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Abstract

Visual question answering (VQA) requires systems to
perform concept-level reasoning by unifying unstructured
(e.g., the context in question and answer;, “QA context”)
and structured (e.g., knowledge graph for the QA context
and scene; “concept graph”) multimodal knowledge. Ex-
isting works typically combine a scene graph and a con-
cept graph of the scene by connecting corresponding visual
nodes and concept nodes, then incorporate the QA context
representation to perform question answering. However,
these methods only perform a unidirectional fusion from
unstructured knowledge to structured knowledge, limiting
their potential to capture joint reasoning over the heteroge-
neous modalities of knowledge. To perform more expressive
reasoning, we propose VQA-GNN, a new VQA model that
performs bidirectional fusion between unstructured and
structured multimodal knowledge to obtain unified knowl-
edge representations. Specifically, we inter-connect the
scene graph and the concept graph through a super node
that represents the QA context, and introduce a new mul-
timodal GNN technique to perform inter-modal message
passing for reasoning that mitigates representational gaps
between modalities. On two challenging VQA tasks (VCR
and GQA), our method outperforms strong baseline VQA
methods by 3.2% on VCR (Q-AR) and 4.6% on GQA, sug-
gesting its strength in performing concept-level reasoning.
Ablation studies further demonstrate the efficacy of the bidi-
rectional fusion and multimodal GNN method in unifying
unstructured and structured multimodal knowledge.

1. Introduction

The visual question answering (VQA) task aims to pro-
vide answers to questions about a visual scene. It is cru-
cial in many real-world tasks including scene understand-
ing, autonomous vehicles, search engines, and recommen-
dation systems [1,2,9, 15]. To solve VQA, systems need to

* Work done while at Stanford University.

Hongyu Ren?

Shinya Wada'  Jure Leskovec?

2Stanford University

Z{myasu, hyren, jure}@cs.stanford.edu

Q: What is woman2 doing?
Retrieval Encoding

@ A0:She is making breakfast.
Al:She is dancing.
L&

0A ¢ node B@  A2:Sheis listening to her
~concept node -

teacher give a lecture.
s
(T
ey

4)6‘1,.'. QA-context node
ey,
a,

A3:Explaining why she is
holding woman2 hostage.

YL

Retrieval

L scene-graph concept-graph )

Structured knowledge Y Structured knowledge

2

- V. Unstructured c
. . ‘

2
‘ knowlédge ‘
A c.

1
3

Bidirectional fusion

Inference and learning

Answer:AQ

Figure 1. Overview of VQA-GNN. Given an image and QA sen-
tence, we obtain unstructured knowledge (e.g., QA-concept node
p and QA-context node z) and structured knowledge (e.g., scene-
graph and concept-graph), and then unify them to perform bidirec-
tional fusion for visual question answering.

perform concept-level reasoning by unifying unstructured
(e.g., the context in question and answer; “QA context”)
and structured (e.g., knowledge graph for the QA context
and scene; “concept graph”) multimodal knowledge.

Most of the high-performing VQA methods [6, 20, 26,
37,49, 51, 52] pretrain a multimodal transformer model
on a large-scale dataset to obtain unstructured multimodal
knowledge from image and language contexts, and then
finetune the pretrained model to reason on downstream
tasks (e.g., visual commonsense reasoning (VCR) task
[50]). Existing methods (e.g., SGEITL [42]) also incor-
porate structured knowledge into these transformer-based
models by including a scene graph in the input of a pre-
trained multimodal transformer model. More recent meth-



ods [27, 54] further combine the scene graph and the con-
cept graph by inter-connecting corresponding visual nodes
and concept nodes through graph neural networks (GNNs),
and then incorporate the unstructured QA context repre-
sentation to perform question answering. However, these
methods only perform late fusion or unidirectional fusion
from unstructured knowledge to structured knowledge and
do not train the model to mutually aggregate information
from both sides. This can limit their potential to perform
joint reasoning over the heterogeneous modalities of knowl-
edge. As unstructured knowledge and structured knowledge
have complementary benefits—pretrained unstructured rep-
resentations capture broader knowledge and structured rep-
resentations offer scaffolds for reasoning— [48], this moti-
vates the development of models that deeply fuse the two
modalities of knowledge for visual question answering.

