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Abstract: In this work we study the Il resonances of a two-site model system de-
signed to mimic a smooth transition from the %Iy temporary anion of N; to the °I1
temporary anion of CO. The model system possesses the advantage that scattering
and bound state (L?) methods can be directly compared without obfuscating elec-
tron-correlation effects. Specifically, we compare resonance parameters obtained
with the complex Kohn variational (CKV) method with those from stabilization, com-
plex absorbing potential, and regularized analytical continuation calculations. The
CKV calculations provide p-wave and d-wave widths, the sum of which provides a
good approximation of the total width. Then we demonstrate that the width ob-
tained with modified bound state methods depends on the basis set employed: It
can be the total width, a partial width, or an ill-defined sum of partial widths. Pro-
vided the basis set is chosen appropriately, widths from bound state methods agree
well with the CKV results.



1 Introduction

Anion states lying energetically above the ground state of the neutral molecule can
be probed experimentally by electron scattering®** or, in the case of systems with a
bound ground state anion, by photodetachment spectroscopy.” Such anion states,
termed temporary anions (TAs), are subject to decay by electron detachment.
Despite lifetimes typically as short as a few fs, temporary anions play an important
role in a wide range of processes including electron-induced DNA damage®®and the
operation of certain laser systems.® As such there is considerable interest in
developing robust computational methodologies to model electron capture and
detachment.1%34

A TA can be characterized by a complex resonance energy Eges,

Epes = E; - I%/Z
(1)

where E, is the real part of the resonance energy relative to the neutral molecule
and ¥, the resonance width, is inversely related to the anion lifetime.* There are
various types of TAs. Here our focus is on TAs that result from electron capture
into empty valence orbitals of closed-shell neutral molecules. Such TA states often
dominate low-energy electron-molecule scattering cross sections and are termed
shape resonances, emphasizing the fact that the finite lifetime is due to the shape
of the potential that derives from the combination of short-range forces and angular
momentum contributions.'3¢ In the case of non-zero angular momentum, this leads
to a barrier through which the electron must tunnel in the attachment and
detachment processes. The charge distribution of the orbital involved in the
electron capture is crucial in determining the angular distribution of resonant
electron scattering.

As noted above, several computational methods have been introduced for
characterizing temporary anions and other resonances. One class of methods
including the complex Kohn variational (CKV) method and the R-Matrix methods?*%2
is based on scattering theory and provides quantities such as the T-matrix and
eigenphase sum. These quantities lead directly to cross sections and can be used to
calculate resonance energy and width.

Accurate characterization of resonances of polyatomic molecules with scattering
methods, however, is computationally very demanding due to the role of electron
correlation. State-of-the-art scattering calculations tend to use configuration
interaction treatments which make it hard to treat electron correlation effects in the
ground state neutral and the anionic states in a balanced manner. For this reason,
many computational studies of temporary anions of polyatomic molecules have
employed modified bound state methods employing L? wave functions. These
include the stabilization method,*>?! regularized analytic continuation (RAC),%%** and
the complex absorbing potential (CAP) method.?-° Bound state methods have the
advantage of being able to use high-level electronic structure algorithms to treat
the anion system, allowing for accurate treatment of correlation and exchange
effects. In particular, methods such as equation of motion coupled cluster and



algebraic diagrammatic construction allow for a balanced treatment of electron
correlation in the neutral and anionic states. Details of the CKV, stabilization, RAC,
and CAP methods will be given below.

For the well-studied 2\%9 valence anion of N;, bound state!®17:20.29.32:34 3nd scattering
calculations carried out with high level treatment of electron correlation!* have been
found to give similar resonance parameters. Yet, as will be discussed below, this is
not necessarily the case for the resonance widths for heteronuclear diatomic
molecules or large organic molecules such as anthracene for which multiple partial
waves contribute to the various TA resonances.?’

In this work we consider a one-electron model system for which we can vary the
asymmetry of the potential and for which we can apply both scattering and bound
state methods of treating a resonance, facilitating comparison of resonance
parameters obtained from the two approaches. In addition, use of a one-electron
model eliminates effects of electron correlation on the resonance parameters and
allows the use of highly flexible one-particle basis sets. The model potentials will be
used in calculations extracting both partial (angular momentum dependent) and
total widths using the various approaches. The direct comparison of three bound
state methods and a scattering-based approach on the same non-spherical
potential, with basis sets that give well-converged results, is a distinctive
contribution to the field.

For spherical target systems the scattering problem is naturally treated in terms of
partial waves, for which the electron orbital angular momentum, characterized by
the quantum number 1, is a good quantum number. However, for molecules 1 is not
a good quantum number and more than one value of 1 contributes to the resonant
scattering process. For small highly symmetric molecules the lowest, symmetry-
allowed value of 1 (1 = 2 in the case of the 2X5, valence anion of N,) dominates the
scattering via the lowest energy shape resonance. However, in general two or more
partial waves are important, with the shape of the orbital involved in electron
capture being a major factor in determining the partial widths. For example, for the
2% shape resonance of CO- inclusion of both p and d partial waves is necessary for
accurate calculation of the differential scattering cross section and vibrational
excitation cross sections in the energy region of resonance. **3*** This can be seen
qualitatively from examination of the shape of the lowest energy valence ¥* orbital
of neutral CO: Because this orbital has different contributions of the p orbitals on
the two atomic sites, it has sizable 1 = 1 and 2 components. In polyatomic
molecules, such as anthracene, even though the overall symmetry is high, there
can be strong admixture of several | values in partial wave expansions of the low-
lying §* orbitals.?” Moreover, in a many-electron system, electron correlation effects
impaét the relative importance of the various partial waves.

In resonances where two or more partial waves are important, prediction of the
angular distribution of the scattered electrons requires a weighted contribution from
the relevant partial waves. Chang presented a methodology, based on frame
transformation theory, that determines angular distributions without the assumption
that L is a good quantum number.*** Implementation of Chang's approach requires



l-dependent probabilities for electron capture (and detachment) that are of the form

ZF_’ , where T, is the partial width associated with the " partial wave. For narrow
T

resonances, the individual partial widths sum to I', the total width in eqn (1).%3
Although it is usually assumed that the leading partial wave has the greatest partial
width, this is not necessarily the case as shown in Ref. 18.

