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Abstract
We report an investigation into random-jet-stirred homogeneous turbulence generated in a vertical octagonal prism-shaped 
tank where there are jet arrays on four of the eight vertical faces. We show that the turbulence is homogeneous at all scales 
in the central region of the tank that span multiple integral scales in all directions. The jet forcing from four sides in the 
horizontal direction guarantees isotropy in horizontal planes but leads to more energy in the horizontal fluctuations com-
pared with the vertical fluctuations. This anisotropy between the horizontal and vertical fluctuations decreases at smaller 
scales, so that the inertial and dissipation range statistics show isotropic behavior. Using four jet arrays allows us to achieve 
higher turbulence intensity and Reynolds number with a shorter jet merging distance compared to previous facilities with 
two-facing arrays. By changing the array-to-array distance, the parameters of the algorithm that drives random-jet stirring, 
and attachments to the exits of each jet, we show that we are able to vary the turbulence scales and Reynolds number. We 
provide scaling relations for the turbulent fluctuation velocity, integral scale, and dissipation rate, and we show how these 
scales of motion are primarily determined by the properties of individual jets and the diffusion of their momentum with 
distance from the nozzles. Finally, we examine the signatures of individual jets in the turbulent velocity spectra and report 
the conditions under which individual jet flows, not fully mixed with the background turbulence, produce a spectral peak 
and the corresponding frequency associated with the jet forcing timescale.

List of symbols
(u, v,w) = (u1, u2, u3)	� Instantaneous velocities aligned 

with x, y, z coordinates
ej	� Directional unit vector
�DI	� Demarcation scale between inertial 

and dissipation ranges, estimated 
from the lower bound of the iner-
tial subrange

�EI	� Demarcation scale between 
energy-containing and inertial 
ranges, estimated from the upper 
bound of the inertial subrange

�F	� Forcing timescale
�, u� , ��	� Kolmogorov microscales in length, 

velocity, and time
Γ	� Gamma function

�	� Taylor microscale
⟨⋅⟩	� Ensemble average
⟨�⟩	� Mean turbulent kinetic energy dis-

sipation rate
�on,�off	� Mean on/off time in sunbathing 

algorithm
�	� Kinematic viscosity
⋅	� Spatial average over homogeneous 

region
�	� Source fraction in sunbathing 

algorithm
�ij	� Two-point autocorrelation
�on, �off	� Standard deviation of on/off time 

in sunbathing algorithm
Ku	� Kurtosis
Sk	� Skewness
B	� Jet centerline velocity-decay 

constant
DJ	� Jet diameter
D2

ij
	� Second-order structure function

dr	� Spatial resolution
f 	� Frequency
fexp	� Exponential fit to the autocorrela-

tion function
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fmodel	� Model function fit to the autocor-
relation function

h(r)	� Osculating parabola fit to the auto-
correlation function

J	� Inter-jet spacing
k	� Turbulent kinetic energy
Kq	� Modified Bessel function of the 

second kind
LA	� Array-to-array distance
Lg	� Grid spacing
Lij	� Integral length scale
LJM	� Jet merging distance
M1	� Mean flow-to-turbulence ratio
M2	� Kinetic energy of mean flow-to-

turbulent kinetic energy ratio
Puu	� Power spectral density of u′
r	� Spatial lag
Re�	� Taylor scale Reynolds number
ReJ	� Jet Reynolds number
ReL	� Turbulence Reynolds number
S	� Jet half-width spreading rate
ton, toff	� Duration of on/off signal
tg	� Grid thickness
tA	� Attachment thickness
TI,w	� Integral time scale estimated from 

the autocorrelation function up to 
the first zero-crossing

Twz	� Integral time scale in z direction 
using turbulent scales from w′

u′	� Fluctuating velocity
urms	� Root-mean-square velocity
UC	� Jet centerline velocity
UJ	� Jet exit velocity
x, y, z	� Laboratory coordinate
x0	� Virtual origin of jet
zc	� Vertical center of PIV field of view

1  Introduction

According to classical theories of turbulence, the statisti-
cal properties of turbulent motions whose size is small 
compared to the scale of energy injection are universal 
and locally homogeneous and isotropic (Frisch 1995; Pope 
2000; Davidson 2015). This motivates much research into 
fundamental and applied aspects of turbulent flows using 
‘idealized turbulence’ whose statistics are homogeneous 
and isotropic. For laboratory experiments, this has meant 
that the generation of idealized (homogeneous and isotropic) 
turbulent flow has been widely attempted in a variety of 
stirred tank configurations. Different configurations include 
flow driven by oscillating grids (e.g., Silva and Fernando 
1994; Brunk et al. 1996; Blum et al. 2010; Poulain-Zarcos 

et al. 2022), impellers or rotating discs (e.g., Douady et al. 
1991; Birouk et al. 1996; Voth et al. 1998; Moisy et al. 1999; 
Worth and Nickels 2011; Lawson and Dawson 2015; Dou 
et al. 2016; Bounoua et al. 2018; Pujara et al. 2021; Lawson 
and Ganapathisubramani 2021), loudspeakers (e.g., Hwang 
and Eaton 2004; Chang et al. 2012; Hoffman and Eaton 
2021), jets (e.g., Variano and Cowen 2008; Goepfert et al. 
2009; Carter et al. 2016; Johnson and Cowen 2018; Tan et al. 
2023), amongst other methods (e.g., Rensen et al. 2005).

The different configurations to stir fluid into a turbulent 
state can be divided into three useful categories: (1) whether 
the stirring is continuous and steady (e.g., oscillating grids, 
steady rotations of discs and impellers, continuous jets) or 
unsteady and randomized (e.g., randomly actuated jets and 
impellers); (2) whether the stirring is provided by a single 
unit from each direction (e.g., a pair of counter-rotating discs, 
a set of oscillating grids) or multiple units (e.g., an array of 
jets or impellers); and (3) whether the stirring is asymmetric 
(e.g., an oscillating grid or jet array on one side of the tank) 
or symmetric (e.g., jets, impellers, or loudspeakers acting 
from multiple sides of the tank). It is generally found that 
continuous forcing is able to achieve higher Reynolds number 
turbulence compared to randomized forcing, but at the cost 
of stronger mean flows, higher mean shear, and a smaller vol-
ume of homogeneous isotropic turbulence (Voth et al. 2002; 
Hwang and Eaton 2004; Variano et al. 2004; Blum et al. 
2010; Roy and Acharya 2012; Pujara et al. 2021). Addition-
ally, multi-unit forcing produces a complex flow compared 
to single-unit forcing, but potentially allows more control 
over the scales of motion (Variano and Cowen 2008; Pérez-
Alvarado et al. 2016; Carter et al. 2016; Bounoua et al. 2018). 
Finally, while asymmetric forcing is unavoidable for certain 
setups (Variano and Cowen 2013; Johnson and Cowen 2020), 
symmetric forcing produces better homogeneity and isotropy 
over a larger region with a smaller mean flow (Zimmermann 
et al. 2010; Goepfert et al. 2009; Bellani and Variano 2013; 
Dou et al. 2016; Hoffman and Eaton 2021).

Here, we use flow data from a new facility where a col-
umn of water is stirred with four randomly actuated jet arrays 
arranged symmetrically around a vertical octagonal prism 
(see Fig. 1a) to gain a better understanding of how different 
aspects of multi-unit, unsteady and randomized stirring con-
trol the characteristics of turbulence produced. More specifi-
cally, we investigate how the turbulence statistics are influ-
enced by the algorithm that controls the randomized stirring, 
the geometry of the jet arrangement, the size of the tank, and 
the properties of each jet. While such results have been previ-
ously reported from tanks with a single jet array (Variano and 
Cowen 2008; Pérez-Alvarado et al. 2016; Johnson and Cowen 
2018) and two-facing jet arrays (Bellani and Variano 2013; 
Carter et al. 2016), we address some outstanding questions 
and extend this knowledge to a new tank geometry and study 
the influence of individual jets in more detail. Based on our 
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data, we also provide recommendations on how to design 
such facilities and analyze turbulence data from them.

We begin in Sect. 2 with a review of the existing knowl-
edge from previous facilities and point out some outstanding 
questions. Section 3 describes the details of the facility and 
measurements, with the flow analysis detailed in Sect. 4. We 
analyze the flow from a single jet in Sect. 4.1, which is fol-
lowed by a systematic analysis of the turbulence in Sect. 4.2. 
In Sect. 4.3, we show the comparison between two and four jet 
arrays to specifically test the influence of additional jet arrays. 
A summary of the main results and implications for future 
research is given in Sect. 5.

2 � Background

In this section, we review the existing knowledge from 
previous facilities to summarize current knowledge and 
highlight some of the outstanding questions.

Jet characteristics The flow characteristics of each forc-
ing element are expected to affect the characteristics of 
turbulence in multi-unit forcing. For jets, the canonical 
non-swirling turbulent round jet is fully characterized by 
its Reynolds number ReJ = UJDJ∕� , where UJ is the jet exit 

Fig. 1   Schematic diagram of experimental apparatus: (a) top view, (b) 
side view, and (c) pump arrays with the grid and cylinder attachments. 
There are four jet arrays, labeled F1–F4 , placed on four vertical walls. 
The array-to-array distance is LA = 118 cm, and the inter-jet spacing 
is J = 12 cm. A single pump located on the wall in the −x direction is 
used only for the single pump experiments and is removed for the other 
experiments. Particle image velocimetry (PIV) data is taken at four 
fields of view (FOVs). The positions of FOVs1–3 are x = ± 16 cm and 

z = zc ± 5 cm at y = 0 . FOV4 is located at the same x and z position as 
FOV2, but in the y = 7 cm plane. The dimensions of the grid attach-
ment are 2.66 cm nozzle exit diameter ( DJ ), 1.8 mm grid thickness ( tg ), 
1

4
DJ grid spacing ( Lg ), and 1 cm thickness ( tA ). The solidity (blockage) 

of the grid attachment is 41.8 %. The cylinder attachment has the same 
design as the grid attachment but has a horizontal cylinder of diameter 
1

2
DJ placed a distance 3

2
DJ in front of the nozzle exit
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velocity, DJ is the jet diameter, and � is the kinematic viscos-
ity of the fluid, and it is thought that once ReJ is high enough 
its value is less important than how the flow from different 
jets interact. However, since the flow from individual units 
is not typically characterized in detail, it is not clear whether 
manipulating the flow from each jet allows another way to 
control the turbulence produced.

