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Abstract: In this work we study the II resonances of a two-site model system de- 
signed to mimic a smooth transition from the *I, temporary anion of N2 to the 71 
temporary anion of CO. The model system possesses the advantage that scattering 
and bound state (L?) methods can be directly compared without obfuscating elec- 
tron-correlation effects. Specifically, we compare resonance parameters obtained 
with the complex Kohn variational (CKV) method with those from stabilization, com- 
plex absorbing potential, and regularized analytical continuation calculations. The 
CKV calculations provide p-wave and d-wave widths, the sum of which provides a 
good approximation of the total width. Then we demonstrate that the width ob- 
tained with modified bound state methods depends on the basis set employed: It 
can be the total width, a partial width, or an ill-defined sum of partial widths. Pro- 
vided the basis set is chosen appropriately, widths from bound state methods agree 
well with the CKV results.



1 Introduction 

Anion states lying energetically above the ground state of the neutral molecule can 
be probed experimentally by electron scattering’“ or, in the case of systems with a 

bound ground state anion, by photodetachment spectroscopy.’ Such anion states, 

termed temporary anions (TAs), are subject to decay by electron detachment. 
Despite lifetimes typically as short as a few fs, temporary anions play an important 

role in a wide range of processes including electron-induced DNA damage®® and the 
operation of certain laser systems.’ As such there is considerable interest in 

developing robust computational methodologies to model electron capture and 
detachment.’°>* 

A TA can be characterized by a complex resonance energy Eres, 

Eres = E; - i'/2 
(1) 

where E, is the real part of the resonance energy relative to the neutral molecule 

and 7, the resonance width, is inversely related to the anion lifetime.*? There are 
various types of TAs.** Here our focus is on TAs that result from electron capture 

into empty valence orbitals of closed-shell neutral molecules. Such TA states often 

dominate low-energy electron-molecule scattering cross sections and are termed 
shape resonances, emphasizing the fact that the finite lifetime is due to the shape 

of the potential that derives from the combination of short-range forces and angular 

momentum contributions.*?°° In the case of non-zero angular momentum, this leads 
to a barrier through which the electron must tunnel in the attachment and 

detachment processes. The charge distribution of the orbital involved in the 

electron capture is crucial in determining the angular distribution of resonant 
electron scattering. 

As noted above, several computational methods have been introduced for 
characterizing temporary anions and other resonances. One class of methods 

including the complex Kohn variational (CKV) method and the R-Matrix methods??? 

is based on scattering theory and provides quantities such as the T-matrix and 

eigenphase sum. These quantities lead directly to cross sections and can be used to 
calculate resonance energy and width. 

Accurate characterization of resonances of polyatomic molecules with scattering 

methods, however, is computationally very demanding due to the role of electron 

correlation. State-of-the-art scattering calculations tend to use configuration 

ground state neutral and the anionic states in a balanced manner. For this reason, 
many computational studies of temporary anions of polyatomic molecules have 

employed modified bound state methods employing L? wave functions. These 

include the stabilization method,?°*’ regularized analytic continuation (RAC),?*** and 
the complex absorbing potential (CAP) method.?°°° Bound state methods have the 
advantage of being able to use high-level electronic structure algorithms to treat 

the anion system, allowing for accurate treatment of correlation and exchange 
effects. 

    

  

   



algebraic diagrammatic construction allow for a balanced treatment of electron 
correlation in the neutral and anionic states. Details of the CKV, stabilization, RAC, 
and CAP methods will be given below. 

For the well-studied ao valence anion of N2, bound state’®1”2°.2932-34 and scattering 
calculations carried out with high level treatment of electron correlation’* have been 

found to give similar resonance parameters. Yet, as will be discussed below, this is 

not necessarily the case for the resonance widths for heteronuclear diatomic 

molecules or large organic molecules such as anthracene for which multiple partial 
waves contribute to the various TA resonances.?’ 

In this work we consider a one-electron model system for which we can vary the 

asymmetry of the potential and for which we can apply both scattering and bound 

state methods of treating a resonance, facilitating comparison of resonance 

parameters obtained from the two approaches. In addition, use of a one-electron 
model eliminates effects of electron correlation on the resonance parameters and 

allows the use of highly flexible one-particle basis sets. The model potentials will be 

used in calculations extracting both partial (angular momentum dependent) and 
total widths using the various approaches. The direct comparison of three bound 

state methods and a scattering-based approach on the same non-spherical 
potential, with basis sets that give well-converged results, is a distinctive 

contribution to the field. 