Surprisingly, in most studies of TAs using bound state methods the nature of the
widths obtained has not been addressed. We note that Bentley and Chipman
considered complexities associated with extracting widths from stabilization
calculations for a resonance that can decay into different states.** Specifically, they
showed that depending on how the calculations were carried out, the widths
obtained were neither partial nor total. Moreover, we have found in applying the
stabilization method as normally employed to polyatomic molecules very different
widths result depending on the range of data used, suggesting that the calculations
may not give accurate total widths in all cases, but rather some combination of
partial widths with improper weighting. This suggests that the issue raised by
Bentley and Chipman is present in systems in which different partial waves are
important in electron capture and detachment.

Stabilization calculations as usually carried out on molecules employ diffuse atomic
basis functions of the appropriate symmetry on all relevant atoms. In the 2016
study of the 2X¢ resonance of CO" in Ref. 18 it was demonstrated that by employing
instead single center expansions of diffuse p or diffuse d functions in the one
particle basis set used in the calculations, separate p-wave and d-wave widths could
be obtained.

To further investigate the issues raised above, we consider a model potential
consisting of two spherical Gaussian wells. When the wells are identical, the system
serves as a model for the 25%s, TA state of N, for which the resonance is well
characterized as d-wave. By making the two wells ngnequivalent, both p-wave and
d-wave character become important, similar to the 2%¢ TA state of CO. The model
system employed permits tuning the degree of asymmetry and, hence, the relative
importance of p- and d-wave components. As a result, it is relevant for describing
changes that could occur upon geometric distortion or describing the impact of
mixing of partial waves in an unfilled orbital in a polyatomic molecule. The lowest
energy resonance of this model potential is characterized using the CKV,
stabilization, CAP, and RAC methods.

The goals of the current study are (1) to investigate whether the approach used
previgusly in conjunction with the stabilization method to obtain partial widths of
the 2%%¢ TA state of CO* also works with other bound state methods, such as CAP
and RAC, (2) to explore whether the partial widths obtained from bound state
methods agree with those from scattering calculations, and (3) to analyze the
sensitivity of the widths from stabilization calculations to the choice of basis set.

2 Methodology



To examine the nature of the resonance widths obtained from various theoretical
methods we employ a one-electron system with two attractive Gaussian wells. Site
1 is located at (0O, 0, 1) bohr, and site 2 is located at (0O, 0, -1) bohr with position
vectors r; and r;, respectively. The potential has the form

V=Vye P eve M @)

Vo: is fixed at -36.135 hartrees (En) and ; is fixed at -6.0 bohr2. The parameters for
site 2 are systematically varied, taking the values in Table 1.

TABLE 1. Parameter sets for site 2 in the
model potential defined by equation 2.

Set Voz (En) B. (bohr=)
A -36.13500 ©.000
B -36.13995 5.960
C -36.14490 5.920
D -36.14985 5.880
E -36.15480 5.875
F -36.15975 5.850

Set A corresponds to a symmetric double well potential, while sets B through F are
increasingly more asymmetric double well potentials. Only states of ¥ symmetry
are considered. With the given parameters, the potential supports one bound state
of %¢ symmetry and a low-lying &¢ shape resonance which is the focus of this study.

The system is treated with four different theoretical methods described below.
2.1 Complex Kohn variational method

We consider resonance parameters obtained from the CKV method!%*?to be most
definitive as this method explicitly considers the continuum, thus avoiding the need
for additional steps, e.g., analytic continuation or modifying the potential, required
in the bound state methods to obtain the complex resonance energy. For the CKV
calculations the outgoing trial wave function is

wm-a, _Z {fzb[’”]51b10m+T1bzw,gzb[’”]]Ylmm
Lot Mo~

1. r

M(r) +Z Ck,i(pk,i(ri] (3)
i

where the Y,,[?| are real spherical harmonics, the ¢, ,(r;| are Gaussian type basis
functions centered at site i/, and r; is the position vector relative to the origin. f;and
g, are the regular and outgoing Ricatti-Bessel functions, respectively. The wave
function in the region where the potential is nonnegligible is described by 15 even-
tempered Gaussian p functions starting at exponent 700, decreasing by a factor of
2.5, and centered at both ri and r.. For the model potentials of interest, well
converged results are obtained ysing only L values of 1, 2, and 3 and m was
restricted to 1, consistent with Xt symmetry. The T, matrix elements in eqn (3),
found as variational parameters in the CKV calculation, can be used to calculate
differential and integral cross sections. The inclusion of the subscripts on quantum
numbers indicating electron capture (in) or detachment (out) are used here to



emphasize a simple physical picture, in lieu of the more traditional L and UH. In the
context of the frame transformation approach of Chang*®*!, matrix elements for
which [, #1,, imply a change in the orbital angular momentum of the electron during
the scattering event. In real, molecular situations the total angular momentum is
conserved by a concomitant change in the rotational angular momentum, with the
small change in the magnitude of the momentum of the scattered electron being
ignored because it is not resolvable in typical experiments. Additional details of the
CKV method can be found in reference 12.

The extraction of the resonance parameters from the CKV data proceeds via Breit-
Wigner approximation. Taylor*> showed that the Breit-Wigner approximation applied
to a resonance formed by capture of the 1, partial wave and decaying via the Lo
partial wave (assuming the magnitude of the entrance and exit momentum of the
electron is the same) leads to the following form for the absolute square of the

fiof
P 2\ 2

scattering amplitude,

|flh,lm ) (4)

FUE—E

where I, is the partial width for li, governing the probability an electron with that
orbital angular momentum being captured and I'; is the analogous partial width for
electron detachment. The total width, 7, in the present work is taken as the sum of
the sum of the partial widths, which is rigorously true only for narrow resonances.
In the present work li, and lo. are limited to being either one or two, since for the

potentials of interest Tss3, T3 and T3 are negligible over the range of energies
considered.
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Thus, at each energy |Tu|? |T2|% and |T22|?can be expressed as a function of the
resonance energy and partial widths, assuming validity of the Breit-Wigner
expression.

