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ABSTRACT Changing climatic conditions influence parameters associated with the
growth of pathogenic Vibrio spp. in the environment and, hence, are linked to increased
incidence of vibriosis. Between 1992 and 2022, a long-term increase in Vibrio spp.
infections was reported in Florida, USA. Furthermore, a spike in Vibrio spp. infections
was reported post Hurricane lan, a category five storm that made landfall in Florida
on 28 September 2022. During October 2022, water and oyster samples were collected
from three stations in Lee County in an area significantly impacted by lan. Vibrio spp.
were isolated, and whole-genome sequencing and phylogenetic analysis were done,
with a focus on Vibrio parahaemolyticus and Vibrio vulnificus to provide genetic insight
into pathogenic strains circulating in the environment. Metagenomic analysis of water
samples provided insight with respect to human health-related factors, notably the
detection of approximately 12 pathogenic Vibrio spp., virulence and antibiotic resist-
ance genes, and mobile genetic elements, including the SXT/R391 family of integrative
conjugative elements. Environmental parameters were monitored as part of a long-term
time series analysis done using satellite remote sensing. In addition to anomalous rainfall
and storm surge, changes in sea surface temperature and chlorophyll concentration
during and after lan favored the growth of Vibrio spp. In conclusion, genetic analysis
coupled with environmental data and remote sensing provides useful public health
information and, hence, constitute a valuable tool to proactively detect and characterize
environmental pathogens, notably vibrios. These data can aid the development of early
warning systems by yielding a larger source of information for public health during T Y Cu s e
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limate change is reported to be associated with an increased frequency of

anomalous weather events, notably heatwaves and severe precipitation which can
significantly impact the marine environment, especially along the coast (1). Environ-
mental factors, such as temperature, salinity, chlorophyll, and sea surface height,
can influence the incidence and transmission of pathogenic agents by impacting
the proliferation, dissemination, and virulence of microorganisms in the environment.
Climatic conditions also have the potential to influence human behavior by more
frequent contact with pathogens through water-related activities during periods of
warming (2, 3). Hence, climate change associated with the shifts in the geographical
range of microbial species has the potential to influence the emergence and re-emer-
gence of disease (4). A dramatic example is the significant geographic expansion of
pathogenic Vibrio spp., a finding corroborated by their impact on public health, namely,
increased numbers of reported vibriosis infections in humans, as well as aquaculture loss
(5-13).

Vibrio spp. are autochthonous to the aquatic environment, notably in high concen-
trations along the coast and their incidence is strongly influenced by environmental
conditions (10, 11). Vibrio spp. play an important role in the degradation of polymeric
substances, such as chitin, and in other significant biogeochemical processes (10, 14,
15). Vibrio spp. occur in aquatic ecosystems as free-living single cells or in aggregates,
e.g., within biofilms in high numbers and attached to various abiotic substrates. They
have been shown to be commensals and symbionts of aquatic invertebrates, such as
crustaceans, zooplankton, and bivalves, all of which are known to host these bacteria (10,
16-22). Copepods, zooplankton comprising a significant component of aquatic fauna,
are a major host of Vibrio spp. and are considered a vector of Vibrio cholerae (5, 18, 19, 23,
24). Vibrio spp. concentrate in filter-feeding shellfish, especially oysters, which are often
consumed raw thereby exposing people to large doses of potentially pathogenic agents
(16, 25, 26). Furthermore, Vibrio spp. with bioluminescent properties are important
symbionts of marine organisms, including Vibrio fischeri which colonizes the light-emit-
ting organ of the Hawaiian bobtail squid, Euprymna scolopes (27), and luminescent V.
cholerae and Vibrio vulnificus strains reported to be associated with copepods and related
crustacean species (18, 20-22, 28).

Several species of the genus Vibrio cause severe infection in humans, primarily related
to consumption of contaminated seafood or exposure to water containing the patho-
gens (29). V. cholerae is well documented as the etiological agent of cholera, the seventh
cholera pandemic of which is in progress and continues to plague the modern world,
notably when climate/weather processes, microbiological parameters, and sociological
determinants intersect with population vulnerabilities and loss of water, sanitation, and
hygiene infrastructure (30-32). In addition to V. cholerae, Vibrio parahaemolyticus and V.
vulnificus have proven historically significant (10, 29). V. parahaemolyticus, first described
by Professor Fujino during a 1950 shirasu food poisoning outbreak in Japan (33), is a
major cause of seafood-derived foodborne gastroenteritis in the United States (34). V.
vulnificus, first reported in the U.S. in 1976 (35), is also a common cause of foodborne
illness and can cause severe extraintestinal infections, including necrotizing fasciitis and
septicemia (36). The bacterium has a fatality rate that is one of the highest of any
waterborne pathogen, i.e., greater than 50% for primary septicemia. It also is responsible
for ca. 95% of all waterborne and seafood-derived foodborne deaths in the United States
(36, 37). In the United States, Vibrio spp. are estimated to cause ca. 80,000 illnesses and
hundreds of deaths annually, of which ca. 65% are foodborne (34, 38). According to the
Centers for Disease Control and Prevention FoodNet, which has sites in 10 states covering
15% of the U.S. population, there is indication of a long-term increase in reported
vibriosis between 1996 and 2019 (10, 39). In the eastern United States between 1988
and 2018, V. vulnificus wound infections increased eightfold, i.e., from 10 to 80 cases per
annum, and the northern case limit has shifted northward geographically at ca. 48 km
per annum (13). Environmental factors linked to climate change have the potential to
enhance the incidence and genomic diversity of these pathogens in the environment,
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especially in coastal communities, and this trend of increased vibriosis is expected to
continue (5, 40).

A key issue related to the risk of vibriosis outbreaks is the high population density and
economic activity along coastal areas, and the U.S. eastern seaboard is a prime example.
In fact, ca. 40% of the total U.S. population lives in coastal communities, with nearly
half in an elevated health risk category, e.g., elderly and/or low-income households (41).
The state of Florida (FL) has the longest coastline of any of the 48 contiguous states
in the United States, and ca. 22% of the population of FL is over the age of 65 (42).
Furthermore, many FL residents rely on protein from seafood, especially aquaculture.
While FL does have distinct seasons, i.e., warmest waters in the summer and early fall, the
climate is generally warm year-round which allows for increased duration and frequency
of recreational and occupational activities, along with an extended seasonality of Vibrio
spp. abundance.

Pathogenic Vibrio spp. that cause cholera and vibriosis have been reportable diseases
in FL since 1981 (34). Between 2004 and 2021, over 3,000 vibriosis cases and 205 deaths
were reported in FL (43). V. parahaemolyticus and V. vulnificus accounted for over ca.
40% of the vibriosis cases and have been of particular interest to the State because of
their potential association with locally harvested shellfish (43). Between 2000 and 2021,
there has been an average of ca. 34 (ranging from 13 to 55) V. parahaemolyticus and ca.
35 (ranging from 15 to 51) V. vulnificus cases reported each year, with most infections
occurring between May and October (43). However, it is worth noting that V. vulnificus
infections accounted for ca. 78% of the confirmed deaths associated with vibriosis during
this period.

