

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/378709127>

Undergraduate Facilitators as Role Models for Middle School Learners within an AI Summer Camp

Conference Paper · March 2024

DOI: 10.1145/3626253.3635395

CITATIONS

0

READS

12

1 author:

Carly Solomon
University of Florida

3 PUBLICATIONS 1 CITATION

[SEE PROFILE](#)

Undergraduate Facilitators as Role Models for Middle School Learners within an AI Summer Camp

Carly Solomon
csolomon1@ufl.edu
University of Florida
Gainesville, Florida, USA

ABSTRACT

As Artificial Intelligence (AI) becomes ubiquitous in children's lives, it is crucial to introduce new and effective ways to teach the younger generation about AI. This study describes the experience of training undergraduate students as middle school AI summer camp facilitators. These undergraduates participated in a professional development session prior to camp for 9 days (54 hours), and then facilitated AI learning and camp activities within the two-week camp. Our findings indicate that the undergraduate facilitators benefited greatly from this experience, in turn providing benefits to the middle school learners. The undergraduates developed both professional and conceptual skills. By interacting with the facilitators as "near-peers", the students learned about AI in a fun, engaging, and supportive way. These findings contribute to our understanding of how to effectively teach young learners about complex AI concepts.

CCS CONCEPTS

- Computer Science Education; • Conversational Agents; • Undergraduate Training;

KEYWORDS

Artificial intelligence education, middle school, informal learning, summer camp, facilitator, professional development

ACM Reference Format:

Carly Solomon. 2024. Undergraduate Facilitators as Role Models for Middle School Learners within an AI Summer Camp. In *Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 2 (SIGCSE 2024), March 20–23, 2024, Portland, OR, USA*. ACM, New York, NY, USA, 3 pages. <https://doi.org/10.1145/3626253.3635395>

1 PROBLEM AND MOTIVATION

As artificial intelligence (AI) becomes prominent in our daily lives, there is a growing need to educate children in CS and AI through relevant and engaging manners [5, 17, 19]. Despite progress in resources for AI education [2, 12, 20], there is a shortage of K-12 computer science teachers [15]. Many schools struggle to find teachers who are able to introduce CS concepts in an engaging manner to middle school students [13]. To address this, some studies have leveraged alumni and undergraduates to promote CS education

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0424-6/24/03.

<https://doi.org/10.1145/3626253.3635395>

in middle school environments [7, 18]. In this study, we recruit undergraduate students to facilitate activities in a middle school AI summer camp. Undergraduate students possess a youthful energy and a closer age proximity to middle school students, making it easier for them to relate to and inspire younger students [4]. With extensive professional development, the undergraduates also possess sufficient academic knowledge and pedagogical skills to confidently lead AI learning activities. This study aims to answer two research questions: **RQ1:** In what ways did the professional development session help to enrich the undergraduate facilitators' experiences regarding the camp? **RQ2:** In what ways did the facilitators benefit the camp learners' experience?

2 BACKGROUND AND RELATED WORK

This study surrounds a two-week summer camp for rising 7th and 8th graders. The summer camp sought to shape students' interests and attitudes toward AI through conversational app development experience using an application known as AMBY [10, 16]. Undergraduates, trained to best teach AI concepts to students, led the summer camp, which was conducted for three summers (2021-2023). The camp has developed a complete AI curriculum [16] and a novel interface, AMBY, for youth to create conversational apps [10, 11].

Researchers have studied teaching methodologies and strategies to engage young learners in a relatable manner. The use of "near-peer" mentoring can not only teach concepts, but also spark social-emotional skills within these students [14]. Middle school students relate better to near-peer mentors, as well as connect more deeply with their sense of self through building relationships [4, 9]. Additionally, engaging near-peer mentors enhance students' enthusiasm and interest for fields in computer science [1]. Mentors also benefit from interacting with middle school students, developing their interests, proficiency, and skills in computer science [3].

Facilitators serve as an example of near-peer mentors, which emphasizes the importance of teacher-student interactions, provides a great deal of support, and frequently encourages the student [8]. Facilitators can fit into a multitude of different categories such as trust builder, enabler, inquirer, and direction setter [6]. Our camp adopted these diverse roles to allow facilitators to tailor their mentorship to the unique learning needs of the learners; therefore fostering a more inclusive and effective educational experience.

3 UNIQUENESS AND APPROACH

3.1 Professional Development

We recruited undergraduate students (regardless of their major and prior AI experience) from a university who are interested in teaching middle school students about AI as camp facilitators. Before the camp, facilitators underwent six weeks of training in research

applications and professional development (PD), totaling 54 hours across nine sessions. These sessions were led by two PhD students, an experienced undergraduate facilitator, and two faculty. The PD sessions were designed to prepare facilitators to lead the camp sessions successfully and with confidence. The PD covered a variety of topics including camp curriculum, software (AMBY) development, pedagogies such as Universal Design for Learning (UDL) and Culturally Responsive Pedagogy (CRP), and practical strategies for teaching middle school students. Besides PD, the facilitators also participated in a research project to gain insights regarding computer science research.