As demonstrated by Fano?* as well as Blatt and Weisskopf*’, the interaction of a
discrete state with two autoionization continua can alter the shape of peaks arising
from such states in spectra and scattering cross sections when the entrance and
exit channels are identical. We find that the application of this approach adequately
accounts for the pronounced asymmetry in the peak shape of the |T11|? vs E curve
shown in Fig. 1, as well as the lesser asymmetry in the shape of the |Tx;|? vs E curve.
Following equation VIII.7.20 of Ref. 47 an l-dependent parameter, 6.4, is added for



the case of I,=I,,, which controls the asymmetry. Noting that I';=I", =I';, eqn (5)

can be modified for |T11|? and |T2.| as follows:
T, ’
2 et (6)
E—E +il'/2 2

2
.=

For each set of potential parameters, the CKV data for the absolute squares of all
three energy-dependent T-matrix elements are simultaneously least squares fit (|
T12|? to the functional form given by egn (5) and |Tu:|? and |T;|? to that of eqn (6))
and values for E,, I'}, I';, 8pg.1, 81g. are obtained, allowing direct comparison with the
complex resonance energies obtained from the bound state methods. The range of
energy values considered in the fit are limited to E,—4 ' to E,.+41I'. Using an
expanded range from E,—61I" to E,.+61I" has negligible impact on the resonance
parameters. For set A, which has no p-wave contribution, only the |T»|? vs E curve
was fit, with the assumption that I';=0.

Fig. 1 shows |Tup|? |Taa|? @nd |Tpa|? @s a function of energy for potential parameter
set C, wherel = 1 and 2 have been replaced by p and by d, respectively. All three
quantities display a pronounced peak near E, = 2.50 eV, due to the resonance. The
fits, shown as solid lines, are in excellent agreement with the CKV results. The
asymmetry in the |Typ|? and |Tu|? curves is accounted for by the background term
in eqn (6), as are the small difference in the peak positions in each of the curves.
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Fig. 1 |Typ|? (blue dots), |Tpa|? (orange squares), and |Tq4|? (green triangles) obtained
from CKV calculations for potential set C as a function of energy (eV). Also shown
are the fits obtained with egns (5) and (6) for |Ty|? (blue line), |Tya|? (orange line),
and |Tq|? (green line).

2.2 Bound state methods

Straightforward application of standard quantum chemistry methods to TAs is not
possible when using flexible basis sets due to the presence of discretized continuum
(DC) solutions that fall energetically below and in the same energy range as the



temporary anion of interest. The DC solutions correspond to a free electron as
described by the finite basis set. Thus, with flexible basis sets, standard bound state
methods will collapse onto a DC level. The stabilization, CAP, and RAC methods are
all designed to avoid this problem.

The variant of the stabilization method employed here has been described in detail
previously and involves the calculation of the energies of multiple eigenvalues of
the appropriate symmetry of the excess electron system as a function of a scale
parameter, z, that controls the spatial extent of the basis set.'’*82! Typically, the
scale factor is only applied to the most diffuse basis functions of the appropriate
symmetry. A plot of the eigenvalues vs z displays avoided crossings that can be
interpreted as resulting from the mixing of a relatively compact diabatic discrete
state, the energy of which is only weakly dependent on the scale parameter, and DC
solutions whose energies depend strongly on the scale parameter. A variety of
methods have been introduced to extract resonance parameters from stabilization
graphs. 164831 Determination of the complex resonance energy can be accomplished
by analytically continuing the energies as a function of z into the complex plane and

locating complex stationary points at which ((11_220' This involves assuming a

functional form for E in terms of z and fitting the data points on the stabilization
graph to determine the parameters in this function. 1549 Substitution of the
appropriate stationary point into the expression for E gives the complex resonance
energy. While one can employ data remote from the avoided crossing using Padé
approximants for the analytic continuation,>?>3 in our applications we have focused
on data points near an avoided crossing and have used generalized Padé
approximants (GPAs),'*>* which build in the branch point structure.

For isolated avoided crossings, involving two eigenvalues, the GPAs used in this
work are of the form:

Plz]E*+Qlz]E+Rlz|=0 (7)

where P, Q, and R are polynomials in z with the coefficients being determined by
fitting two roots of a stabilization graph in the vicinity of an avoided crossing. The
order of the GPA is specified by the order of the three polynomials, i.e., by (np, ng,
n:). Based on prior studies,>>*® we use ny = n, + 1 and n, = nqy +2, in which case the
simplest GPA would be designated (0,1,2). In this work we used GPAs up to (4,5,6),
using different sets of data points on two curves involved in an avoided crossing in
least squares fitting of the coefficients in the three polynomials and averaging the
results. When using high order GPAs, the AC procedure can lead to spurious
stationary points. These are identified by their sensitivity to the choice of input
points and are excluded from the averaging. For crossings involving three roots egn
(7) was extended to include terms that are cubic in E. In such cases the complex
stationary energy converges with respect to the order of polynomial by the (5,6,7,8)
GPA.

In the RAC procedure?®?* an attractive term multiplied by a positive coupling
constant A is added to the potential. For sufficiently large values of A the addition of



this term converts the resonance into a bound state. To determine the resonance
parameters, one expresses A as a rational fraction fitting the coefficients in this
expression to values of the momentum k for which the anion is bound. One then
determines the k value at which A = 0 to determine the complex resonance energy.
we use the following equation from Barta and Horacek.??

(K2+2O{2K+(X4+B2)(1+52K)

Cot+fenl2at s ot B

Ak|=2 (8)

where k= ik, and a, 8, and § are parameters determined in the fitting procedure, and
Ao is the value of A for which the eigenvalue of interests changes from bound to
unbound in the fit.

In the present application of the RAC method to the double well potentials
considered here we add an attractive Gaussian of the form — )¢ %" at the origin.
Calculations are carried out for A values ranging from A, to 3 with a step of 0.01.
These results were used to determine optimal ranges of data points for the various
RAC calculations which will be described below after the various basis sets used for
the calculations are presented.

In the CAP method, an absorbing or negative imaginary potential -inW is added to
the Hamiltonian:

Hep=H—inW (9)

Here, n is a strength parameter, and W is normally a real potential that vanishes in
the inner region, starts to grow at a cutoff radius ro, and continues to grow with
increasing distance from the system.?>?’ However, CAPs with complex W have been
used.?’8 Here we use a Voronoi CAP>° with real W:

W =( (10)

where ry is the distance from the nearest site (1 or 2) and r, = 3 bohr (see egn (4) in
Ref. 58). Integrals of Voronoi CAPs must be evaluated numerically, and at every
basis set site, a Lebedev-Teutler grid® with 770 angular and 199 radial points is
used.

We note that in our CAP calculations the basis set is explicitly split into a core set
and a DC-like set (details are provided below). CAP matrix elements involving core
functions are set to zero; the CAP acts only on the DC-like basis functions of the
respective basis sets. While the matrix elements affected by this procedure are very
small, it helps to reinforce the idea that the CAP should only act in the asymptotic
region so that the method is less dependent on the particular value of r.