For spherical target systems the scattering problem is naturally treated in terms of 

partial waves, for which the electron orbital angular momentum, characterized by 

the quantum number l, is a good quantum number. However, for molecules lis not 
a good quantum number and more than one value of | contributes to the resonant 

scattering process. For small highly symmetric molecules the lowest, symmetry- 

allowed value of | (l = 2 in the case of the *%, valence anion of N2) dominates the 

scattering via the lowest energy shape resonance. However, in general two or more 

partial waves are important, with the shape of the orbital involved in electron 

capture being a major factor in determining the partial widths. For example, for the 

“Ks shape resonance of CO: inclusion of both p and d partial waves is necessary for 
accurate calculation of the differential scattering cross section and vibrational 

excitation cross sections in the energy region of resonance. '®7°** This can be seen 
qualitatively from examination of the shape of the lowest energy valence =* orbital 
of neutral CO: Because this orbital has different contributions of the p orbitals on 

the two atomic sites, it has sizable |= 1 and 2 components. In polyatomic 

molecules, such as anthracene, even though the overall symmetry is high, there 

can be strong admixture of several | values in partial wave expansions of the low- 

lying * orbitals.2” Moreover, in a many-electron system, electron correlation effects 
impact the relative importance of the various partial waves. 

In resonances where two or more partial waves are important, prediction of the 

angular distribution of the scattered electrons requires a weighted contribution from 
the relevant partial waves. Chang presented a methodology, based on frame 
transformation theory, that determines angular distributions without the assumption 
that Lis a good quantum number.*?*? Implementation of Chang's approach requires



l-dependent probabilities for electron capture (and detachment) that are of the form 

- , where I, is the partial width associated with the LU" partial wave. For narrow 
1 

resonances, the individual partial widths sum to I, the total width in eqn (1).* 
Although it is usually assumed that the leading partial wave has the greatest partial 

width, this is not necessarily the case as shown in Ref. 18. 

Surprisingly, in most studies of TAs using bound state methods the nature of the 
widths obtained has not been addressed. We note that Bentley and Chipman 

considered complexities associated with extracting widths from stabilization 

calculations for a resonance that can decay into different states.** Specifically, they 
showed that depending on how the calculations were carried out, the widths 

obtained were neither partial nor total. Moreover, we have found in applying the 

stabilization method as normally employed to polyatomic molecules very different 
widths result depending on the range of data used, suggesting that the calculations 

may not give accurate total widths in all cases, but rather some combination of 

partial widths with improper weighting. This suggests that the issue raised by 
Bentley and Chipman is present in systems in which different partial waves are 

important in electron capture and detachment. 

Stabilization calculations as usually carried out on molecules employ diffuse atomic 
basis functions of the appropriate symmetry on all relevant atoms. In the 2016 
study of the **8 resonance of CO’ in Ref. 18 it was demonstrated that by employing 

instead single center expansions of diffuse p or diffuse d functions in the one 

particle basis set used in the calculations, separate p-wave and d-wave widths could 
be obtained. 

To further investigate the issues raised above, we consider a model potential 
consisting of two spherical Gaussian wells. When the wells are identical, the system 

serves as a model for the *%8, TA state of N2 for which the resonance is well 
characterized as d-wave. By making the two wells ngnequivalent, both p-wave and 

d-wave character become important, similar to the *%$ TA state of CO. The model 
system employed permits tuning the degree of asymmetry and, hence, the relative 

importance of p- and d-wave components. As a result, it is relevant for describing 
changes that could occur upon geometric distortion or describing the impact of 

mixing of partial waves in an unfilled orbital in a polyatomic molecule. The lowest 

energy resonance of this model potential is characterized using the CKV, 
Stabilization, CAP, and RAC methods. 

The goals of the current study are (1) to investigate whether the approach used 

previously in conjunction with the stabilization method to obtain partial widths of 

the **%s TA state of CO" also works with other bound state methods, such as CAP 
and RAC, (2) to explore whether the partial widths obtained from bound state 

methods agree with those from scattering calculations, and (3) to analyze the 

sensitivity of the widths from stabilization calculations to the choice of basis set. 

2 Methodology



To examine the nature of the resonance widths obtained from various theoretical 
methods we employ a one-electron system with two attractive Gaussian wells. Site 

1 is located at (0, 0, 1) bohr, and site 2 is located at (0, 0, -1) bohr with position 

vectors ri and r2, respectively. The potential has the form 

VeVi eV pe BM (2) 

Voi is fixed at -36.135 hartrees (E,) and £: is fixed at -6.0 bohr’*. The parameters for 
site 2 are systematically varied, taking the values in Table 1. 

TABLE 1. Parameter sets for site 2 in the 

model potential defined by equation 2. 
  

