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Particles such as microplastics and phytoplankton suspended in the water column in
the natural environment are often subject to the action of surface gravity waves. By
modeling such anisotropic particles as small spheroids that slowly settle (or rise) in a wavy
environment, we consider how the particle shape and buoyancy couple to the background
wave-driven flow to influence the particle orientation, drift, and dispersion. A multiscale
expansion allows the wave-induced oscillations to be separated from the wave-averaged
particle motion. Using the wave-averaged equations of particle motion, we demonstrate
that spheroidal particles have a wave-induced preferential orientation with different stable
solutions for prolate and oblate particles. The resulting preferential orientation positions
particles with their longest axis pointing in the direction of wave propagation and upwards
against gravity. The angle at which the longest axis points upwards is a function of particle
aspect ratio. In this orientation, particles drift in the direction opposite to wave propagation,
weakening and potentially even reversing their Stokes drift. The wave-induced stable orien-
tation also results in a reduced settling velocity relative to a random (isotropic) orientation.
The dispersion of a particle cloud is controlled by the distribution of orientations. For a
cloud of particles released together with random (isotropic) orientation, the initial cloud
growth rate is ballistic in all directions. Wave action acts to suppress the vertical dispersion
but enhances horizontal dispersion into a super-ballistic state when the Stokes drift shear
acts on a particle cloud that has expanded in the vertical direction.

DOI: 10.1103/PhysRevFluids.8.074801

I. INTRODUCTION

The motion of particles within flow driven by surface gravity waves is related to the transport of
abiotic (sediment, marine debris including oil droplets, macroplastics, and microplastics) and biotic
(plankton, organic aggregates) particles in coastal and ocean environments. Motivated by this wide
array of applications, recent research on this topic has investigated wave-induced drift of spherical
particles [1–10], preferential orientation and transport of anisotropic particles [11–16], and behavior
of active particles such as planktonic microswimmers [16–20].

Here we consider particle transport in waves and focus on two interrelated factors: particle
buoyancy and particle shape. These are coupled since particle orientation influences transport via
orientation-dependent drag forces. The simplest approach to including the effect of both shape
and buoyancy is to model particles in the inertialess limit as spheroids that settle (or rise) in the
water column for small particles whose density is not too far from the fluid density. A number

*npujara@wisc.edu
†jeanluc@math.wisc.edu

2469-990X/2023/8(7)/074801(16) 074801-1 ©2023 American Physical Society

https://orcid.org/0000-0002-0274-4527
https://orcid.org/0000-0001-7724-7966
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.074801&domain=pdf&date_stamp=2023-07-26
https://doi.org/10.1103/PhysRevFluids.8.074801


NIMISH PUJARA AND JEAN-LUC THIFFEAULT

of applications fall within these assumptions (e.g., microplastics, phytoplankton), justifying this
approach.

We consider slowly settling (or rising) spheroidal particles immersed in a flow driven by small-
amplitude progressive waves. We first derive formulas for wave-averaged translation and rotation
using a multiscale expansion (Sec. II) and then discuss the mutual interactions between particle ori-
entation and transport via analysis and numerical solution of the wave-averaged formulas (Sec. III).
Extending and correcting previous results of wave-induced preferential orientations [11,12], we
find that the wave-averaged orientation dynamics of spheroids have up to six fixed points in the
phase space spanned by their polar angles (corresponding to three distinct physical orientations),
but only one of these fixed points (and orientations) is stable. The stable fixed point represents the
wave-induced preferential orientation of the particle and is only a function of the particle aspect
ratio (and not a function of wave amplitude or frequency) as previously found; however, we show
that the stable fixed points for oblate and prolate shapes are on different branches of solution, so
that the longest particle axis always has a component in the direction of wave propagation and
upwards against gravity. Considering the effect of particle shape on drift, we find that the drift
due to particle orientation always acts in the direction opposite to wave propagation (and Stokes
drift) in the horizontal direction, and vertical settling is always reduced compared to an equivalently
sized sphere or random (isotropic) orientation. Finally, we consider the effect of waves on particle
dispersion, which is controlled by the distribution of particle orientations. For an initially isotropic
distribution of orientations, we provide analytical predictions for the ballistic growth rate of particle
clouds before the effect of waves begins to alter particle orientation. As the effects of wave-induced
reorientation accumulate, the vertical dispersion rate weakens. However, the dispersion rate in the
horizontal direction grows because the shear of the Stokes drift acts on the particle cloud as it
expands in the vertical direction, resulting in a period of superballistic dispersion. We end with a
summary and discussion on the limitations and extensions of our results (Sec. IV).