In CAP calculations with complete basis sets, DC states appear as a discrete string
that has been rotated into the fourth quadrant of the complex energy plane, and
provided the Siegert energy has been uncovered by this rotation, it appears as an
isolated eigenvalue. However, with finite basis sets, the picture is less tidy: For n =
0 all eigenvalues start on the real axis, and as n is increased all continuum
eigenvalues migrate into the fourth quadrant. Resonances can be identified by the



relatively small rate of change, |dE(n)/d In n|, of their complex trajectories, and the
best representation of the resonance eigenvalue is found where this derivative of
the resonance trajectory shows a minimum.?>?”-2 Resonance energies can be
corrected for artificial reflections of the outgoing wave by the CAP?*, but
unfortunately these corrections tend to enhance basis set errors, and here no
correction was applied.

For the CAP calculations, the overlap matrix, the kinetic energy matrix, the
integration grid, and the atomic-orbital to symmetry-orbital transformation matrices
are supplied by the Python interface of Psi4 library functions, version 1.7.% The
complex symmetric matrix representing the CAP Hamiltonian is then diagonalized
using scientific Python (scipy).®?

In the present study the bound state calculations are carried out with four different
basis sets classes that differ slightly for the different bound state methods. All of
the basis sets have, as a description of the molecular region, the first 10 even-
tempered Gaussian functions used in the CKV calculations, with exponents ranging
from 700 to 0.1835008 with successive exponents decreasing by a factor of 2.5. l.e.,
the exponents are given by 700/(2.5)", where n = 1 - 10. This set of basis functions
is suitable for describing the bound ¢ state as well as the compact part of the
resonance wavefunction. We thus refer to this set as core functions. As the core
functions are the same for all basis sets, they will not be used as part of the basis
set designations. The core basis is augmented either with diffuse p functions at
each site, designated as (p + p), diffuse p functions located at the origin,
designated as (P) or diffuse d functions located at the origin, designated as (D). The
fourth basis set, designated as (p + p’), includes the same core functions at each
site and the same diffuse p functions at the 1 site as the (p + p) basis set.

However, in the (p + p') basis set the exponents of the diffuse functions at site 2 are
obtained by multiplying each of the diffuse exponents at site 1 by 1.25. This basis
set introduces asymmetry in the diffuse basis functions, more realistically
representing the situation in a heteronuclear diatomic in which the basis sets on the
atoms would differ. While in the application of the stabilization method to a
heteronuclear diatomic molecule the core basis functions associated with the two
atoms would also differ, these were kept identical on the two sites to focus attention
on the effect of asymmetry in the DC states due to the diffuse functions.

Table 2 summarizes the details of the construction of each basis set. The
stabilization and RAC methods use the same basis sets. The (p + p) basis set for
these methods is identical to the CKV basis set with five diffuse p on each site,
continuing the progression in the set of core functions. The (p + pI) basis set also
adds five diffuse p functions at each site with the asymmetry mentioned above.
Ideally, only the additional diffuse functions in the (p + p) and (p + p’) basis sets
would be scaled in the stabilization method. However, we have found it necessary
to also scale the outermost most diffuse core function on each site in the
stabilization calculations with these two basis sets. The need for this can be seen
from consideration of potential set B for which the resonance interacts with the 7™ -
11 DC states. Since only ten DC solutions are derived from the five diffuse
functions on each site, in the stabilization calculations with the (p + p) and (p + p')



basis sets we also scale the most diffuse core function on each site. The (P) basis
set has an even-tempered set of six p functions at the origin starting with an
exponent of 0.5 and with consecutive exponents decreasing by a factor of 2.5. The
(D) basis set is analogous to the (P) basis set except that the basis functions at the
origin are d functions. We note that in the stabilization calculations with the (P) and
(D) basis sets the exponents of the most diffuse core basis functions are not scaled.

Table 2. Basis set designations. @°
(p + p) (p + pil) (P) (D)
5p(1) + 5p(2)  5p(1) + 5piH(2) 6p° 6d°

@ All basis sets include 10 core functions on each site as described in the text. Only
the number and type of the supplemental diffuse functions are indicated.

b Listings reflect basis sets used in stabilization and RAC calculations while the
number of functions are doubled for CAP calculations.

¢ Functions located at the origin.

For potentials B-F the RAC calculations with the (P), (p + p) (p + p’) basis sets used
data points in the range of Ao to A + 0.35 in fitting eqn (8), while the calculations
with the (D) basis set used data points in the range of Ao + 0.08 to A; + 0.43 in
fitting eqn (8). The latter choice of data points was also used for the symmetric
potential A, for both the (D) and (p + p) basis sets. The choices of data points were
established from a series of calculations using different starting points.

CAP calculations typically use smaller even-scaling factors in generating the diffuse
basis set than stabilization calculations: Instead of exponent ratios of 2.5, ratios
close to 1.5 are commonly used. Basis sets with more densely spaced diffuse
functions are needed in CAP calculations because the basis must represent the
oscillating wavefunction of the outgoing electron to the CAP cutoff rp and then for a
certain distance in the CAP region until it has been absorbed.®*% Here, we use
diffuse sets that match the diffuse exponent range of the stabilization basis sets, in
other words, the first and last diffuse exponents are identical to those in the
stabilization and RAC calculations. However, the number of even-tempered
exponents in this range is increased until the exponent ratio is close to 1.5.
Following this strategy, the (p + p) and (p + p’) basis sets consist of the core set
augmented with 10 diffuse p functions at each site, while the (P) and (D) sets
consist of the core set augmented with 12 exponents ranging from 0.5 to 0.005. All
diffuse sets have exponent ratios of about 1.52.

To demonstrate the need for smaller even-scaling factors in CAP calculations, the
convergence of the resonance energy is studied for the non-symmetric potential F
and the (P) basis. Seven different (P) sets are constructed where the range of the
exponents of the supplemental diffuse functions is unchanged (0.5 to 0.005), but
the number of p-functions increases from six to 12 corresponding to an exponent
ratio decrease from 2.5 to 1.52. The obtained resonance energies (Fig. 2) show a
pattern of “spiraling” convergence in the complex plane in that the length of the
complex step between subsequent resonance energies continuously decreases from



28meV (six to seven p functions) to finally 3meV (11 to 12 p functions) while at the
same time the converged resonance energy is approached on a strongly curved
complex trajectory. Based on this study, we expect the CAP basis set convergence
to be significantly better than 10 meV.
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Fig. 2 Resonance energies of the potential defined by parameter set F computed
with the CAP method and different (P) basis sets with six to 12 p-functions. With
increasing number of exponents, the exponent ratio drops from 2.5 (six functions) to
about 1.8 (nine functions) and 1.52 (12 functions).