  

Set Voo (Ey) Bo (bohr~) 

A -36.13500 6.000 

B -36.13995 5.960 

C -36.14490 5.920 

D -36.14985 5.880 

E -36.15480 5.875 

F -36.15975 5.850 

Set A corresponds to a symmetric double well potential, while sets B through F are 

increasingly more asymmetric double well potentials. Only states of *$ symmetry 
are, considered. With the given parameters, the potential supports one bound state 

of K$ symmetry and a low-lying *% shape resonance which is the focus of this study. 

The system is treated with four different theoretical methods described below. 

2.1 Complex Kohn variational method 

We consider resonance parameters obtained from the CKV method?®?? to be most 

definitive as this method explicitly considers the continuum, thus avoiding the need 
for additional steps, e.g., analytic continuation or modifying the potential, required 

in the bound state methods to obtain the complex resonance energy. For the CKV 

calculations the outgoing trial wave function is 

ym => flr Ot TG. l0lY), 

L, r 

  

anal oo, lr (3) 
k,i 

where the Y,,,|*| are real spherical harmonics, the 9, ;\";) are Gaussian type basis 
functions centered at site /, and r; is the position vector relative to the origin. f, and 

gi, are the regular and outgoing Ricatti-Bessel functions, respectively. The wave 

function in the region where the potential is nonnegligible is described by 15 even- 

tempered Gaussian p functions starting at exponent 700, decreasing by a factor of 
2.5, and centered at both ri and rz. For the model potentials of interest, well 

converged results are obtained using only l values of 1, 2, and 3 and m was 

restricted to 1, consistent with %s symmetry. The T),, matrix elements in eqn (3), 

found as variational parameters in the CKV calculation, can be used to calculate 

differential and integral cross sections. The inclusion of the subscripts on quantum 
numbers indicating electron capture (in) or detachment (out) are used here to



emphasize a simple physical picture, in lieu of the more traditional l and Li. In the 

context of the frame transformation approach of Chang*®*?, matrix elements for 

which [,41,,, imply a change in the orbital angular momentum of the electron during 

the scattering event. In real, molecular situations the total angular momentum is 
conserved by a concomitant change in the rotational angular momentum, with the 

Small change in the magnitude of the momentum of the scattered electron being 

ignored because it is not resolvable in typical experiments. Additional details of the 
CKV method can be found in reference 12. 

The extraction of the resonance parameters from the CKV data proceeds via Breit- 

Wigner approximation. Taylor*® showed that the Breit-Wigner approximation applied 

to a resonance formed by capture of the li, partial wave and decaying via the lou 
partial wave (assuming the magnitude of the entrance and exit momentum of the 

electron is the same) leads to the following form for the absolute square of the 

Fra.f 

8 fT 
le-epe 

4 

scattering amplitude, 
  

    

Fist, ; (4) 

  

where I’, is the partial width for lin, governing the probability an electron with that 

orbital angular momentum being captured and I’, is the analogous partial width for 

electron detachment. The total width, %, in the present work is taken as the sum of 
the sum of the partial widths, which is rigorously true only for narrow resonances. 

In the present work lin and lu are limited to being either one or two, since for the 

potentials of interest 733, T23 and 713 are negligible over the range of energies 

considered. 

2 
I 
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IT... 7 (E-E,)+ r/4| 

Thus, at each energy |T1:|’, |Tz2|*, and |T22|* can be expressed as a function of the 
resonance energy and partial widths, assuming validity of the Breit-Wigner 
expression. 

As demonstrated by Fano” as well as Blatt and Weisskopf*’, the interaction of a 

discrete state with two autoionization continua can alter the shape of peaks arising 

from such states in spectra and scattering cross sections when the entrance and 
exit channels are identical. We find that the application of this approach adequately 

accounts for the pronounced asymmetry in the peak shape of the |Tii|* vs E curve 

shown in Fig. 1, as well as the lesser asymmetry in the shape of the |T22|* vs E curve. 

Following equation VIII.7.20 of Ref. 47 an l-dependent parameter, 65,,, is added for



the case of /,=1,,, which controls the asymmetry. Noting that [,=l", =I, eqn (5) 

can be modified for |T1:|* and |T22| as follows: 

L, 
I~ —2i 20 eed (6) 

E-E.+il'/2 2 
  

2 

T.,.[ = 

For each set of potential parameters, the CKV data for the absolute squares of all 

three energy-dependent T-matrix elements are simultaneously least squares fit (| 

T12|? to the functional form given by eqn (5) and |Ti:|* and |T22|* to that of eqn (6)) 

and values for E,, I’, I,, 69.1, 5bg.2 are obtained, allowing direct comparison with the 

complex resonance energies obtained from the bound state methods. The range of 

energy values considered in the fit are limited to £,—4I to £,+4I, Using an 

expanded range from £,—6I' to E,+6I' has negligible impact on the resonance 

parameters. For set A, which has no p-wave contribution, only the |T22|* vs E curve 

was fit, with the assumption that I’,=0. 