II. WAVE-AVERAGED PARTICLE MOTION

We consider small-amplitude, two-dimensional progressive surface gravity waves as described
by η = ka cos(x − t ), where the fluid velocity field is given by

ux = εw c(z) cos(x − t ), (1a)

uz = εw s(z) sin(x − t ), (1b)

where

c(z) = cosh(z + kh)/cosh kh, s(z) = sinh(z + kh)/cosh kh. (2)

Here a is the wave amplitude, k is the wave number, and ω is the angular frequency. The free-
surface position is z = η and the fluid velocity field is u = [ux, uz]. The small-amplitude condition
requires that εw = ka/tanh kh � 1, and the dispersion relation is given by ω2 = gk tanh kh. In terms
of velocity gradients, the flow is irrotational (� = 1

2 [∇u − (∇u)T ] ≡ 0), and the components of the
strain rate tensor (S = 1

2 [∇u + (∇u)T ]) are given by

Sxx = −Szz = −εw c(z) sin (x − t ), (3a)

Sxz = Szx = εw s(z) cos (x − t ). (3b)

We have used the dimensionless variables t → ωt, x → kx,u → u/(ω/k). Figure 1 shows the
velocity field and the velocity gradients in a wave-driven flow field.

We consider the motion of small, slowly settling (or rising) spheroids described by

v = u + w; w = −vs⊥ez − (vs‖ − vs⊥)(ez · p)p, (4a)

ṗ = � p+ λ[Sp− (pTS p)p], (4b)
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FIG. 1. Small-amplitude surface gravity waves traveling in the positive x direction with the velocity field
(smaller blue arrows) and velocity gradients (larger red and yellow arrows).

where the particle velocity v is taken to be the sum of the local fluid velocity u and the settling
velocity w, and the particle rotation—defined by the rate of change of a unit vector p that points
along the particle’s symmetry axis—is given by Jeffery’s equations [21]. The particle shape is
defined by λ ∈ [−1, 1] and is related to the particle aspect ratio AR via λ = (AR2 − 1)/(AR2 + 1).
In the expression for the settling velocity vector, vs‖ is the settling velocity in quiescent fluid with
the symmetry axis parallel to gravity, and vs⊥ is the same with the symmetry axis perpendicular to
gravity. These equations have been made dimensionless with the same scales as the fluid velocity
field. Equations (4) assume that the particles are small, moving slowly relative to the fluid such
that the Reynolds and Stokes numbers of their relative translation and rotation is negligibly small,
and thus their dynamics can be considered inertialess and solved within the context of Stokes flow
(see Chs. 1–3 in Ref. [22] for a discussion of the physics involved). While this particle model is well
established, we provide a summary of the derivation for the particle settling vector w in Appendix A
for convenience.

Using polar angles φ and θ that are both defined between 0 and π (Fig. 2), the components of
the particle orientation vector can be written as [16]

px = sin φ sin θ, py = cos θ, pz = cos φ sin θ. (5)

The particle equations (4) can be rewritten as the following component-wise ODEs by using (1),
(3), and (5) [12,16]:

ẋ = εw c(z) cos(x − t ) − (vs‖ − vs⊥) cos φ sin φ sin2 θ, (6a)

ẏ = −(vs‖ − vs⊥) cos φ cos θ sin θ, (6b)

FIG. 2. Spheroids with aspect ratios AR = 	p/dp and the angles φ and θ defining the orientation.
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ż = εw s(z) sin(x − t ) − vs⊥ − (vs‖ − vs⊥) cos2 φ sin2 θ, (6c)

φ̇ = λ εw [s(z) cos (x − t ) cos 2φ − c(z) sin (x − t ) sin 2φ], (6d)

θ̇ = λ εw [s(z) cos (x − t ) sin 2φ + c(z) sin (x − t ) cos 2φ] sin θ cos θ. (6e)

To derive the wave-averaged motions, we use a two-time expansion of the particle position and
orientation to isolate the fast (wave-induced oscillations) motions from the slow (wave-averaged)
motions [10,16]: ⎡

⎣x(t )
φ(t )
θ (t )

⎤
⎦ =

⎡
⎣X (T ) + ε x1(t,T ; ε) + · · ·

�(T ) + ε φ1(t,T ; ε) + · · ·
�(T ) + ε θ1(t,T ; ε) + · · ·

⎤
⎦, T = ε2t,

where ε is a small quantity that acts as an ordering parameter. Since the fluid velocity is u ∼ O(εw),
which is a small quantity, it is rescaled in the expansion as εw → ε εw. For the particle velocity, we
are investigating the dynamics of small particles that settle slowly through the flow, and hence the
particle settling velocity is rescaled as an order smaller than the fluid velocity, vs → ε2vs. Substi-
tuting the expansion and scalings into (6) and collecting terms gives the appropriate equations of
motion at each order. This procedure is given in full in Appendix B. Here we quote only the main
result, which is the wave-averaged particle motion at the slow timescale:

∂T X = ε2
w C(Z ) − (vs‖ − vs⊥) cos � sin � sin2 �, (7a)