On 28 September 2022, Hurricane lan, a destructive category five storm, made
landfall in southwestern FL, bringing anomalously heavy rainfall, high winds (ca.
240 km/h), and dangerous surf to the area, resulting in a rise in seawater levels, flash
flooding, and mass destruction of infrastructure around coastal areas. In the days
following Hurricane lan, many FL residents were impacted by sustained floodwaters,
a problematic situation given that pathogenic Vibrio spp., namely, V. vulnificus and V.
parahaemolyticus, thrive in warm and low-salinity waters (10, 11, 44). According to the FL
Department of Health (DOH), there were 74 reported cases of V. vulnificus infections, with
17 confirmed deaths in 2022 (43). Furthermore, 38 of the cases and 11 vibriosis-associ-
ated deaths were attributed to the storm, accounting for nearly double the usual number
for that time of year (45, 46). Hence, routine monitoring and predictive intelligence
models warning decision-makers and individuals when risk of infection of Vibrio spp.
(and other pathogens) is high are essential to safeguarding public health.

Here, we describe whole-genome sequencing (WGS) analysis to characterize
pathogenic Vibrio spp. isolates (V. vulnificus and V. parahaemolyticus) recovered from
water and oyster samples along the FL Gulf Coast (FGC) in October 2022. We also profiled
water samples, employing shotgun metagenomic sequencing (SMS), for the detection of
Vibrio spp. and related pathogens, along with their virulence factors (VFs), antimicrobial
resistance genes (ARGs), and mobile genetic elements (MGEs). These results provide
useful information for future investigations, both for inhabitants of the FGC and globally,
to evaluate the incidence of pathogenic Vibrio populations relative to climate change
over time.

RESULTS
Anomalous weather events associated with Hurricane lan

Hurricane lan made landfall on 28 September 2022, just south of Charlotte County near
Pirate Harbor, with maximum sustained winds of 240 km/h (Fig. 1A). On 26 October 2022,
samples were collected from three stations adjacent to this area, including Cutthroat
Clams (CC), Clam Key (CK), and White Booth Seafood (WBS) (Fig. 1B). Nomenclature of the
sampling stations is representative of station proximity to aquaculture facilities, and it
should be noted that samples were not collected directly from the named facilities in this
study. Environmental parameters recorded at the time of sample collection are detailed
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TABLE 1 Environmental parameters recorded during sample collection on 26 October 2022

Parameter Cutthroat Clams*’ Clam Key* White Booth Seafood’
Water temp (°C) 25.4/24.8 (25.1) 24.6/24.4 (24.5) 24.5/24.4 (24.45)

pH 8.00/8.07 (8.035) 7.83/7.85 (7.84) 7.79/7.90 (7.845)

DO (mg/L) 6.0/6.1 (6.05) 6.2/5.3 (5.75) 6.1/5.2 (5.65)

Salinity (PPT) 30.36/30.60 (30.48) 19.74/19.75 (19.745) 19.84/19.84 (19.84)

“Environmental parameters presented as surface recording/bottom recording (mean).

in Table 1. Overall, water temperature, pH, and optical dissolved oxygen (DO) were
similar across the three stations. However, salinity was higher at CC (30 PPT), compared
to the CK and WBS stations (ca. 20 PPT). Following long-term time series analysis (Fig.
10), it was observed that all stations experienced above-average sea surface tempera-
ture (SST) before Hurricane lan, varying between 0.6% and 2.26%, within half of the
standard deviation (SD) compared to the previous 10 years. During Hurricane lan (25-30
September 2022), CC and CK experienced a decrease in SST. Following lan (1 October
to 30 November 2022), all stations showed greater than average SST, varying between
0.7% and 2.75%. With respect to chlorophyll, all sampling sites indicated above-average
chlorophyll concentration before the hurricane, varying between 1.3% and 45%. Notably,
the CK station indicated significant chlorophyll variability, greater than one SD compared
to the previous 10 years. However, during and after lan, these locations experienced
positive anomalous chlorophyll with values as high as five times the SD.

V. vulnificus clinical reports

The incidence of vibriosis, excluding cholera and V. vulnificus (Tau = 0.93, P < 0.0001), and
V. vulnificus (Tau = 0.65, P < 0.0001) infections for the State of FL increased significantly
from 1992 to 2022 (Fig. 1D). In 2022, the total number of confirmed V. vulnificus cases, 74,
and deaths, 17, was roughly double that of 2021 (cases = 34; deaths = 10) and 2020
(cases = 36; deaths = 7). Fig. 1E shows the number of vibriosis and V. vulnificus infections
per month between January 2022 and July 2023. Notably, a spike in V. vulnificus cases
was observed in October 2022. Furthermore, the number of vibriosis and V. vulnificus
infections reported during October 2022 represents the highest number of cases on
record for the month since 1992 (Fig. 1F). In October 2022, the highest number of
vibriosis, eight, and V. vulnificus, 26, cases was observed in Lee County, an area signifi-
cantly impacted by Hurricane lan (Fig. 1A). Similarly, the greatest number of V. vulnificus
deaths was reported in Lee County, which reported eight deaths in 2022. Other areas
reporting V. vulnificus deaths in 2022, including Escambia, Bay, Citrus, Broward, High-
lands, Brevard, and Seminole, were located along the coast, except for Polk County which
had been in the path of lan. However, it is worth noting that the number of reported V.
vulnificus deaths did not increase significantly in FL from 2008 to 2022 (Tau <0.3, P >
0.05).

PCR detection of Vibrio spp.

Detection of genetic markers for the genus Vibrio (16S rRNA), V. parahaemolyticus (tlh,
tdh, and trh), V. vulnificus (vvhA), and V. cholerae (rfb-O1, rfb-O139, and ctxA) was done for
water and oyster samples (Table 2). The Vibrio spp. 16S rRNA marker was detected in all
alkaline peptone water (APW) enriched samples (water and oyster) from each location.
However, successful detection of tlh and/or vwvhA was possible only with APW enrich-
ment, with PCR analysis of DNA done directly on oyster homogenate and Sterivex filters
negative in all samples. Specifically, the t/h marker was detected in enriched water
samples at all locations and APW-enriched oyster samples collected at CK. However, V.
parahaemolyticus primary VFs (tdh and trh) were not detected. With respect to V.
vulnificus, the vwhA marker was detected in CK and WBS enriched water samples but not
in oyster samples. Lastly, markers coding for toxigenic V. cholerae (ctxA, rfb-O1, and rfb-
0139) were not detected.
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FIG 1 Area of study. (A) Path of Hurricane lan and total number of confirmed Vibrio spp. infections in FL at the county level for October 2022 (43, 45).
Counties reporting V. vulnificus cases and number are indicated. Track, timeline, and windspeed of Hurricane lan, indicated by diamonds, were retrieved from
the International Best Track Archive for Stewardship (IBTrACS) project (47). The outlined red box indicates an area of sampling locations. (B) Map of sampling
locations, indicated by red diamonds. Scale bar corresponds to distance according to World Map Data from Natural Earth (48). (C) Percent change in a time series
analysis to determine potential impact of anomalous weather events before (24 July 2022 to 23 September 2022), during (24 September 2022 to 30 September
2022), and after (1 October 2022 to 30 November 2022) Hurricane lan, for sea surface temperature (SST) and chlorophyll (CHL). (D) Confirmed vibriosis (excluding
cholera and V. vulnificus) and V. vulnificus cases between 1992 and 2022. Correlations among axis variables were respectively generated using Kendall’s tau
method. (E) Confirmed vibriosis (excluding cholera and V. vulnificus) and V. vulnificus cases at a monthly scale between January 2022 and July 2023. (F) Confirmed
vibriosis (excluding cholera and V. vulnificus) and V. vulnificus cases during the month of October between 1992 and 2022. Boxes summarize distribution by
indication of interquartile range (IQR), with median shown as the center bar of each group. Whiskers represent 1.5 times the IQR.

