26)

This is a graph of translation, i.e., a surface swept by the translation of one curve,
the profile, along another, the path. Surface x admits a periodic infinitesimal
isometric deformation [23-25], namely

X(u,v) = (- /u a’Q,/U b2, a(u) —b(v)). (27)

The effective infinitesimal strain is

E= {_ fOG/Q f%’z} . (28)

Let (e, f,g) be the coefficients of an effective infinitesimal isometry of x. Then,
by Theorem 1,
2
e_Jo (20)
g f b/2

This proves the following, loosely stated, corollary.

Corollary 1. Smooth periodic graphs of translation effectively bend synclasti-
cally.

Example 1. Suppose a = b, then e/g = 1 meaning that periodic smooth graphs
of translation with identical path and profile bend, on average, “equi-synclastically”.
To verify the pertinence of this proposition for thin elastic shells, a series of finite
element simulations were carried out. The model is a shell whose midsurface is
given by a = b = cos and is defined over a range containing an array of 5x5 unit
cells. On two edges of the boundary, {u = 0} and {v = 0}, symmetry bound-
ary conditions are imposed; one edge, {u = 107}, is left free; on the last edge,
{v =107}, a uniform moment about azxis (1,0,0) is imposed. The deflections are



probed at the locations {((2j + 1)m,0,—1)},=0..a and {(0,(2j + 1)m, —1)},=0..4
and are fitted with two parabolas whose curvatures are interpreted as e and g. An
error § = |e/g — 1| is computed for decreasing thicknesses h; the results are re-
ported in Table 1 and show that the error decreases at least like h. Moreover, the
numerical results are robust against changes in the material properties. This ex-
ample shows that the purely geometric theory proposed here of effective isometric
deformations is relevant to the deformation of thin elastic shells. Simulations
used the Ansys software and employed a structured mesh with (more than) 10°
equal-sized elements of type Shell181; see Supplemental Materials for raw data
and further detail.

hl 25x1071 1.25x107! 25x1072 25x107% 25x10~*
d11.26x1071 370x1072 1.66x 1073 5.48 x107° 2.40 x 10~6

Table 1: Error § = |e/g— 1| v.s. thickness h. Data reported for a Young’s modulus of 2.7 x 10°
(arbitrary units) and a material Poisson’s ratio of 0.33; changing material properties has little
influence on the trend of §.

By contrast, Theorem 1 leaves effective torsion f free of constraints. Indeed,
any (0, f,0) is an effective infinitesimal isometry of any smooth periodic graph
of translation.

Corollary 2. All smooth periodic graphs of translation admit the quadratic
form of coefficients (0,1,0) as an effective infinitesimal isometry.

PRrOOF. Check that M,q = 0 for ¢(u,v) = uv and any z(u,v) = a(u) + b(v)
meaning that ¢ is an infinitesimal isometry of any smooth graph of translation.
In particular, g is an effective infinitesimal isometry of any periodic smooth
graph of translation.

Thus far, the existence of an effective infinitesimal strain E informed on
effective infinitesimal isometries q. But Theorem 1 goes both ways.

Corollary 3. The profile and path of a smooth periodic graph of translation are
unshearable.

PROOF. The quadratic form of coefficients (0, 1,0) being an effective infinitesi-
mal isometry implies E15 = 0 for any effective infinitesimal strain tensor E.
3. Asymptotic theory for piecewise smooth surfaces

The present section extends Theorem 1 to effective finite isometries and
deals with the complications that arise from considering surfaces that are not
graphs or are not smooth.
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3.1. Preliminaries

A key element of the theory that follows is a generalization of the self-
adjointness property of Lemma 2 as well as of the operator M, itself. In this
generalization, it is more natural to deal with rotations than deflections.

Definition 8. A piecewise differentiable field w is an admissible field of in-
finitesimal rotations of a surface x if s — w A dx/ds is single-valued for any
s+ (u(s),v(s)) that parametrizes a line of discontinuity in the tangent plane
of x.

Simply put, admissibility defines candidate infinitesimal rotations w that
could produce infinitesimal isometries. In particular, candidate rotations must
maintain continuity across crease lines. This implies that rotations, on either
side of the crease, must rotate the crease in the same fashion. In other words,
w A dx/ds must be single-valued.