We propose VQA-GNN (Figure 1), a new visual ques-
tion answering model performing bidirectional fusion be-
tween unstructured and structured multimodal knowledge
to obtain a unified, more expressive knowledge representa-
tion. VQA-GNN extracts a scene graph from the given in-
put image using an off-the-shelf scene graph generator [38]
and then retrieves a relevant concept graph for the input im-
age and QA context from a general knowledge graph like
ConceptNet [36], obtaining a structured representation of
the scene. Simultaneously, to obtain an unstructured knowl-
edge representation for the scene, (1) we use pretrained
RoBERTa [23] to encode the context in question and an-
swer (“QA-context”) as QA-context node, and (2) we re-
trieve relevant visual regions from a general scene graph
VisualGenome [ 8] and take their mean pooled representa-
tion as a QA-concept node, which we connect to the scene
graph. We then connect the scene graph and the concept
graph through QA-context node to build a multimodal se-
mantic graph.

To achieve bidirectional fusion across the multimodal se-
mantic graph, we introduce a new multimodal GNN tech-
nique that performs inter-modal message passing. The mul-
timodal GNN consists of two modality-specialized GNN
modules, one for each modality, which perform inter-
message aggregation between the QA-context node and
nodes in structured graphs, aiming to reduce representa-
tional gaps between modalities. Meanwhile, by leveraging
the robust transformer-based architecture of RoOBERTa, we
unfreeze and finetune the weights of the QA-context node
to enable mutual information aggregation from modality-
specialized GNN modules.

We evaluate VQA-GNN on two challenging VQA tasks,
VCR [50] and GQA [13]. These tasks require systems to
perform conceptual and compositional reasoning to answer
diverse questions (e.g., multiple-choice question answering
and rationale selection in VCR; open-domain question an-
swering in GQA). Our model outperforms strong baseline

VQA methods [12,42] by 3.2% on VCR (Q-AR) and 4.6 %
on GQA. Moreover, ablation studies show the efficacy of
our two main techniques, bidirectional fusion and multi-
modal GNN message passing. On VCR, our multimodal
GNN technique that reduces multimodal gaps outperforms
existing works that use generic GNNs [27,54] by 4.5%. On
GQA, bidirectional fusion outperforms a unidirectional fu-
sion variant by 4%. These results confirm the promise of
VQA-GNN in unifying unstructured and structured multi-
modal knowledge for reasoning.

2. Problem Setup

This work focuses on multiple-choice and open-domain
visual question answering, respectively. Each data point
consists of an image ¢, and a natural language question q.
For the multiple-choice setting, each question corresponds
to a set of candidate answers .4, where only one candidate
acorrect € A 1s the correct answer to the question. Given a
QA example (¢, ¢, A), we assume we have access to its rele-
vant joint graph G(¢") and our goal is to identify the correct
answer Georect € A. For the open-domain setting, all ques-
tions correspond to a large set of common answer classes
B, where only one candidate beeet € B is the best answer
to each question. Given a data example (¢, ¢) with relevant
scene graph G999 the goal is to identify beorect € B.

3. Related Work
3.1. Multimodal transformer

VQA has emerged as one of the most popular topics in
the computer vision community over the past few years
[1,2,9,11,15,25]. Existing methods for VQA [20, 26,

, 52] employ the pretrain-and-finetune approach, where
they train a multimodal transformer model on large-scale
visual-language datasets, and then finetune the pretrained
model on the downstream VQA datasets, e.g., RESERVE-L
model [51] is pretrained using 1 billion image-caption data
including video frames, text, and audio. However, these
methods only focus on obtaining unstructured multimodal
representations by modeling implicit interactions over the
visual and language domains. In contrast, our method intro-
duces a multimodal GNN module to obtain unified knowl-
edge representations from unstructured and structured mul-
timodal knowledge based on explicit interactions over a
well-structured multimodal semantic graph.

3.2. Structured knowledge-based VQA

Scene graph. Existing methods such as [49] introduce a
scene graph prediction task to learn structured knowledge
conditioned multimodal representations, and the work [42]
proposes to incorporate extracted scene graph in multi-
modal transformer models. These works [12,21,30,39] also



exploit GNNs [4, 17,40,44] to incorporate unstructured QA-
context knowledge into a structured scene graph for ques-
tion answering. However, these methods only perform late
fusion or unidirectional fusion from unstructured knowl-
edge to structured knowledge. In contrast, our method per-
forms bidirectional fusion to unify unstructured and struc-
tured knowledge.