Fig. 1 SHOWS |Tpp|*, |Taa|?, aNd |Tpal/? as a function of energy for potential parameter 
set C, where | = 1 and 2 have been replaced by p and by d, respectively. All three 

quantities display a pronounced peak near E,; = 2.50 eV, due to the resonance. The 
fits, shown as solid lines, are in excellent agreement with the CKV results. The 

asymmetry in the |Tpp|* and = |Tua|? curves is accounted for by the background term 
in eqn (6), as are the small difference in the peak positions in each of the curves. 
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Fig. 1 |Tpp|? (blue dots), |Tpal* (orange squares), and |Tua|* (green triangles) obtained 

from CKV calculations for potential set C as a function of energy (eV). Also shown 

are the fits obtained with eqns (5) and (6) for |Tpp|* (blue line), |Tpal* (orange line), 
and |Tua|* (green line). 

2.2 Bound state methods 

Straightforward application of standard quantum chemistry methods to TAs is not 

possible when using flexible basis sets due to the presence of discretized continuum 
(DC) solutions that fall energetically below and in the same energy range as the



temporary anion of interest. The DC solutions correspond to a free electron as 

described by the finite basis set. Thus, with flexible basis sets, standard bound state 
methods will collapse onto a DC level. The stabilization, CAP, and RAC methods are 

all designed to avoid this problem. 

The variant of the stabilization method employed here has been described in detail 
previously and involves the calculation of the energies of multiple eigenvalues of 

the appropriate symmetry of the excess electron system as a function of a scale 

parameter, z, that controls the spatial extent of the basis set.*’1®*" Typically, the 
scale factor is only applied to the most diffuse basis functions of the appropriate 

symmetry. A plot of the eigenvalues vs z displays avoided crossings that can be 

interpreted as resulting from the mixing of a relatively compact diabatic discrete 
state, the energy of which is only weakly dependent on the scale parameter, and DC 

solutions whose energies depend strongly on the scale parameter. A variety of 

methods have been introduced to extract resonance parameters from stabilization 
graphs. *©48°1 Determination of the complex resonance energy can be accomplished 

by analytically continuing the energies as a function of z into the complex plane and 

locating complex stationary points at which “=0. This involves assuming a 

functional form for E in terms of z and fitting the data points on the stabilization 
graph to determine the parameters in this function. *°*°°! Substitution of the 

appropriate stationary point into the expression for E gives the complex resonance 

energy. While one can employ data remote from the avoided crossing using Padé 
approximants for the analytic continuation,°*? in our applications we have focused 

on data points near an avoided crossing and have used generalized Padé 
approximants (GPAs),*°°4 which build in the branch point structure. 

For isolated avoided crossings, involving two eigenvalues, the GPAs used in this 

work are of the form: 

PizlE°+Q\z\E+R(|z\=0 (7) 

where P, Q, and R are polynomials in z with the coefficients being determined by 

fitting two roots of a stabilization graph in the vicinity of an avoided crossing. The 
order of the GPA is specified by the order of the three polynomials, i.e., by (Mp, Ng, 

in which case the 

simplest GPA would be designated (0,1,2). In this work we used GPAs up to (4,5,6), 
using different sets of data points on two curves involved in an avoided crossing in 

least squares fitting of the coefficients in the three polynomials and averaging the 

results. When using high order GPAs, the AC procedure can lead to spurious 
stationary points. These are identified by their sensitivity to the choice of input 

points and are excluded from the averaging. For crossings involving three roots eqn 

(7) was extended to include terms that are cubic in E. In such cases the complex 
stationary energy converges with respect to the order of polynomial by the (5,6,7,8) 

GPA. 

   

In the RAC procedure’** an attractive term multiplied by a positive coupling 
constant A is added to the potential. For sufficiently large values of A the addition of



this term converts the resonance into a bound state. To determine the resonance 

parameters, one expresses A as a rational fraction fitting the coefficients in this 

expression to values of the momentum k for which the anion is bound. One then 

determines the k value at which A = O to determine the complex resonance energy. 
we use the following equation from Barta and Horacek.?”? 

  
_ ie+2erK taf?) 1487 x) 

AlK)|=Aq 4, p2 2, 62{ 4, Q2 (8) 
a+B +k [2a +6 lar +B 1 

where k= ik, anda, B, and 6 are parameters determined in the fitting procedure, and 

Xo is the value of A for which the eigenvalue of interests changes from bound to 
unbound in the fit. 