PCR characterization of Vibrio spp.

Following APW enrichment and subculture plating on selective media (ChromAgar, TCBS,
and VVA), a total of 21 presumptive Vibrio spp. were isolated from the water (n =
14) and oyster samples (n = 7). All isolates were identified as members of the genus
Vibrio, determined by PCR for presence of the Vibrio spp. 16S rRNA marker. Nine isolates
were positive for V. parahaemolyticus toxR and tlh, and all were negative for tdh and
trh. Similarly, 12 isolates were positive for V. vulnificus toxR and vvhA. All isolates were
negative for V. cholerae toxR and toxigenic markers (rfb-O1, rfb-O139, and ctxA).

Comparative genomics of Vibrio spp. isolates employing WGS

The 21 presumptive Vibrio spp. isolates were subjected to WGS and comparative
genomics. Following annotation, phylogenetic trees were built from the core genome,
determined by the alignment of coding sequences from selected isolates included in
the analysis to evaluate genetic relatedness of the Vibrio spp. isolated in this study to
reference genomes previously reported (Fig. 2). A search for homologous genes returned
344 coding sequences (ca. 7.13 x 10" amino acids in length) shared by all genomes. The
best-fit protein model found by RAXML was Le and Gascuel (LG). Within the Vibrionaceae
phylogeny, each species formed coherent clusters in taxonomic subclades. Notably,
the V. cholerae clade comprised V. cholerae, Vibrio mimicus, Vibrio cincinnatiensis, Vibrio
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TABLE 2 Primers, PCR parameters, and reference strains used in this study

mBio

Oligonucleotide PCRproduct  Annealing tempReference strain used
Description (reference) name Sequence (5'-3') size (bp) (°C) in this study
Vibrio genus 16S rRNA 567F GGCGTAAAGCGCATGCAGGT 120 55 V. cholerae ATCC 39315
(49) 680R GAAATTCTACCCCCCTCTACAG
UtoxF GASTTTGTTTGGCGYGARCAAGGTT
toxR of V. parahaemolyticus V. parahaemolyticus
(Vp), V. cholerae (Vc), and  vptoxR GGTTCAACGATTGCGTCAGAAG 297 (Vp) 60 ATCC 17803
V. vulnificus (Vv) vctoxR GGTTAGCAACGATGCGTAAG 640 (Vc) 55 V. cholerae ATCC 39315
(50) vvtoxR AACGGAACTTAGACTCCGAC 435 (W) 55 V. vulnificus ATCC 27562
V. parahaemolyticus
L-tl AAAGCGGATTATGCAGAAGCACTG 450 (tlh) 58 ATCC 17803
R-tl GCTACTTTCTAGCATTTTCTCTGC
V. parahaemolyticus
L-tdh GTAAAGGTCTCTGACTTTTGGAC 269 (tdh) 58 TX2103 (tdh+/trh-)"
Total and hemolysin-pro-  R-tdh TGGAATAGAACCTTCATCTTCACC
ducing V. parahaemolyti- V. parahaemolyticus
cus viatlh, tdh, and trh L-trh TTGGCTTCGATATTTTCAGTA 500 (trh) 58 AQ4037 (tdh—/trh+)°
(51) R-trh CATAACAAACATATGCCCATTTCCG
V. vulnificus hemolysin vvhA L-vvh TTCCAACTTCAAACCGAACTATGAC 205 58 V. vulnificus ATCC 27562
(52) R-vvh ATTCCAGTCGATGCGAATACGTTG
V. cholerae MO10
O139F2 AGCCTCTTTATTACGGGTGG 449 (0139) 55 (0139)°
O139R2 GTCAAACCCGATCGTAAAGG
O1F2 GTTTCACTGAACAGATGGG 192 (01) 55 V. cholerae ATCC 39315°
Toxigenic V. cholerae O1 O1R2-2 GGTCATCTGTAAGTACAAC
and 0139 via ctxA, rfb-O1, VCT1 ACAGAGTGAGTACTTTGACC 308 (ctxA) 55 V. cholerae ATCC 39315°
and rfb-0139 V. cholerae MO10
(53) O139F2 AGCCTCTTTATTACGGGTGG 449 (0139) 55 (0139)°

“Isolate synonym of N16961.
bIsolate characterized previously (54).
‘Isolate characterized previously (55).

metschnikovii, Vibrio furnissii, Vibrio fluvialis, and Vibrio diazotrophicus. The 12 suspected
V. vulnificus isolates obtained in this study formed a distinct cluster with reference V.
vulnificus strains. Similarly, nine presumptive V. parahaemolyticus isolates were clustered
with reference V. parahaemolyticus strains. All V. parahaemolyticus strains were placed in a
subclade within the Harveyi clade that also included Vibrio alginolyticus, Vibrio diabolicus,
Vibrio campbellii, Vibrio owensii, and Vibrio harveyi.

Nearest neighbors of isolates from this study were identified using core-genome
phylogeny in the context of major clonal lineages for V. vulnificus (Fig. 3A) and V.
parahaemolyticus (Fig. 3B). Homologous gene search returned 1,000 coding sequences,
the maximum number allowed by the software program for V. parahaemolyticus (ca. 3.88
x 10° amino acids; best-fit model: Human Immunodeficiency Virus-Between [HIVB]) and
982 for V. vulnificus (ca. 3.02 x 10° amino acids; best-fit model: Jones-Taylor-Thornton
[JTTI).

Phylogenetic relatedness of V. vulnificus isolates

The 12 V. vulnificus isolates (four from oyster and eight from water) were assigned to
eight multilocus sequence type (MLST) profiles (using alleles for glp, gyrB, mdh, metG,
purM, dtdS, lysA, pntA, pyrC, and tnaA), including ST621-ST628 (Table S4). Core genome
phylogeny was used to investigate genomic relatedness of V. vulnificus isolates from this
study with established lineages, representing isolates recovered from a wide range of
geographical and ecological sources (58). All strains clustered into four distinct groups
(C1 to C4). C1 and C2 are significantly divergent lineages including much of the clinical
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FIG 2 Phylogenetic relatedness of Vibrionaceae spp. Codon tree was created using 344 coding sequences (ca. 7.13 x 10* amino acids in length) shared by all

genomes with the LG model. Shewanella oneidensis MR-1 was used as an outgroup to root the tree. Bootstrap values are shown as percentages. Vibrio spp.

isolates collected during this study are shown in blue. Trees were built using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) software package

(56) and Randomized Axelerated Maximum Likelihood (RAXML) algorithm automatic model selection (57).
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FIG 3 Phylogenetic relationships of Vibrio vulnificus and Vibrio parahaemolyticus. (A) V. vulnificus codon tree was created using 982 coding sequences (ca. 3.02 x

10° amino acids in length) shared by all genomes with the JTT model. (B) V. parahaemolyticus codon tree was created using 1,000 coding sequences (ca. 3.88 x

10° amino acids in length) shared by all genomes with the HIVB model. Vibrio spp. isolates collected during this study are shown in blue. Trees were built using

the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) software package (56) and Randomized Axelerated Maximum Likelihood (RAXML) algorithm

automatic model selection (57).

isolate diversity. By comparison, C3 and C4 indicate high clonality. Nine isolates were
phylogenetically joined in C1 and three in C2. However, there was no distinct clustering
pattern linking sample location, source of isolation, or virulence.