Concept graph. Aiming to achieve concept-level reasoning
beyond image-level recognition for visual understanding,
existing works [5,7,10,19,27,28,34,35,43,46,54,55] utilize
knowledge graphs (KGs) to explore how to unify common-
sense knowledge [33,47,48] about background concepts of
the scene. The work [45] converts the image into captions
and performs GPT-3 [3] in joint knowledge retrieval and
reasoning. The work [19] encodes question-related knowl-
edge from the retrieved knowledge facts to a knowledge-
aware question representation, and then performs a question
and knowledge-guided graph attention operation for answer
reasoning. However, structured concept knowledge relevant
to the QA context is not enough to represent the background
scene. We build a concept graph to cover structured and un-
structured concept knowledge relevant to the QA context as
well as the background scene.

Scene graph & concept graph. To enrich structured
knowledge, these works [10,43,55] utilize GNNs to learn
graph representations of the scene graph and concept graph
respectively, and then perform later fusion across the QA
context, scene graph and concept graph for question rea-
soning. However, it is insufficient to capture the interac-
tions across different modalities for concept-level reason-
ing. These works [27,54] unify the scene graph and concept
graph by interconnecting corresponding visual and concept
nodes to capture their interactions. However, the represen-
tational gap between modalities adversely affects the perfor-
mance of inter-modal message passing for capturing joint
reasoning [22,41]. Our method inter-connects the scene
graph and concept graph via a QA context node and intro-
duces a new multimodal GNN technique to mitigate repre-
sentational gaps between modalities.

4. Methodology

As shown in Figure 2, given an image and its related
question with an answer choice, first we build a multimodal
semantic graph to unify unstructured and structured multi-
modal knowledge into a joint graph (§4.1). Then we pro-
pose a multimodal GNN-based bidirectional fusion method
that performs inter-modal message passing to obtain node
representations enhanced with unstructured and structured
multimodal knowledge (§4.2). Finally, we get the pooled
representations of scene-graph and concept-graph and con-
catenate them with the representations from the QA-context
node and QA-concept node for answer prediction (§4.3).

4.1. Multimodal semantic graph

Scene-graph encoding. Given an image, we use a pre-
trained scene graph generator to extract a scene graph
that consists of recall@20 of (subject, predicate, object)
triplets to represent structured image context [38], e.g.,
(car, behind, man). Then we apply a pretrained object de-
tection model for embedding a set of scene graph nodes
V) = {v;}N, (N indicates the maximum number of

scene-graph nodes of “20”) and represent vz(s) with a 2048
dimensional visual feature vector [53]. We indicate the
predicate edge types in the scene graph with a set of scene
graph edges £0%) = {rf)}f;l (D denotes the number of
(s)

edge types) and represent r;”* with a D-dimensional one-
hot vector.

QA-concept node retrieval. In addition to the local image
context, with an assumption that the global image context
of the correct choice aligns with the local image context, we
employ a pretrained sentence-BERT model to calculate the
similarity between each answer choice and all descriptions
of the region image within the VisualGenome dataset [18].
This process allows us to extract relevant region images
that capture the global image context associated with each
choice [32]. We retrieve the top 10 results and utilize the
same object detector to embed them. These embeddings are
averaged to obtain a QA-concept node denoted as p. Subse-
quently, we introduce a QA-concept edge, denoted as 7(?),
which serves to fully connect node p with node v;.
Concept-graph retrieval. We retrieve a concept graph
from the image and ConceptNet KG, a general-domain
knowledge graph [36]. Our process is illustrated in Fig-
ure 3. In Step 1, we extract concept entities from both the
image and the answer choices. Specifically, for the image,
we consider the detected object names as potential contex-
tual entities, while excluding general terms like “person” to
streamline the reasoning process. For the answer choice,
we ground phases if they are mentioned concepts in the
ConceptNet KG, e.g., “beverage” and “shop”. In Step 2-
1, we use grounded phases to retrieve their 1-hop neigh-
bor nodes from the ConceptNet KG. In Step 2-2, since
many concept nodes retrieved are semantically irrelevant to
the answer choice, we use a word2vec model released by
the spaCy library' to get relevance score between concept
node candidates and answer choices, and prune irrelevance
nodes when the relevance score is less than 0.6. As a result,
given an answer choice, we can retrieve a relevance sub-
graph from ConceptNet KG based on the relevance score.
In Step 3, to better comprehend concept knowledge from
the image as well, in addition to linking adjacent object
entities in the ConceptNet KG domain, we also combine
parsed local concept entities of the image with the retrieved
subgraph. For instance, considering that ConceptNet en-
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Figure 2. Reasoning procedure of VQA-GNN. We first build a multimodal semantic graph for each given image-QA pair to unify un-
structured (e.g., “node p” and “node z”) and structured (e.g., “scene-graph” and “concept-graph”) multimodal knowledge (§4.1). Then
we perform inter-modal message passing with a multimodal GNN-based bidirectional fusion method (§4.2) to update the representations
of node z, p, v; and ¢; for k + 1 iterations in two steps. Finally, we predict the answer with these updated various node representations
(§4.3). Here, “S” and “C” indicate scene-graph and concept-graph respectively. “LM_encoder” indicates a language model used to finetune
QA-context node representation, and “GNN” indicates a relation-graph neural network for iterative message passing.