Lemma 3. Ifw is the field of infinitesimal rotation of an infinitesimal isometry
X% of a surface x, then

DWW =Wy AXy — Wy AX, =0, (30)
and w is admissible.

PrOOF. Equation (3) implies w is piecewise differentiable because x and % are.
Furthermore, the continuity of x implies the admissibility of w by the, here
admitted, Hadamard jump condition. Last, the same equation yields

0 = Xy — Xpu = DxW. (31)
The M was for Monge. Here, the D is for Darboux. Like M, operator D is
self-adjoint.

Lemma 4. Let x be a periodic surface. Then,

[t Dew) = [ Do) (32)
for any w and w that are periodic and admissible.

PRrROOF. Let {R;}1<i<n be a ﬁnit_e set of disjoint non-empty open connected
sets such that x is smooth over R; and such that U;R; = R, where R is the
unit cell. Let OR;; = R; N (R; + R), where R is the periodicity lattice. Let
s+ (u(s),v(s)) parametrize one of these intersections and let the brackets [
denote the jump in any quantity across the intersection. Then,
[(w,w A dx/ds)] = ([w],w Adx/ds) since w is admissible

= (w,dx/ds A [w]) by permutation symmetry (33)
= (w,[dx/ds Aw]) by continuity of x
=0

since w is admissible.

11



Now write
/ (w, Dxw)
R
:/ (W, Wy A Xy — Wy A Xy) by definition
R
:/ (w, (WAXy)y — (WAXy)u) by Schwarz theorem
R

= 27{ (w,w A dx/ds) — / ({wy, W AXy) — (wu, WA X,)) by the divergence theorem
OR; R

7

= Z]{ (w,w Adx/ds) + / (w, Dyw) by permutation symmetry
— JoR, R
= / [(w,w Adx/ds)] + / (W, Dxw) since OR; = U;0R;;
i<j ORU R
:/ (w, Dxw) by equation (33).
R
(34)

Last, it is worthwhile to generalize the notion of periodicity.

Definition 9. An infinitesimal isometry X of a periodic surface x is periodic
if it is of the form .

x(u,v) = up1 + vps + X(u, v) (35)
where X is periodic, and p1 and ps are two vectors in R3. Then, the effective
infinitesimal strain E is the 2 X 2 matriz of coefficients

PPIIL e SETE LAY )

8.2. Asymptotic expansions

The idea as before is that an effective (finite) isometry preserves lengths to
within an error in O(e?) where € is the size of the corrugations. The following
definitions codify this notion.

Definition 10. Two surfaces x andy are isometric if they have the same met-
ric, namely
<X/u Xu> = <y/u yl/>7 (37)

and if y is smooth wherever x is. If y = Rx + T for some constant rotation
matriz R and constant vector T, then the isometry is trivial; otherwise, it is
non-trivial.

Definition 11. Let x be a periodic surface and let, for e > 0,
x: Q- R?

(u,v) — ex(u/e,v/e).

12



Let y© be a surface that is smooth wherever x¢ is and such that

(x5, %;,) = (v, ¥5) = O(€7), (39)

where Y : Q — R3 is a surface. Then, Y is an effective isometry of x over Q.

Here, convergence is understood in the sense of ||-||« over Q. Now in the
spirit of the theory of homogenization, it is desirable to characterize the effective
isometries Y without referring to the sequences y©. This is pursued hereafter
for a specific class of effective isometries that are the limit of an ansatz of the
form

v (u,v) = z°(u,v,u/e,v/e),

1 2,2 (40)
z¢(U,V,u,v) =Y (U, V) + ez (U, V,u,v) + €z°(U, V,u,v),

where z¢, z! and z? are piecewise smooth periodic mappings in (u,v) and piece-
wise smooth in (U,V). The ansatz is rather intuitive and typical of problems
where a PDE involves periodic rapidly oscillating coefficients, namely the xj,.
That being said, we do not claim that all effective isometries are limit of an
ansatz of this form.

Now substitute the ansatz (40) into (39) to obtain

(%, %) — (Y + Z}“YN + zi>
—e((Yu + zll“ 7y +22) + (zh, + zi,YN +12z,)) =O0(*). (41)

Therein, and from now on, it is understood that M = p and N = v albeit (M, N)
(resp., (i, v)) denote derivatives relative to (U, V) (resp., (u,v)). Thanks to the
following lemma, it is legitimate to “balance” terms of the same order in € at
any point (U, V,u,v).