Phylogenetic relatedness of V. parahaemolyticus isolates

The nine V. parahaemolyticus isolates (three from oyster and six from water) were
assigned to eight MLST profiles (using alleles for dnak, gyrB, recA, dtdS, pntA, pyrC, and
tnaA), including ST16, ST564, ST896, ST3121, and ST3361-5T3364, and one isolate was
assigned to clonal complex 49 (Fig. 3B; Table S5). Based on the core genome phylog-
eny of V. parahaemolyticus isolates from this study and established phylogenetic and
biogeographic patterns of strains from North America (59), distinct population structures
were observed, with at least nine well-supported clades. Four clades (ST36, ST636,
ST65, and ST3) comprised clinical sources. Three clades (ST676, ST1151, and ST735)
were from oysters, and the remaining (cluster S3 and ST32/5T34) were of both clinical
and environmental origin. Four isolates (OYST-50, CCO1A-12, CC1B-23, and WBS2B-19)
composed a clade of primarily environmental isolates. Like V. vulnificus phylogeny, no
distinct clustering pattern was observed linking V. parahaemolyticus phylotype from FGC.

Genetic characterization of the Vibrio spp.

All isolates examined in this study carried homologous genes coding for ARG, VFs, and
MGEs (Fig. 4). Overall, the Vibrio spp. showed similar patterns of resistance, with minor
variation in multi-drug and biocide resistance, namely, msba, the vex operon (vexA,
vexB, vexD, vexE, vexF, vexH, and vexK), and tetracycline resistance encoded by tet(34)
and tet(35). Interestingly, V. parahaemolyticus isolates carried carB while V. vulnificus
carried varG, both coding resistance to beta-lactams. One isolate, CC1B-23, carried genes
associated with fosfomycin resistance.
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FIG4 Genomic characterization of Vibrio spp. isolates. Assembled contigs were characterized to determine carriage of (A) antimicrobial drug, biocide, and metal

resistance determinants using the Microbial Ecology Group Antimicrobial Resistance (VEGARes) database (60), (B) virulence factors the Virulence Factor Database
(VFDB) (61), and (C) MGEs the Mobile Genetic Element database (MGEdb) (62), and ABRicate (63) with identity and coverage thresholds set to 60%.

Many VF homologs were detected in the Vibrio spp. isolates, namely, genes coding for
outer membrane adhesion factors, flagella, stress response, and biofilm formation. Type 3
secretion system (T3SS) (type 1) and TLH/LDH were detected in all V. parahaemolyticus
strains, while the type 6 secretion system (T6SS) and RTX toxin (Repeats in ToXin) were
detected in V. vulnificus. Major integrative conjugative elements (ICEs) encoding VFs and
ARGs were not detected, but several insertion sequences (ISs), transposase genes flanked
by two inverted repeats, were detected. Overall, insertion sequences were more
common in strains recovered from water, compared to those from oysters. IS3 and IS5
insertion sequence families were common in both V. parahaemolyticus and V. vulnificus,

while the 1S4 family of insertion sequences were detected only in V. vulnificus.

Metagenomic data analysis

Microbiome community profile

SMS using DNA prepared from Sterivex concentrated and APW-enriched water samples
generated an average of 18M (min = 13M; max = 21M) and 27M (min = 20M; max =
37M) paired reads across raw sequence read libraries, with a mean of 9M and 18M million
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TABLE 3 Sequencing statistics and diversity indices

mBio

Method/sample Accession no. Richness Shannon Simpson
CcC_S SRR24799355 376.00 4.29 0.95
CK_S SRR24799352 276.00 4.10 0.94
WBS_S SRR24799349 397.77 4.25 0.94
CCT1A_APW SRR24799357 109.00 249 0.76
CC2B_APW SRR24799356 118.00 2.50 0.76
CKT1A_APW SRR24799357 215.89 3.16 0.91
CK2A_APW SRR24799353 174.00 3.12 0.90
WBS1A_APW SRR24799351 153.00 2.76 0.87
WBS2A_APW SRR24799350 153.00 293 0.88

unique paired reads, respectively. Following core gene metagenomic profiling, most
reads were unclassified, while Sterivex concentrated and APW-enriched water samples
generated on average 300K (min = 181K; max = 405K) and 1M (min = 720K; max =
1.4M) unique paired reads. Measures of alpha diversity (species richness, Shannon, and
Simpson) are shown in Table 3. Overall, Sterivex-concentrated water samples revealed
significantly higher alpha diversity compared to APW-enriched samples. Bacteria,
archaea, fungi, protists, and viruses identified by DNA metagenomics are listed in Fig.
5, representing microbial taxa relative abundance (RA).

Proteobacteria were most abundant, followed by Actinobacter, both detected in all
samples. Pseudoalteromonas was the most abundant genus detected. Major differences
were observed with respect to method, i.e., Sterivex concentrated vs APW enriched.
For example, RA of Proteobacteria increased substantially after APW enrichment. Other
differences were the dominance of Bacteroidetes in Sterivex-concentrated samples and
the occurrence of Fusobacteria in APW-enriched samples. Genus level differences were
also observed relative to method, with increased RA of Vibrio following enrichment
(Fig. 5B). Vibrios were not detected in Sterivex-concentrated samples, whereas Pro-
chlorococcus, AVDB_g, Pelagibacter, and Pseudomonas were dominant. APW-enriched
samples revealed increased RA of AB062844 _g, Propionigenium, and Photobacterium, with
Villovirus as the dominant viral genus.

Pathogenic Vibrio spp.

Members of the genus Vibrio were detected after APW enrichment of the water samples
and the Vibrio spp. are listed in Fig. 5C. Similar profiles were observed at all sample
locations, and many members of the genus Vibrio were detected, including a number of
species considered opportunistic and/or pathogenic. V. alginolyticus, V. diabolicus, and V.
parahaemolyticus were the most abundant in all samples, followed by other members
of the V. harveyi clade, including V. harveyi, V. owensii, V. campbellii, V. natriegens, and V.
rotiferianus. Other pathogenic Vibrio spp. included V. vulnificus, V. fluvialis, and V. furnissi
in all samples. V. cholerae group and V. mimicus were detected in CK and WBS samples,
and V. metschnikovii and V. cincinnatiensis were detected only in a single sample from CK.

Detection of fungi, protists, and viruses

Whereas bacteria and archaea predominated, fungi, protozoa, and viruses were also
present (Table 4). Chlorophyta was dominant in Sterivex samples but not detected in
APW-enriched samples. Similarly, Chrysochromulina ericina virus was detected only in the
Sterivex-concentrated water samples. The protist Minutocellus polymorphus and Vibrio
phages, notably Vibrio virus Kappa, were dominant in APW-enriched water samples. It is
worth noting Vibrio virus CTXphi, a phage encoding V. cholerae cholera toxin production,
was detected in one sample from the CK station.