3 RESULTS AND DISCUSSION

In this section, we first discuss the change of the resonance parameters determined
from the CKV calculations in going from the symmetric parameter set A to the most
asymmetric set F. Then, we compare the CKV results with those obtained using
bound state methods, investigate how the stabilization graphs depend on choice of
basis set, and briefly consider the effect of asymmetric basis sets on the prediction
of total widths.

3.1 Trends in Resonance Parameters with Change in Potential Parameters

Fig. 3 displays the total and partial widths obtained from CKV calculations as a
function of E, for each model potential considered. (The fitted parameters for each



potential are reported in the Sl.) The resonance energy, E,, decreases monotonically
as the potential moves from symmetric (Set A, far right in the figure) to increasingly
asymmetric, as expected since the asymmetry is produced in this model by
deepening one of the wells. Additionally, the p-wave partial width monotonically
increases from zero for the symmetric potential while the d-wave partial width
monotonically decreases with growing asymmetry in the potential. Interestingly, for
asymmetric potentials sets B and C which have both p- and d-wave contributions,
the leading partial wave does not have the larger partial width. Even for the most
asymmetric potential considered (Set F), the d-wave partial width cannot be
considered insignificant.
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Fig. 3 Partial and total widths vs resonance position from the CKV method for all
parameter sets A through F. The figure shows total (purple circles), p (blue circles),
and d (orange circles) widths, with accompanying curves representing cubic fits to
the respective data. The parameter set is indicated along the horizontal axis.

The trends in the partial widths track well with changes in shape of the orbital
involved in electron capture as the potential becomes less symmetric. Fig. 4 shows
the contour plots of orbitals obtained in the plateau or stabilized region of the
stabilization graphs obtained with the (p + p) basis set for potential sets A, C, and F.
The diminution of the orbital at the lower site in each figure, with accompanying
augmentation at the other, in moving from set A to F corresponds with the change
from a pure d-wave resonance for set A to a resonance dominated by p-wave
scattering for set F. These trends are in line with intuitive expectations and show
the sensitivity of the partial widths to the changes in the shape of the orbital
involved in electron capture. Similar trends are observed in the stabilized CAP
orbitals which are reported in the SI.
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Fig. 4 Contour plots for stabilized orbital obtained with the (p + p) basis set for
potentials sets A (left), C {(middle) and F (right).

3.2 Resonance Positions, Partial and Total Widths from the Various
Methods

Fig. 5 highlights the deviations of the partial widths predicted by each bound state
method from the corresponding value obtained from the CKV calculations. (The
complete set of resonance parameters obtained from each method is contained in
the Sl.) The partial widths from the stabilization and CAP methods are in good
agreement with the CKV results (with the deviations being 10% or less, and typically
less than 5%) while those for the RAC method can be significantly greater (typically
less than 20%). Most importantly, all three bound state methods capture the
essential trends in the absolute as well as relative magnitudes of the partial widths.
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and d partial widths (squares connected with dotted line) are shown. The parameter
set is indicated along the horizontal axis.

Two approaches to obtaining the total resonance width for each bound state
method were considered. The first approach was to take the total width to be the
sum of the partial widths, which is expected to be a good approximation for the
relatively narrow resonances considered here. This was also the approach used to
obtain the total width for the CKV calculations. In addition, the bound state
calculations using the (p + p) basis set provide a direct estimate of the total width.
The complete set of results is contained in the Sl. Fig. 6 summarizes the results by
displaying in each panel the CKV total width (from the sum of the partial widths),
the sum of the partial widths for the given bound state method, and the bound state
results obtained using the (p + p) basis set.

There is semi-quantitative agreement between the total widths from the various
bound state methods and the CKV results. For the stabilization calculations the
total widths from the sum of the partial widths agrees better with the CKV results
than the total widths obtained using the (p + p) basis set. The difference between
the sum and the (p + p) basis set results is not as pronounced for the CAP results.
For the RAC calculations the agreement is markedly worse for sets A and B.

3.3 Qualitative analysis of stabilization graphs obtained with different ba-
sis sets

Fig. 7, presents stabilization graphs obtained using the (P), (D), (p + p) and (p +
pIl) basis sets for potential set C. Except for set A, for which the (P) basis set gives
a zero partial width, these stabilization graphs are representative of those found for
all potentials considered in this study. For both the (P) and (D) basis sets, examina-
tion of the DC orbitals indicate that they can be approximated as possessing well
defined angular momentum. In each case, the stabilization graphs for the (P) and
(D) basis sets therefore show simple two-state avoided crossings that describe the
coupling of the resonance to the respective continuum, and analytic continuation
provides the partial width for the appropriate partial wave.

In contrast, for the (p + p) basis set, three states are involved in the avoided cross-
ing in the case of the asymmetric potentials. Examination of the wavefunctions of
the DC solutions that interact with the discrete state confirm that one is dominantly
p-wave while the other is predominantly d-wave. A cubic GPA is used to fit the en-
ergies of the three interacting levels (i.e., the discrete state and the p and d partial
wave DC solutions). Analytic continuation provides an approximation to the total
width as seen from Fig. 6.

The stabilization graph for the (p + pl) basis set differs appreciably from that ob-
tained with the (p + p) basis set. Rather than having three strongly interacting
roots over a small range of scale parameters, the latter stabilization graph has a se-
ries of well isolated two root avoided crossings which alternate between narrow and
broad. Examination of the DC orbitals shows that for this basis set each DC level is
a strong admixture of p and d waves. As expected from the different shapes of the
avoided crossings, a range of widths is obtained from analytic continuation using
different ranges of input data, as discussed in the next section.
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Fig. 7 Stabilization graph for parameter set C showing the eigenvalues (in V), as a
function of the scale parameter (z), of the two-site model (blue) and the DC



energies (orange), both in eV, obtained with: (P), (D), (p + p) and (p + pH) basis
sets in panels a, b, ¢, and d, respectively.