In the present application of the RAC method to the double well potentials 

considered here we add an attractive Gaussian of the form —Ae~°" at the origin. 

Calculations are carried out for A values ranging from Ao to 3 with a step of 0.01. 

These results were used to determine optimal ranges of data points for the various 

RAC calculations which will be described below after the various basis sets used for 

the calculations are presented. 

In the CAP method, an absorbing or negative imaginary potential -inW is added to 

the Hamiltonian: 

H p=H—inw (9) 

Here, 7 is a strength parameter, and W is normally a real potential that vanishes in 

the inner region, starts to grow at a cutoff radius ro, and continues to grow with 

increasing distance from the system.**’ However, CAPs with complex W have been 
used.°’°® Here we use a Voronoi CAP°? with real W: 

W =6 (10) 

where ry is the distance from the nearest site (1 or 2) and ro = 3 bohr (see egn (4) in 

Ref. 58). Integrals of Voronoi CAPs must be evaluated numerically, and at every 

basis set site, a Lebedev-Teutler grid® with 770 angular and 199 radial points is 
used. 

We note that in our CAP calculations the basis set is explicitly split into a core set 

and a DC-like set (details are provided below). CAP matrix elements involving core 

functions are set to zero; the CAP acts only on the DC-like basis functions of the 

respective basis sets. While the matrix elements affected by this procedure are very 
small, it helps to reinforce the idea that the CAP should only act in the asymptotic 

region so that the method is less dependent on the particular value of ro. 

In CAP calculations with complete basis sets, DC states appear as a discrete string 

that has been rotated into the fourth quadrant of the complex energy plane, and 

provided the Siegert energy has been uncovered by this rotation, it appears as an 
isolated eigenvalue. However, with finite basis sets, the picture is less tidy: For n = 

O all eigenvalues start on the real axis, and as nis increased all continuum 
eigenvalues migrate into the fourth quadrant. Resonances can be identified by the



relatively small rate of change, |dE(n)/d In nj, of their complex trajectories, and the 

best representation of the resonance eigenvalue is found where this derivative of 

the resonance trajectory shows a minimum.**?”78 Resonance energies can be 
corrected for artificial reflections of the outgoing wave by the CAP”, but 
unfortunately these corrections tend to enhance basis set errors, and here no 

correction was applied. 

For the CAP calculations, the overlap matrix, the kinetic energy matrix, the 

integration grid, and the atomic-orbital to symmetry-orbital transformation matrices 
are supplied by the Python interface of Psi4 library functions, version 1.7.°' The 

complex symmetric matrix representing the CAP Hamiltonian is then diagonalized 

using scientific Python (scipy).° 

In the present study the bound state calculations are carried out with four different 

basis sets classes that differ slightly for the different bound state methods. All of 
the basis sets have, as a description of the molecular region, the first 10 even- 

tempered Gaussian functions used in the CKV calculations, with exponents ranging 

from 700 to 0.1835008 with successive exponents decreasing by a factor of 2.5. Le., 
This set of basis functions 

is suitable for describing the bound *% state as well as the compact part of the 

resonance wavefunction. We thus refer to this set as core functions. As the core 
functions are the same for all basis sets, they will not be used as part of the basis 

set designations. The core basis is augmented either with diffuse p functions at 

each site, designated as (p + p), diffuse p functions located at the origin, 
designated as (P) or diffuse d functions located at the origin, designated as (D). The 

fourth basis set, designated as (p + p’), includes the same core functions at each 

site and the same diffuse p functions at the 1 site as the (p + p) basis set. 
However, in the (p + p’) basis set the exponents of the diffuse functions at site 2 are 

obtained by multiplying each of the diffuse exponents at site 1 by 1.25. This basis 

set introduces asymmetry in the diffuse basis functions, more realistically 
representing the situation in a heteronuclear diatomic in which the basis sets on the 

atoms would differ. While in the application of the stabilization method to a 

heteronuclear diatomic molecule the core basis functions associated with the two 
atoms would also differ, these were kept identical on the two sites to focus attention 

on the effect of asymmetry in the DC states due to the diffuse functions. 

Table 2 summarizes the details of the construction of each basis set. The 

stabilization and RAC methods use the same basis sets. The (p + p) basis set for 

these methods is identical to the CKV basis set with five diffuse p on each site, 
continuing the progression in the set of core functions. The (p + pf) basis set also 

adds five diffuse p functions at each site with the asymmetry mentioned above. 