3.2 Camp Setting

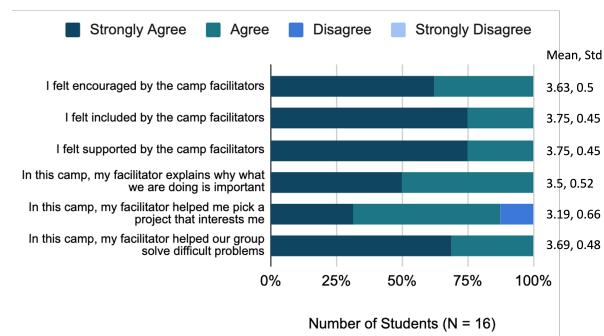
This study took place during an informal two-week summer camp in Gainesville, Florida, USA, and students engaged daily from 9:00 am to 5:00 pm each weekday. Daily sessions, led by the facilitators, were scheduled in 30-minute blocks and covered varying topics, including General AI lessons, Conversational AI lessons, Unplugged Activities, Just-for-fun Activities, or AMBY Project Development.

4 RESULTS AND CONTRIBUTIONS

4.1 Facilitator PD and Camp Experience

We interviewed six undergraduate facilitators (labeled from FT1 to FT6) both after the PD (prior to the camp) and after the camp. These facilitators shared their experiences regarding the PD, and addressed how helpful the PD was in preparing them for camp.

4.1.1 Conceptual Knowledge Learned From PD. During the PD sessions, a variety of lessons were introduced regarding teaching practices for our population of students from diverse educational, linguistic and cultural backgrounds. Regarding the understanding of the UDL (Universal Design for Learning) concept, a facilitator described it as “*make[ing] learning accessible for all students equally*” (FT3). The facilitators experienced “*learner variability*” and understood that “*everyone has...different strengths and assets and weaknesses*”. This strongly helped the facilitators during the camp because it opened them to “*...recognize any barriers that they [the students] are facing and try to fix that without judgment*” (FT1).


An important teaching practice was understanding middle school students’ behaviors and adapting to them. For example, understanding self-esteem issues allowed the facilitator to address such problems effectively. Regarding the tendency of losing interest quickly due to their limited attention span, the facilitators learned to “*really involve them [the students] in the teaching process*” by “*asking a lot of questions to encourage discussion*” or by facilitating “*an activity that teaches the information instead of just spewing the information at them when they’re less likely to listen to it*” (FT1).

Lastly, facilitators developed conversational agents using AMBY during PD sessions, which was crucial for preparing them to guide students in creating their own. One facilitator believed this was the most important aspect of the PD “*because...one of the main purposes of the camp is to help these kids build their chat bots*” (FT2). Apart from gaining software experience, this aspect of the PD was also integral to the camp curriculum because facilitators’ projects were used within lessons to clarify AI concepts and guide students in project development.

4.1.2 Practical Skills Learned From PD. The facilitators also gained a variety of essential life skills from their professional development. It yielded substantial proficiency in public speaking, as the facilitators consistently conveyed educational materials to the campers each day. Some facilitators “*get nervous*” in front of groups of individuals, and therefore believed “*it was a really good exercise*” to further their everyday skills (FT1). Some facilitators felt that the PD increased their confidence “*in terms of teaching and working with kids*” (FT4). This led to a greater amount of authentic student-facilitator relationships, and increased the morale of the camp. Facilitators also learned to ask engaging questions to foster interest in the concepts being taught.

4.2 Learner Experience

At the end of the camp, 16 learners completed a post-camp survey regarding their experiences during the camp. Students responded on a 4-point Likert scale of the following six statements for analysis: (1) “I felt encouraged by the camp facilitators”, (2) “I felt included by the camp facilitators”, (3) “I felt supported by the camp facilitators”, (4) “In this camp, my facilitator explains why what we are doing is important”, (5) “In this camp, my facilitator helped me pick a project that interests me”, (6) “In this camp, my facilitator helped our group solve difficult problems.”

Figure 1: Student Post-camp survey responses related to the effectiveness of the facilitators (including mean and standard deviation for each item)

Figure 1 shows that students responded positively to these six statements, with the majority either agreed or strongly agreed. The mean and standard deviation for this scale is 3.583 and 0.385, indicating students believed that facilitators overall benefited their experience by creating a fun, encouraging, and inclusive environment.

4.3 Conclusion

The overarching goal of this study was to explore the impact of undergraduates as facilitators in a summer camp on enhancing learning experiences for both undergraduates and younger students. The findings suggest that with adequate professional development, undergraduates not only enrich student learning but also acquire valuable skills, highlighting the mutual benefits of involving undergraduates as informal educators in informal learning environments.

5 ACKNOWLEDGEMENTS

The National Science Foundation provided funding for this research under grant DRL-2048480. The views, opinions, findings, conclusions, and recommendations expressed in this report are solely those of the authors and do not necessarily reflect the official stance or policies of the National Science Foundation.