3.4 Effect of Asymmetric Basis Sets on the Prediction of Total Widths

The (p + pId) basis set was designed to incorporate the asymmetry typically found
in basis sets used in heteronuclear diatomic molecules. For the CAP and RAC
methods there is little difference between the total widths predicted with the (p + p)
and (p + pIl) basis sets. However, analytic continuation applied to the isolated
crossings in stabilization graph using the (p + pld) basis set depicted in Fig. 7d
provides widths that are neither total nor partial widths. For the data presented in
Fig. 7d the following widths are found for the five crossings from left to right in the
figure: 0.016, 0.129, 0.020, 0.135 and 0.022 eV. Recall that widths obtained from
stabilization calculations using the (P), (D), and (p + p) basis sets were 0.064 eV,
0.074 eV, 0.149 eV, respectively. With the (p + p’) basis set the DC levels and the
orthogonalized DC (ODC) levels, the latter of which includes orthogonalization to the
discrete state (and to the bound state), alternate between being localized around
one potential well or the other. Since the discrete state is localized in the vicinity
of the potential well at r;, this results in alternating narrow and broad avoided
crossings in the stabilization graph. The coupling between the wavefunction of the
discrete state and that of the ODC level is small when the latter is localized in the
well centered at r; and larger when it is localized around the well centered at r; due
to the extra lobes in the wave functions of the ODC levels. These results indicate
that widths derived from stabilization calculations using traditional basis sets for
molecular calculations need to be carefully checked to determine whether they
correspond to partial or total widths, or to neither (i.e., to some ill-defined
combination of the partial widths).

4 Conclusions

In this work we consider a series of double-well potentials that support a low-lying
shape resonance analogous to the &* temporary anions of N, and CO. For the sym-
metric potential the resonance is off X8, symmetry, and is d-wave in character, while
for the asymmetric potentials the resonance has both p-wave and d-wave contribu-
tions, with the relative weights of these components depending on the degree of
asymmetry in the potential. The complex Kohn variational method is used to deter-
mine the positions and partial widths of the resonance, via fitting the T-matrix ele-
ments as a function of energy to functional forms based on the work of Blatt and
Weisskopf.*” These serve as a basis for assessing the performance of the stabiliza-
tion, regularized analytic continuation, and the complex absorbing potential meth-
ods for obtaining the partial and total widths. It is found that all three bound state
methods, when employed with appropriate basis sets, give partial widths in good
agreement with the CKV results, with the agreement being better for the stabiliza-
tion and CAP methods than for the RAC method. Each method also provides good
estimates of the total widths either by summing the partial widths or by extracting
the total width directly from calculations using a basis set containing diffuse basis
functions on each site. We also demonstrate that with certain basis sets, the stabi-



lization method can give widths that do not correspond closely to either a partial
width or a total width. However, the use of single center expansion for the diffuse
functions not only allows the determination of partial widths but also simplifies the
analysis of the stabilization graphs. The ability of all three bound state methods to
predict partial widths confirms the approach used in Ref. 18 to calculate complex
potential energy surfaces that include partial widths over a range of geometries, al-
lowing calculations of differential cross sections for elastic and inelastic scattering.
While the partial widths rigorously sum to the total width only in the limit of narrow
resonances, the success of this approach in predicting the absolute magnitude, en-
ergy dependence and angular dependence of the vibrational excitation of CO via
the 2Xs resonance in Ref. 18, suggests that this approximation serves well enough
for at least moderately broad resonances within experimental resolution.

We note also that the approach presented here provides a solution to a major prob-
lem in applying the stabilization method to polyatomic molecules such as butadiene
and anthracene for which different avoided crossings can give very different widths.
This problem is caused by the fact that the DC levels involved in the various
avoided crossings having different weights on the relevant partial waves. By using
single center expansions of diffuse functions in specific angular momentum one can
obtain well defined partial widths that can be summed to give the total widths.

Conflicts of Interest: There are no conflicts of interest to declare.

Acknowledgments: T.S. gratefully acknowledges support from the National Science
Foundation under Grant No. 2303652. S.S. acknowledges support from a Mellon Fel-
lowship from the University of Pittsburgh. We thank W. C. McCurdy for helpful dis-
cussions concerning the complex Kohn variational procedure. We also thank J.
Nichols for work on the complex Kohn code while he was supported by a Swezey
Summer Research grant from Gove City College.



References

1. G. Schulz, Resonances in Electron Impact on Diatomic Molecules, Rev. Mod.
Phys., 1973, 45, 423-486.

2. K. D. Jordan and P. D. Burrow, Temporary Anion States of Polyatomic Hydro-
carbons, Chem. Rev., 1987, 87, 557-588.

3. J. Simons, Molecular Anions, J. Phys, Chem. A, 2008, 112, 6401-6511.

4. J. Simons, Molecular Anions Perspective, J. Phys. Chem. A, 2023, 127, 3940-
3957.

5. M. Rankovi¢, P. Nag, C.S. Anstéter, G. Mensa-Bonsu, T. P. Kumar, J. R. Verlet
and ). Fedor, Resonances in Nitrobenzene Probed by the Electron Attachment
to Neutral and by the Photodetachment from Anion, J. Chem Phys., 2022,
157, 064302.

6. Z.Li, Y. Zheng, P. Cloutier, L. Sanche and J.R. Wagner, Low Energy Electron In-
duced DNA Damage: Effects of Terminal Phosphate and Base Moieties on the
Distribution of Damage J. Am. Chem. Soc., 2008, 130, 5612-5613.

7. X. Wang, H. Liao, W. Liu, Y. Shao, Y. Zheng and L. Sanche, DNA Protection
against Damages Induced by Low-Energy Electrons: Absolute Cross Sections
for Arginine-DNA Complexes, J. Phys. Chem. Lett., 2023, 14, 5674-5680.

8. G. A. Cooper, C. ). Clark and J. R. Verlet, Low-Energy Shape Resonances of a
Nucleobase in Water, J. Am. Chem. Soc., 2023, 145, 1319 -1326.

9. D. C. Tyte, Carbon Dioxide Lasers, Advances in Quantum Electronics, 1970, 1.

10.T. N. Rescigno, C. W. McCurdy, A. E. Orel and B. H. Lengsfield, The Complex
Kohn Variational Method, Computational Methods for Electron—Molecule Colli-
sions, 1995, 1-44.

11.B. Schneider, R-Matrix Theory for Electron-Atom and Electron-Molecule Colli-
sions Using Analytic Basis Set Expansions, Chem. Phys. Lett., 1975, 31, 237-
241.