Algorithm for randomized stirring The ‘sunbathing’ algo-
rithm introduced by Variano and Cowen (2008) was found 
to randomize the jet firing pattern in time and space such 
that turbulent kinetic energy could be generated without 
produced a strong mean flow. An independent investigation 
(Pérez-Alvarado et al. 2016) confirmed the superiority of 
this algorithm over others, though it is notable that slightly 
different algorithms have been found to be most effective in 
active grids (Mydlarski and Warhaft 1998) and a tank stirred 
with vertical rotating paddles (Pujara et al. 2021). In the 
sunbathing algorithm, individual jets are turned on and off 
repeatedly, and the duration of each on/off period is chosen 
from Gaussian distributions described by ton ∼ N(�on, �

2
on
) 

and toff ∼ N(�off, �
2
off
) , where �on and �off are the mean on/off 

times, and �on and �off are the standard deviations of the on/
off times. Flow statistics were found to be insensitive to the 
standard deviations of the on/off times and the recommended 
values were based on the ratio �∕� = 1∕3 . With this ratio 
fixed, the only remaining free parameters are the mean on-
time �on and the source fraction � = �on∕(�on + �off) , which 
represents the mean of the fraction of the pumps firing at 
any given time.

Investigations of the effects of the source fraction � 
have found that its optimal value, where the root-mean-
square velocities are maximized, is in the 5–25% range for 
a single array (Variano and Cowen 2008) and two-facing 
arrays (Lawson and Ganapathisubramani 2021). The low 
values of the optimal � relate to the fact that turbulence 
production is maximized by the interaction of the flow 
from individual forcing units with the background flow. 
Turning on all units robs the flow from each unit to both 
contribute to and interact with an unsteady background.

The source fraction � is a dimensionless quantity, but 
the mean on-time �on is generally reported as a dimensional 
quantity suggesting that the mechanism by which it influ-
ences the scales of turbulence is not fully understood. From 
systematic studies of varying �on (Variano and Cowen 2008; 
Carter et al. 2016; Pérez-Alvarado et al. 2016; Johnson and 
Cowen 2018), it is known that increasing �on increases the 
root-mean-square velocities and turbulence intensity until 
a certain value (different in each setup) at which point the 
effect saturates and further increases in �on do not produce 
further increases in the flow intensity. For impeller arrays, 

Lawson and Ganapathisubramani (2021) introduced a 
dimensionless mean on-time based on the impeller rota-
tion frequency and found that this value needs to be high 
( O(103) ). For jets, there are two natural choices for making 
the mean on-time dimensionless:

where LA is a representative scale of the tank size. The first 
choice ( UJ�on∕DJ ) is analogous to the jet’s ‘formation time’ 
(Gharib et al. 1998) and postulates that the effects of mean 
on-time are related to flow development in an individual 
jet, while the second choice ( UJ�on∕(

1

2
LA) ) compares the 

distance traveled by the fluid during a typical on-cycle to the 
tank size, postulating that it is whether the flow from each 
jet ‘reaches’ the tank center that matters.

Homogeneity, isotropy, and scales of turbulence Homo-
geneity and isotropy are easier to achieve for symmetric 
forcing (Bellani and Variano 2013; Hwang and Eaton 2004, 
e.g., two-facing jet arrays or loudspeakers in all corners 
of a cube). While forcing from many different directions 
appears to be a common approach when using continuous 
forcing (Hwang and Eaton 2004; Hoffman and Eaton 2021; 
Bounoua et al. 2018), planar symmetry (two-facing arrays) 
is the most common configuration for randomized forcing 
(Bellani and Variano 2013; Carter et al. 2016; Lawson and 
Ganapathisubramani 2021). Two-facing arrays with rand-
omized forcing commonly produce a relatively large region 
of homogeneous turbulence, but only Bellani and Variano 
(2013) seem to have achieved large-scale isotropy (measured 
by the ratio of root-mean-square velocities in the longitudi-
nal and transverse directions with respect to the forcing). In 
Carter et al. (2016), the longitudinal (jet parallel) root-mean-
square velocity is always higher than the transverse root-
mean-square velocity, with 1.35 being the lower bound value 
for this ratio in their setup. Similarly, Esteban et al. (2019) 
find a root-mean-square isotropy ratio of 1.2. Bellani and 
Variano (2013) claim they achieve isotropy by optimizing 
the inter-array distance ( LA in our notation) and it has been 
previously noted that the centrifugal nature of the pumps 
may play a role, but we hypothesize that the jet arrange-
ment in their setup is also important. The pumps driving the 
jets are connected to 90-degree elbows that are insufficiently 
long to ensure the jet axis is perpendicular to the array, but 
because each group of four pumps is rotated relative to each 
other in the array plane, the net effect is flow isotropy in the 
tank center. The other notable results from previous studies 
are that doubling the inter-jet spacing J has little effect on 
the turbulence statistics and placing a mesh grid in front of 

(1)
UJ�on

DJ

or
UJ�on

1

2
LA

,
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each array reduces the turbulence intensity and integral scale 
in the tank center (Carter et al. 2016).

Interestingly, Lawson and Ganapathisubramani (2021) 
are able to produce homogeneous turbulence in a volume 
that is a significant fraction of the tank volume, and though 
their root-mean-square velocity isotropy ratio is of a similar 
magnitude to other facilities, it is the longitudinal velocity 
component that is weaker. Both of these effects appear to 
be related to the fact that, with impellers driven randomly 
in both directions, the forcing algorithm drives momentum 
towards the tank center as well as back towards tank walls. 
This significantly reduces the merging distance and pumps 
more energy into the transverse component of velocity.

Apart from homogeneity and isotropy, it would be desir-
able to be able to predict the scales of turbulence based on a 
given tank design: the root-mean-square velocity (i.e., tur-
bulent kinetic energy), the integral scale of turbulence, and 
the turbulent kinetic energy dissipation rate. As discussed 
above, previous results show that these quantities increase 
with mean on-time �on (up to a saturation point) and vary 
non-monotonically with the source fraction � (with a peak 
in the range 5–25%), but it is not clear what sets the scales 
of turbulence in the first place and why there is a saturation 
point for them with increasing mean on-time.

Jet merging For a jet-stirred tank, the idea of jet merging 
is that the discharge of each jet should lose its distinctive 
characteristics by merging with the background turbulence 
over a certain distance known as the jet merging region.

For continuously operating jets, scaling arguments from 
canonical turbulent round jets can be used to predict the 
distance over which adjacent jets merge: The jets will merge 
when their half-widths intersect:

Here, LJM is the jet merging distance, J is the inter-jet spac-
ing, and S is the jet half-width spreading rate. Using S ≈ 0.09 
(Pope 2000) gives LJM ≈ 5.5J ; for experimental evidence for 
this value, see Tan et al. (2023). In jet arrays with unsteady 
and randomized forcing, two main factors can be expected 
to cause deviation of LJM from this value. First, the back-
ground (turbulent) flow affects the spreading rate S; it is 
found that jets in a turbulent environment are wider, their 
width grows faster compared to a quiescent background, 
their axial velocities are arrested when the local background 
turbulence velocity is of the same order as the axial velocity, 
and their structures are broken when the background turbu-
lence and jet root-mean-square velocities are approximately 
equal (Guo et al. 2005; Khorsandi et al. 2013; Sahebjam 
et al. 2022). Second, since not all jets are always on, the 
effective inter-jet spacing is a function of the source fraction; 
this effective inter-jet spacing will be larger than J though it 

(2)2SLJM = J

is still expected to scale with J. While the first fact decreases 
the jet merging distance, the second fact increases it.

Evidence from a single randomly actuated jet array (Var-
iano and Cowen 2008; Pérez-Alvarado et al. 2016; John-
son and Cowen 2018) suggests that these two effects may 
roughly cancel each other out. It was found that the signature 
of individual jets could not be observed on the free surface 
above a depth of 6J for an upwards-pointing jet array placed 
at the bottom of a water tank. Similarly, profiles of root-
mean-square velocities become uniform in directions paral-
lel and perpendicular to the jet array at a distance of approxi-
mately 6J (before starting to decay as distance from the jet 
array increases further). For two jet arrays on opposite sides 
of the tank that face each other (Bellani and Variano 2013; 
Carter et al. 2016), the data again support that LJM ≈ 6J is 
reasonable; the flow statistics become homogeneous at this 
distance from each jet array.

While the jet merging distance in these previous studies 
is taken to be the distance from the jet array until the point 
where turbulence statistics become homogeneous, this does 
not factor in the degree to which individual jet flows are dis-
cernible in instantaneous measurements. If jet flows are not 
fully merged with the background turbulence by this metric, 
their characteristics are likely to be detected in the turbulent 
velocity power spectra at the appropriate forcing timescale. 
Based on the unsteady nature of the forcing in the sunbath-
ing algorithm, several candidates have been proposed for 
this forcing timescale (Variano and Cowen 2008; Lawson 
and Ganapathisubramani 2021):

where we have used the relation � = �on∕(�on + �off) in 
the definition of �F1 . These candidate forcing timescales all 
increase with �on , but differ in the role of �.

