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Anticipatory decision-making for cholera in Malawi
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ABSTRACT Climate change raises an old disease to a new level of public health threat. 
The causative agent, Vibrio cholerae, native to aquatic ecosystems, is influenced by 
climate and weather processes. The risk of cholera is elevated in vulnerable popula­
tions lacking access to safe water and sanitation infrastructure. Predictive intelligence, 
employing mathematical algorithms that integrate earth observations and heuristics 
derived from microbiological, sociological, and weather data, can provide anticipatory 
decision-making capabilities to reduce the burden of cholera and save human lives. An 
example offered here is the recent outbreak of cholera in Malawi, predicted in advance 
by such algorithms.
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C holera remains a deadly waterborne diarrheal disease and is devastating for 
populations living in poverty and lacking access to safe water, sanitation, and 

hygiene (WASH) infrastructure. Vibrio cholerae, frequently linked to diarrheal illness and a 
causative agent of the cholera disease, thrives in regions where environmental, weather/
climate, and societal vulnerabilities intersect. The continent of Africa is particularly 
vulnerable to cholera outbreaks, notably where there is a lack of access to WASH 
infrastructure and sufficient healthcare facilities. Figure 1 shows major cholera outbreaks 
occurring across Africa from 2017 to 2022. Apart from African countries, several other 
countries have reported cholera (1), e.g., Haiti (2010) and more recently in Yemen (2016) 
(2). Natural (earthquake in Haiti) and anthropogenic (civil unrest in Yemen) disasters have 
damaged WASH infrastructure (2, 3), resulting in massive cholera outbreaks.

Cholera is preventable by ensuring access to WASH and adequate medical infrastruc­
ture. Over the past 50 years, several major discoveries have been made, notably that V. 
cholerae is native to the aquatic environment where it proliferates when conditions for its 
growth are optimal (4–9). Proliferation of V. cholerae and related Vibrio spp. in the 
environment was shown to be driven by environmental factors, namely ambient weather 
and climatic processes, with coastal waters serving as an ecological niche for several 
pathogenic Vibrio spp., including Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio 
cholerae ([review provided by Brumfield et al. [10]). Another important finding is that 
Vibrio spp. are commensal to copepods, zooplankton comprising a significant compo­
nent of aquatic fauna that feed on phytoplankton in coastal waters (6, 11). In fact, 
copepods are a major host of V. cholerae (12). A single copepod can harbor up to 104 V. 
cholerae cells (9); hence, ingestion of untreated water containing a small number of 
copepods can promote disease (13–15), a sufficiently significant activity for the copepod 
to be concluded a vector (16). Studies by Huq et al. and Colwell et al. (14, 15) demonstra­
ted that employing simple sari-cloth filtration prior to consumption of water effectively 
removed zooplankton and particulate matter from drinking water and significantly 
reduced the number of cholera cases in Bangladesh villages. In total, these findings 
demonstrated vibrios in the environment to be strongly associated with ecological and 
climate/weather processes (e.g., flooding [17, 18], sea surface temperature [19, 20], 
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zooplankton blooms [12, 14], and salinity [21]] and regional hydrology (e.g., river flows 
[22], coastal plankton ecology [23], ambient temperature [24], and precipitation [25, 26]).

Previous research demonstrated that cholera outbreaks occur in two modes (27–
31): epidemic, which is the sudden occurrence of cholera in a region where societal 
disturbance results in a lack of access to safe drinking water and appropriate sanitation, 
and endemic, which is a continuous occurrence of cholera cases in human population 
with quasi-predictable seasonality. The cholera epidemic mode can evolve to become 
endemic if WASH access is not ensured. A cholera outbreak requires distinct trigger and 
transmission mechanisms (29, 30, 32), where the trigger is defined as conditions that 
initiate an outbreak driven by social and environmental dynamics and transmission as 
spreading of infection into human communities. While the origins of the cholera trigger 

FIG 1 Cholera outbreaks reported in Africa from 2017 to 2022.
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have been debated (28, 30), the interaction of humans with an environmental reservoir 
of V. cholerae has been linked with outbreaks of cholera (12, 23, 33, 34).

Given the spatial uncertainty of cholera in vulnerable regions with poor WASH 
infrastructure, a key challenge is determining when and where to introduce mitiga­
tion action to prevent an outbreak. One solution is anticipatory decision-making, a 
framework that uses predictive intelligence based on knowledge derived from field 
surveillance and mathematical models (30). A 3-year, near real-time model validation 
applied in Yemen yielded 72% accuracy in forecasting the risk of the likelihood of cholera 
(30). It was the first study to highlight the use of environmental, climate, and weather 
information integrated with microbiological and sociological data to estimate the risk 
scores for cholera.

