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ABSTRACT  

Extremizing a quadratic form can be computationally straightforward or difficult depending on the feasible domain over 
which variables are optimized.  For example, maximizing 𝐸𝐸 = 𝑥𝑥𝑇𝑇𝑉𝑉𝑉𝑉 for a real-symmetric matrix 𝑉𝑉 with 𝑥𝑥 constrained to 
a unit ball in 𝑅𝑅𝑁𝑁 can be performed simply by finding the maximum (principal) eigenvector of 𝑉𝑉, but can become 
computationally intractable if the domain of 𝑥𝑥 is limited to corners of the ±1 hypercube in 𝑅𝑅𝑁𝑁 (i.e., 𝑥𝑥 is constrained to be 
a binary vector).  Many gain-loss physical systems, such as coherently coupled arrays of lasers or optical parametric 
oscillators, naturally solve minimum/maximum eigenvector problems (of a matrix of coupling coefficients) in their 
equilibration dynamics. In this paper we discuss recent case studies on the use of added nonlinear dynamics and real-time 
feedback to enforce constraints in such systems, making them potentially useful for solving difficult optimization 
problems.  We consider examples in both classical and quantum regimes of operation. 
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1. INTRODUCTION  
Recent benchmarking studies1 of the empirical performance of Coherent Ising Machine (CIM)-type architectures and 
simulation algorithms2 has sparked interest in understanding the underlying principles of these approaches to quadratic 
unconstrained binary optimization (QUBO), in which we seek an assignment of the binary variables 𝜎𝜎𝑖𝑖 that maximizes the 
cost function, 

𝐸𝐸 =  �𝐽𝐽𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
𝑖𝑖,𝑗𝑗

, 

or, equivalently, minimizes the equivalent quadratic form with 𝐽𝐽𝑖𝑖𝑖𝑖 → −𝐽𝐽𝑖𝑖𝑖𝑖.  The canonical CIM algorithm is understood2 
to operate by first finding a linearized solution in the form of the (real) eigenvector 𝑣𝑣max of 𝐽𝐽𝑖𝑖𝑖𝑖 with largest eigenvalue 
𝜀𝜀max, and then gradually imposing soft constraints (through the activation of an additional quadratic energy potential) that 
deform 𝑣𝑣max into a quasi-binary vector whose entries cluster tightly around real values ±𝛼𝛼.  Finally, the proposed QUBO 
solution is taken as the corresponding sign vector with entries ±1.  Key aspects of the performance of canonical CIM as a 
QUBO method can be understood in the setting of gaussian random 𝐽𝐽𝑖𝑖𝑖𝑖 in high dimensions3 and modifications of the CIM 
with improved performance have been formulated.  The most notable CIM variant, known as CIM-CAC (Coherent Ising 
Machine with chaotic amplitude control), utilizes dynamic feedback4 in place of, or in addition to, the nonlinear potential 
to induce binarization of the solution vector. 

While quadratic optimization over real variables (in the form of principal eigenvector-finding) is generally considered to 
be tractable even for problems with billions of variables5, the imposition of nonconvex constraints on the domain of the 
optimization creates difficulty for practical applications6 even for variable counts 𝑁𝑁~103.  Typical constraints arising in 
applications include restriction of optimization variables to binary or integer values, as well as inequality constraints on 
variables (e.g., box constraints) or functions of variables (e.g., knapsack problems). 

For non-convex energy landscapes (cost functions), the broad class of real optimization methods based on modified 
gradient descent suffers from obstruction by local minima and low-index saddle points.  CIM-type algorithms appear to 
avoid high-lying traps3 by gradually interpolating from the unconstrained (principal eigenvector) potential to a potential 
that includes binarizing nonlinear components.  It is interesting to note that these algorithms thus seem to keep a set of 
optimization parameters (the 𝐽𝐽𝑖𝑖𝑖𝑖 matrix) fixed while interpolating between two distinct domains for the optimization 
variables – starting with real values allowed but ending with a restriction to binary values.  Recently, more general domain 
interpolations7,8 have been investigated for CIM variants. 
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In this paper we discuss two ongoing studies that further extend this approach.  In the first we analyze how interpolating 
between binary and phase-like variable domains impacts the performance of CIM-type algorithms.  For the smallest QUBO 
instances (𝑁𝑁 = 4) that are non-trivial for canonical CIM, we find that allowing the optimization variables to explore a 
phase-like domain before being strictly binarized (e.g., allowing 𝜎𝜎𝑖𝑖~𝛼𝛼𝑒𝑒𝑖𝑖𝑖𝑖 with gradual restriction of 𝜑𝜑 to ±𝜋𝜋) modifies 
critical bifurcation structures that set boundaries between easy and hard instances.  In the second study we explore the use 
of non-demolition measurements with real-time feedback to enforce constraints in a network of coherently-coupled optical 
parametric amplifiers (OPAs) operating in a quantum regime, in which the (signal) photon number in each OPA represents 
an integer variable in a linear programming problem.  Our preliminary findings suggest that sequential quantum 
nondemolition measurements with feedback may provide a way to simultaneously enforce multiple equality constraints 
on linear combinations of integer variables represented by the photon numbers in coherently-coupled OPAs (or optical 
parametric oscillators). 