∂TY = −(vs‖ − vs⊥) cos � sin � cos �, (7b)

∂T Z = −[vs⊥ + (vs‖ − vs⊥) cos2 � sin2 �], (7c)

∂T� = λε2
w S(Z )(λ + cos 2�), (7d)

∂T� = λε2
w S(Z ) sin 2� sin � cos �. (7e)

where

C(Z ) = cosh 2(Z + kh)

2 cosh2 kh
, S(Z ) = sinh 2(Z + kh)

2 cosh2 kh
. (8)

The effects of particle orientation on its drift appear with the coefficient (vs‖ − vs⊥), which is the
difference between the settling velocities when the particle symmetry axis is parallel to gravity
and perpendicular to gravity. This quantity is positive for prolate particles (λ > 0) and negative for
oblate particles (λ < 0).

To directly compare the wave-averaged dynamics (7) against the full dynamics (6), it is also
important to correctly transform the initial conditions (cf. [10,16]), as also detailed in Appendix B.

III. ANALYSIS OF PARTICLE MOTION

A. Orientation

The ∂T� equation (7d) shows there are fixed points in the � dynamics that satisfy λ + cos 2� =
0, which are functions only of the particle shape and independent of all other variables (see also
[12,16]). The critical angles corresponding to the two fixed points are

�crit
1 = 1

2 arccos(−λ) ∈ [0, π/2], �crit
2 = π − �crit

1 ∈ [π/2, π ]. (9)

The 3D orientational dynamics can be isolated from the translational dynamics by taking the
ratio of ∂T� and ∂T� in (7):

d�

d�
= 2(λ + cos 2�)

sin 2� sin 2�
. (10)

This shows that the orientational dynamics are independent of whether and how the particles move
relative to the flow (e.g., sinking, swimming, rising) and independent of all variables except the
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FIG. 3. �-� phase portrait with (a) λ = 0.6 and (b) λ = −0.6.

particle shape, even when we include out-of-plane rotations. This equation was previously reported
for spheroidal microswimmers in waves [16], where the following solution was also provided:

sin � =
(

1 + cot2 �(0)
|λ + cos 2�|

|λ + cos 2�(0)|
)−1/2

(11)

for initial conditions �(0) and �(0). Figure 3 shows phase portraits corresponding to this solution.
We observe that there are fixed points at (�,�) = (�crit

1 , 0), (�crit
1 , π/2), (�crit

1 , π ) and (�,�) =
(�crit

2 , 0), (�crit
2 , π/2), (�crit

2 , π ), which correspond to three distinct physical orientations; however,
only one of the three orientations is stable. For prolate particles (λ > 0), the stable fixed point is
(�,�) = (�crit

1 , π/2) whereas for oblate particles (λ < 0), it is (�,�) = (�crit
2 , π/2).

This conclusion can be shown to hold for all shapes (−1 � λ � 1) with a formal stability analysis
of the fixed points. Writing small perturbations in � and � about the fixed points as

� = �crit + ϕ, � = 1
2π + ϑ,

we obtain the linearized system[
ϕ̇

ϑ̇

]
= A

[
ϕ

ϑ

]
where A = ε2

w S(Z ) λ

[−2 sin 2�crit 0
0 − sin 2�crit

]
. (12)

For simplicity, we have assumed that Z is a constant for the stability analysis, which is equivalent
to considering neutrally buoyant particles. The trace and determinant of A are given by

Tr A = −3λε2
w S(Z ) sin 2�crit, det A = 2λ2ε4

w S2(Z ) sin2 2�crit.

From this, we can confirm that det A > 0 and (TrA)2 − 4 det A > 0 for all nonspherical shapes, and
thus the fixed points are either stable or unstable nodes. Considering the sign of TrA for �crit ∈
{�crit

1 ,�crit
2 } shows that (� = �crit

1 ,� = π/2) is a stable node for λ > 0 and an unstable node for
λ < 0. Conversely, (� = �crit

2 ,� = π/2) is an unstable node for λ > 0 and a stable node for λ < 0.
These findings are consistent with the phase portraits in Fig. 3.

Since there is one globally attractive fixed point with � = π/2, we can conclude that particles of
all shapes will eventually reach this fixed point and thus align their axis of symmetry within the flow
plane. Figure 4 shows the the critical angles �crit

i as a function of particle shape λ for orientation p in
the x-z plane; stable regions are shown in black. Physically, the stable orientation for all shapes is one
where the particle’s longest dimension is pointing in the wave propagation direction and upwards
against gravity (see insets in Fig. 4). This can be understood as the shape-dependent response of the
particle to the Lagrangian strain (i.e., the strain-rate integrated along a particle trajectory). As the
difference between Lagrangian and Eulerian wave averages, the stable orientation is analogous to
the classical Stokes drift, and it appears as such in the wave-averaged equations (7).
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FIG. 4. Critical angles �crit as given by Eq. (9). The solid black curves show the stable region, whereas the
dashed red curves show the unstable region. The insets show the stable orientation for λ = ±0.6.