Month XXXX Volume 0 Issue 0

10.1128/mbio.01476-23 10

Downloaded from https://journals.asm.org/journal/mbio on 16 October 2023 by 128.8.120.3.


https://www.ncbi.nlm.nih.gov/sra/?term=SRR24799355
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24799352
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24799349
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24799357
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24799356
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24799357
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24799353
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24799351
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24799350
https://doi.org/10.1128/mbio.01476-23

mBio

Research Article

'€°021°8°821 £q €207 1290300 91 uo orqui/[eunol/31o wse sjeurnol//:sdny woiy papeojumoq

*Pa12339p J0U S3YEDIPUI ,—, Ysep uj,

- - €Lo - - - - - Lo asuaWoyb[3o wniojys>02id wniojy>021d pifydoiojyH

- - 0h4 - - SLT - - oLo €MAN3S "ds wniojy202id wniojy>02id pifydoiofyd

- - S0°0 - - 90°0 - - S0°0 ,SNwis|220jos, ds wniojy2031d wniojy202ld pAydoiojy>

- - 600 - - - - - 800 610Z-Hg "ds wniojy20014 wniojy202ld pAydoiojy>

- - - - - - - - 00 LX “ds suojysouupy SLIOJY20UUDN pAydoiojy>

aeb|y

650 S9'0 - L9'S £€€'8 - 799 66°L - snydiowAjod snjja201nuipy snjja2oinulyy - piAydoLipjjidbg

s1s10id

- - L0°0> - - - - - - E€EIA SNIIA OLIQIA SNJIAO|[IA DIODIIIAIDUJOH

- - - - L0°0> - - - - 1S} SNJIA OLIIA snuinoiql4 DJOJLIAIDUJOH

- - - - oLo - - - - ydX 1D SNIIAOLIGIA  SNIIAWDIB|OYDILIdLY DJOJLIAIDUJOH

- - €60 - - 00 - - 110 SNJIA DUIDLI3 DUIINWOIY20SAIYD D SWeU OU SNJIA DIOLIAXIYH

810 700 - 00 500 - - - - eddey| snJiA 0LQgIA sniApoombuo] DJODIIIAOI(

- - oLo - - - - - —  LEdII-S SNIIA 3YI|-£] SN22020Y23UAS SnJIALID| D]OJLIAOIN

- - 000 - - - - - - $NJIN02DIq DIDIaWIO|D DIS3]10D SNJIN0IDIG 4 WU OU SNUIA

SaSNJIA

MdY VZSaM  MdY VISEM S SEM MdY VIO MdY VXD S IO MdY 922D MdY VIDD S DD sapads snusp wnjAyd
poojeas yioog 11y poojeas £ay we|) swe|) 1eoaynnd

»(%) @duUBpPUNQER dAIIR|DI SB Pa)S]| ‘PAIDAIDP eXe} ISYI0 ¥ I19VL

10.1128/mbio.01476-23 11

Issue 0

Month XXXX  Volume 0


https://doi.org/10.1128/mbio.01476-23

Research Article

Community resistome, virulome, and mobilome

Genes coding for antimicrobial resistance, virulence, and MGEs, namely, ICEs, were found
at all stations (Fig. 6). Only a few ARGs were detected in Sterivex-concentrated samples,
namely, tetracycline resistance, compared to APW enrichment (Fig. 6A). Genes encoding
resistance to major antibiotic classes, including tetracycline, quinolone, fosfomycin, and
beta-lactam, were detected at all stations, including trimethoprim resistance genes at CK
and phenicol resistance genes at WBS.

VFs of non-Vibrio origin (Fig. 6B) were common in Sterivex-concentrated samples,
and Vibrio spp. VFs (Fig. 6C) in APW-enriched samples. Of non-Vibrio VFs, those from
Mpycobacterium spp. were most common across all locations, notably in the Sterivex-con-
centrated samples. VFs of pathogenic Vibrio spp., namely, V. cholerae, V. parahaemolyticus,
and V. vulnificus, were detected at all stations and at increased abundance following
APW enrichment. V. parahaemolyticus associated VFs, namely, T3SS (type 1), were most
common. V. vulnificus VFs included RTX toxin, VVH heme receptors, flagella, LOS, and
autoinducers and V. cholerae VFs included RTX toxin, MARTX toxins, and T6SS.

Compared to Sterivex-concentrated samples, APW enrichment allowed detection of
additional ICEs (Fig. 6D). ICEs originating in V. cholerae, V. alginolyticus, and V. parahaemo-
lyticus were most prevalent, but ICEs originating in Proteus mirabilis were also common.
Notably, two closely related ICEs, SXT and R391, respectively, associated with V. cholerae
clinical isolates and Providencia rettgeri were detected at all stations and at increased
abundance in the CK and WBS samples.

DISCUSSION

Climate change is reported to have effects in most regions of the world and more
so in coastal communities, notably through overall warming trends, altered precipita-
tion patterns, and changes in jet streams and ocean currents. Vibrio spp. are naturally
occurring in coastal waters globally, possess a high growth rate, and rapidly respond
to environmental stimuli. The significant geographic expansion of pathogenic strains
is correlated with impact on public health, i.e., increased number of infections caused
by these pathogens (5-13). Archer et al. (13) recently showed a significant increase
in V. vulnificus wound infections along the U.S. eastern seaboard. This observation is
supported by data presented here, whereby both V. vulnificus and vibriosis (excluding
cholera and V. vulnificus) infections reported in FL increased ca. fivefold and eightfold,
respectively, between 1992 and 2022 (Fig. 1D).

It should be noted that climate change is also associated with increased frequency
and intensity of severe weather events (68) and has the potential to alter the intensity
and behavior of hurricanes, a notable example of which is Hurricane lan, ranked the fifth
strongest storm to hit the U.S. mainland (Fig. TA), associated with a catastrophic storm
surge and extreme rainfall. Hurricane lan exemplified the more intense, slower-moving,
and wetter signature commonly associated with a current generation of Atlantic storms
influenced by climate warming (69). In the days following lan, an increase in cases of
vibriosis was recorded by the FL DOH, including 38 cases and 11 vibriosis-associated
deaths attributed to the storm (case fatality rate of ca. 28.9%) (46). Between 28 Septem-
ber 2022 and 9 October 2022, V. vulnificus infections were most common, but V. cholerae
non-0O1/non-0139, V. parahaemolyticus, and V. fluvialis were also confirmed by FL DOH
(46). Of the 11 deaths, nine were V. vulnificus and one V. cholerae non-O1/non-0139.
Compared to Hurricane Irma, which made landfall in September 2017 and was respon-
sible for six storm-related vibriosis cases documented in FL, 38 cases were reported
after lan. There was a lower storm surge during Irma compared to lan (46), but in
comparison with other vibriosis outbreaks caused by environmental catastrophes in the
United States, the outbreak associated with lan is notable because of the large number of
hurricane-attributable cases occurring during a short period of time. In addition to storm
surge, time series analysis for SST and chlorophyll (Fig. 1C) suggests some parameters of

(Continued on next page)
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FIG 5 (Continued)

mBio

of sampling location with respect to species relative abundance. Heatmap rows are ordered by abundance with dominant species on top. Red labels represent

potential human pathogens.

the coastal aquatic environment changed significantly during and after lan, favoring the
growth and proliferation of Vibrio spp.