compasses various types of local concept entities, if a local
concept entity (e.g., “bottle”) is found adjacent to a retrieved
entity (e.g., “beverage”), we build a new knowledge triple,
e.g., (bottle, aclocation, beverage). Finally, we can con-
struct a concept graph to depict the structured knowledge at
the concept level. We obtain a collection of concept-graph
nodes denoted as V(¢) = {¢;} N |, where N represents the
maximum number of concept-graph nodes of 60. The con-
cept entity ¢; is represented using a 1024-dimensional text
feature vector as the concept entity embedding in [8]. Addi-
tionally, we initialize a set of concept-graph edges denoted
as £0) = {rgc) }P |, using D-dimensional one-hot vectors,
where D is the number of edge types in concept-graph.

QA-context node encoding. To construct a multimodal
semantic graph, we introduce an unstructured QA-context
node denoted as z to inter-connect the scene-graph and
concept-graph using three additional relation types: the
question edge (%), the answer edge r(*), and the image
edge (). The image edge (¢ fully links node z with V()
capturing the relationship between the QA context and rele-
vant entities within the scene-graph. The question edge (%)
and answer edge r(*) link node z with the entities extracted
from the question and the answer text, respectively, captur-
ing the relationship between the QA context and the relevant
entities within the concept-graph. As a result, we construct
a multimodal semantic graph G = {5, C'} to provide a joint
reasoning space, which includes two sub-graphs of scene-
graph S and concept-graph C, two super nodes of QA-
concept node and QA-context node. Here, the QA-concept
node is included in S and the QA-context is included in S
and C for performing inter-modal message passing in §4.2.
Especially, the QA-context node z is assigned to not only
learn unstructured discriminative representations by giving
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Figure 3. The process of concept-graph retrieval involves the cal-
culation of similarity between concept-graph nodes and the answer
context, denoted as Relev(e|a).

a Q and A text pairs but also to incorporate structured multi-
modal knowledge from scene-graph and concept-graph for
effective VQA. As the transformer-based method is power-
ful for multimodal representation learning [26,37], we em-
ploy the RoOBERTa LM [24] as the encoder of QA-context
node z and finetune it with GNN modules to achieve bidi-
rectional multimodal knowledge fusion (see Figure 2).

4.2. Multimodal GNN-based bidirectional fusion

To improve inter-modal message passing by avoiding
directly aggregating neighborhood nodes that may be ini-



tialized in different modality domains, we propose a mul-
timodal GNN-based bidirectional fusion method built by
two relation-graph neural networks for scene-graph and
concept-graph respectively (see §5.2.1). The relation-graph
neural network is built on the Graph Attention Networks
(GAT) [40] by introducing multi-relation aware message for
attention-based message aggregation process to better cap-
ture multiple relation information.

The detail of the relation-graph neural network is as fol-
lows: we have five node types: 7 = {Z, P,S,C} in the
multimodal semantic graph and they indicate QA-context
node z, QA-concept node p, scene-graph node s, question
node ¢ and concept-graph node c. As relation edge rep-
resentation 7; ; should capture relationship from node 4 to
node j and difference of node types represents a special re-
lation between neighborhood nodes, we first obtain node
type embedding u;, u; and then concatenate them with
edge embedding e;; to generate multi-relation embedding
T;; from i to j by

rij = fr([eijluillus]) (1

where u;,u; € {0,1}/7] are one-hot vectors indicating the
node types of i and j, e;; € {0,1}/®l is a one-hot vector
indicating relation type of edge (4, j). || is the concatenation
operation, and f, : RRIT27TI 5 RP is a 2-layer MLP.
Based on multi-relation embedding 7;;, the multi-relation
aware message m;; from 7 to j is computed by

mi; = fm([hngrl)HrijD )

where f,, : R?P — RP is a linear transformation. A"
is the node representation of each node ¢ in the graph. We
then recursively updated it £ 4 1 times by

hz('kﬂ) = fn Z Qi ;mG; |+ hz(-k) 3)