While the stable orientation is only a function of the particle shape, the rate at which this
orientation is achieved is a function of both the particle shape and the waves. The coefficient
λε2

w S(Z ), which appears in Eqs. (7d) and (7e), controls this rate. Thus, a higher aspect ratio particle,
larger wave amplitude, and higher position in the water column all result in the particle reaching its
stable orientation faster.

Previous efforts have analyzed the preferential orientations [11,12]. Our analysis agrees with
theirs for prolate particles (i.e., the stable orientation is � = �crit

1 ,� = π/2 for λ > 0), but
we find that the stable orientation of oblate particles is different (i.e., the stable orientation is
� = �crit

2 = π − �crit
1 ,� = π/2 for λ < 0). While they analyzed the preferential orientations

using wave-resolved equations, the wave-averaged formulation applied here considerably simplifies
matters since the preferential orientations become fixed points rather than limit cycles. In the
wave-averaged systems, it is clear that different solution branches are stable for oblate and prolate
particles, respectively.

While � tends towards its stable fixed point in the wave-averaged motion, the unaveraged
solution φ includes an oscillatory component. We can predict the leading order amplitude and phase
lag of these oscillations using the O(ε1) solutions. In particular, we expect that φ = � + Aφ cos(X −
t + Lφ ) + O(ε2) where Aφ is the amplitude of oscillation and Lφ is the phase lag relative to the
waves. From Eq. (B3), we find

Aφ = ± εw

cosh kh
λ

√
sinh2(Z + kh) + sin2 2�, (13a)

Lφ = arctan

[
− tanh(Z + kh)

tan 2�

]
. (13b)

These expressions are valid for particles with time-varying wave-averaged vertical position (due to
sinking, rising, swimming, etc.) since those dynamics are included in the value of Z (T ).

Figure 5 shows how the solution φ ≈ � + Aφ cos(X − t + Lφ ) correctly tracks the evolution of φ

computed numerically and how the solution for � tends towards its stable fixed point. From Eq. (13),
we can also see that the amplitude of the angular oscillations are larger for larger wave amplitude,
increased nonsphericity, and when the particle is closer to the surface. For passive neutrally buoyant
particles whose wave-averaged vertical position remains unchanged, Aφ and Lφ become constants
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(a) (b)

FIG. 5. Evolution of φ with Z = −0.10, ka = 0.2, and kh = 40 for (a) prolate shapes (λ = 0.6 for upper
curves, λ = 0.28 for lower curves) and (b) oblate shapes (λ = −0.6 for upper curves, λ = −0.28 for lower
curves). The curves for φ and � are obtained from numerical solutions, Aφ and Lφ are obtained from Eq. (13),
and �crit are obtained from Eq. (9). An initial condition correction (B6) is used to directly compare φ(t )
and �(t ).

when � reaches its stable fixed point. In fact, in deep water (large kh) where the particle is near the
surface (small Z), the above expressions simplify considerably to

Aφ = ±λka, (14a)

Lφ =
{−π

2 + 2�, 0 < � < π
2 ,

π
2 + 2�, π

2 < � < π.
(14b)

Thus, the orientation oscillation amplitude is larger for higher aspect ratio particles and steeper
waves, and the phase lag evolves with the wave-averaged orientation. In their stable orientations,
high-aspect-ratio prolate particles (fibers) oscillate with no phase lag whereas high-aspect-ratio
oblate particles (disks) oscillate with a phase lag of π

2 .

B. Drift

From (7), we define the horizontal and vertical drift velocities

vX = ∂T X = uSD − 1
2 (vs‖ − vs⊥) sin 2� sin2 �, (15a)

vZ = ∂T Z = −[vs⊥ + (vs‖ − vs⊥) cos2 �], (15b)

where the Stokes drift uSD = ε2
w C(Z ) is solely a function of the waves and the second term is solely

a function of the particle as it behaves in waves. Substituting a particle’s settling velocities (vs‖, vs⊥)
and stable orientation angles (�crit

stable, �crit
stable) into (15) gives its wave-induced drifts.

Examining the horizontal component, we see that particle anisotropy always leads to a negative
value for the second term on the right side of (15a). While sin2 �crit

stable = 1 for all particles,
(vs‖ − vs⊥) > 0 and sin 2�crit

stable > 0 for prolate particles and (vs‖ − vs⊥) < 0 and sin 2�crit
stable < 0

for oblate particles. This means that the wave-induced particle drift is reduced compared with the
Stokes drift or can even be in the opposite direction.