3 � Experiments

3.1 � Turbulence tank

The tank shown is an octagonal cylinder shape with a side 
of 61 cm and a height of 122 cm, constructed with acrylic 
plates supported by an aluminum frame (Fig. 1). We place 
our coordinate system origin at the center of the tank bot-
tom with the coordinates x and y comprising the horizontal 
plane and z pointing in the vertical direction against grav-
ity. During operation, the tank is filled with water (via a 
20-micron filter) up to a depth of 100 cm and kept in a 
temperature-controlled room such that the water tempera-
ture is 25.4 C with kinematic viscosity � = 8.85 × 10−7 m 2

(3)�F1 = �on + �off =
�on

�
; �F2 = �on; �F3 = ��on,
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/s. Turbulence is generated by fluid forcing from four arrays 
of pumps on the vertical walls arranged so that there are 
two sets of orthogonal facing arrays. The distance between 
facing arrays is LA = 118 cm, which also accounts for the 
attachments on each pump described below. Each array has 
8 rows of 5 pumps (Rule 360 GPH bilge pump), and the 
spacing between adjacent pumps is J = 12 cm. The bottom 
row and two side columns are J∕2 = 6 cm away from the 
wall ends, but the top row is 10 cm away from the water 
surface to ensure the base of the pumps is fully submerged. 
This configuration with mirror symmetry with the walls is 
known to minimize secondary flow in oscillating grid tanks 
(Fernando and De Silva 1993).

Each pump creates a synthetic jet by drawing water radi-
ally from its base and injecting it from the outlet. We con-
nected 90-degree elbows so that the outlet directs the flow 
towards the tank center with a jet exit diameter of DJ = 2.66 
cm. In preliminary experiments, we found that the elbow 
does not fully bend the flow and the jet exit velocity was not 
normal to the outlet face. It is also well known that bends 
generate secondary swirling flows. Thus, to straighten and 
condition the flow, we attach a 3D-printed grid to the outlet 
of each pump (Fig. 1c).

When operated together, the pumps are controlled by 
solid-state relays (SSR-Rack48, Measurement Computing 
Corporation) which can open and close the circuit to 12 
V power supplies. The circuits also have power distribu-
tion boards with 5 A fuses to protect the circuit and pumps. 
Two 96-channel digital input/output modules (PCIe-6509, 
National Instruments) are connected to the racks to trigger 
the relay modules. With this configuration, we can control 
individual pumps using custom MATLAB (MathWorks) 
code. To drive the pumps, we adopt the sunbathing algo-
rithm (Variano and Cowen 2008) described in Sect. 2.

3.2 � Flow data collection

Random-jet-stirred turbulence (particle image velocime-
try data) We conduct velocity measurements using particle 
image velocimetry (PIV) under a range of different param-
eters for the sunbathing algorithm that controls the jets with 
a fixed tank geometry. We test two source fractions: Low 
( � = 6.25% ) and High ( � = 12.5% ). While � = 12.5% was 
found to be the optimal value for a single jet array (Vari-
ano and Cowen 2008), we also test a lower value to check 
whether this lower value gives better performance than the 
previously found optimal value with the increased number 
of jet arrays in our setup. We also test three different mean 
on-times: �on = [1.5, 3, 6] s to understand the growth and 
saturation of turbulence intensity as a function of the mean 
on-time. Finally, we test the effect of attachments at the 
pump outlets to understand how manipulations of individual 
forcing elements affect the scales of turbulence. The pumps 
with grid attachments are considered the baseline case and 
the pumps with a grid and a horizontal cylinder attachment 
are the new test case (Fig. 1c). We hypothesized that includ-
ing a horizontal cylinder would weaken the jet and increase 
vertical stirring via flow separation around the cylinder, 
both of which should contribute to improved homogeneity 
and isotropy of the turbulence. In all, there are 12 different 
experimental conditions, as summarized in table 1.

Velocity fields are measured with 2D planar PIV (Fig. 1): 
A 527 nm Nd-YLF laser (Photonics Industries) with a cylin-
drical lens located at +x side wall creates a light sheet with 
an average thickness of 1.5 mm in the x-z plane. Images are 
taken with cameras (Phantom VEO340; 2560 px × 1600 px 
with 10 � m px size) installed at −y side wall. Each camera 
is mounted with a 100 mm lens (Tokina) and fitted with a 
527 nm bandpass filter. The flow is seeded with tracer par-
ticles (10 � m median diameter hollow microspheres with 
a specific gravity of 1.10 ± 0.05; Potter Industries 110P8).

Table 1   PIV experimental 
conditions

Case Attachment � (%) �on (s) �off (s) �on (s) �off (s)

GrLo15 Grid 6.25 1.5 22.5 0.5 7.5
GrLo30 6.25 3.0 45.0 1.0 15.0
GrLo60 6.25 6.0 90.0 2.0 30.0
GrHi15 12.5 1.5 10.5 0.5 3.5
GrHi30 12.5 3.0 21.0 1.0 7.0
GrHi60 12.5 6.0 42.0 2.0 14.0
CyLo15 Cylinder 6.25 1.5 22.5 0.5 7.5
CyLo30 6.25 3.0 45.0 1.0 15.0
CyLo60 6.25 6.0 90.0 2.0 30.0
CyHi15 12.5 1.5 10.5 0.5 3.5
CyHi30 12.5 3.0 21.0 1.0 7.0
CyHi60 12.5 6.0 42.0 2.0 14.0
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To examine the homogeneity of the turbulent flow in the 
vertical extent, we took velocity data at three different field 
of views (FOVs) (Fig. 1b). Using two cameras side-by-side, 
we captured velocity data covering x = ± 16 cm and z = zc 
± 5 cm, where zc is the vertical center of each FOV, at y = 0 . 
To check that the flow was homogeneous away from the 
center plane, we also took data at FOV4, which was located 
at the same x-z coordinates, but at y = 7 cm. The magnifica-
tion factor in these images is approximately 14 px/mm, and 
the time interval between image pairs is adjusted to give a 
maximum particle displacement of 5–7 pixels. At each FOV, 
we took 1460 image pairs with a 0.5 Hz sampling rate.

Image processing to obtain velocity fields is conducted 
using DaVis v10 (LaVision). Since particle intensities can 
vary significantly across the FOV, we use a nonlinear filter 
to match the dynamic range of the particle intensities within 
each image (Adrian and Westerweel 2011), which signifi-
cantly improves the signal-to-noise ratio. Velocity vectors 
are calculated using an iterative cross-correlation method 
with four passes for each image pair. The first 64 × 64 px 
pass is followed by three passes at 32 × 32 px with 75 % 
overlap. The spatial resolution is about 3 to 5 times the Kol-
mogorov length scale, which in turn, is sufficient to capture 
more than 95% of the turbulent kinetic energy (Saarenrinne 
et al. 2001). Sub-pixel accuracy in the pixel displacement in 
each sub-window is achieved using a Gaussian fitting func-
tion to the correlation maximum and neighboring pixels. 
Each velocity vector is quality-checked by comparing the 
relative heights of the first and second peaks in the corre-
lation field. We achieve more than 95% valid vectors and 
low-quality vectors are removed (without interpolation) from 
the analysis.

Random-jet-stirred turbulence (acoustic Doppler 
velocimetry data) We also perform single-point meas-
urements using an acoustic Doppler velocimetry (ADV, 
Nortek Vectrino). While the PIV measurements allow us 
to understand the spatial variation of turbulence under 
a range of different forcing conditions with a fixed tank 
geometry, we use the ADV measurements to understand the 
effect of changing the tank geometry. In one set of tests, 
we systematically vary the mean on-time and the array-
to-array distance to understand their combined effects on 
the turbulence at the tank center while keeping a constant 
source fraction � = 12.5 %. In this case, we test five dif-
ferent mean on-times ( �on = [0.8, 1.5, 3.0, 4.5, 6.0] s) with 
1

2
LA = 59.0 cm and another five different mean on-times 

( �on = [0.7, 1.3, 2.5, 3.7, 5.0] s) with 1
2
LA = 48.5 cm. These 

tests are designed to have comparable values of the dimen-
sionless mean on-time UJ�on∕(

1

2
LA) for different array-to-

array distances. In another set of tests, we turn off all pumps 
in arrays of F2 and F4 (Fig. 1a) to obtain data that compares 
turbulence produced by two arrays to turbulence produced 

by all four arrays. In this case, since we only focus on the 
effect of the array geometry, we fix � = 12.5% and vary 
�on = [1.5, 3, 6] s.

All ADV measurements are taken at the tank center at 
z = 54 cm, which corresponds to the centerline of a row 
of jets. The coordinate system of the ADV measurements 
is such that one-pair of the ADV beams is aligned with 
the forcing directions from the pumps in arrays F1 and F3 . 
Velocity data are recorded at a sampling rate of 50 Hz with 
a sampling volume and transmit length of 7 mm and 1.8 
mm, respectively. To ensure the statistical convergence of 
turbulent scales, we record data in each case for more than 
30 min.

Single jet flow (particle image velocimetry data) To com-
plement velocity measurements of turbulence driven by ran-
domly actuated jets, we also conduct experiments where the 
flow due to a single pump is measured in a time-resolved 
manner with an otherwise quiescent background. A single 
pump is positioned at the −x side wall at z = 50 cm (Fig. 1a) 
so that the light sheet bisects the pump’s outlet. PIV meas-
urements are taken at the tank center using one camera with 
a FOV that covers x = ±7 cm and 45 ≤ z ≤ 55 cm. This 
setup allows for data of the pump jet’s far-field velocity to 
be obtained. To obtain velocity data in the near-field, we 
move the pump along the x-axis, while keeping the FOV 
the same. We take data of the pump with the grid attach-
ment and with the cylinder attachment with the cylinder axis 
parallel to the y-axis. We measure the jet’s velocity profile 
in continuous mode and in a single pulse mode with pulse 
durations of 1.5, 3, and 6 s to mirror the mean on-times used 
to generate turbulence.