Lemma 5. Let a(u,u/e) = O(e) where a is continuous and periodic in its sec-
ond variable. Then, a = 0.

PrOOF. Admitted.
This yields, for leading-order terms,
(xu%0) = (Y +2,, YN +2,) (42)

for all (U,V,u,v). Hence, for any (U,V), b(u,v) = Yyu + Yyv + z!(u,0)
describes a periodic surface that is isometric to x. These isometries could involve
trivial ones as well as various non-trivial ones. Moving forward, we focus on a
particular case outlined by the following definition.

Definition 12. Let x be a periodic surface that admits a continuously differen-
tiable one-parameter family of isometric periodic surfaces I >t b(t) where

b(t) : (u,v) — up1(t) + vpa(t) + b(t, u,v). (43)

13



Then, a unimodal effective isometry Y of mode b is the limit of an ansatz of
the form

y(u,v) = z°(u,v,u/€,v/e),
z(U,V,u,0) = Y(U,V) + ez (U, V,u,v) + €2*(U, V, u, v), (44)
zl(U7 Viu,v) = R(U,V)b(O(U,V),u,v) = Yy(U,V)u—Yv(U,V)v+ T(U,V),

for some piecewise differentiable functions
0:Q—1, R:Q — O03(R), T:Q— R (45)

Thus, a unimodal effective isometry Y of a periodic surface x is the limit of
deformations y¢ that “modulate” in space one given mode of isometric defor-
mation of x, namely b. Other effective isometries could involve multiple modes
or refute the proposed ansatz altogether.

8.8. Main result for piecewise smooth surfaces

Theorem 2. Let Y be a unimodal effective isometry of mode
b(t) : (U, U) — upl(t) + Up2(t) + B(ta u, U)) (46)

of a periodic surface x. Let I be the effective metric of b and let E = 1/2 be
the effective infinitesimal strain of b = db/dt. Then, there exists a piecewise
differentiable function 6 : Q — I such that

(Y, Yn) =1,,(0) (47)

and
EQQ(Q)YH + E11(9)Y22 — 2E12(9)Y12 =0. (48)

Before diving into the proof, a few comments are helpful. Since b is a
continuously differentiable family of isometries, the velocity field db/dt is, at
each ¢, an infinitesimal isometry of b(¢). Then, the content of the theorem is
that the finite isometry provides the metric of the effective isometry Y, i.e.,
the effective metric, whereas the infinitesimal isometry provides, by the same
logic of Theorem 1, a constraint on the effective curvatures. The first part
of the theorem falls directly from the definition of Y; the challenge resides
in proving the second part. This involves, as in the case of smooth graphs,
a self-adjointness property that is necessary for the existence of a solution to
the equation of infinitesimal isometries with a non-zero right hand side. The
self-adjointness property is the one stated in Lemma 4.
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Proor. Equation (47) follows from
Y, = /YM since Y is (u,v)-independent

= / Rb, — / z,, by Definition 12

= /Rbﬂ by periodicity of z' (49)
= R/ b, since R is (u, v)-independent
= Rp, by periodicity of b,

from Definition 4, and from the fact that R is a rotation.
Back to (41), balancing the terms linear in ¢ yields

(Rb,,zy +z.) + (z} + z.,, Rb,) = 0. (50)
Thus, there exists a vector field w such that
AT +zi =wARDb,. (51)

Note that, relative to the surface Rb, field w is admissible in the sense of
Definition 8 since zy, and z* are continuous. Furthermore, z, =z, entails
24, — 2y = (WARD,), — (W ARb,), = DrpWw. (52)

Similarly, let w be the infinitesimal rotation vector of the infinitesimal isometry
b of surface b; then Rw is the infinitesimal rotation vector of the infinitesimal
isometry Rb of surface Rb. In particular, Rw is admissible and

DrpRw = 0. (53)
Then, Lemma 4 yields
0= /(w,DRbRw> = /(Rw,’DRbW> = / (Rw, zi, — zv,,)- (54)
Upon substituting in the expressions of z. and z., it comes that
/ (Rw,Ryb, + 6yRb, — Ryb, — 6y Rb,) =0 (55)

and that
/ (Rw, Ruby — Ryby) = 0 (56)

because b, = w A b, L w. Given that RTRy and RTRy are skew-symmetric,
there exist vectors QM such that