The effects of particle shape on horizontal drift are isolated in Fig. 6(a) by normalizing the
second term on the right side of (15a) by the settling velocity of a volume-matched sphere vZ,sphere

(A7). The largest reduction in horizontal drift velocity is for moderately anisotropic shapes. An
alternative way to observe the altered horizontal drift is to consider the horizontal drift as a fraction
of the Stokes drift, vX/uSD = 1 − 1

2 ((vs‖ − vs⊥)/uSD) sin 2� sin2 �. Since the settling velocity and
the Stokes drift are both second-order quantities, the second term is O(1) showing that the horizontal
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(a) (b)

FIG. 6. Effect of particle shape and wave-induced orientation on horizontal and vertical drift velocities.

drift can be significantly altered from the classical Stokes drift. To see that the particle motion can
be in the opposite direction to the Stokes drift, consider also that the Stokes drift weakens quickly
with depth, whereas the horizontal drift due to preferential orientation doesn’t. Thus, the horizontal
drift due to preferential orientation overcomes the Stokes drift at some point for all settling particles.
After particles sink below the influence of the wave-induced velocity field, they will continue to drift
in the negative x direction if left undisturbed.

For the vertical drift component, the influence of particle anisotropy can be quantified by
comparing the wave-induced settling velocity against three different limits: (1) the settling of
a volume-matched sphere vZ,sphere (A7); (2) the settling of the same particle, but in a random
(isotropic) orientation vZ,isotropic = (2vs⊥ + vs‖)/3 where � is distributed uniformly in [0, π ] and
cos � is distributed uniformly in [−1, 1]; and (3) the settling of the same particle, but in the
orientation resulting from inertial particle torques that minimize the settling velocity vZ,inertial =
min(vs⊥, vs‖). While limit (1) captures the effect of particle shape and orientation for a given
volume, limits (2) and (3) capture the effect of particle orientation for a given shape and volume.
Figure 6(b) shows these comparisons. We observe that using random (isotropic) orientation or
volume-equivalent spheres can vastly overpredict the settling velocity of spheroids in waves, while
using the settling velocity spheroids in their inertial orientations results in only a small error.

C. Dispersion

The particle drift velocities (7a)–(7c) are functions of Z , �, and �. Thus, trajectories of particles
with the same shape and size that are released with differences in initial vertical position and/or
differences in initial orientation will diverge. Here we focus on particle dispersion due to differences
in initial orientation.

A useful limit to consider for particle dispersion due to orientation effects is the dispersion of
particles of a given shape, with random (isotropic) orientations, settling in quiescent fluid. In this
case the variance of the horizontal and vertical drifts can be calculated as the centralised second
moments of vX and vZ with � distributed uniformly in [0, π ] and cos � distributed uniformly in
[−1, 1]. This gives variances

var(vX )isotropic = 1
15 (vs‖ − vs⊥)2 → var(X )isotropic = 1

15 (vs‖ − vs⊥)2t2, (16a)

var(vZ )isotropic = 4
45 (vs‖ − vs⊥)2 → var(Z )isotropic = 4

45 (vs‖ − vs⊥)2t2. (16b)

Equation (16) shows that particle dispersion due to random orientation is in the ballistic regime
where the size of the particle cloud grows as ∼t (in contrast to a diffusive regime where the cloud
size would grow as ∼t1/2). It also shows that the particle cloud size will grow faster in the vertical
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FIG. 7. Scaling for particle cloud growth rate per unit vertical distance of settling (or rising) for different
shapes that begin (and remain) in random (isotropic) orientation. The actual growth rate of the particle cloud
size will be some multiple of the quantity shown.

direction compared with the horizontal direction. Using the mean particle settling velocity for
random (isotropic) orientations (vZ,isotropic = (2vs⊥ + vs‖)/3), we can convert time to distance from
initial location t = −(Z − Z0)/vZ,isotropic and find the variance of the particle cloud as a function of
depth:

var(X )isotropic = 9

15

[
vs‖ − vs⊥

2vs⊥ + vs‖
(Z − Z0)

]2

, var(Z )isotropic = 4

5

[
vs‖ − vs⊥

2vs⊥ + vs‖
(Z − Z0)

]2

. (17)

Since the cloud size can be characterized by the standard deviation of particle positions, the cloud
size is expected to grow with depth as ∼|(vs‖ − vs⊥)/vZ,isotropic| per unit vertical distance that the
cloud travels. Figure 7 shows this function, which depends on only particle shape. We observe that
the dispersion rate increases for more anisotropic particle shapes, which is due to the increased drag
anisotropy. We also see that highly elongated shapes (fibers) have a higher dispersion rate per unit
vertical drop than highly flattened shapes (disks).