4 � Flow analysis

4.1 � Velocity from a single jet

We begin with analysis of the statistically steady jet pro-
duced by a single pump operated in continuous mode with 
the grid and cylinder attachments. The velocity data are 
decomposed into a temporal mean and fluctuating compo-
nent, with root-mean-square velocities calculated from the 
fluctuating component. The profiles of the mean and fluc-
tuating components are shown in Fig. 2. We find that the 
grid attachment successfully conditions the flow so that 
the resulting jet resembles a canonical non-swirling round 
jet with flow normal to the outlet. The cylinder attach-
ment creates a wake at the jet centerline in the near-field 
(Fig. 2a), and while this velocity deficit is smoothed out 
into a weaker and broader jet relative to the grid attach-
ment by the time the jet reaches the tank center (Fig. 2b), 
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the flow does not recover to a canonical turbulent round 
jet. In particular,  the radial profiles of the mean axial 
velocity and the normalized Reynold stresses exhibit that 
the flow has a higher jet half-width spreading rate and 
stronger turbulent intensity compared to those from the 
canonical turbulent round jet in the self-similar region.

In order to better understand random-jet-stirred turbu-
lence data below, we also estimate the jet exit velocity UJ 
from the continuous jet data. We do so by applying the 
known centerline velocity decay for canonical turbulent 
round jets

where UC is the centerline velocity, B = 6.06 is the jet cen-
terline velocity-decay constant, and x0 is the virtual origin 
(Pope 2000). We find UJ = 82.2 cm/s with x0 = 2.70DJ 
for the grid attachment. While the flow from the cylinder 
attachment does not strictly follow the relationships found 
in canonical turbulent round jets, applying Eq. (4) none-
theless provides a reasonable estimate. We find UJ = 49.6 
cm/s with x0 = 1.21DJ for the cylinder attachment, which 
is within 5% of the value found from estimating the jet exit 
velocity using the peak axial velocities in the near-field 
velocity data (Fig. 2a).

We next consider the velocity data from the single jet 
operated in a single pulse into an otherwise quiescent back-
ground, where the pulse lengths are 1.5 s, 3 s, or 6 s (to mir-
ror the mean on-times used in the sunbathing algorithm to 
produce random-jet-stirred turbulence). To compare the time 

(4)
UC(x)

UJ

=
BDJ

(x − x0)
,

evolution of the axial velocity field across different on-times, 
we calculate the velocity Us , which is the axial velocity aver-
aged over z∕DJ = ±2 at the tank center. The results in Fig. 3 
show that the velocity magnitude in pulsed mode is smaller 
than in continuous mode for pulse lengths of 1.5 s and 3 s. 
For a pulse length of 6 s, we see that the axial velocity is 
essentially the same as that in a continuous jet.

The reduced axial velocity compared to a continuous jet for 
short pulse lengths is related to: (1) formation of a vortex ring 
during the jet start-up due to a spiral roll-up flow separation 
at the nozzle (Gharib et al. 1998); and (2) diffusion of axial 
momentum as the pulsed jet flow travels to the tank center. 
We note that the pump ramp-up time is short compared to 
our pulse lengths, so it is not expected to play a significant 
role. For the starting vortex, it is known that such a vortex 
ring absorbs the momentum of the discharged fluid and grows 
in size even after it detaches from the nozzle by absorbing 
momentum from the trailing jet (Schram and Riethmuller 
2001; Gao and Yu 2010). However, for a large jet formation 
time ( UJ𝜇on∕DJ ≫ 4 , Gharib et al. 1998), which is the case 
for all pulse lengths tested here, the energy absorption by the 
starting vortex ring is marginal. Thus, the most important 
effect must be the diffusion of axial momentum, which is a 
function of how far the fluid must travel ( 1

2
LA in this case).

4.2 � Random‑jet‑stirred turbulence

Figure 4 shows instantaneous snapshots of the velocity 
field at FOV2 for the GrLo30 case. The flow fields, which 
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Fig. 2   Velocity profiles of continuous jet flow with the grid attach-
ment and cylinder attachment in the near field x = 5DJ (a) and at the 
tank center x = 1

2
LA (b). The superscripts refer to the grid (G) and 

cylinder (C) attachments, respectively
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Fig. 3   Temporal evolution of the spatially averaged axial velocity 
( Us ) with the pulse firing with the grid (a) and cylinder (b) attach-
ments. Dashed lines represent Us from continuous jet flow experi-
ments. This figure shows representative data, but we observed a con-
sistent trend across all repetitions
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correspond to snapshots with the maximum and minimum 
instantaneous kinetic energy, exhibit rotation and shear at 
various scales that are the hallmarks of turbulent flow.

To conduct further analysis, we subject the velocity 
data to a Reynolds decomposition where the instantaneous 
velocity field u = (u, v,w) = (u1, u2, u3) , which is aligned 
with (x, y, z) coordinates, is decomposed into an ensemble-
averaged velocity ⟨u⟩ and fluctuating velocity u′

where the ensemble average ⟨⋅⟩ is computed over all veloc-
ity snapshots. From the fluctuating velocity field, we com-
pute root-mean-square (RMS) of the fluctuations in a given 
component urms = [⟨u�2⟩]1∕2 and the turbulent kinetic energy 
(TKE) k = (⟨u�2⟩ + ⟨v�2⟩ + ⟨w�2⟩)∕2 ≈ (2⟨u�2⟩ + ⟨w�2⟩)∕2 . 
The approximation in computing k comes from assum-
ing horizontal isotropy. Since we force the flow from 
four orthogonal horizontal directions, we expect that flow 

(5)u(x, t) = ⟨u⟩ + u
�,

statistics are invariant to rotations about the z axis (i.e., 
urms = vrms ). In the subsequent analysis, we also use a spatial 
average ⋅ , which is computed over space in each FOV in the 
central region of the tank, |x| < 10 cm. Within this region, 
the statistics of turbulence are homogeneous, as shown in 
Sect. 4.2.1.

The normalized probability density functions (PDF) of 
the fluctuating velocities in the homogeneous region at 
FOV2 for the GrLo30 case are displayed in Fig. 5 with 
Gaussian distributions of zero mean and standard devia-
tion of 1. The moments of u′ in the homogeneous region 
at FOV2 are also summarized in Table 2. The skewness 
(Sk) is negligible, but the kurtosis (Ku) is greater than 3 
indicating that extreme values in the fluctuating velocities 
are more likely than in a Gaussian distribution, which can 
also be seen in the tails of the PDFs in Fig. 5b. We expect 
that tails of these distributions are affected by the jet stir-
ring (Veeravalli and Warhaft 1989; Yamamoto et al. 2022).
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Fig. 4   Instantaneous velocity snapshots at FOV2 of the GrLo30 case 
corresponding to the maximum (a) and minimum (b) instantaneous 
kinetic energy. For visual clearance, only every 10th vector is shown. 

The red arrows show a magnitude of 40 cm and 10 cm/s, respectively, 
for reference
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Fig. 5   The normalized PDFs of fluctuating velocity at FOV2 of GrLo30 case plotted in linear (a) and log (b) scales. The dashed lines indicate 
Gaussian distributions with zero mean and standard deviation of 1
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4.2.1 � The homogeneous turbulence region and statistical 
jet merging

Figure 6 presents the ensemble-averaged velocity and the 
normalized TKE fields for FOVs1–3 for the GrLo30 and 
GrHi30 cases. Examining the TKE fields, we note that it 
is relatively homogeneous in the |x| < 10 cm region within 
each FOV. Specifically, the standard deviation of TKE in 
space is less than 5% of its spatial mean k , and moreo-
ver, k has very similar values across FOVs. Additionally, 

for |x| > 10 cm, we see local patches of increased TKE at 
z ≈ 42, 54, and 66 cm, which are the heights of the jets, but 
these ‘statistical jet signatures’ are absent for |x| < 10 cm. 
This is true for both the low and high source fraction data 
shown in the figure.

Defining the ‘statistical jet merging distance’ LJM as the 
distance from the jet array to the point where turbulent 
statistics are homogeneous, the data show that the value is 
not sensitive to the parameters of the sunbathing algorithm 
( � and �on ) or the presence of jet exit attachments lending 

Table 2   One-point turbulence statistics in the homogeneous region at FOV2

Case # ⟨u⟩ (cm/s) ⟨w⟩ (cm/s) urms (cm/s) wrms (cm/s) Sk(u�) Sk(w�) Ku(u�) Ku(w�) urms∕wrms
M1 M2

GrLo15 −0.31 −0.21 5.8 4.5 −0.03 −0.07 4.38 4.01 1.3 0.052 0.004
GrLo30 −0.26 −0.42 6.7 5.0 −0.11 −0.02 4.52 4.06 1.3 0.052 0.003
GrLo60 −0.13 −0.44 7.1 5.0 −0.05 −0.04 4.50 4.26 1.4 0.038 0.002
GrHi15 −0.71 0.16 5.9 4.8 −0.13 −0.03 4.06 3.62 1.3 0.097 0.014
GrHi30 −0.38 −0.07 7.5 5.9 −0.08 −0.03 3.72 3.47 1.3 0.046 0.003
GrHi60 −0.64 −0.30 8.4 6.4 0.01 −0.03 3.57 3.38 1.3 0.069 0.006
CyLo15 −0.21 −0.52 3.7 2.9 −0.17 −0.17 4.43 3.88 1.2 0.097 0.013
CyLo30 0.09 −1.2 4.7 3.6 0.05 −0.17 4.12 3.70 1.3 0.12 0.029
CyLo60 −0.10 −1.16 5.2 3.8 −0.07 −0.26 4.08 3.71 1.4 0.11 0.022
CyHi15 −0.56 0.51 3.6 3.0 −0.12 −0.11 4.23 3.61 1.2 0.16 0.031
CyHi30 −0.06 −0.79 4.8 3.9 −0.07 −0.08 3.81 3.34 1.2 0.093 0.013
CyHi60 −0.32 −1.2 5.7 4.4 −0.03 −0.03 3.57 3.32 1.3 0.12 0.020

Fig. 6   Ensemble averaged velocity and TKE fields for GrLo30 (a) and GrHi30 (b) over FOVs1–3 ( y = 0 plane). The large black arrows show a 
magnitude of 2 cm/s. The color axes for the dimensionless TKE span a factor of 2 between the minimum and maximum values
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support to the idea that LJM ∼ J  (Eq. (2)). However, we 
observe homogeneous statistics at a shorter distance 
( LJM ≈ 4J ) than the previously accepted value ( LJM ≈ 6J ). 
We attribute this shorter jet merging distance to the pres-
ence of the additional arrays. While jet flows from single 
or two-facing arrays first mix with adjacent jets from the 
same array, the presence of jet arrays oriented perpendicu-
lar to each other in our setup allows mixing of jets across 
arrays, resulting in shorter statistical jet merging distances.