12.C. W. McCurdy and T. N. Rescigno, Collisions of Electrons with Polyatomic Mol-
ecules: Electron-Methane Scattering by the Complex Kohn Variational Method,
Phys. Rev. A, 1989, 39, 4487-4493.

13.R. F. Da Costa, M. T. Varella, M. H. Bettega and M. A. Lima, Recent Advances in
the Application of the Schwinger Multichannel Method with Pseudopotentials
to Electron-Molecule Collisions, Euro. Phys. J. D, 2015, 69, 1-24.



14.H. Su, X. Cheng, B. Cooper, J. Tennyson and H. Zhang, Electron-Impact High-
Lying N> Resonant States, Phys. Rev. A, 2022, 105, 062824.

15.A. U. Hazi and H. S. Taylor, Stabilization Method of Calculating Resonance En-
ergies: Model Problem, Phys. Rev. A, 1970, 1, 1109-1120.

16.). S. Chao, M. F. Falcetta and K. D. Jordan, Application of the Stabilization
Method to the N> (1 %My) and Mg~(1 ?P) Temporary Anion States, J. Chem Phys.,
1990, 93, 1125-1135.

17.M. F. Falcetta, L. A. DiFalco, D. S. Ackerman, J. C. Barlow and K.D. Jordan, As-
sessment of Various Electronic Structure Methods for Characterizing Tempo-
rary Anion States: Application to the Ground State Anions of N, C;Hs, CyHa,
and Cg¢Hs, J. Phys. Chem. A, 2014, 118, 7489-7497.

18.M. F. Falcetta, M. C. Fair, E. M. Tharnish, L. M. Williams, N. Hayes and K. D. Jor-
dan, Ab Initio Calculation of Electron Impact Vibrational Excitation of CO via
the °IM Shape Resonance, /. Chem. Phys., 2016, 144, 104303:1-8.

19.N. Moiseyev, Quantum Theory of Resonances: Calculating Energies, Widths
and Cross-Sections by Complex Scaling, Phys Rep, 1998, 302, 212-293.

20.M. Thodika and M. Fennimore and T. N. V. Karsili and S. Matsika, Comparative
Study of Methodologies for Calculating Metastable States of Small to Medium-
Sized Molecules, J. Chem. Phys., 2019, 151, 244104.

21.M. A. Fennimore and S. Matsika, Electronic Resonances of Nucleobases using
Stabilization Methods, J. Phys. Chem. A, 2018, 122, 4048-4057.

22.A. F. White, M. Head-Gordon and C. W. McCurdy, Stabilizing Potentials in
Bound State Analytic Continuation Methods for Electronic Resonances in Poly-
atomic Molecules, J. Chem. Phys., 2017, 146, 44112.

23.T. Barta and J. Horacek, Calculation of Resonances by Analytical Continuation:
Role of Asymptotic Behavior of Coupling Function, Phys. Scr., 2020, 95,
065401-065409

24.). Horacek, I. Paidarovéa and R. Curik, On a Simple Way to Calculate Electronic
Resonances for Polyatomic Molecules, . Chem. Phys., 2015, 143, 184102.

25.U. V. Riss and H. D. Meyer, Calculation of Resonance Energies and Widths Us-
ing the Complex Absorbing Potential Method, J. Phys. B: At. Mol. Opt. Phys.,
1993, 26, 4503-4535.

26.T. C. Jagua and K. B. Bravaya, A. |. Krylov, Extending Quantum Chemistry of
Bound States to Electronic Resonances, Ann. Rev. of Phys. Chem., 2017, 68,
525-553.



27.R. Santra and L. S. Cederbaum, Non-Hermitian electronic theory and applica-
tions to clusters, Phys. Rep. 2002, 368, 1-117.

28.). U. Davis and T. Sommerfeld, Computing resonance energies directly:
method comparison for a model potential, Eur. Phys. J. D., 2021, 75, 316:1-
12.

29.T. Sommerfeld, U. V. Riss, H. D. Meyer, L. S. Cederbaum, B. Engels and H.U.
Suter, Temporary Anions - Calculation of Energy and Lifetime by Absorbing
Potentials: The Resonance, J. Phys. B: At. Mol. Opt. Phys., 1998, 31, 4107-
4122.

30.D. Zuev, T. C. Jagua, K. B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom, M.
Head-Gordon and A. |. Krylov, Complex Absorbing Potentials within EOM-CC
Family of Methods: Theory, Implementation, and Benchmarks, J. Chem. Phys.,
2014, 141, 24102.

31.A. F. White, M. Head-Gordon and C.W. McCurdy, Complex Basis Functions Re-
visited: Implementation with Applications to Carbon Tetrafluoride and Aro-
matic N-Containing Heterocycles within the Static-Exchange Approximation, J.
Chem. Phys., 2015, 142, 54103.

32.T. N. Rescigno, A. E. Orel and C. W. McCurdy, Application of Complex Coordi-
nate SCF Technigues to a Molecular Shape Resonance: The Iy State of N,7, J.
Chem. Phys., 1980, 73, 6347-6348.

33.1. Jana, S. Basumallick, S. Paland and N. Vaval, Effect of Partial Triples Excita-
tion Using Complex Absorbing Potential-Based Fock-Space Multi-Reference
Coupled Cluster, Int. J. Quant. Chem., 2021, 121, e26738.

34.M. Banuary and A. K. Gupta, Application of Modified Smooth Exterior Scaling
Method to Study 2y Ny and %M CO- Shape Resonances, ACS Omega, 2023, 8,
7143-7150.

35.A. ]. Seigert, On the Derivation of the Dispersion Formula for Nuclear Reac-
tions, Phys. Rev., 1939, 56, 750-752.

36.M. Allan, Measurement of Absolute Cross Sections of Electron Scattering by
Isolated Molecules, in Low-Energy Electron Scattering from Molecules,
Biomolecules and Surfaces, Carsky, P.; Curik, R. eds. CRC Press 2012, 43-90.

37.S. R. Slimak, M. F. Falcetta and K. D. Jordan, unpublished results.
38.T. F. O'Malley and H. S. Taylor, Angular Dependence of Scattering Products in

Electron-Molecule Resonant Excitation and in Dissociative Attachment, Phys.
Rev., 1968, 176, 207-221.



39.H. Ehrhardt, L. Langhans, F. Linder and H.S. Taylor, Resonance Scattering of
Slow Electrons from H; and CO Angular Distributions, Phys. Rev., 1968, 173,
222-230.