Ideally, only the additional diffuse functions in the (p + p) and (p + p’) basis sets 

would be scaled in the stabilization method. However, we have found it necessary 
to also scale the outermost most diffuse core function on each site in the 

stabilization calculations with these two basis sets. The need for this can be seen 
from consideration of potential set B for which the resonance interacts with the 7“ - 

11 DC states. Since only ten DC solutions are derived from the five diffuse 

functions on each site, in the stabilization calculations with the (p + p) and (p + p’)



basis sets we also scale the most diffuse core function on each site. The (P) basis 
set has an even-tempered set of six p functions at the origin starting with an 

exponent of 0.5 and with consecutive exponents decreasing by a factor of 2.5. The 
(D) basis set is analogous to the (P) basis set except that the basis functions at the 
origin are d functions. We note that in the stabilization calculations with the (P) and 

(D) basis sets the exponents of the most diffuse core basis functions are not scaled. 

Table 2. Basis set designations. *” 

(p + p) (p + pH) (P) (D) 

Sp(1) + Sp(2) 5p(1) + 5piHi(2) 6p° 6ds 

  

  

° All basis sets include 10 core functions on each site as described in the text. Only 

the number and type of the supplemental diffuse functions are indicated. 

> Listings reflect basis sets used in stabilization and RAC calculations while the 

number of functions are doubled for CAP calculations. 
© Functions located at the origin. 

For potentials B-F the RAC calculations with the (P), (p + p) (p + p’) basis sets used 

data points in the range of Ay to Ao + 0.35 in fitting eqn (8), while the calculations 

with the (D) basis set used data points in the range of Ao + 0.08 to Ayo + 0.43 in 
fitting eqn (8). The latter choice of data points was also used for the symmetric 

potential A, for both the (D) and (p + p) basis sets. The choices of data points were 

established from a series of calculations using different starting points. 

CAP calculations typically use smaller even-scaling factors in generating the diffuse 

basis set than stabilization calculations: Instead of exponent ratios of 2.5, ratios 

close to 1.5 are commonly used. Basis sets with more densely spaced diffuse 

functions are needed in CAP calculations because the basis must represent the 
oscillating wavefunction of the outgoing electron to the CAP cutoff ro and then fora 
certain distance in the CAP region until it has been absorbed.*°? Here, we use 
diffuse sets that match the diffuse exponent range of the stabilization basis sets, in 

other words, the first and last diffuse exponents are identical to those in the 

stabilization and RAC calculations. However, the number of even-tempered 

exponents in this range is increased until the exponent ratio is close to 1.5. 

Following this strategy, the (p + p) and (p + p’) basis sets consist of the core set 
augmented with 10 diffuse p functions at each site, while the (P) and (D) sets 

consist of the core set augmented with 12 exponents ranging from 0.5 to 0.005. All 

diffuse sets have exponent ratios of about 1.52. 

To demonstrate the need for smaller even-scaling factors in CAP calculations, the 
convergence of the resonance energy is studied for the non-symmetric potential F 

and the (P) basis. Seven different (P) sets are constructed where the range of the 

exponents of the supplemental diffuse functions is unchanged (0.5 to 0.005), but 
the number of p-functions increases from six to 12 corresponding to an exponent 

ratio decrease from 2.5 to 1.52. The obtained resonance energies (Fig. 2) show a 
pattern of “Spiraling” convergence in the complex plane in that the length of the 

complex step between subsequent resonance energies continuously decreases from



28meV (six to seven p functions) to finally 3meV (11 to 12 p functions) while at the 

same time the converged resonance energy is approached on a strongly curved 
complex trajectory. Based on this study, we expect the CAP basis set convergence 
to be significantly better than 10 meV. 
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Fig. 2 Resonance energies of the potential defined by parameter set F computed 
with the CAP method and different (P) basis sets with six to 12 p-functions. With 

increasing number of exponents, the exponent ratio drops from 2.5 (six functions) to 
about 1.8 (nine functions) and 1.52 (12 functions). 

3 RESULTS AND DISCUSSION 

In this section, we first discuss the change of the resonance parameters determined 
from the CKV calculations in going from the symmetric parameter set A to the most 
asymmetric set F. Then, we compare the CKV results with those obtained using 
bound state methods, investigate how the stabilization graphs depend on choice of 
basis set, and briefly consider the effect of asymmetric basis sets on the prediction 
of total widths. 