4.2.2 � Large‑scale isotropy and mean shear

The geometry of the tank setup ensures that flow statistics 
are isotropic in the horizontal directions. To investigate 
large-scale isotropy of the flow in the vertical vs. horizon-
tal directions, Fig. 7 shows the spatially averaged ratio of 
the RMS velocities, which should be unity for large-scale 
isotropy. We observe values in the range 1.21–1.44 for the 
grid attachment and 1.1–1.39 for the cylinder attachment. 
Higher source fraction � and smaller mean on-time �on give 
better performance in terms of achieving large-scale isot-
ropy, consistent with previous results (Variano and Cowen 
2008; Pérez-Alvarado et al. 2016; Carter et al. 2016; John-
son and Cowen 2018). These trends can be understood by 
considering how an individual jet interacts with the existing 
background turbulence when it is fired into. While flow from 
each jet has the majority of its momentum in the jet-axial 

direction, the background turbulence that the jet travels into 
serves to break up the jet structure. For larger �on , a larger 
patch of fluid that retains the anisotropic signature of the 
jet flow is set into motion, whereas for larger � , this patch 
must contend with a higher intensity background flow which 
breaks it up more effectively resulting in more isotropic 
statistics.

The cylindrical attachment results in only a slight 
improvement in the large-scale isotropy, despite the weak-
ened and wider velocity profiles observed in the single 
jet data (Fig. 2). The reason is that while there is clear 
evidence of flow separation and more vertical mixing in 
the jet’s near field, the far-field statistics such as ⟨u⟩∕wrms 
or urms∕wrms are found to be similar to the grid attachment. 
It appears that since jets with manipulated exit conditions 
still relax to have properties analogous to canonical jets 
in the far field, the improvements in isotropy are small.

Another metric of large-scale isotropy is Reynolds 
stress tensor, where the off-diagonals are zero for isotropic 
turbulence. In other words, u′ and w′ should be uncorre-
lated and no mean shear should exist. To evaluate the cor-
relation between u′ and w′ , the normalized Reynolds stress 
( NRS ) is calculated by

The absolute value is applied prior to spatial averaging in 
order to prevent the Reynolds stress in certain regions from 
being canceled out by other regions due to different signs. 
The normalized Reynolds stress is less than 5 % for the grid 
and 7 % for the cylinder cases, suggesting that there is neg-
ligible correlation between velocity fluctuations and hence 
negligible TKE production in the tank center.

4.2.3 � Mean flow structure and magnitude

Examples of the mean flow field ( ⟨u⟩, ⟨w⟩ ) are shown in Fig. 6. 
While the mean flow is always small compared to the fluctuat-
ing flow field, we find that its structure depends on the parame-
ters of the sunbathing algorithm. The ⟨u⟩ fields generally show 
inward-directed flows due to how the jets are directed, but the 
⟨w⟩ fields change sign depending on the parameters of the sun-
bathing algorithm. For example, in the grid attachment cases, 
⟨w⟩ is positive (upward directed) at FOV1, whereas ⟨w⟩ is 
negative (downward directed) with the cylinder attachment at 
�on = 3 and 6 s at FOVs2–3. From continuity considerations, 
the jet flows directed horizontally towards the tank center must 
recirculate back towards the arrays. One would expect this 
recirculation to occur at the top and bottom of the tank where 
there are no arrays with a preference for the top of the tank 
where there is reduced friction due to the free surface. This 
would suggest upward directed mean flow in the tank center, 

(6)NRS =

�
�⟨u�w�⟩�

urmswrms

�
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Fig. 7   Spatially averaged RMS velocity ratio as a function of �on , 
shown on the x-axis (1.5, 3, and 6  s), for the grid attachment (dia-
mond) and the cylinder attachment (circles), which are respectively 
represented on the left and right sides of the corresponding �on . The 
source fraction is illustrated by different colors, red ( � = 6.25% ) and 
blue ( � = 12.5% ). Data for FOVs1–4 for the same mean on-time are 
displayed by offsetting them with respect to each other (left to right), 
as shown by the text
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but at times we also observe downward directed mean flow 
and preferential return via the bottom of the tank. One pos-
sible explanation for this is the small amount of heat gener-
ated by the submerged pumps that could induce flow upwards 
adjacent to the pumps, which then sets a mean flow structure 
with downward vertical velocities. This mechanism is likely 
to be important in all tanks where the flow driving mechanism 
(e.g., pump, motors) is not thermally isolated from the work-
ing fluid.

To demonstrate that the mean flow is weak compared to 
the turbulence in the homogeneous region, we use the metrics 

M1 compares the magnitude of the mean flow to the tur-
bulence RMS velocity, and the absolute value of the mean 
velocity is used to avoid excessive minimization of M1 by 
the spatial averaging. M2 represents the ratio of the kinetic 
energy of the mean flow to the turbulence. Using the cut-off 
value of M1 < 0.1 , we find four cases (GrLo15, 30, 60, and 
GrHi30) that satisfy this criterion for all FOVs. For these 
cases, M2 < 0.01 (i.e., the TKE is more than 100 times larger 
than the kinetic energy of the mean flow). Surprisingly, all 
cases with the cylindrical attachment have M1 > 0.1 . A 
closer examination reveals that mean flows for both attach-
ments have relatively similar magnitudes, but the cases with 
the cylindrical attachment have smaller values of urms lead-
ing to higher values of M1 and M2.

M1 and M2 are always less than 0.2 and 0.05, respectively, 
showing the mean flow is weak compared to the turbulence 
fluctuations. Overall, the mean flow magnitude is not a func-
tion of the jet attachments and the parameters of the sunbath-
ing algorithm, but its structure is.

4.2.4 � Scales of motion: RMS velocities

Figure 8 summarizes the values of the mean and RMS 
velocities at all FOVs across all experimental conditions. 
Apart from providing further evidence of low mean flows 
and flow homogeneity ( urms and wrms are near identical at all 
FOVs and their spatial variations are small compared to their 
spatial means), the data also show that RMS velocities are 
functions of the parameters of the sunbathing algorithm ( �on 
and � ) and of the attachments at the jet exit. Larger � and �on 
generate turbulent flow with larger RMS velocities, as previ-
ously found (Variano and Cowen 2008; Carter et al. 2016), 
and the cylindrical attachment weakens the RMS velocities.

(7a)M1 =

�
2�⟨u⟩� + �⟨w⟩�

2urms + wrms

�

(7b)M2 =

�
2⟨u⟩2 + ⟨w⟩2

2u2
rms

+ w2
rms

�

.

Simple scaling arguments would suggest that the RMS 
velocities would scale with the jet velocity (urms, wrms) ∼ UJ 
(Dou et al. 2016; Hoffman and Eaton 2021; Tan et al. 2023). 
This expectation is indeed borne out in the fact that the 
cylindrical attachment reduces the RMS velocities. How-
ever, the simple scaling is not sufficient to explain the fact 
that the RMS velocities are sensitive to � and �on for ran-
dom-jet-stirred flow as discussed in Sect. 2.

Figure 8 shows that � = 12.5% produces higher RMS 
velocities than � = 6.25% , suggesting that the previously 
found value of �optimal = 12.5% appears to be robust with 
respect to adding more jet arrays. To understand how the 
RMS velocities vary with �on in our experimental setup, we 
use the knowledge gained from the single jet data (Sect. 4.1): 
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Fig. 8   Summary of one-point statistics in the homogeneous region 
|x| < 10 cm as a function of �on = [1.5, 3, 6] s, for the grid attachment 
(a) and the cylinder attachment (b). The source fraction is illustrated 
by different colors, red ( � = 6.25% ) and blue ( � = 12.5% ). Data from 
u and w are depicted respectively on the left and right side of the cor-
responding �on . Data for FOVs1–4 for the same mean on-time are 
displayed by offsetting them with respect to each other (left to right), 
as shown by the text. The error bars illustrate the spatial variability of 
each quantity, displaying 95% of the range
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The axial velocity of an individual jet at the tank center 
increases with the pump on-time up to the point where it 
resembles a continuous jet and the velocity values at on-
times below this point are lower than the continuous jet 
value mainly due to the diffusion of momentum in the pulsed 
jet flow. Thus, the RMS velocity in random-jet-stirred turbu-
lence must scale with the jet exit velocity compensated by 
the velocity decay with distance from canonical turbulent 
round jets (Eq. 4). In other words, urms ∼ UJDJ∕(

1

2
LA) , and 

the correct way to make the RMS velocity dimensionless is 
(urms

1

2
LA)∕UJDJ . Here, we have neglected the influences of 

the virtual origin ( x0 ) and the precise value of the velocity 
decay constant (B) for simplicity. Further, the importance of 
the jet momentum diffusion suggests that the correct way to 
make the mean on-time dimensionless is to use the jet exit 
velocity and tank size: UJ�on∕(

1

2
LA) (i.e., the second option 

in Eq. (1)).
In order to demonstrate this relationship between urms and 

�on , we use single-point data measured by ADV at the tank 
center. In these data, we modified 1

2
LA and �on at a constant 

source fraction ( 12.5% ) and jet exit conditions (grid attach-
ment). The results are summarized in Fig. 9 and Table 3. We 
observe scatter in the dimensional data that collapses reason-
ably well when made dimensionless (Fig. 9). Overall, the 
RMS velocities increase with dimensionless mean on-time 
up to UJ�on∕(

1

2
LA) ≈ 4 , but saturate for further increases of 

�on or decreases of LA . (Note Carter et al. ’s (2016) data also 
show a saturation of turbulence intensity at UJ�on∕(

1

2
LA) ≈ 4 ). 

Fig. 9 also corroborates that the RMS velocities scale as 
urms ∼ UJDJ∕(

1

2
LA) since (urms

1

2
LA)∕(UJDJ) is an O(1) quan-

tity. Physically, we interpret these results as stating that an 
increase in �on in a given tank geometry results in higher inten-
sity turbulence at the tank center, but this effect saturates when 
�on is high enough such that each pulsed jet produces a flow 
similar to its continuous jet equivalent. Thus, the turbulence 
intensity is determined by both the jet characteristics and the 
decay of its momentum with distance from the nozzle.