A climate-driven, sociological hypothesis states that if a region experiences above-
average air temperature, followed by heavy precipitation, and considerable damage 
to water and sanitation infrastructure, human behavior will change with respect to 
consumption of water, rendering the region to high risk of cholera (details of the 
model are provided in previously published studies [23, 28, 31, 35]). The potential of 
a cholera outbreak will remain low if any of these conditions are not met. A data-driven, 

FIG 2 Cholera risk for Malawi 14 February 2022, valid for the following 4 weeks.
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score-based mathematical algorithm developed over the past decade provides a reliable 
lead time of 4 weeks for the risk of cholera (28, 30, 31, 36) (a web hub is currently in beta 
phase and is available at https://vibrio-prediction-ufl.hub.arcgis.com/). The algorithm 
provides risk values (high, medium, and low) at 1 km × 1 km pixel scale and employs 
earth observations, including precipitation, temperature, population density, sociological 
factors (e.g., access to drinking water and sanitation), and Vibrio spp. growth parameters. 
The output of the algorithm and the validation of the hypothesis have been demonstra­
ted for Zimbabwe (35) and subsequently for Nepal (31) and Haiti (28) and, more recently, 
for Yemen (30, 36).

The cholera algorithm, focusing on the trigger mechanism, was implemented in 
Malawi in February 2022, in the middle of the rainy season. However, the region recorded 
both anomalous conditions of warm temperatures and high precipitation. Heightened 
risk of cholera, on a district scale, for the country was predicted (see Fig. 2) with a 4-week 
lead time. Medium risk, as shown in Fig. 2, indicates that if conditions became amplified 
(in this case, damage and/or lack of access to WASH infrastructure), the region would 
experience cholera within 4 weeks of forecast. In fact, the first confirmed case of cholera 
was reported in Malawi on 2 March 2022 (37), leading the Ministry of Health to declare 
an outbreak the following day. The cholera cases decreased with the onset of dry months 
(May to October). Cholera risk, as computed by the algorithm, increased again in October 
2022 and peaked in January 2023 (Fig. 3) by which time the outbreak had affected all 
districts of the country, with case numbers and case fatality surpassing Malawi’s previous 
worst outbreak 20 years earlier. Cholera risk algorithm produce a time series of risk scores 
interpreted as a rate of increase (risk value consistently increased over the previous 
forecasted risk value) (details in references 30, 36). Figure 3 shows the consistent increase 
in cholera risk from October 2022, hence favored increased odds of cholera.

Geophysical processes have only recently been established for deducing and 
forecasting the behavior of a pathogen. Therefore, it is crucial to provide a comprehen­
sive, data-driven, and adaptable understanding of an infectious disease that is influenced 
by weather and climate to achieve reliable decision-making. It is essential to differentiate 
between reactive and anticipatory decision-making. Most decision-making, with respect 
to infectious diseases, remain reactive, with intervention and mitigation initiated after 

FIG 3 Boxplot for an entire Malawi cholera risk time series (values greater than 0.34 represent medium risk, in yellow 

color; values greater than 0.50 represent a high risk, in red color, of cholera). Line shows probable time when cholera was 

acknowledged by the health agencies.
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an outbreak has begun. Earth observation data, if sociological processes and microbial 
processes are included, can provide anticipatory decision-making. Frameworks to guide 
anticipatory decision-making should be developed to support Ministries of Health and 
other agencies to translate risk data into effective action. This is important in places 
such as Malawi which are highly vulnerable to increasingly climate-related public health 
shocks yet with limited resources to respond. For Malawi, anticipatory intervention to 
limit spread of cholera could have contributed to improving targeted distribution of 
water safety kits, stockpiling, and ensuring availability of antibiotics, timely vaccination, 
and education of the local population on handling water drawn from ponds and rivers 
in conflicted regions. Anticipatory, risk-based intervention in February 2022 could have 
contributed to preventing or limiting the spread of the initial outbreak that occurred in 
March 2022, as well as made best use of limited vaccine stocks (38) (given the global 
shortage) and other interventions by focusing on at risk populations. Thus, country-wide 
spread of disease that occurred later in 2022 and led to nearly 60,000 cases and over 
1,700 deaths could have been prevented. It could also have been helpful to identify 
when the risk was reducing to inform decisions on when and where to scale down 
interventions. Internet or data transmission will be effective and helpful in implementing 
surveillance systems for reporting cholera cases. Table 1 lists some proactive measures 
that can be employed to prevent major outbreaks of cholera, adapted from reference 39. 
Reliability of predictive intelligence for infectious diseases generated by mathematical 
algorithms that integrate earth observations and geophysical processes into disease 
models is a new field with a powerful future.
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TABLE 1 Recommended preemptive actions

Preemptive interventions Preference Source

Safe water Sealed and bottled water 1 (40)
Water treatment 2 (41, 42)
Boiling water 3 (43)

Safe defecation Limit open defecation 1 (44, 45)
Chemical treatment of fecal matter 2 (46)
No defecation near/in a water body 3 (47)

Hand wash Ensuring proper hand washing principles 1 (48, 49)
Washing hands before and after cooking and 

eating
2 (47, 49)

Washing hands when treating sick patients 3 (50)
Eating habits Thoroughly cooking and preparing food 1 (49)

Avoiding seafood during disease outbreaks 2 (49)
Encouraging peeled vegetables and fruits 3 (42, 49)

Oral cholera vaccine Before exposure (7–10 days before infection) 1 (51)
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