 

2. INTERPOLATION BETWEEN PHASE-LIKE AND BINARY DOMAINS 
In the canonical CIM based on a model of coupled OPOs, the binary optimization variables are represented by optical 
modes whose amplitudes are intrinsically complex numbers, but whose imaginary parts are strongly driven to zero by the 
phase sensitivity of the gain. However, one can also inject phase-insensitive gain that only imposes a soft constraint on the 
mode amplitudes and does not affect the phases. By combining the two types of gain, the interpolation between the 
principal eigenvector and the QUBO solution can pass through a regime where the amplitude constraint takes precedence 
over the phase constraint, lowering the barrier to flipping the sign of a principal eigenvector component in response to the 
amplitude constraint before the spins are fully binarized by the phase constraint. 

As a testbed for this strategy, we consider a one-parameter family of N = 4 QUBO instances where the ground state and 
all but one coupling are ferromagnetic, and the antiferromagnetic coupling is the tunable parameter. For a range of values, 
one component of the principal eigenvector has the wrong sign, but the canonical CIM successfully recovers from this 
sign error in the initial estimate for a subset of this range. However, by adding phase-insensitive gain, we can significantly 
extend the range of couplings for which the machine succeeds. This is mediated by a bifurcation that destabilizes the all-
real equilibrium of the canonical CIM and creates a bridge through the complex plane to the branch with the lower Ising 
energy. An example of this is shown in Figure 1. 
 

 
Figure 1. Bifurcation diagrams for the CIM with and without phase insensitive gain. The diagrams show equilibrium values 
of the least committed spin as a function of overall gain 𝑔𝑔 in a frustrated 𝑁𝑁 = 4 instance where the ground state and all but 
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one coupling are ferromagnetic. Heavy and thin curves represent stable and unstable fixed points, respectively, and the markers 
show the locations of bifurcations. The parameter 𝜂𝜂 determines the fraction of gain that is phase insensitive; thus, the left 
column, where 𝜂𝜂 = 0, represents the canonical CIM. The two right columns, where 𝜂𝜂 = 0.971, represent a case where almost 
all the gain is phase insensitive, and we must plot both the real and imaginary parts of the amplitudes, shown in the middle 
and right columns, respectively. Each row shows an instance with a particular value of the antiferromagnetic coupling 𝐽𝐽14 as 
shown on the right. 

For both instances, the principal eigenvector has large positive values for the first three components and a small negative 
value for the fourth component, such that the first three spins commit early and take large positive values on all the plotted 
branches (not shown). The remaining spin, however, has a small and negative value until it is driven to commit by a 
displaced pitchfork around 𝑔𝑔 =  1.8, and its eventual sign depends on the value of the antiferromagnetic coupling. The 
top row shows an instance where the canonical CIM succeeds in recovering the ferromagnetic ground state, and the CIM 
with phase-insensitive gain performs similarly albeit with an inconsequential excursion into the complex plane. (Though 
note that it also destabilizes the incorrect branch, thus increasing robustness against noise and nonequilibrium dynamics.) 
The bottom row shows an instance with a stronger antiferromagnetic coupling, where the canonical CIM fails but the CIM 
with phase-insensitive gain succeeds through a bifurcation that connects back to the ground state branch via the complex 
plane. 

 

3. LINEAR INTEGER CONSTRAINTS VIA QND MEASUREMENT AND FEEDBACK 
It can be shown that a coherent pump field driving a frequency-detuned optical parametric amplifier (OPA) experiences 
displacements conditioned on the number of signal Bogoliubov excitations9:  

𝐻𝐻� ≈ −𝑔𝑔� �𝑁𝑁�𝐴𝐴 +
1
2� + Δ𝑁𝑁�𝐴𝐴 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 

where 𝑔𝑔� is the effective nonlinear coupling strength.  The form of this Hamiltonian thus allows us to perform QND 
measurements on the signal photon number. This information can be accessed through homodyne measurement of the p-
quadrature of the pump mode. 

We can extend this PNR-QND system to include two OPAs driven by a single pump, as shown in Figure 2. In such a case, 
the pump encodes information about the photon number sum of the two signal modes. We can similarly compose a photon 
number difference measurement scheme by using the same setup but inducing a 𝜋𝜋 phase shift of the pump between the 
two OPAs. 

In our ongoing study, we investigate strategies for computing the solution to a system of constraints by feeding forward 
the solution of each constraint to the next.  In a preliminary scheme we feedforward post-selected states that are conditioned 
upon the sum or difference being the desired value. In continuing work, we are studying the use of real-time feedback 
control to enforce the constraints autonomously10 (without post-selection).  

 

 
Figure 2. We compose a system wherein two OPAs share the same pump mode. Each OPA encodes in the pump mode 
information about the number of Bogoliubov excitations in the respective signal mode, thus entangling the two modes. After 
both OPA interactions, the system exists in a three-mode entangled state, where the pump has encoded the sum (or difference) 
of the Bogoliubov excitations in the two signal modes. For each OPA we set the system parameters as follows: We use the 
system parameters of Δ 𝑔𝑔�⁄ = 150 and the total interaction time of 𝑔𝑔�𝑡𝑡 = 1. 
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Figure 3. Examining the signal state |𝜓𝜓⟩ = ∑ 𝑐𝑐𝑚𝑚𝑚𝑚|𝑚𝑚⟩|𝑛𝑛⟩ post homodyne conditioning.  We observe the signal state exists in 
a superposition of valid solutions to the constraints (i) 𝑎𝑎 + 𝑏𝑏 = 5, (ii) 𝑎𝑎 − 𝑏𝑏 = 1.  In (iii), we feedforward the solution of the 
adder system to the subtractor system and observe that the signal state post homodyne conditioning is the solution to the 
system, i.e, 𝑎𝑎 = 3,𝑏𝑏 =  2.   
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