4.2.5 � Scales of motion: integral scale and Taylor scale

To estimate the different length scales of turbulence, we use 
the two-point autocorrelation

where r is the spatial lag in the direction given by the unit 
vector e

j
 . This computation is conducted in the homogene-

ous turbulence region.
Before analyzing the turbulence scales, we check that 

combining data from the two cameras does not introduce 
significant errors. The discrepancy between the autocorre-
lation functions in the homogeneous region measured by 
Camera 1 ( −10 < x < 0 cm) and by Camera 2 ( 0 < x < 10 
cm) are less than 5% different from the autocorrelation 
function calculated by combined data from Camera 1 and 
2 ( −10 < x < 10 cm). Thus, we use the velocity fields from 
both cameras to compute the autocorrelation, which expands 
the spatial lag in the x direction.

Figure 10a shows the autocorrelation functions for the 
GrHi30 case at FOV2. We can see that despite combin-
ing data from both cameras, we do not have the required 

(8)�ij(r) =
⟨u�

i
(x) ⋅ u�

i
(x + re

j
)⟩

u2
i,rms

,

Table 3   Summary of 
experimental condition 
and parameters via ADV 
measurements

1

2
LA (cm) 59.0 48.5

�on (s) 0.8 1.5 3.0 4.5 6.0 0.7 1.3 2.5 3.7 5
urms (cm/s) 3.69 5.47 7.50 8.07 7.98 4.52 6.55 8.48 8.02 8.79

UJ�on∕(
1

2
LA)

1.12 2.09 4.18 6.27 8.36 1.18 2.19 4.21 6.23 8.42

(urms

1

2
LA)∕UJDJ

0.99 1.29 1.78 1.91 1.89 1.01 1.46 1.89 1.79 1.96
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Fig. 9   Variation of urms with respect to �on in dimensionless (main 
plot) and dimensional (inset) terms, from ADV data (circles) and PIV 
data averaged over the homogeneous turbulence region (diamonds). 
Distance from the pump exit to the tank center varies: 1

2
LA = 59.0 cm 

for red and green markers and 1
2
LA = 48.5 cm for blue markers. Data 

from Carter et al. (2016) are shown with black triangle markers and 
data from Esteban et al. (2019) are shown with a black square. The 
source fraction is � = 12.5% for all data
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measurement volume to measure the autocorrelation to its 
first zero-crossing and evaluate the integral length scale 
directly as Lij = ∫ ∞

0
�ij(r)dr . Instead, we estimate the inte-

gral length scales by fitting a model function to �ii in the 
inertial subrange

where � =
√
�Γ(q +

1

2
)∕Γ(q) , Γ is the gamma function, 

and Kq is the modified Bessel function of the second kind 
(Pope 2000). The model function has two fitting parameters, 
q and LM , where the superscript M refers to the fact the 
integral scale is computed fitting data to the model Eq. (9). 
Figure 10b shows that the model function fits �33 very well 

(9)fmodel

(
r

LM

)
=

2

Γ(q)

(
r

2LM
�

)q

Kq

(
r

LM
�

)

in the inertial subrange (determined from plateaus of the 
compensated second-order structure functions as described 
below).

For completeness, we also calculate the integral length 
scales by fitting an exponential curve to the autocorrelation 
functions, fexp = exp (−x∕LF

ij
) . The superscript F refers to 

the fact that the integral scale is calculated from a fit the 
exponential function. The differences between LM

ii
 and LF

ii
 are 

less than 15%.
Figures 11 and Table 4 summarize the various integral 

scales. We observe again that the values are very similar at 
different FOVs for the same experimental condition which 
shows the turbulence is homogeneous. Across all FOVs and 
experimental conditions, LM

11
 is always larger than LM

33
 and 
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Fig. 10   Autocorrelation functions for the GrHi30 case at FOV2 (a) and the z direction longitudinal autocorrelation function with the model 
function for the inertial subrange and the parabolic fit at the origin (b). The dotted lines are the lower and upper bound of the inertial subrange

Table 4   Two-point turbulence 
statistics in the homogeneous 
region at FOV2

LM
11

LM
33

LF
11

LF
31

LF
13

LF
33

�z Twz ⟨�⟩ � u� �� Re� ReL

Case cm mm s cm2/s3 mm mm/s ms (×102) (×103)

GrLo15 8.4 4.2 7.8 3.1 4.8 3.8 6.7 0.9 11 0.16 5.7 27 3.4 2.0
GrLo30 11 5.0 9.8 3.5 5.9 4.6 6.8 0.9 14 0.15 6.0 25 3.8 2.6
GrLo60 14 5.3 12 3.8 6.5 5.0 7.0 1.0 14 0.15 5.9 26 4.0 2.9
GrHi15 7.3 4.2 7.3 2.9 4.4 3.9 6.5 0.8 14 0.15 6.0 25 3.5 2.1
GrHi30 9.2 5.0 8.3 3.7 5.4 4.8 6.4 0.8 22 0.13 6.7 20 4.2 3.2
GrHi60 11 5.9 10 4.7 6.8 5.5 6.6 0.9 25 0.13 6.9 19 4.7 3.9
CyLo15 8.1 4.6 7.3 3.3 4.5 4.4 8.4 1.5 3.2 0.21 4.1 52 2.8 1.5
CyLo30 11 5.8 9.8 4.4 6.0 5.3 8.3 1.5 5.1 0.19 4.6 41 3.4 2.2
CyLo60 14 6.4 12 4.4 7.4 5.7 8.4 1.5 5.5 0.19 4.7 40 3.7 2.5
CyHi15 6.9 5.2 6.7 3.3 4.4 4.4 8.3 1.5 3.5 0.21 4.2 50 2.8 1.5
CyHi30 9.5 5.7 8.5 4.0 5.6 5.0 8.0 1.3 6.3 0.18 4.9 38 3.5 2.2
CyHi60 11 7.2 10 4.7 6.5 5.6 7.8 1.3 8.2 0.17 5.2 33 3.9 2.8
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LF
11

> LF
13

> LF
33

> LF
31

 , which is consistent with the large-
scale anisotropy discussed above. Additionally, lower � and/
or higher �on yield larger LM

11
 , while LM

33
 appears to be insensi-

tive to � and only a function of �on . The cylindrical attach-
ment has little effect on LM

11
 , but does increase LM

33
 slightly.

The simplest scaling argument to predict the integral 
scale for random-jet-stirred turbulence states that L ∼ DJ 
(Carter et al. 2016; Hoffman and Eaton 2021; Tan et al. 
2023) since all scales of motion in a canonical jet scale 
with the jet diameter. Focusing on L33 as the most rep-
resentative measure of the largest turbulent motions, we 
see evidence to support this argument since the cylindri-
cal attachment, which widens the jet and creates a larger 
effective jet diameter, consistently produces a larger inte-
gral scale compared to the grid attachment. The scaling 
of the integral scale with the (effective) jet diameter is 
also supported by the fact that L is insensitive to changes 
in � . There is a slight increase of L33 with mean on-time, 
but this is much more pronounced for the integral scale 
in the jet-axial direction L11 . Focusing on L11 , this scale 
is expected to more sensitive to the mean on-time as it is 
also related to the characteristic length associated with 
an individual jet pulse, �on(UJDJ∕(

1

2
LA)) . However, unlike 

the RMS velocities, we do not necessarily observe a clear 
saturation point of the integral length scales.

The Taylor microscale � can be calculated from its defi-
nition by fitting an osculating parabola

(10)h(r) = 1 − r2∕�2,

to the autocorrelation function near the origin, or it can be 
calculated via the relation

by assuming small-scale isotropy (Pope 2000). Here, ⟨�⟩ is 
the mean turbulent kinetic energy dissipation rate obtained 
from the compensated structure function as discussed 
below (hereafter we refer to this simply as mean dissipation 
rate). We follow both methods, where we fit Eq. (10) to the 
first 2 points of the autocorrelation function excluding the 
point at r = 0 (Fig. 10b), and compare the results from both 
methods as a function of the spatial resolution (dr) of the 
data in Fig. 12. While both methods yield the same answer 
when the flow field is resolved to approximately 2.5� (where 
� is the Kolmogorov microscale and discussed more below), 
fitting a parabola to the autocorrelation data overestimates 
the Taylor scale when the data are less well resolved. Hence, 
we report �z , calculated from Eq. 11 using FOV2 data, in 
Table 4.

4.2.6 � Scales of motion: inertial subrange and dissipation 
scales

To examine the flow statistics in the inertial and dissipation 
subranges, we use the second-order structure functions

computed with data from both cameras in the homogene-
ous turbulence region. Averaging is first conducted over the 

(11)�z = wrms

√
30�∕⟨�⟩,

(12)D2
ij
(r) = ⟨(u�

i
(x + re

j
) − u�

i
(x))2⟩,

635.1
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Fig. 11   Longitudinal integral length scales estimated by the model 
function as a function of �on = [1.5, 3, 6] s. Quantities for the grid 
and cylinder cases are located left and right sides of the correspond-
ing �on , respectively. Different source fractions are represented by red 
( � = 6.25% ) or blue ( � = 12.5% ) color. Data for FOVs1–4 for the 
same mean on-time are displayed by offsetting them with respect to 
each other (left to right), as shown by the text
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Fig. 12   Ratio of �z calculated using Eq.  (11) ( �z1 ) and by fitting 
Eq.  (10) to the longitudinal autocorrelation function ( �z2 ) as a func-
tion of dr∕� . The data are averaged across all FOVs
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homogeneous turbulence region in each velocity measure-
ment and then over the entire set of measurements.