To understand how particle shape affects dispersion, we analyze a cloud of particles of a given
shape and size that are released together with random (isotropic) orientations at the water surface.
Figure 8 shows the dispersion of particles initialized at X = Y = Z = 0 with an isotropic distri-
bution. These simulations cover εw ∈ [0.1, 0.3], λ ∈ [−0.99, 0.99], and vZ,isotropic ∈ [0.001, 0.01].
The particle cloud initially disperses at a rate predicted by (16) and (17), but this dispersion rate is
modified by two factors: (1) the particle drift velocities start to converge as the particle orientation
distribution converges towards the wave-induced preferential orientation, reducing the dispersion
rate in both directions; and (2) the vertical variation in Stokes drift begins to shear the cloud
horizontally as the particle cloud grows in the vertical direction, increasing its dispersion rate in the
wave direction. Figure 9 shows particle cloud snapshots at different times to illustrate this behavior.
Both vertical and horizontal dispersion are initially ballistic (particle position variance ∼t2), but the
vertical dispersion becomes subballistic and continues to decrease until the particles fall below the
influence of wave motion, whereas the initial vertical dispersion allows the horizontal dispersion
to become temporarily superballistic before decreasing back towards an intermediate growth rate.
The superballistic regime is notable since it may contribute to the very high rates of horizontal
spreading near the water surface. Note that the behavior seen in Fig. 9 would not be observed for
spherical particles; spheres with a similar initial configuration would show no dispersion because
their drift velocities are only functions of initial wave-averaged vertical position. For completeness,
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FIG. 8. Particle dispersion (quantified by variance of particle position) as a function of time: (a) vertical
dispersion and (b) horizontal dispersion in the wave propagation direction. Thin gray lines show numerical
simulations that span εw ∈ [0.1, 0.3], λ ∈ [−0.99, 0.99], and vZ,isotropic ∈ [0.001, 0.01]. Thick dashed lines are
the initial dispersion rates in Eq. (16).

note that the vertical variation in the Stokes drift (the Stokes drift shear) also affects the orientation
dynamics, but at higher order than the wave-averaged preferential orientation (B5), and thus this
effect is small.

While we have quantified the dispersion of particles of a given shape initiated at different
orientations, there are at least two other mechanisms by which particles can disperse: (1) since
particle drifts are functions of particle shape and size, we can expect that particles of different
shapes and sizes released together will disperse; and (2) since Stokes drift is very sensitive to the
initial wave-averaged vertical position, even small [O(ε2

w)] variations in the initial condition will
produce horizontal dispersion of particle clouds (Fig. 5 in Ref. [10]). The relative importance of the
different mechanisms is not examined here and left for future work.

FIG. 9. Particle clouds at different times in a particle dispersion simulation where εw = 0.3, λ = 0.6, and
vZ,isotropic = 0.05: (a) initial cloud growth due to isotropic orientation distribution and (b) increased particle
dispersion in the wave direction due to Stokes drift shear.
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IV. CONCLUSIONS

We have considered the motion of small spheroidal particles within the flow field of small-
amplitude progressive waves. By using a multiscale expansion, the wave-averaged motion is
isolated from the wave-induced oscillations in particle position and orientation. Analysis of the
wave-averaged motion shows that there is a single wave-induced preferential particle orientation
for any given particle aspect ratio that is independent of wave parameters. Using a fully 3D
analysis, we expand and correct previous results on how oblate and prolate particles align in
waves [11,12]; in particular, we find that there are six fixed points in the orientation dynamics
(corresponding to three distinct physical orientations) of which only one is stable and that this stable
fixed point resides on different branches of solution for oblate and prolate particles. This stable
preferential orientation arises due to the differences between the Lagrangian and Eulerian wave
averages of the velocity gradients and can thus be considered a Stokes-drift-like correction [Ch. 10,
23].

The stable preferential orientations also induce a horizontal drift in the negative wave direction,
opposite the Stokes drift, and a lower settling velocity than random (isotropic) orientations. The
horizontal drift opposing the Stokes drift eventually overcomes it as particles settle lower into the
water column where the Stokes drift decays.

Wave-averaged particle motion results in particle dispersion due to differences in particle ori-
entations that in turn determine particle drift. For a point cloud of particles released in quiescent
water with an initially isotropic distribution of orientations, particle dispersion initially follows
a ballistic regime whose coefficient is a function of particle shape, size, and density as given in
(16). Waves act to reduce the vertical dispersion by aligning all particles into the same orientation.
Waves also act to increase the horizontal dispersion, which results in a (temporary) superballistic
horizontal particle cloud growth, but this is caused primarily by the Stokes drift shear acting on
the vertical extent of the particle cloud rather than direct effects of particle shape, size, or density.
The existence of this superballistic regime may be partly responsible for the observed widespread
distributions of anisotropic particles such as microplastics in wavy environments [24]. These results
also preserve the idea previously put forward [11] that the horizontal size of the particle cloud is
controlled by a combination of settling and alignment, where faster settling particles do not have
enough time to be dispersed by Stokes drift shear and slowly settling particles stop dispersing after
they reach wave-induced preferential alignment. However, our analysis clarifies the fact that the
effect of particle shape is primarily in setting the initial dispersion rate (16) before the effects of
wave action becomes important.