Detection and characterization of pathogenic Vibrio spp. from the environment has
been ongoing in the Chesapeake Bay since the 1960s (11, 16, 22, 23, 70-75). Vibrio
spp. are native to and thrive in warm water with moderate salinity (10, 44), and
pathogenic Vibrio spp. have been shown to be present in sediment during unfavora-
ble environmental conditions, even when not detectable in water samples (11, 73).
A recent culture-based investigation of V. parahaemolyticus and V. vulnificus in the
Chesapeake Bay reaffirmed environmental predictors for these bacteria and documen-
ted their long-term increase and extended seasonality, notably during the fall (11).
Specifically, critical environmental parameter thresholds were determined for SST (25°C),
pH (8), DO (5 to 10 mg/L), and salinity (10-15 PPT) whereby increased to the maximum
abundance of Vibrio spp. occurs. In areas with high salinity profiles, pathogenic vibrios
are known to proliferate rapidly during heavy rainstorms that reduce the salinity and
favor the growth of these bacteria, as demonstrated in the French Mediterranean (76),
Chesapeake Bay (77), and Northern Gulf Coast (78). The salinity of the FL Gulf Coast is
demonstrably higher than that of the Chesapeake Bay. However, considering the impact
of Hurricane lan’s heavy rainfall on salinity and other environmental parameters recorded
1 month post lan along the FGC, including temperature, pH, and DO (Table 1), these
values are within the range considered optimal for pathogenic vibrios to proliferate
in the environment. In addition, chlorophyll serves as an important predictor of Vibrio
abundance by indicating the density of phytoplankton populations, thus serving as an
indicator of the subsequent proliferation of zooplankton, which feed on phytoplankton
(5,40, 79, 80). Here, it was observed that chlorophyll concentrations increased drastically
during and after Hurricane lan which would, by proxy, indicate increased zooplankton
abundance with which Vibrio spp. are associated.

Cultures of V. parahaemolyticus and V. vulnificus isolated from water and oyster
samples collected from the FGC subjected to WGS provided a core gene phylogeny
analysis (Fig. 2) that matched previously proposed clades for Vibrionaceae (81), whereby
each species formed coherent clusters within taxonomic subclades, in agreement with
recent phylogenetic analysis (82). Species-specific core gene phylogeny was also done
(Fig. 3), with subspecies clustering obtained for V. vulnificus (58) and V. parahaemolyticus
(59). It was hypothesized that isolates from a single location would cluster with other
strains from that location. However, distinct clustering patterns were not observed that
linked strain phylogeny, source of isolation, or virulence capability, instead providing
evidence for multiple clonal populations in circulation simultaneously. Lopez-Pérez et
al. (58) did a pangenome and phenotypic analysis that yielded two markedly differ-
ent lifestyles with differentiated phylogenetic clusters, indicating commensal (C2) and
bloomer (C1) ecotypes, with differences in carbohydrate utilization, defense systems,
and chemotaxis. All V. vulnificus isolates from the study reported here fell into these
two clusters. Based on the findings of Miller et al. (59), who performed WGS analysis
to describe phylogenetic and biogeographic patterns of V. parahaemolyticus from North
America, the FGC isolates in this study can be characterized as multiple sequence types,
providing additional evidence indicating a hub of genetic variability of V. parahaemolyti-
cus along the Gulf Coast.

Unlike clinical isolates, environmental V. parahaemolyticus strains generally do not
encode primary VFs, such as thermostable direct hemolysin (tdh) and thermostable
direct-related hemolysin (trh) (83-86). However, it has been estimated that up to ca.
27% of V. parahaemolyticus clinical isolates do not encode tdh and/or trh either (87),
suggesting possible presence of other VFs. Furthermore, tdh/trh negative V. parahaemo-
lyticus strains can cause severe infections in marine fish (88) and shrimp (89), with
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significant economic burden and aquaculture loss (90). V. parahaemolyticus isolated in
this study did not carry tdh and/or trh but did have additional VFs, notably coding for
the T3SS. ARGs were also detected in all V. parahaemolyticus strains isolated (Fig. 4).
Interestingly, no single virulence gene has been identified that distinguishes pathogenic
from non-pathogenic V. vulnificus (36). It is worth noting that RTX toxin, which promotes
cytotoxicity and enhances survival of the bacterium during infection (91, 92), was
detected in all V. vulnificus isolated in this study, and T6SS, a pilin apparatus contributing
to biofilm formation, adherence to epithelial cells, and virulence (93), was detected in
three of the FGCisolates.

Vibrio spp. have been shown to enter a protective state, namely, viable but noncultur-
able (VBNC), whereby the cells become metabolically dormant. That is, VBNC cells cannot
be cultured using standard laboratory media yet are detectable using molecular genetic
methods (94). Historically, detection of Vibrio spp. in the environment using culture
methods had been challenging because of Vibrio spp. in the VBNC state, complicating
detection and resulting in severe under representation of total Vibrio populations. VBNC
cells have been shown to have increased resistance to thermal, low salinity, and acidic
inactivation, suggesting this state plays a role in survival during adverse environmental
conditions (95). Advances in molecular methods for microbial detection, identification,
and characterization, notably next-generation sequencing and metagenomics, allow
researchers to investigate more completely the mode of emergence and transmission of
pathogenic agents that would have otherwise gone undetected (96). SMS is an effective
molecular surveillance tool that allows bacterial, archaeal, viral, fungal, and protozoan
microbiome community members to be identified and characterized. Demonstration of
its value for microbial source tracking and wastewater surveillance linked to climate has
been successful (97).

Traditional culture-based methods using selective media allowed successful recovery
of V. parahaemolyticus and V. vulnificus from FGC samples. However, despite the
evidence presented for multiple clonal populations in circulation, it should be noted
that isolation-based studies may not accurately reflect the structure and complex
dynamics of Vibrio populations (98). In contrast, culture-independent SMS of water
samples concentrated using Sterivex filters was effective in profiling the microbiome,
as shown for drinking water by Brumfield et al. (99). Here, SMS of Sterivex-concentrated
water samples successfully profiled the community composition of environmental water
samples but yielded an insufficient number of reads to be able to determine the total
number of the Vibrio spp. with confidence. SMS of APW-enriched samples allowed the
detection of many pathogenic species but not quantification because of enrichment.
Nevertheless, V. cholerae and V. fluvialis, species of Vibrio confirmed to be the cause of
deaths in FL linked to Hurricane lan (46), were detected. Furthermore, WGS and SMS
allowed characterization of the VFs, ARGs, and MGEs, along with multiple ARGs in the
isolates of Vibrio spp. (Fig. 4A) and in the microbiomes (Fig. 6A).