3.1 Trends in Resonance Parameters with Change in Potential Parameters 

Fig. 3 displays the total and partial widths obtained from CKV calculations as a 
function of E, for each model potential considered. (The fitted parameters for each



potential are reported in the SI.) The resonance energy, E-, decreases monotonically 
as the potential moves from symmetric (Set A, far right in the figure) to increasingly 
asymmetric, as expected since the asymmetry is produced in this model by 
deepening one of the wells. Additionally, the p-wave partial width monotonically 
increases from zero for the symmetric potential while the d-wave partial width 
monotonically decreases with growing asymmetry in the potential. Interestingly, for 
asymmetric potentials sets B and C which have both p- and d-wave contributions, 
the leading partial wave does not have the larger partial width. Even for the most 
asymmetric potential considered (Set F), the d-wave partial width cannot be 
considered insignificant. 
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Fig. 3 Partial and total widths vs resonance position from the CKV method for all 
parameter sets A through F. The figure shows total (purple circles), p (blue circles), 
and d (orange circles) widths, with accompanying curves representing cubic fits to 
the respective data. The parameter set is indicated along the horizontal axis. 

The trends in the partial widths track well with changes in shape of the orbital 
involved in electron capture as the potential becomes less symmetric. Fig. 4 shows 
the contour plots of orbitals obtained in the plateau or stabilized region of the 
stabilization graphs obtained with the (p + p) basis set for potential sets A, C, and F. 
The diminution of the orbital at the lower site in each figure, with accompanying 
augmentation at the other, in moving from set A to F corresponds with the change 
from a pure d-wave resonance for set A to a resonance dominated by p-wave 
scattering for set F. These trends are in line with intuitive expectations and show 
the sensitivity of the partial widths to the changes in the shape of the orbital 
involved in electron capture. Similar trends are observed in the stabilized CAP 
orbitals which are reported in the Sl.
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Fig. 4 Contour plots for stabilized orbital obtained with the (p + p) basis set for 
potentials sets A (left), C (middle) and F (right). 

3.2 Resonance Positions, Partial and Total Widths from the Various 

Methods 

Fig. 5 highlights the deviations of the partial widths predicted by each bound state 
method from the corresponding value obtained from the CKV calculations. (The 
complete set of resonance parameters obtained from each method is contained in 
the SI.) The partial widths from the stabilization and CAP methods are in good 
agreement with the CKV results (with the deviations being 10% or less, and typically 
less than 5%) while those for the RAC method can be significantly greater (typically 
less than 20%). Most importantly, all three bound state methods capture the 
essential trends in the absolute as well as relative magnitudes of the partial widths.
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accompanying lines simply connecting the dots to aid the eye. The parameter set is 
indicated along the horizontal axis
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Fig. 6 Comparison of total widths as function of resonance positions from the bound 
state methods to the CKV results. The three panels show resonance width vs 
position for the six parameter sets A to F. From the top, the panels compare 
stabilization (orange), CAP (purple), and RAC (green) results with the CKV (blue) 
method. For the bound state methods both the total width obtained with the (p + p) 
basis (circles connected with solid line) and the total width obtained as sum of the p



and d partial widths (squares connected with dotted line) are shown. The parameter 
set is indicated along the horizontal axis. 

Two approaches to obtaining the total resonance width for each bound state 
method were considered. The first approach was to take the total width to be the 
sum of the partial widths, which is expected to be a good approximation for the 
relatively narrow resonances considered here. This was also the approach used to 
obtain the total width for the CKV calculations. In addition, the bound state 
calculations using the (p + p) basis set provide a direct estimate of the total width. 
The complete set of results is contained in the Sl. Fig. 6 summarizes the results by 
displaying in each panel the CKV total width (from the sum of the partial widths), 
the sum of the partial widths for the given bound state method, and the bound state 
results obtained using the (p + p) basis set. 

There is semi-quantitative agreement between the total widths from the various 

bound state methods and the CKV results. For the stabilization calculations the 
total widths from the sum of the partial widths agrees better with the CKV results 
than the total widths obtained using the (p + p) basis set. The difference between 
the sum and the (p + p) basis set results is not as pronounced for the CAP results. 
For the RAC calculations the agreement is markedly worse for sets A and B. 

3.3 Qualitative analysis of stabilization graphs obtained with different ba- 
sis sets 

Fig. 7, presents stabilization graphs obtained using the (P), (D), (p + p) and (p + 
pil) basis sets for potential set C. Except for set A, for which the (P) basis set gives 
a zero partial width, these stabilization graphs are representative of those found for 
all potentials considered in this study. For both the (P) and (D) basis sets, examina- 
tion of the DC orbitals indicate that they can be approximated as possessing well 
defined angular momentum. In each case, the stabilization graphs for the (P) and 
(D) basis sets therefore show simple two-state avoided crossings that describe the 
coupling of the resonance to the respective continuum, and analytic continuation 
provides the partial width for the appropriate partial wave. 

In contrast, for the (p + p) basis set, three states are involved in the avoided cross- 
ing in the case of the asymmetric potentials. Examination of the wavefunctions of 
the DC solutions that interact with the discrete state confirm that one is dominantly 
p-wave while the other is predominantly d-wave. A cubic GPA is used to fit the en- 
ergies of the three interacting levels (i.e., the discrete state and the p and d partial 
wave DC solutions). Analytic continuation provides an approximation to the total 
width as seen from Fig. 6. 