Considering the limitations and future extensions of this model, we note that the particle model
(4) is valid in the limit of small inertia, and the flow model (1)–(3) is valid in the limit of small
amplitude. While the small wave amplitude assumption is not considered too restrictive, it is
expected that particle and fluid inertia will begin to influence particle motion for applications such as
microplastics and plankton (see, for example, Refs. [25–27] for experimental evidence on inertial
effects). Particle inertia, quantified by the Stokes number, tends to be small, especially in field
conditions where the wave period is large, and is not expected to alter our results significantly.
Fluid inertia around the particle is more likely to be important. In this regard, we have shown that
assuming particles settle in their inertial orientation (minimum settling velocity over all orientations)
results only in a small error when computing particle drift across a range of particle shapes. Finally,
the model here is fully deterministic, and hence particle motion is always a function of its initial
conditions. Future work will examine the effects of noise (e.g., turbulence) on particle dynamics to
understand how particle orientation, drift, and dispersion are affected.
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APPENDIX A: PARTICLE SETTLING VECTOR

In the limit of small inertia (small spheroids moving slowly with respect to the background fluid
velocity), the particle equation of translation motion is given by

0 = −Kw − (ρp − ρ)
π

6
d2

p 	pgez, (A1)

which involves the slip velocity w = v − u as the difference between the particle velocity v and the
fluid velocity u, the Stokes resistance tensor K, the particle diameter dp, the particle length 	p, the
particle density ρp, the fluid density ρ, and the gravitational acceleration g, with ez being the unit
vector pointing opposite to gravity. The force balance is between the drag and buoyancy, with other
terms such as particle inertia, added mass, force due to the undisturbed fluid inertia, and the Basset
history force all neglected under the assumptions of small inertia. Guazzelli et al. [22] provide a
discussion of this physical situation in their Chs. 1–3.

In quiescent fluid, (A1) gives the settling velocity vector

w = −(ρp − ρ)
π

6
d2

p 	pgK−1ez, (A2)

where K = RTK ′R with R being the rotation matrix that rotates the laboratory frame into the particle
frame and K ′ being the resistance tensor in the particle frame. For spheroids, K ′ is a diagonal matrix
composed of the resistance coefficient parallel (K ′

‖) and perpendicular (K ′
⊥) to the particle axis of

symmetry. Using K−1 = RTK ′−1R, it can be shown that

K−1ez = K ′
⊥

−1ez + (K ′
‖
−1 − K ′

⊥
−1)(ez · p)p. (A3)

Substituting (A3) into (A2) gives the spheroid settling velocity vector

w = −vs⊥ez − (vs‖ − vs⊥)(ez · p)p, (A4)

where vs⊥ is the settling velocity for the particle symmetry axis is perpendicular to gravity and vs‖
is the same for the axis parallel to gravity. The settling has a component purely in the direction of
gravity and a component in the direction of the symmetry axis, which in turn can have components
both parallel and perpendicular to gravity.

The resistance coefficients in the particle frame have expressions of the form K ′
⊥,K ′

‖ =
3πρνdp f (AR) where the shape function f (AR) is different for prolate and oblate particles and
also different for motion parallel or perpendicular to the particle symmetry axis. Using previously
published shape functions ([28], Chs. 5–11), we find the following expressions for the settling
velocities:

Prolate (AR > 1):

vs‖ = (ρp − ρ)dp	pg

18ρν

3

8

[
− 2AR

AR2 − 1
+ 2AR2 − 1

(AR2 − 1)3/2
ln(

AR +
√

AR2 − 1

AR −
√

AR2 − 1
)

]
, (A5a)

vs⊥ = (ρp − ρ)dp	pg

18ρν

3

8

[
AR

AR2 − 1
+ 2AR2 − 3

(AR2 − 1)3/2
ln(AR +

√
AR2 − 1)

]
. (A5b)

Oblate (AR < 1):

vs‖ = (ρp − ρ)dp	pg

18ρν

3

8

[
2AR

1 − AR2 + 2(1 − 2AR2)

(1 − AR2)3/2
tan−1

(√
1 − AR2

AR

)]
, (A6a)

vs⊥ = (ρp − ρ)dp	pg

18ρν

3

8

[
− AR

1 − AR2 − 2AR2 − 3

(1 − AR2)3/2
sin−1(

√
1 − AR2)

]
. (A6b)
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The settling velocity for a volume-matched sphere is

vs,sphere = [ρp − ρ)(Vp/(π/6)]2/3g

18ρν
= (ρp − ρ)dp	pg

18ρν
AR−1/3, (A7)

where Vp = (π/6)d2
p 	p is the particle volume.

The expressions (A5)–(A7) are made dimensionless by dividing by (ω/k) when used in the main
body of the paper.