Challenges and future directions

Despite the broad application of PCR for use in diagnostics for infectious diseases
and environmental pathogen detection, this technique yielded only limited information
regarding the presence of Vibrio spp. in water and oyster samples in this study. Similarly,
there was an inability to profile sequencing reads as members of the genus Vibrio
via traditional SMS without enrichment (Fig. 5B). These observations were surprising
considering the numerous Vibrio spp. detected following SMS with enrichment (Fig.
5C). However, as expected, SMS of Sterivex-concentrated samples showed greater alpha
diversity than SMS with enrichment (Table 3). Culture-based enrichment allows the
identification of diverse, rare elements in metagenomic sequencing (100), and enrich-
ment using APW has been shown to be useful for amplification of Vibrio spp. (11, 101).
However, it cannot be ignored that the process of enrichment creates a biased sample
by nature (102). Hence, despite the ease of use of PCR and the high resolution of SMS,
multiple methods should be considered for environmental surveillance.
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Observations in this study were characterized using samples limited in number yet
illustrative of the potential application of genetic analysis coupled with environmental
data and remote sensing for public health by proactively detecting and characterizing
environmental pathogens, notably Vibrio spp. The samples analyzed in this study were
collected 1 month post Hurricane lan and were not compared to samples from before
the storm. Additional studies are needed to characterize fully the core microbiome
and establish a comparative baseline of pathogenic agents and their public health
significance. Work is in progress to compare the genomes of Vibrio spp. recovered from
the environment, along with their VFs and ARGs, with clinical reports and cultures
from patients. Future investigations would benefit from long-term sample collection
and methods allowing for quantification, e.g., quantitative PCR (103) or DNA colony
hybridization (11). In addition to more samples and other locations, different seasons of
the year need to be studied. Such investigations would shed light on significant shifts
in Vibrio numbers and the microbiome relative to changing environmental conditions as
well as the incidence of other pathogenic agents.

Conclusion

Climate conditions associated with the growth of and rapid response to environmental
signals by Vibrio spp. make them a valuable microbial indicator of the impact of a
changing global climate on public health (5-13). Between 1992 and 2022, a long-term
increase in the number of confirmed Vibrio spp., namely, V. vulnificus, infections in the
State of FL was documented (Fig. 1D), and the outbreak of vibriosis following Hurricane
lan serves as a traumatic example of the correlation of climate/weather processes and
public health. In the study reported here, detection and characterization of pathogenic
Vibrio spp. and the microbiome were achieved using a combination of PCR, culture, and
advanced molecular sequencing. Observations in this study are for a limited number
of samples collected 1T month after Hurricane lan, yet microbial community profiles
provide evidence for multiple pathogenic species, along with carriage of VFs, ARGs, and
MGEs, in circulation in the FGC. In addition, this study provides useful information for
future investigations, both for inhabitants of the FGC and globally, to evaluate trends
in the incidence and genomic diversity of pathogenic Vibrio spp. and related microbial
populations relative to environmental factors that enhance their growth and evolution
in aquatic ecosystems. By employing satellite remote sensing, changes in the coastal
aquatic environment can be coupled with WGS and metagenomic analysis to develop
predictive risk models for Vibrio spp. and related pathogens. Such strategies will be
critical as climate change accelerates over time.

MATERIALS AND METHODS
Environmental surveillance

The track, timeline, and windspeed data for Hurricane lan were retrieved from the
International Best Track Archive for Stewardship (IBTrACS) project (47). Chlorophyll
and SST data were recovered for three locations, CC (26.569889,-82.135616), CK
(26.546667,-82.079722), and WBS (26.36675,-82.03819), from the Moderate Resolution
Imaging Spectroradiometer (MODIS) carried on the Terra satellite (104). MODIS data
products are available at 4 x 4 km spatial resolution. A time series analysis was
performed to determine the potential impact of anomalous weather events before
(24 July 2022 to 23 September 2022), during (24 September 2022 to 30 September
2022), and after (1 October 2022 to 30 November 2022) Hurricane lan. Anomalous

percentages were calculated for SST and chlorophyll using the following equation:

x — LTavg

~TTang~ X 100 whereby “x” represents a given time period, i.e., before,

Percentchange =

during, or after, and “LT avg” represents mean of long-term data over 10 years for the
same spatial resolution. Hence, anomaly percentage results in a positive or negative
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value, suggesting deviation for a given variable from the long-term mean. That is,
negative anomalous percentages imply that a given variable decreased during 2022
with respect to the previous 10 years and positive values imply an increase.

Vibrio spp. infections

Number of confirmed Vibrio spp. infections and associated deaths reported by the State
of FL was retrieved from FL DOH (43, 45) and is presented as a number of cases for V.
vulnificus and vibriosis (excluding cholera and V. vulnificus) between January 1992 and
July 2023.

Site description and sample collection

Methods employed for sample collection and processing have previously been described
in detail (11). A summary of methods relative to this study is provided here, whereby
samples were collected from three stations (CC, CK, and WBS) on 26 October 2022. At
each station, water (7 L) was collected and stored in clean 3.7 L bottles. The bottles
were rinsed three times with sample water from each site prior to collection. Roughly
12 oysters were collected from CK and WBS and stored in clean double zipper freezer
bags. Oysters were not able to be collected from CC. All samples were transported to the
laboratory in a cooler with ice, ensuring samples did not come in direct contact with the
ice packs, and stored at 4°C until further processing. During each sampling event, water
temperature, pH, DO, and salinity were measured 0.3 m below the surface and 0.3 m
above the bottom using a handheld water probe (Eureka, Austin, TX).

Sample processing

Samples were treated following methods outlined in the Bacteriological Analytical
Manual for food sampling/preparation of sample homogenate (105) and Vibrio (106),
as described previously (11). Notably, water samples were shaken vigorously 25 times
in 30 cm arc in 7 s. From each station, 250 mL of water was concentrated four times
(totaling 1 L) using syringe filtration with four 0.22 pm pore size Sterivex Filter Units
(Millipore Sigma, MO). Oysters were rinsed and scrubbed under deionized water to
remove debris from the shell and opened using a sterile shucking knife. Oyster tissue
in equal part phosphate-buffered saline (pH 7.4) was homogenized in a sterile blender
for 90 s. Filter units and homogenized oyster tissue (500 pL) were stored at —80°C in
DNA/RNA Shield Stabilization Solution (ZymoResearch, CA). Following homogenization,
subsequent enrichment steps were done within 15 min.

APW enrichment

Samples were inoculated at various concentrations using APW (10% peptone, 1% NaCl
[pH 8.5]). Briefly, three volumes of unfiltered water (1 L, 100 mL, and 10 mL) and
homogenized oyster tissue (10 mL, T mL, and 100 pL) were resuspended in APW
(10x), each in triplicate, and incubated overnight at 37°C with moderate aeration
(orbit diameter 2.5 cm x 30 rpm). The following morning, an aliquot (500 pL) of each
APW-enriched sample was stored at —80°C in DNA/RNA Shield Stabilization Solution
(ZymoResearch, CA).

Isolation of Vibrio spp.

A loopful of pellicle from each APW-enriched sample was subcultured on selective
media, including Vibrio specific chromogenic agar (CHROMagar, Paris, France), thiosulfate
citrate bile-salts sucrose (TCBS) agar (Oxoid, Ontario, Canada), and M190 V. vulnificus agar
(107), and incubated overnight at 37°C. Presumptive Vibrio spp. colonies were purified on
Luria-Bertani agar (Difco, NY) and maintained under standard bacteriological conditions
for Vibrio spp. (108). Confirmation and identification of Vibrio spp. were done using
established molecular assays, as outlined (see below).
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Preparation of genomic DNA

Genomic DNA was prepared from pure cultures grown under standard conditions in
Luria-Bertani broth with aeration at 37°C overnight (16 h), using the ZymoBIOMICS DNA
Miniprep Kit (ZymoResearch, CA). DNA extracts were further purified using DNA Clean
and Concentrator Kit (ZymoResearch, CA), with a final elution volume of 80 pL.