JEN;
where f; : RP — RP is 2-layer MLP with batch nor-
malization [14]. A indicates the neighborhood of node 7,

oy 1s an attention weight to emphasize important messages
passed from N; to node i. We obtain g;, k; by

g = fo(h" ) kg = (RS g @)
where f, : R? — RP and f; : R*P — RP are linear trans-
formations. «; is computed using the softmax function by

Ty .

Y5 = A (5)
exp(7i;)

(6)

> jren: exp(vijr)

ai; = softmax; (i) =

By referring to Eq. 3, we perform message passing to up-
date node representations in each graph in parallel by aggre-
gating multi-relation aware messages from neighborhood

nodes in each node. As a result, we obtain structured graph
node representations hgﬁfgl) and hgftl), unstructured node

representations hg:;_ Y and hgl;;- . For node z, we update it

with scene-graph and concept-graph respectively, and con-
catenated by

k k k
R = L(REEIREE) )

where f. : R?P — RP is a linear transformation.
4.3. Inference and Learning

To identify the correct answer acorrect € A With a QA
example (c, ¢, A), we compute the probability p(a|c, q) for
each answer choice with its multimodal semantic knowl-
edge from scene-graph, concept-graph, QA-context node,
and QA-concept node. With various node representations
on the L-th (L. = k + 1) layer updated by GNN mod-
ules (shown in Figure 2), we obtain pooling representations

hESH) and h(fﬂ) of scene-graph and concept-graph and
then concatenate with QA-context node and QA-concept

node representations. Finally we calculate p(alc, ¢) by

K+1 K+1 K+1 K+1
h’¢(zk+1) = [hEs)Jr )thc)Jr )||h'EID)+ )HhEz)Jr )]7 ¥

logit(a) = fo(h" ™), ©
p(ale, q) = softmax, (logit(a)) (10)

where logit(a) indicates the confident score of answer
choice a, f. : R*P? — R! is a linear transformation that
maps the concatenation of representations to a scale. We
normalize it across all answer choices using the softmax
function. For the training process, we apply the cross en-
tropy loss to optimize the VOQA-GNN model end-to-end.

5. Experiments
5.1. Experiment Setup

Visual Commonsense Reasoning (VCR). We evaluate
VQA-GNN on VCR [50]. It contains 290k pairs of ques-
tions, answers, and rationales, over 110k unique movie
scenes. VCR consists of two tasks: visual question answer-
ing (Q—A), answer justification (QA—R). Each question
in the dataset is provided with four candidate answers. The
goal of (Q—A) is to select the best answer, while the goal
of (QA—R) is to justify the given question answer pair by
picking the best rationale out of the four candidates. We
joint train VQA-GNN on Q—A and QA—R, with a com-
mon LM encoder, the multimodal semantic graph for Q—A,
a concept graph retrieved by giving question-answer pair
with a rationale candidate for QA—R. We use a pretrained
RoBERTa Large model to embed the QA-context node, and
finetune it with the multimodal GNN for 50 epoch by using
learning rates le-5 and le-4 respectively. We set the num-
ber of layers (L = 5) of VQA-GNN and use AdamW [16]
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Model f# Image-caption Parameters  Structured knowledge Test Acc.(%)

in pretraining Q—A QA—R Q—AR
VILBERT [26] 3.3M 221M No 733 74.6 54.8
VLBERT-L [37] 3.3M 383M No 75.8 78.4 59.7
SGEITL+VLBERT [42] 290k > 383M Yes 76.0 78.0 59.6
UNITER-(B/L) [0] 9.5M 154M/378M No 75.0/77.3  77.2/80.8 58.2/62.8
ERNIE-ViL-(B/L) [49] 3.8M 212M/533M No 77.0/79.2 80.3/83.5 62.1/66.3
VQA-GNN (Ours) 290k 372M Yes 77.9 80.0 62.8
MERLOT [52] 180M 223M No 80.6 80.4 65.1
RESERVE-(B/L) [51] 1B 200M/644M No 79.3/84.0 78.7/84.9 62.6/72.0
RESERVE-L + VQA-GNN (Ours) 1B 1B Yes 85.3 86.9 74.3