/<w, Q'Ab, —Q2Ab,) =0. (57)
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Re-arrange into
(Ql,/w/\bv>—<92,/w/\bu>:0 (58)
to find that
(@', pa) = (2, P1). (59)

The last part of the proof aims to recast the above equation into one that
involves Y directly rather than the €2’s.
Derive Y = Rp, to get

Yun =Ryp, +IvRp, (60)
and multiply by R” to get
R"Yyn =QY Ap,+0nD,, (61)
and, in particular,
RTYyy = Q2 Apy +0ypr = Q' Aps + Oups. (62)

Thus,

R"Yyu,p1) = v (b1, p1),

R"Yyv,p1) = 0v(P1.p1),

(RTY vy, p1) = (Q° Ap2,p1) + Oy (P2, p1) (63)
= —(2° A p1,p2) + Ov (P2, P1)
= (Oyp1 — Oup2, p2) + Ov (P2, P1)

where the last equality comes from (62). Combine into

(P2, P2) (RTYuu, p1)—((P1, p2)+(2, p1)) (R Yoy, p1)+ (1, p1) (R Yy, p1) = (() :
64

Similarly, it can be shown that

(P2, P2) (RTYuu, p2)—((P1, P2)+(P2, p1)) (R Yoy, p2)+ (1, p1) (R Yy, po) = (() :
65
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Finally, consider

RTYyu,p1 Ab2) = (2 Ap1,P1 AD2)

Q' p1 A (P1 A P2))

Q' (p1, P2)P1 — (P1,P1)P2)

1, P2) (2, p1) — (p1, P1) (2", Pa),
Q° A p2, p1 A P2)

Q% pa A (P1 AD2))

2, (p2, P2)P1 — (P2, P1)P2)
P2, P2) (2%, 1) — (P2, P1) (2%, P2),
(RTYuv, 1 AD2) = (p1,P2) (2%, P1) — (P1,P1) (2%, )
P2, P2) (', p1) — (P2, P1)(Q', P2).

RT"Yyv,p1 Ap2) = (66)

(
=
(
=(p
(
=
= {
(
(
=

Then, with (59) in mind,

(P2, P2)(RT Yy, D1 AP2) + (P1.P1)(RT Yy, p1 A P2)
= (P2, P2)(P1, P2) (', p1) — (D1, P1) (P2, P1)(Q%, P2).  (67)

Substituting expressions for (pa, p2)(Q!, p1) and (p1,p1)(2?, p2) in terms of
(RTYyy,p1 A p2) obtained from (66), again with (59) in mind, leads to

(P2, P2) (RTYuu, p1 AP2) + (P1, 1) (RT Y vy, p1 A Pa)
= ((b1,P2) + (P2, P1))(R"Yyv,p1 Ap2). (68)

Assuming (p1, p2, P1 A P2) is a basis, it can be concluded that

(P2, P2)Yuu + (P1,P1)Yvv = ((P1,P2) + (P2, P1)) Yuv- (69)

Should p; A p2 be in the plane of (p1,p2), change mode b by superposing a
rigid body motion that ensures that (p1, p2, P1 A P2) is a basis and note that
the above equation is invariant under said superposition.

Theorem 2 provides two constraints on the unimodal effective isometries of
a periodic surface x. First, by equation (47), the metric of the effective isometry
is to be selected among a restricted set of metrics provided by the underlying
mode. This is typical of problems where a particular parametrization of a
surface is sought, e.g., a conformal parametrization or a Chebyshev net. In such
cases, the only constraints that weigh on the second fundamental form are the
Gauss-Codazzi-Mainardi equations. The theorem says there is more: the second
fundamental form must satisfy an additional algebraic constraint, namely

adj(II) - E(0) = 0, (70)