40.E. S. Chang, Theory of Angular Distributions of Electrons Resonantly Scattered
by Molecules. I. Vibrational and Rotational Excitation of Diatomic Molecules,
Phys. Rev. A., 1977, 16, 1841-1849.

41.E.S. Chang, Theory of Angular Distributions of Electrons Resonantly Scattered
by Molecules. Il. Vibrational and Rotational Excitation of CO, Phys. Rev. A.,
1977, 16, 1850-1853.

42.F. H. Read, Angular Distributions for Resonant Scattering of Electrons by Mole-
cules, J. Phys. B: At. Mol. Phys., 1968, 1, 893-908.

43.D. K. Watson, Partial Widths and Resonance Normalization, Phys. Rev. A.,
1986, 34, 1016-1025.

44.). Bentley and D. M. Chipman, Partial Widths of Resonances by Analytic Con-
tinuation from Real Eigenvalues, Chem. Phys. Lett., 1990, 167, 246-251.

45.). R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Colli-
sions; Robert F. Krieger Publishing, 1983.

46.U. Fano, Effects of Configuration Interaction on Intensities and Phase Shifts,
Phys. Rev., 1961, 124, 1866-1878.

47.). M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics; John Wiley & Sons,
Inc., 1952.

48.]. Simons, Resonance State Lifetimes from Stabilization Graphs, J. Chem.
Phys., 1981, 75, 2465-2467.

49.]. Simons, Analysis of Stabilization and Extrapolation Methods for Determining
Energies and Lifetimes of Metastable Electronic States, J. Phys. Chem. A,
2021, 125, 7735-7749.

50.A. D. Isaacson and D. G. Truhlar, Real-Basis-Function Method with Correct
Branch-Point Structure for Complex Resonances Energies, Chem. Phys. Lett.,
1984, 110, 130-134.

51.C. W. McCurdy and ]. F. McNutt, On the Possibility of Analytically Continuing
Stabilization Graphs to Determine Resonance Positions and Widths Accu-
rately, Chem. Phys. Lett., 1983, 94, 306-310.



52.A. Landau, |. Haritan, P. R. Kaprélova-Zdénska and and N. Moiseyev, Atomic
and Molecular Complex Resonances from Real Eigenvalues Using Standard
(Hermitian) Electronic Structure Calculations, J. Phys. Chem. A, 2016, 120,
3098-3108.

53.A. Landau and I. Haritan, A Systematic Search for the Resonance Energies Ob-
tained via Padé, J. Phys. Chem. A., 2019, 123, 5091-5105.

54 K. D. Jordan, Construction of Potential Energy Curves in Avoided Crossing Situ-
ations, Chem. Phys., 1975, 9, 199-204.

55.B. J. Carlson, M. F. Falcetta, S. R. Slimak and K. D. Jordan, A Fresh Look at the
Role of the Coupling of a Discrete State with a Pseudocontinuum State in the
Stabilization Method for Characterizing Metastable States, J. Phys. Chem.
Lett.,, 2021, 12, 1202-1206.

56.S. R. Slimak, K. D. Jordan and M.F. Falcetta, Role of Overlap between the Dis-
crete State and Pseudocontinuum States in Stabilization Calculations of
Metastable States, J. Phys. Chem. A, 2021, 125, 4401-4408.

57.D. E. Manolopoulos, Derivation and Reflection Properties of a Transmission-
Free Absorbing Potential, /. Chem. Phys., 2002, 117, 9552-9559.

58.Y. Sajeev, V. Vysotskiy, L. S. Cederbaum and N. Moiseyev, Continuum Re-
mover-Complex Absorbing Potential: Efficient Removal of the Nonphysical
Stabilization Points, J. Chem. Phys., 2009, 131, 211102.

59.T. Sommerfeld and M. Ehara, Complex Absorbing Potentials with Voronoi Iso-
surfaces Wrapping Perfectly around Molecules, J. Chem. Theory Comput.,
2015, 11, 4627-4633.

60.V. |. Lebedev and D. N. Laikov, A Quadrature Formula for the Sphere of the
131st Algebraic Order of Accuracy, Dokl. Math, 1999, 59, 477-481.

61.D. G. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M.C. Scheiber, R.
Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A.M. James, S.
Lehtola, J. P. Misiewicz, M. Scheurer, R. A Shaw, J. B. Schriber, Y. Xie, Z. L.
Glick, D. A. Sirianni, ] .S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B.
P. Pritchard, B. R. Brooks, H. F. Schaefer, A. Y. Sokolov, K. Patkowski, A. E. De-
prince, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford
and C. .D. Sherrill, P SI4 1.4: Open-Source Software for High-Throughput
Quantum Chemistry, J. Chem. Phys., 2020, 152, 184108.

62.P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Courna-
peau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. ). van der Walt, J.
Wilson, K. J. Millman, N. Mayorov, A. R. Nelson, E. Jones, R. Kern, E. Larson, C.
J. Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R.



Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A. P. Bardelli, A. Roth-
berg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C.
Fulton, C. Mason, C. Haggstrom, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D.
V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm,
G. Young, G. A. Price, G. L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J.
P. Dietrich, J. Silterra, J. T. Webber, J. Slavi¢, J. Nothman, J. Buchner, J. Kulick, J.
L. Schénberger, J. V. de Miranda Cardoso, J. Reimer, J. Harrington, J. L. Ro-
driguez, J. Nunez-lglesias, ). Kuczynski, K. Tritz, M. Thoma, M. Newville, M.
Kimmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N.
Shebanov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer, S.
Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima,
T. V. Pingel, T. P. Robitaille, T. Spura, T. R. Jones, T. Cera, T. Leslie, T. Zito, T.
Krauss, U. Upadhyay, Y. O. Halchenko, Y. Vazquez-Baeza, SciPy 1.0: Funda-
mental Algorithms for Scientific Computing in Python, Nat Methods 2020, 17,
261-272.

63.U. V Riss and H. D. Meyer, Investigation on the Reflection and Transmission
Properties of Complex Absorbing Potentials, /. Chem. Phys. 1996, 105, 1409-
1410.

64.K. Kaufmann, W. Baumeister and M. Jungen, Universal Gaussian Basis Sets for
an Optimum Representation of Rydberg and Continuum Wavefunctions, J.
Phys. B: At. Mol. Opt. Phys., 1989, 22, 2223-2240.