Table 1. Accuracy scores for VCR test set. VOQA-GNN outperforms SGEITL+VLBERT model on Q— AR metric by 3.2%, and achieves
competitive accuracy with SOTA methods, which have a close number of parameters but SOTA methods require a large amount of image
caption data in pre-training process (over 13x larger than our model), e.g., "UNITER-L”, "ERNIE-VIiL-B”, "RESERVE-B”. Moreover,

"RESERVE-L+VQA-GNN” outperforms RESERVE-L by 2.3% on Q— AR metric.

optimizer to minimize the loss. We use a linear warmup of
the learning rate over the /5-th epoch, with a cosine decay
thereafter to 0.

GQA dataset. It contains open-ended questions (1.5M
questions correspond to 1,842 answer tokens), along with
110K scene graphs and the semantic functional programs
to offer unambiguous instructions [13]. We only use ques-
tions without giving a semantic feature program that limits
the development of the model’s reasoning abilities in a more
practical setting. We define the question as the context node
(node q) to fully connect visual and textual scene graphs
(SG) respectively to structure multimodal semantic graphs.
The node q is embedded with a pretrained ROBERTa large
model, and we initialize object nodes’ representations in vi-
sual SG using official object features, object nodes in tex-
tual SG by concatenating GloVe [31] based word embed-
ding of the object name and attributes. Different from the
training target of VCR, the goal of GQA is to classify the
given image-question pair out of 1,842 answer classes. We
finetune the node q with VQA-GNN for 50 epoch by using
learning rates 2e-5 and 2e-4 respectively.

5.2. Performance

5.2.1 Evaluation on VCR dataset

Comparison with state-of-the-art methods. We com-
pared VOQA-GNN with state-of-the-art methods on the VCR
test set in Table 1. Compared with the unidirectional fu-
sion method SGEITL+VLBERT that can boost multimodal
transformer model VLBERT by incorporating visual scene
graphs, VOQA-GNN is a multimodal GNN-based bidirec-
tional fusion method built on the multimodal semantic
graph. Both were not pretrained on the large-scale dataset.
VOA-GNN improves SGEITL+VLBERT on the Q—AR
metric by 3.2%, and further reduces over 11M training pa-

rameters. We think that the structured multimodal seman-
tic graph provides much more commonsense knowledge
related to QA and original image than SGEITL, and the
multimodal GNN-based bidirectional fusion method works
much better on unifying unstructured and structured mul-
timodal knowledge than multimodal transformer models.
Moreover, since we retrieve commonsense knowledge from
structured multimodal semantic graphs directly, VOA-GNN
is a cost-effective approach compared to multimodal trans-
former models that consume much GPU resources to learn
commonsense knowledge with large parameters.

We also demonstrate the effectiveness of VQA-GNN by
comparing it with state-of-the-art multimodal transformer
models that were pretrained across text and images and
were finetuned on the VCR dataset. As shown in Table
1, the larger image caption data and parameters, the higher
performance the model can achieve. In contrast, VOA-GNN
trained with VCR dataset with 290K image-caption pairs
performs similarly to UNITER-L that requires over 32x
larger image-caption data than us in pretraining process.
These results suggest that VOA-GNN obtaining structured
context knowledge inferred from image-level and concept-
level knowledge sources is as effective as the pretraining
process for previous methods. Moreover, VOA-GNN can
further enhance RESERVE-L performance on both Q—A
and QA—R, and finally improves the score by 2.3% on
Q—AR metric. As correcting some questions requires the
model to understand commonsense knowledge related to
image context and have good reasoning ability, it is difficult
for multimodal transformer methods including RESERVE-
L. On the other hand, VQA-GNN not only structures a
joint semantic graph to provide commonsense knowledge
related to image context but also has a good reasoning abil-
ity thanks to its multimodal GNN module. Additionally, in
the supplementary material, we detail the results compared
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to baselines pretrained only with the VCR dataset, as well
as the evaluation of different question types.