The stabilization graph for the (p + pil) basis set differs appreciably from that ob- 
tained with the (p + p) basis set. Rather than having three strongly interacting 
roots over a small range of scale parameters, the latter stabilization graph has a se- 
ries of well isolated two root avoided crossings which alternate between narrow and 
broad. Examination of the DC orbitals shows that for this basis set each DC level is 
a strong admixture of p and d waves. As expected from the different shapes of the 
avoided crossings, a range of widths is obtained from analytic continuation using 
different ranges of input data, as discussed in the next section.
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Fig. 7 Stabilization graph for parameter set C showing the eigenvalues (in eV), as a 
function of the scale parameter (z), of the two-site model (blue) and the DC



energies (orange), both in eV, obtained with: (P), (D), (p + p) and (p + pH) basis 
sets in panels a, b, c, and d, respectively. 

3.4 Effect of Asymmetric Basis Sets on the Prediction of Total Widths 

The (p + pit) basis set was designed to incorporate the asymmetry typically found 
in basis sets used in heteronuclear diatomic molecules. For the CAP and RAC 

methods there is little difference between the total widths predicted with the (p + p) 

and (p + pil) basis sets. However, analytic continuation applied to the isolated 
crossings in stabilization graph using the (p + pt) basis set depicted in Fig. 7d 

provides widths that are neither total nor partial widths. For the data presented in 

Fig. 7d the following widths are found for the five crossings from left to right in the 
figure: 0.016, 0.129, 0.020, 0.135 and 0.022 eV. Recall that widths obtained from 

stabilization calculations using the (P), (D), and (p + p) basis sets were 0.064 eV, 

0.074 eV, 0.149 eV, respectively. With the (p + p’) basis set the DC levels and the 

orthogonalized DC (ODC) levels, the latter of which includes orthogonalization to the 

discrete state (and to the bound state), alternate between being localized around 
one potential well or the other. Since the discrete state is localized in the vicinity 
of the potential well at ri, this results in alternating narrow and broad avoided 

crossings in the stabilization graph. The coupling between the wavefunction of the 

discrete state and that of the ODC level is small when the latter is localized in the 
well centered at rm and larger when it is localized around the well centered at rz due 

to the extra lobes in the wave functions of the ODC levels. These results indicate 

that widths derived from stabilization calculations using traditional basis sets for 
molecular calculations need to be carefully checked to determine whether they 

correspond to partial or total widths, or to neither (i.e., to some ill-defined 

combination of the partial widths). 

4 Conclusions 

In this work we consider a series of double-well potentials that support a low-lying 

shape resonance analogous to the #* temporary anions of Nz and CO. For the sym- 
metric potential the resonance is of *%8, symmetry, and is d-wave in character, while 
for the asymmetric potentials the resonance has both p-wave and d-wave contribu- 
tions, with the relative weights of these components depending on the degree of 
asymmetry in the potential. The complex Kohn variational method is used to deter- 
mine the positions and partial widths of the resonance, via fitting the T-matrix ele- 
ments as a function of energy to functional forms based on the work of Blatt and 

Weisskopf.*’ These serve as a basis for assessing the performance of the stabiliza- 
tion, regularized analytic continuation, and the complex absorbing potential meth- 
ods for obtaining the partial and total widths. It is found that all three bound state 

methods, when employed with appropriate basis sets, give partial widths in good 
agreement with the CKV results, with the agreement being better for the stabiliza- 
tion and CAP methods than for the RAC method. Each method also provides good 
estimates of the total widths either by summing the partial widths or by extracting 
the total width directly from calculations using a basis set containing diffuse basis 
functions on each site. We also demonstrate that with certain basis sets, the stabi-



lization method can give widths that do not correspond closely to either a partial 
width or a total width. However, the use of single center expansion for the diffuse 
functions not only allows the determination of partial widths but also simplifies the 
analysis of the stabilization graphs. The ability of all three bound state methods to 
predict partial widths confirms the approach used in Ref. 18 to calculate complex 
potential energy surfaces that include partial widths over a range of geometries, al- 
lowing calculations of differential cross sections for elastic and inelastic scattering. 
While the partial widths rigorously sum to the total width only in the limit of narrow 
resonances, the success of this approach in predicting the absolute magnitude, en- 
ergy dependence and angular dependence of the vibrational excitation of CO via 
the *%s resonance in Ref. 18, suggests that this approximation serves well enough 
for at least moderately broad resonances within experimental resolution. 
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