where IT is the second fundamental form of Y. This is nothing but equation (48)
projected over the unit normal to Y. This constraint affords the same discussion
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as Theorem 1. In particular: auzetic surfaces bend anticlastically; anauxetic
surfaces bend synclastically, with the ratio of normal curvatures in the principal
directions of effective infinitesimal strain given by the effective Poisson’s ratio
taken along the same directions. That being said, Theorem 2 is stronger than
Theorem 1: it provides a PDE, namely equation (48), that can be solved for Y.
Remarkably, the PDE is quasilinear and autonomous. Moreover, the type of
the PDE is function of the sign of the determinant of the effective infinitesimal
strain. In cases where the determinant is positive (resp. negative, null), the PDE
is elliptic (resp. hyperbolic, parabolic). The type of the PDE guides appropriate
choices of boundary conditions that would guarantee a notion of well-posedness
and is therefore critical for applications where the shape of the surface “in
the bulk” is controlled through boundary input. Morally: to stabilize auxetic
surfaces, a closed contour should be pinned; to stabilize anauxetic surfaces, part
of the contour should be built-in.

Evidently, the theorem is only useful in cases where a mode b is known. This
is thematic in homogenization theory where the use of effective field equations
rely on knowledge of solutions to unit cell problems. The theorem is most
insightful in cases where mode b is unique (modulo a rigid body motion) as is
the case of generic quad-based polyhedral surfaces [13]. The theorem also says
that the unimodal effective isometries of a trivial mode are to be found among
the isometries of the plane: a rather reasonable statement.

The main shortcoming of the theorem is that it provides but a necessary
condition on effective isometries. In other words, given a solution Y, the the-
orem does not guarantee the existence of a corresponding sequence y€. The
obvious objection to the converse is that the constraint on Y translates how its
second derivatives should be arranged at (U, V') with respect to the infinitesimal
isometry b(f(U, V)). Thus, should other infinitesimal isometries x be available,
there would be other constraints that the second derivatives of Y must satisfy.
It is nonetheless tempting to conjecture that Thereom 2 has a reciprocal in
cases where b is the unique periodic infinitesimal isometry, modulo rigid body
motions.

Many illustrations of the theory presented here exist in the literature. The
property that the effective Poisson’s ratio is equal to the ratio of normal curva-
tures in principal directions of strain has been shown to hold, either numerically
or analytically, for many quad-based origami tessellations including the Miura-
ori [17, 18], the “eggbox” pattern [19], the “morph” pattern [20], and “zigzag
sums” [21]. More recently, this property was numerically shown to hold in a
class of curved-crease origami tessellations [22]. Particular axisymmetric solu-
tions Y were obtained in [19, 26, 27]; see also the numerical scheme of [28].
Reference [21] verifies, in a particular case, that Y derives from a sequence y°
that preserve lengths up to an error of order O(€?).

4. Conclusion

The use of the flexure theory of shells is hindered by the non-existence of
non-trivial isometric deformations. As a remedy, and in the context of periodic
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shells, we propose to extend the available notions of isometric deformations
to include effective isometric deformations defined as deformations that are
inextensional up to first order in the periodicity wavelength. The paper explores
this notion and proves two main theorems that provide necessary conditions on
the existence of effective isometric deformations for smooth periodic graphs
and for general piecewise smooth periodic surfaces, respectively. Morally, the
theorems place constraints on how periodic shells can bend on average relative
to how they can extend on average. In particular, they show that auzetic shells
bend synclastically into domes and that anauzetic shells bend anticlastically into
saddles. Furthermore, the ratio of effective normal curvatures in the principal
directions of effective infinitesimal strain is equal to the effective Poisson’s ratio
taken along these same directions. This property, previously thought to be
particular to certain origami tessellations, is here proven to hold for general
periodic shells with or without straight and curved creases.

A cornerstone of the presented theory is a self-adjointness property of the
differential operator of infinitesimal isometries restricted to periodic deforma-
tions. This property could have other implications on the general theory of
isometric deformations that are worthy of investigation.

The asymptotic ansatz employed in Theorem 2 appears to be pertinent when
the periodic surface has a non-trivial mode of isometric deformation. For sur-
faces that only possess trivial modes, other ansatz could be better suited: recent
case studies [29] and [30] suggest that mesoscales in /€ become relevant.

Finally, the presented theory carefully makes two reductive assumptions,
namely that periodic surfaces are (i) closed (i.e., without holes) and (i7) the
image of a single immersion. Regarding (i), it is likely that the theory fails in
the presence of holes, in which case conditions along hole boundaries become
relevant. As for (ii), it is likely that the theory holds for (closed) periodic
surfaces that have a “multi-chart atlas” at the cost of more technical definitions
and proofs.
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