Effectiveness of the multimodal semantic graph. To fur-
ther study the behavior of modules in the multimodal se-
mantic graph, and quantitatively evaluate pretrained mod-
els used in this work (e.g., ROBERTa-L, scene-graph[scene
graph generator], concept-graph[conceptNet KG]), we re-
port the performance of using different node representations
in Table 2. We respectively build classification models by
applying Node p and Node z to get their validation accuracy
on Q—A subtask. The scene-graph structured by connect-
ing Node p and Node z with extracted visual scene graph
improves over 25% on average of these two nodes. In terms
of concept-graph, it is structured by connecting Node z with
retrieved conceptual triplets from ConcepNet KG, improv-
ing Node z’s performance by 15.2%. We further compare
VOA-GNN on “scene-graph + concept-graph” w/ and w/o
Node p, and the result shows that including Node p can
further improve the performance by 2%. We believe that
the Node p representing global visual knowledge associated
with the correct answer is able to pass visual commonsense
knowledge to the multimodal semantic graph, and it is ef-
fective besides employing ConcepNet KG to obtain textual
commonsense knowledge [48].

Model Val Acc.(%) (Q—A)
Node p (Vinvl) 43.5
Node z (RoBERTa-L) 53.8
concept-graph 69.0
scene-graph 73.7
concept-graph + scene-graph (w/o node p) 75.1
concept-graph + scene-graph (w/ node p) 711

Table 2. All modules in the multimodal semantic graph help boost
the final performance. Here, “scene-graph” includes node z and
node p, “concept-graph” includes node z.

Model Val Acc.(%) (Q—A)
Ablation 1 (single GNN) 73.0
Ablation 2 (single GNN w/ cross-modal edges) 70.6
VQA-GNN (two modality-specialized GNNs) 75.1

Table 3. Ablation 1 and Ablation 2 indicate a single GNN on the
multimodal semantic graph w/o and w/ direct cross-modal edges,
respectively (Figure 4). VQA-GNN with two modality-specialized
GNNs on the multimodal semantic graph achieves the best score.

Analysis of the multimodal GNN method. To ana-
lyze the effect of the multimodal GNN method on mitigat-
ing the multimodal gap in performing inter-modal message
passing, we compared the final VQA-GNN with two single
GNNss built on multimodal semantic graphs with and with-
out direct cross-modal edges in Figure 4. As the results of
VCR validation set shown in Table 3, the final VQA-GNN

LM_encoder

Inference and learning Inference and learning Inference and learning
(a) Final VQA-GNN: combination  (b) Ablation 1: single GNN on (¢) Ablation 2: single GNN on
of two modality-specialized GNNs  the multimodal semantic graph the multimodal semantic graph

on the multimodal semantic graph with direct cross-modal edges

Figure 4. Ablation architectures. We find that our final VQA-GNN
architecture with two modality-specialized GNNs overcomes the
representation gaps between modalities (§5.2.1).

built with the multimodal GNN on the multimodal seman-
tic graph improves the accuracy of both ablative architec-
ture by over 2%. We believe that the multimodal GNN
built by two modality-specific GNNs can effectively avoid
directly aggregating nodes from scene-graph and concept-
graph to alleviate the modality gap. As a result, the inter-
modal message passing can be improved. We further ex-
plored the aggregation process for some node samples to
demonstrate why the two ablation architectures fail to al-
leviate the modality gap. Here, mﬁ(}%u represents the ag-
gregated messages from all neighbors of node u at the k-th
iteration.

il = Aggregate™ (W, Vo € Nw) (1)

where A (u) denotes a set of neighborhood nodes of the
node u, and k denotes the iterations of mf\’;)u .

For (c) Ablation 2 in Figure 4, we assume that node vs is
connected with node ¢; as both represent the same notion.
However, their feature vectors are distributed in different
modality domains and affect the aggregation process. We
show the neighborhood nodes of QA-context node z, visual

node vy and concept node c; are follows:

N(Z) = {v2,v4, 1,3} (12)
N(v2) = {z,v1,v4,c1 ;N (e1) = {2, ¢, ¢3,v2} (13)

where their neighborhood nodes include heterogeneous
nodes from different modality domains.