REFERENCES

- [1] Kristy Elizabeth Boyer, E Nathan Thomas, Audrey S Rorrer, Deonte Cooper, and Mladen A Vouk. 2010. Increasing technical excellence, leadership and commitment of computing students through identity-based mentoring. In *Proceedings of the 41st ACM technical symposium on computer science education*. 167–171.
- [2] Peter Brusilovsky, Barbara J Ericson, Cay S Horstmann, Christian Servin, Frank Vahid, and Craig Zilles. 2022. Significant Trends in CS Educational Material: Current and Future. In *Proceedings of the 54th ACM Technical Symposium on Computer Science Education* V. 2. 1253–1253.
- [3] Jody Clarke-Midura, Vicki Allan, and Kevin Close. 2016. Investigating the Role of Being a Mentor as a Way of Increasing Interest in CS. In *Proceedings of the 47th ACM Technical Symposium on Computing Science Education*. 297–302.
- [4] Jody Clarke-Midura, Frederick Poole, Katarina Pantic, Megan Hamilton, Chongning Sun, and Vicki Allan. 2018. How near peer mentoring affects middle school mentees. In *Proceedings of the 49th ACM Technical Symposium on Computer Science Education*. 664–669.
- [5] Robb Cutler and Chris Stephenson. 2006. Working together to improve k-12 computer science education. *ACM SIGCSE Bulletin* 38, 1 (2006), 201–201.
- [6] Yngve Dahl and Kshitij Sharma. 2022. Six Facets of Facilitation: Participatory Design Facilitators' Perspectives on Their Role and Its Realization. In *Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems*. 1–14.
- [7] Megan Englert. 2022. Building Curricular Supports Through Undergraduate Teaching Assistants to Scale Individualized Instruction in CS1. In *Proceedings of the 54th ACM Technical Symposium on Computer Science Education* V. 2. 1230–1230.
- [8] Anthony F Grasha. 1994. A matter of style: The teacher as expert, formal authority, personal model, facilitator, and delegator. *College teaching* 42, 4 (1994), 142–149.
- [9] Yasmin Kafai, Jean Griffin, Quinn Burke, Michelle Slattery, Deborah Fields, Rita Powell, Michele Grab, Susan Davidson, and Joseph Sun. 2013. A cascading mentoring pedagogy in a CS service learning course to broaden participation and perceptions. In *Proceeding of the 44th ACM technical symposium on Computer science education*. 101–106.
- [10] Gloria Ashiya Katuka, Yvonna Auguste, Yukyeong Song, Xiaoyi Tian, Amit Kumar, Mehmet Celepkolu, Kristy Elizabeth Boyer, Joanne Barrett, Maya Israel, and Tom McKlin. 2023. A Summer Camp Experience to Engage Middle School Learners in AI through Conversational App Development. In *Proceedings of the 54th ACM Technical Symposium on Computer Science Education* V. 1. 813–819.
- [11] Amit Kumar, Xiaoyi Tian, Mehmet Celepkolu, Maya Israel, and Kristy Elizabeth Boyer. 2022. Early Design of a Conversational AI Development Platform for Middle Schoolers. In *2022 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)*. IEEE, 1–3.
- [12] Monica M McGill. 2021. Improving K-12 CS Education Research via Tools and Resources for the Community. In *Proceedings of the 52nd ACM Technical Symposium on Computer Science Education*. 1360–1360.
- [13] Tuan D Nguyen, Chanh B Lam, and Paul Bruno. 2022. Is there a national teacher shortage? A systematic examination of reports of teacher shortages in the United States. *Annenberg Institute at Brown University* (2022).
- [14] Megan H Owens and Laurie P Browne. 2021. Camp counselor as a role model for social-emotional learning skills in camp. *Journal of Outdoor Recreation, Education, and Leadership* 13, 1 (2021).
- [15] Esther Shein. 2019. The CS teacher shortage. *Commun. ACM* 62, 10 (2019), 17–18.
- [16] Yukyeong Song, Gloria Ashiya Katuka, Joanne Barrett, Xiaoyi Tian, Amit Kumar, Tom McKlin, Mehmet Celepkolu, Kristy Elizabeth Boyer, and Maya Israel. 2023. AI Made By Youth: A Conversational AI Curriculum for Middle School Summer Camps. In *Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Innovative Applications of Artificial Intelligence Conference and Thirteenth AAAI Symposium on Educational Advances in Artificial Intelligence*.
- [17] David Touretzky, Christina Gardner-McCune, Fred Martin, and Deborah Seehorn. 2019. Envisioning AI for K-12: What should every child know about AI?. In *Proceedings of the AAAI conference on artificial intelligence*, Vol. 33. 9795–9799.
- [18] Tammy VanDeGrift. 2023. Alumni as Teachers and Mentors for CS 1 Students: Solving the Staffing Shortage and Students' Reflections about Career and College Advice. In *Proceedings of the 54th ACM Technical Symposium on Computer Science Education* V. 1. 1124–1130.
- [19] Anita Verno. 2008. Supporting k-12 computer science education. *Journal of Computing Sciences in Colleges* 23, 3 (2008), 145–146.
- [20] Victor Winter and Judith Monarrez Diaz-Kelsey. 2020. In Pursuit of CS-based Educational Content Suitable for Broader Audiences. In *Proceedings of the 21st Annual Conference on Information Technology Education*. 62–67.

Received 13 October 2023