Figure 13 shows the second-order structure functions in 
the GrHi60 case, which serves as a representative exam-
ple for all cases for scaling behavior. We see that the data 
show the expected power-law scaling in the dissipation 
range ( ∼ r2 ) and in the inertial subrange ( ∼ r2∕3 ). We can 
also extract information on the degree to which the flow 
is homogeneous and isotropic across scales. For this, the 
GrHi60 case is a worst-case example since it has the highest 
�on . In terms of homogeneity, Fig. 13a shows that there is 
little-to-no variation between data at different FOVs (lines 
of the same color overlap with each other), allowing us to 
conclude that the flow is homogeneous across all scales. In 
terms of isotropy, Fig. 13a shows that the longitudinal ( D2

11
 

and D2
33

 ) and transverse ( D2
31

 and D2
13

 ) structure functions 
calculated using different velocity components overlap with 
each other, respectively, for r ≲ 1 cm and do not deviate too 
far from each other for r ≲ 3 cm. In Fig. 13a, which shows 
the compensated structure function data at FOV2, we can 
see more clearly that the dissipation range scales are very 
isotropic and that the inertial subrange scales are reasonably 
isotropic. Clearly, the large-scale flow which has anisotropic 
features becomes more isotropic down the turbulence energy 
cascade, as expected from classical Kolmogorov theory.

To identify the extent of the inertial subrange and also 
estimate the mean dissipation rate ( ⟨�⟩ ), we apply the Kol-
mogorov similarity hypotheses which predict that the lon-
gitudinal and transverse structure functions are uniquely 
determined by ⟨�⟩

(13a)D2
ii
(r) = C2(⟨�⟩r)

2∕3,

with C2 = 2.0 being the Kolmogorov constant (Pope 2000). 
From the compensated structure functions (such as the 
GrHi60 case at FOV2 shown in Fig. 13b), we identify the 
extent of the inertial subrange as the range where the com-
pensated structure function is within 5% of its maximum. 
Figure 13b shows that we obtain a much cleaner and clearer 
plateau in the D2

33
 data compared with the D2

11
 data, which 

show a narrow plateau at larger scales that overlap with our 
estimates of the integral scale. We interpret this as suggest-
ing that the flow forcing from the jets pumps extra energy 
into the u component of velocity at scales within the turbu-
lent energy cascade.

To evaluate ⟨�⟩ , we average the compensated D2
33

 data by 
inverting the relation in Eq. (13) over the inertial subrange, 
as this method has been shown to be more robust than others  
⟨�⟩De Jong et al. 2009). These values of ⟨�⟩ are summarized 
in Table 4. As a check of the sensitivity, we also compute ⟨�⟩ 
using D2

31
 data and the standard formulations

where C = 0.5.
Figure 14 presents a comparison of ⟨�⟩ under different 

experimental conditions. There is clear evidence for homo-
geneity in how similar the values of ⟨�⟩ are across different 
FOVs. Additionally, the values obtained from the D2

33
 data 

closely match the values obtained from Eq. (14) (Fig. 14) 
and the values obtained from the D2

31
 (not shown).

(13b)D2
ij
(r) =

4

3
C2(⟨�⟩r)

2∕3 (i ≠ j),

(14)⟨�⟩ = C
u3
rms

LF
11

, ⟨�⟩ = C
w3

rms

LF
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Fig. 13   Second-order structure functions for the GrHi60 case across different FOVs (a) and the corresponding compensated structure functions 
at FOV2 (b)
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The data in Fig. 14 also show that ⟨�⟩ increases with 
higher � and/or longer �on , with the cylinder attach-
ment decreasing the mean dissipation rate relative to 
the grid attachment. Since the data show that the scal-
ing relationship in Eq.  (14) accurately predicts the 
mean  dissipation rate, we can extrapolate the previ-
ously found scaling relationships for the RMS velocities 
( urms ∼ UJDJ∕(

1

2
LA) ) and the integral scales ( L ∼ DJ  ), 

which gives ⟨�⟩ ∼ U3
J
D2

J
∕(

1

2
LA)

3 . This relationship pre-
dicts ⟨�⟩ as 19.16 cm2∕s3 for the grid attachment, which is 
close the values reported in Fig. 14. The prediction for 
the cylinder attachment cases is similarly close to the 
calculated values. Applying our predicted relationship 
to previous data, we find a value of 0.29 m2∕s3 for Carter 
et  al. (2016) and 15 cm2∕s3 for Esteban et  al. (2019), 
while the reported values are 0.1−1.2 m2∕s3 and 14.6 
cm2∕s3 , respectively. The favorable comparison between 
the predicted and reported values indicates that the scal-
ing ⟨�⟩ ∼ U3

J
D2

J
∕(

1

2
LA)

3 is able to predict the  mean dissi-
pation rate within an order of magnitude, and sometimes 
much better.

While our scaling prediction for the mean dissipation rate 
depends solely on the jet properties and tank size, we do also 
observe a small increase with increasing �on with a hint of 
saturation for UJ𝜇on∕(

1

2
LA) ≳ 4 . The source fraction � also 

has an impact on the mean dissipation rate since it controls 
the total energy input that must be dissipated to maintain 
stationary turbulence.

Using the estimated ⟨�⟩ from D2
33

 data, the Kolmogorov 
microscales are calculated via the relations

where �, u� and �� are the Kolmogorov length, velocity, 
and time scales, respectively. These values are reported in 
Table 4.

4.2.7 � Scale separation as a function of Reynolds number

High Reynolds number turbulent flows have a large separa-
tion between the largest and smallest scales. We inspect this 
dependency in our data by comparing it with the scaling 
laws

where L0, u0 , T0 are the largest characteristic scales of length, 
velocity, and time, respectively, and ReL = u0L0∕� is the 
Reynolds number based on these scales (Pope 2000). Using 
L0 = LF

33
 , u0 = wrms , and T0 = Twz = LF

33
∕wrms , this Reyn-

olds number becomes ReL = wrmsL
F
33
∕� . Figure 15 shows 

the comparison of the ratio of the largest to smallest scales 
as a function of ReL for all experimental conditions at FOV2, 
where we observe that the data show a very high degree of 
correlation with the expected scaling laws ( R2 values greater 
than 0.95). We note that the scale separations do not follow 

(15)

� = (�3∕⟨�⟩)1∕4,

u� = (�⟨�⟩)1∕4,

�� = (�∕⟨�⟩)1∕2,

(16)
L0

�
∼ Re

3∕4

L
,
�

�
∼ Re

1∕4

L
,
u0

u�
∼ Re

1∕4

L
,
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��
∼ Re

1∕2
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Fig. 14   Summary of mean dissipation rate estimated from the struc-
ture function ( D2

33
 ) and the scaling method, denoted as Suixj , as a 

function of �on = [1.5, 3, 6] s. Subscripts of S represent the velocity 
and coordinate components chosen for the calculation. Quantities for 
the grid and cylinder cases are located left and right sides of the cor-
responding �on , respectively. The color symbols indicate the different 
levels of the source fraction (red: � = 6.25% and blue: � = 12.5% ). 
Data for FOVs1–4 for the same mean on-time are displayed by offset-
ting them with respect to each other (left to right), as shown by the text
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Fig. 15   Largest-to-smallest scale ratio regarding turbulence Reynolds 
number at FOV2. Values are shown as log scale to illustrate the expo-
nential scaling relation. Note the values for �z∕� are plotted a decade 
smaller for easier visualization
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the expected scaling laws if we choose scales from the hori-
zontal direction (e.g., urms , LF11 ), which is presumably due 
to the fact that the signatures of jet pulses cause the flow to 
deviate from the ideal turbulence.

In idealized turbulence studies, the Taylor scale Reyn-
olds number is more commonly used. We define it here as 
Re� = wrms�z∕� , choosing the vertical characteristic velocity 
and length scales as before. Re� falls in the range 340–470 
for the grid attachment, and 280–390 for the cylinder attach-
ment (Table 4).

While it is common for laboratory studies to report a Tay-
lor scale Reynolds number, it is often difficult to directly 
compare Reynolds number effects across studies since differ-
ent stirring mechanisms and different methods for calculat-
ing the Reynolds number can lead to differences in the scale 
separation for the same Reynolds number. Thus, in Fig. 16a 
we show the compensated longitudinal structure function for 
different cases and compute the scale separation observed 
in the inertial subrange. Figure 16b shows how this scale 
separation varies with our reported Re� . We find that our 
scale separation is very similar in magnitude to standard 
DNS of turbulence in a cubic periodic box (Ishihara et al. 
2009), which makes it easier to compare across laboratory 
experiments and DNS at similar Reynolds numbers.

4.2.8 � Jet signatures and forcing timescales

In Sect.  4.2.1 and Fig. 6, we found that the turbulence 
becomes homogeneous at a distance of approximately 4J 
from the jet arrays suggesting that the jets have merged in a 
statistical sense. Here, we investigate jet merging further and 

show how jet signatures can still be periodically detected in 
the homogeneous turbulence region (e.g., Fig. 4a).

If individual jet signatures appear in the otherwise homo-
geneous turbulence region, they should produce peaks in 
turbulent velocity power spectra. We calculate the spectra 
from the velocity data measured by ADV to investigate this. 
To reduce the statistical uncertainty, the 30-minute time 
series are divided into six subsamples of five minutes each, 
with spectra calculated from subsamples and then ensemble-
averaged to obtain the final result.

Figure 17 shows spectra for different 1
2
LA and �on . When 

plotted as a function of dimensional frequency (panels a 
and c), it can be seen that an increase in �on first leads to 
an increase in the spectral energy density at all scales (blue 
line → red line). However, further increases of �on do not 
affect the spectral energy density in the inertial subrange, but 
produce a peak at f (�on + �off) ≈ 1 (observed more clearly 
in the linear scale in panels b and d), which corresponds 
to the jet forcing timescale, �F1 = �on + �off (option 1 in 
Eq. (3)). No peaks are observed at frequencies associated 
with �F2 = �on and �F3 = ��on (the other options in Eq. (3)), 
suggesting that neither of these is the correct candidate for 
the forcing timescale.