For (b) Ablation 1 in Figure 4, the neighborhood nodes
of QA-context node z, visual node v9 and concept node c;
are follows:

N(2) = {va,v4, 1,3} (14)
N(vg) = {z,v1,v4 ;N (c1) = {z,¢2,¢3} (15)

Compared with (c) Ablation 2, node ¢; and node v are re-
moved from the neighborhood nodes of v2 and ¢; which
helped improve the performance of (c) Ablation 2 by 2.4%.
However, it is limited by the QA-context node z that ag-
gregates messages across scene-graph and concept-graph.
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Although QA-context node z is a pretrained LM that can
be finetuned on multimodal domains, it is more difficult to
adapt to two modalities (Eq. 14) than to a single modal-
ity (Eq. 16). In contrast, the multimodal GNN method is
designed by introducing two GNNs for each modality. We
perform aggregation for QA-context node z for each modal-
ity so that the pretrained LM is finetuned on a single modal-
ity to alleviate the modality gap. The neighborhood nodes
of QA-context node z, visual node v9 and concept node c;
are follows:

N (=)™ = {vg, vl N (2)™) = {c1,es}  (16)
N(vz) = {2 v, 04} N (er) = {22 ca, e3}(17)

where m1 and m2 indicate two message passing methods
for each modality.

5.2.2 Evaluation on GQA dataset

Comparison with baselines. We also compared VQA-GNN
with baseline models on GQA dataset, under the realistic
setup of not using the annotated semantic functional pro-
grams (see §5.1). As the results shown in Table 4, our
model achieves validation accuracy of 58.9% for visual SG
and 87.9% for textual SG. Compared with SGEITL [42]
and GCN [21] which are unidirectional fusion methods, our
method performs bidirectional fusion to unify unstructured
and structured knowledge, and improved the reasoning abil-
ity of SGEITL by 5.6% and GCN by 2.2%. Moreover,
by inter-connecting the visual and textual SG, our method
achieves validation accuracy of 90.3% and further suggests
its efficacy in performing inter-modal message passing.

Model Visual SG  Textual SG  Val Acc.(%)
SGEITL [42] v 533
CFR [29] v v 73.6
GCN [21] v 85.7

v 58.9
VQA-GNN v 87.9

v v 90.3

Table 4. Accuracy scores on the GQA validation set. All models
are trained under the realistic setup of not using the annotated se-
mantic functional programs.

Method Val Acc.(%) T Inference time (ms) |
Average pooling 62.3 (£0.40) 5.2
Unidirectional fusion 86.3 (£0.01) 8.6
Bidirectional fusion (ours)  90.3 (£0.03) 5.5

Table 5. Ablation results on the effect of our proposed bidirec-
tional fusion for GQA.

Ablation study on the bidirectional fusion. To fairly study
the effect of bidirectional fusion for improving concept-

level reasoning, we evaluated the performance of VQA-
GNN with and without structured multimodal knowledge-
enhanced question representations. We show their differ-
ence in Figure 5, compared with the unidirectional fusion,
the bidirectional fusion approach is able to utilize the mes-
sage aggregated from scene-graph and concept-graph in
node z to predict the correct answer. It facilitates the joint
reasoning ability of VQA-GNN in capturing bidirectional
interactions between unstructured node z and structured
multimodal semantic graph. As a result in Table 5, the bidi-
rectional fusion approach further improved the performance
of the unidirectional fusion approach by 4% . We also com-
pared our approach with an average pooling method that
simply averages all node representations. We indeed find
that this ablation performs significantly worse than others,
which suggests that our approach can capture special rela-
tionship information between different nodes but average
pooling cannot.

O

(b) Bidirectional fusion: prediction
with the multimodal semantic graph

Inference and learning

(a) Unidirectional fusion: prediction
with scene-graph and concept-graph

Figure 5. Illustration of two knowledge fusion methods: our pro-
posed bidirectional fusion v.s. the unidirectional fusion baseline.

6. Conclusion

We proposed a novel visual question answering method,
VQA-GNN, which unifies unstructured and structured mul-
timodal knowledge to perform joint reasoning of the scene.
In the evaluation of two challenging VQA tasks (VCR and
GQA), our method substantially outperforms existing mod-
els without pretraining using massive image-caption data
under the same training setting, our method outperforms
strong baseline VQA methods by 3.2% on VCR (Q-AR)
and 4.6% on GQA, suggesting its strength in performing
concept-level reasoning. Ablation studies further demon-
strate the efficacy of the bidirectional fusion and multimodal
GNN method in unifying unstructured and structured mul-
timodal knowledge. In the next step, we will extend our
work to the video domain and focus on obtaining tempo-
ral semantic knowledge to enhance the machine’s reasoning
ability.
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