Polymerase chain reaction

PCR methods have previously been established for the detection of members of the
genus Vibrio and species-specific markers. Amplified products were fractionated by
electrophoresis through 1.5% (wt/vol) agarose gel along with a 100 bp molecular weight
marker (HyperLadder, BioLine, Swedesboro, NJ) and visualized using SafeGLO Pre-Stain
(BioLInk, San Francisco, CA). For quality control, a no template control (NTC) consisting
of nuclease-free water and positive/negative controls was included with each reaction.
Primers and respective controls used in this study are detailed in Table 2.

Next-generation sequencing

Samples analyzed by next-generation sequencing included WGS of purified culture
isolates identified by PCR as V. vulnificus (Vv-toxR" and vvhA*; n = 12; Table S4) or V.
parahaemolyticus (Vp-toxR* and tlh*; n = 9; Table S5) and SMS of water samples (Table
S6) from each location, both filter-concentrated (n = 3) and APW enriched (analyzed
in duplicate; n = 6). Double-stranded DNA concentration was measured using the
Qubit 3.0 fluorometer (ThermoFisher, MA). Sequencing libraries were prepared using
NEBNext Ultra Il FS Library Prep Kit for lllumina (New England Biolabs, MA) sequencing,
using the HiSeq 4000 System (lllumina, CA) with 150 bp paired end reads. WGS was
performed targeting >200 x genome coverage (>10 M paired reads), and SMS was
done targeting >30 M paired reads. For quality control, an NTC and a sequencing
standard, i.e., ZymoBIOMICS Community Standard (ZymoResearch, CA), were included in
the sequencing run. Read quality was confirmed using FastQC (109). Adapter sequences
were removed, and low-quality bases were trimmed using Trimmomatic (110). Processed
reads were further analyzed for comparative genomics and metagenomic community
profiling, as described below.

Comparative genomics

Processed sequencing read libraries of purified culture isolates were assembled into
contigs using the St. Petersburg genome assembler (SPAdes) (111), with options
“—-careful” and “--cov-cutoff auto” to reduce the number of mis-assemblies and remove
low-coverage contigs. Small contigs (<500 bp) were discarded. Assembly statistics,
completeness, and genome quality were assessed using the Quality Assessment Tool for
Genome Assemblies (112) and CheckM (113). Draft genome assemblies were annotated
using the Rapid Annotation Using Subsystem Technology tool kit (56) and character-
ized for carriage of antimicrobial drug-, biocide-, and metal-resistance determinants
employing the Microbial Ecology Group Antimicrobial Resistance (MEGARes) database
(60), VFs via the Virulence Factor Database (VFDB) (61), and MGE via the Mobile
Genetic Element database (MGEdb) (62), using ABRicate (63) with identity and coverage
thresholds set to 60%. MLSTs were predicted using the MLST software program (114)
with the PuUbMLST database (115). Identified MLST profiles were submitted to the Public
Databases for Molecular Typing and Microbial Gene Diversity (pubMLST) (115). Isolates
identified as V. parahaemolyticus were subjected to serotyping by profiling serogroup-
specific genes based on WGS data, using VPsero (116).
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Vibrio spp. phylogenetics

To evaluate the genomic relatedness of 21 purified culture isolates of this study with
known Vibrionaceae strains, draft genome assemblies were compared with 77 represen-
tative Vibrio spp. genomes with established taxonomic lineages (Table S1), as defined
previously (82). Shewanella oneidensis MR-1 (BV-BRC genome ID 211586.12) was used as
an outgroup to root the tree. Phylogenetic trees were built using tools from the Bacterial
and Viral Bioinformatics Resource Center (BV-BRC) (56). Briefly, Codon Tree method was
used to select up to 1,000 genes from cross-genus protein families (PGfams), allowing for
two gene duplications within a single genome and two genomes missing a member of
a particular homology group. Coding DNA (amino acid sequences) from selected genes
was analyzed using the Randomized Axelerated Maximum Likelihood (RAXML) algorithm
with automatic model selection (57) to identify the best model for protein alignment.
The resulting codon trees were viewed through the Phylogenetic Tree Viewer in the
BV-BRC software suite (56).

Similar methods were used to further classify isolates from FL within existing V.
vulnificus and V. parahaemolyticus clonal populations. Briefly, 12 isolates identified as V.
vulnificus were analyzed along with 88 representative strains (Table S2) (58) using the
BV-BRC Codon Tree method, as mentioned previously, but up to five gene duplications
and genome deletions were allowed. Similarly, the nine isolates identified as V. parahae-
molyticus were analyzed along with 91 representative strains (Table S3) (59), allowing for
10 gene duplications and genome deletions. The resulting codon trees were visualized
using the Interactive Tree of Life (117).

Metagenomic community profiling

Genomic sequences in public repositories can have a diverse range of genome statistics,
e.g., reference size, number of contigs, assembly status (i.e, complete, chromosome,
scaffold, contig), N50 values, etc., which may introduce a bias toward higher quality and
complete genomes, thereby making abundance quantification unreliable. To circumvent
this issue, metagenomic community profiling was done using the up-to-date bacterial
core gene (UBCG) algorithm (64) with the EzBioCloud database (65). When extracting
UBCG sequences, all references end up being represented by the same number of
genes, and their sequence sizes are nearly identical, making detection and abundance
estimation more reliable. The 92 core genes (bacteria and archaea) currently hosted by
the UBCG algorithm were extracted from the EzBioCloud database to create a core
gene database for metagenomic profiling. First, the potential presence of bacterial
and archaeal species was surveyed for each metagenomic sample read using Kraken2
(118) and a pre-built core gene database (64) containing k-mers (k = 35) of reference
genomes obtained from the EzBioCloud database (65). Fungi, protists, and viral strains
(full genomes) were extracted from the NCBI RefSeq database (119) and added to the
core gene database. After acquiring a list of candidate species, a custom bowtie2 (67)
database was built from species detected during the Kraken2 (118) analysis. Sample
reads were mapped against the bowtie2 database using the “--very-sensitive” option,
and a Phred quality score threshold of 33. SAMtools (120) was used to convert and
sort the resulting bam file. Coverage of the mapped reads against the bam file was
obtained using BEDtools (121). To avoid false positive calls, reads mapping to a given
species were quantified only if the total coverage of their core genes (bacteria and
archaea) or genome (fungi, protists, and virus) was at least 25%. Species abundance was
calculated using the total number of reads counted, and normalized species abundance
was calculated using the total length of the respective reference sequence. Measures
of alpha diversity (species richness, Shannon, and Simpson) were calculated using the
EzBioCloud software platform (65), as described previously (122). Briefly, Species richness
was defined using the abundance-based coverage estimator algorithm (123). Shannon
entropy of counts was calculated based on the description given in the Species Diversity
and Richness manual (124). However, log base 2 (log,) was used as default instead of
the natural logarithm (loge). Simpson’s index was defined as “1 — Dominance” whereby
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dominance represents the probability of selecting two individuals from the same species,
with replacement (125).

ARG, VF, and MGE profiles were produced using separate pre-built bowtie2 (67)
reference gene databases composed of the NCBI National Database of Antibiotic
Resistant Organisms (NDARO) database (66), VFDB (61), or MGEdb (62). Metagenomic
reads were mapped against respective databases using bowtie2, as previously men-
tioned. For each gene detected, depth and coverage were calculated using mpileup
script from the SAMtools software package (120).

Software

Statistical analysis was done using R v.4.2 (126), EzBioCloud (65), and BV-BRC (56). Figures
were generated using ggplot2 (127),iTOL (117), and Phylosmith (128).
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