Examining the data in Fig. 17, where we have varied 
�on and LA independently, we note that the spectral peak 
at f (�on + �off) ≈ 1 only occurs for UJ𝜇on∕(

1

2
LA) ≳ 4 . This 

further highlights the importance of the dimensionless 
mean on-time: it not only predicts the saturation of the RMS 
velocities, but it also predicts the signature of individual jets 
observed in the region of otherwise statistically homogene-
ous turbulence. Physically, we interpret this as individual 
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Fig. 16   Normalized D2

33
 for different Re� (a), and the extent of the inertial subrange as measured by �EI∕�DI as a function of Re� (b). �EI and �DI 

are the scales demarcating the energy-containing and inertial ranges, and inertial and dissipative ranges, respectively
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jet pulses overpowering the background turbulence, which 
prevents them from becoming fully mixed.

4.3 � Comparison of symmetric forcing 
configurations: Two vs. four jet arrays

We now turn towards investigating the effect of different 
array geometries, namely comparing the turbulence pro-
duced by using only two-facing arrays in our setup with the 
turbulence produced by using all four jet arrays. Turbulence 
characteristics of interest are TKE, isotropy ( urms∕wrms ), and 

Reynolds number. We use ADV data, and as before, we use 
the vertical velocity to compute the Reynolds number as 
ReL,ADV = w2

rms
TI,w∕� , where TI,w is the integral time scale 

estimated from the autocorrelation function up to the first 
zero-crossing.

Table 5 shows the turbulence characteristics data. Four jet 
arrays provide better performance than two-facing arrays in 
terms of a higher turbulence intensity and a larger Reynolds 
number. This is because, for the given tank geometry and 
source fraction, the additional arrays provide more large-
scale forcing. Furthermore, four jet arrays create a more 
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Fig. 17   Turbulent velocity spectra with 1

2
LA = 59.0 cm (a and b) 

and 1
2
LA = 48.5 cm (c and d). Spectra are plotted as a function of 

dimensional frequency on logarithmic scales in panels (a) and (c), 
while they are plotted as a function of dimensional frequency in 
log-linear coordinates to emphasize the spectral peak in panels 
(b) and (d). In panels a and c, the low-frequency spectra are plot-

ted at every data point while only every 20th data point is plot-
ted in the higher-frequency region for clarity. In panels (a) and (b), 

UJ�on∕(
1

2
LA) = 1.12, 4.18 , and 8.36 for �on = 0.8, 3 , and 6 s, respec-

tively. In panels (c) and (d), UJ�on∕(
1

2
LA) = 1.18, 4.21 , and 8.42 for 

�on = 0.7, 2.5 , and 5 s, respectively
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isotropic turbulent flow, since jet flows from one array are 
more likely to lose their signature by interacting with the jet 
flows perpendicular to that array. Note that the exception 
observed in the cases with �on = 1.5 s, where the two-facing 
arrays exhibit higher TKE, can be attributed to the stronger 
secondary mean flow developed in the tank center as char-
acterized by higher M1 values.

5 � Conclusions

Within the context of a new facility, where we generate 
random-jet-stirred turbulence in a vertical octagonal prism-
shaped tank using four jet arrays on four faces of the tank, 
we have studied high-Reynolds-number turbulence with a 
negligible mean flow and mean shear that is homogeneous 
over a large domain (2.5–4L in the horizontal direction and 
5–8L in the vertical direction). The tank design ensures that 
the flow is isotropic in horizontal planes due to jet forcing 
from four directions, but this dominance of forcing in the 
horizontal direction also leads to anisotropy at the largest 
scales and an excess of horizontal momentum in the tur-
bulent scales of motion. By investigating the properties of 
the turbulence at different scales, we find that anisotropy 
at large scales decays to produce scale-local isotropic tur-
bulence within the inertial subrange and dissipation range, 
with the isotropy improving with decreasing  scale. We can 
also control the Reynolds number and scales of turbulent 
motion (RMS velocities, integral scales, and dissipation rate) 
to varying degrees by changing the parameters of the jet 
driving algorithm. By examining the ratio of integral-to-
Kolmogorov scales and span of the inertial subrange, we 
confirm that the flow statistics obey the expected scaling 
relationships for scale separation as a function of Reynolds 
number for idealized turbulence.

As noted in Sect. 1, laboratory facilities using randomized 
stirring from multiple units (e.g., jets, impellers) produce 
turbulence that has a smaller mean flow and better homo-
geneity and isotropy over a larger region compared with 
facilities that use continuous stirring, usually at the cost of 
lower turbulence intensity and Reynolds number. Addition-
ally, the complexity introduced by randomized stirring also 
means that it becomes more difficult to predict the scales of 

turbulence as a function of the flow from each stirring unit, 
tank size, and the algorithm that drives the units. In this 
regard, we have made a number of steps forward that we 
summarize below.

We tested how manipulating the properties of each jet by 
installing 3D-printed attachments to the jet exit affects the 
jet flow, including a grid attachment to provide flow condi-
tioning and a horizontal cylindrical attachment to induce 
unsteady flow separation and additional vertical mixing. 
We observed that the grid attachment successfully condi-
tioned the flow so that the jet flow was close to a canonical 
non-swirling turbulent round jet. The cylindrical attachment 
induced a wake in the near-field that introduced more verti-
cal mixing, but in the far field the flow relaxed to produce 
a wider and slower jet velocity profile. Notably, the ratio 
of the normal fluctuations ( wrms ) to the axial fluctuations 
( urms ) was similar for both attachments in the far field, and 
thus, the cylindrical attachment yielded only modest gains 
in flow isotropy in the tank center. Interestingly, we also 
found that the integral scale increased slightly for the cylin-
drical attachment, which we attribute to a wider effective jet 
diameter. Overall, we find that jet exit attachments could be 
used to reduce the jet exit velocity and increase the effective 
jet diameter.

Based on detailed analysis of turbulence from a wide 
range of tests, we provide scaling predictions for the rel-
evant scales of turbulent motion based on the characteris-
tics of individual jets, tank geometry, and parameters of 
the algorithm that controls the jet arrays. In particular, we 
find urms ∼ UJDJ∕(

1

2
LA) , L ∼ DJ , and ⟨�⟩ ∼ U3

J
D2

J
∕(

1

2
LA)

3 . 
These scalings indicate that turbulence in our random-jet-
stirred tank is primarily controlled by the properties of the 
individual jets and the diffusion of their momentum with 
distance from the nozzle. Additionally, the mean on-time 
�on plays a critical role in determining whether the dis-
charged pulses exhibit continuous-jet-like properties—it 
does so for UJ𝜇on∕(

1

2
LA) ≳ 4 . We found that increasing �on 

above this level does not result in further increases of tur-
bulent intensity, but rather produces a peak in the velocity 
spectra at a frequency related to the jet forcing timescale 
f (�on + �off) ≈ 1 , suggesting that the jet pulses are not fully 
mixed with the background turbulence. The source fraction 
� also affects the overall intensity of the background turbu-
lence as it determines the fraction of jets that are active at 

Table 5   Comparison of 
turbulent characteristics for 
two-facing and four jet arrays 
configurations. All data are for 
� = 12.5%

Two-facing arrays Four jet arrays

�on (s) 1.5 3 6 1.5 3 6

k (cm2/s2) 35.76 46.27 44.67 32.20 62.42 72.34
M1 (×10

−2) 3.26 3.59 7.20 10.83 3.31 4.39
ReL,ADV (×103) 1.47 1.58 1.64 1.56 3.20 5.41
urms∕wrms 1.60 1.79 1.87 1.36 1.41 1.42
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any given time, with larger � values producing larger urms 
and ⟨�⟩ within the limits of our tests.

While most facilities use one or two-facing arrays, we 
have found that the addition of two more arrays has several 
benefits. We are able to achieve a higher turbulence intensity 
and Reynolds number with improved isotropy. We are also 
able to reduce the ‘statistical jet merging distance’ (defined 
here as the minimum distance from each array where the 
turbulence is homogeneous) from LJM ≈ 6J (where J is the 
inter-jet spacing) as previously found to LJM ≈ 4J . This is 
believed to be due to the arrangement of jet arrays that are 
perpendicular to each other, which merge with the surround-
ing flow at a shorter distance. This can be important since 
the jet merging distance is one of the considerations when 
designing the tank size.

Finally, in random-jet-stirred turbulence, the sunbathing 
algorithm drives the jets in pulsed mode with a mean on-
time �on , but this mean on-time has usually been reported 
in dimensional terms (Variano and Cowen 2008; Pérez-
Alvarado et al. 2016; Carter et al. 2016) and the nature of 
the pulsed jet flow had not been previously investigated. We 
introduced two possible dimensionless mean on-times: (1) 
based on the jet exit velocity and jet diameter, UJ�on∕DJ ; 
and (2) based on the jet exit velocity and the travel distance 
to the tank center, UJ�on∕(

1

2
LA) . Measurements of the near-

field flow from an individual jet operated in pulsed mode 
with an on-time corresponding to �on showed that there is 
always a starting vortex, but jet is the dominant flow ( Gharib 
et al. 1998, established this to be the case for UJ𝜇on∕DJ ≳ 4 ). 
Thus, we recommend UJ�on∕DJ ≈ 4 as the lower bound for 
selecting the mean on-time. The far-field measurements 
of an individual pulsed jet showed that the momentum of 
the fluid set into motion diffuses and thus the peak velocity 
measured at the tank center is smaller compared to a con-
tinuous jet. However, as the on-time increases, the veloc-
ity of a pulsed jet recovers to the continuous jet value for 
UJ𝜇on∕(

1

2
LA) ≳ 4 . Increasing the on-time beyond this value 

does not provide a further increase in jet velocity at the tank 
center, but produces a peak at the forcing timescale in the 
velocity spectra. Thus, we recommend that �onUJ∕(

1

2
LA) ≈ 4 

be used as the upper bound for selecting the mean on-time.
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