APPENDIX B: MULTISCALE EXPANSION

The ODEs for particle motion (6) are

ẋ = εw c(z) cos(x − t ) − (vs‖ − vs⊥) cos φ sin φ sin2 θ, (B1a)

ẏ = −(vs‖ − vs⊥) cos φ cos θ sin θ, (B1b)

ż = εw s(z) sin(x − t ) − vs⊥ − (vs‖ − vs⊥) cos2 φ sin2 θ, (B1c)

φ̇ = λ εw [s(z) cos (x − t ) cos 2φ − c(z) sin (x − t ) sin 2φ], (B1d)

θ̇ = λ εw [s(z) cos (x − t ) sin 2φ + c(z) sin (x − t ) cos 2φ] sin θ cos θ, (B1e)

where recall that c(z) and s(z) were defined in (2). We subject these equations to a multiscale
expansion, where t is the fast time at which wave-induced oscillations occur and T = ε2t is the
slow time at which wave-averaged motions occur. Here ε is a small quantity that acts as an ordering
parameter. The fluid velocity is rescaled as εw → ε εw, and the particle settling velocity is rescaled
as vs → ε2vs. Substituting the expansion and scalings into (B1) gives

∂t x + ε2∂T x = ε εw c(z) cos(x − t ) − ε2(vs‖ − vs⊥) cos φ sin φ sin2 θ, (B2a)

∂t y + ε2∂T y = −ε2(vs‖ − vs⊥) cos φ cos θ sin θ, (B2b)

∂t z + ε2∂T z = ε εw s(z) sin(x − t ) − ε2[vs⊥ + (vs‖ − vs⊥) cos2 φ sin2 θ ], (B2c)

∂tφ + ε2∂Tφ = λ εεw [s(z) cos (x − t ) cos 2φ − c(z) sin (x − t ) sin 2φ], (B2d)

∂tθ + ε2∂T θ = λ εεw [s(z) cos (x − t ) sin 2φ + c(z) sin (x − t ) cos 2φ] sin θ cos θ. (B2e)

At order ε0, ∂t x0 = ∂t y0 = ∂t z0 = ∂tφ0 = ∂tθ0 = 0, showing that the leading order solution is
only a function of the slow timescale: x0 = X (T ), y0 = Y (T ), z0 = Z (T ), φ0 = �(T ), and θ0 =
�(T ).

At order ε1,

∂t x1 = εw c(Z ) cos(X − t ), ∂t y1 = 0,

∂t z1 = εw s(Z ) sin(X − t ),

∂tφ1 = λ εw [s(Z ) cos (X − t ) cos 2� − c(Z ) sin (X − t ) sin 2�],

∂tθ1 = 1
2λ εw sin 2� [s(Z ) cos (X − t ) sin 2� + c(Z ) sin (X − t ) cos 2�].

We integrate with the requirement that the wave-period average ((1/2π )
∫ 2π

0 dt) must be zero; this
gives the first-order solutions, which are the leading order oscillatory motions at the fast timescale:

x1 = −εw c(Z ) sin(X − t ), (B3a)

y1 = 0, (B3b)

z1 = εw s(Z ) cos(X − t ), (B3c)

φ1 = −λ εw[s(Z ) sin (X − t ) cos 2� + c(Z ) cos (X − t ) sin 2�], (B3d)

θ1 = 1
2λ εw[c(Z ) cos (X − t ) cos 2� − s(Z ) sin (X − t ) sin 2�] sin 2�. (B3e)
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At order ε2,

∂t x2 + ∂T X = εw[s(Z ) cos(X − t ) z1 − c(Z ) sin(X − t ) x1] − (vs‖ − vs⊥) sin � cos � sin2 �,

∂t y2 + ∂TY = −(vs‖ − vs⊥) cos � cos � sin �,

∂t z2 + ∂T Z = εw[s(Z ) cos(X − t ) x1 + c(Z ) sin(X − t ) z1] − [vs⊥ + (vs‖ − vs⊥) cos2 � sin2 �],

∂tφ2 + ∂T� = λ εw{s(Z )[−2 sin 2� cos(X − t ) φ1 − sin(X − t )(sin 2� z1 + cos 2� x1)]

+ c(Z )[−2 cos 2� sin(X − t ) φ1 + cos(X − t )(cos 2�z1 − sin 2� x1)]},
∂tθ2 + ∂T� = 1

2λ εw{s(Z )[2 cos(X − t )(cos 2� sin 2�θ1 + sin 2� cos 2� φ1)

− sin 2� sin(X − t )(sin 2� x1 − cos 2� z1)] + c(Z )[2 sin(X − t )

(sin 2� sin 2� φ1 − cos 2� cos 2� θ1) + sin 2� cos(X − t )(cos 2� x1 + sin 2� z1)]}.
By substituting (B3) into the above expressions and wave-averaging to remove the fast oscillations,
we find the desired wave-averaged particle motion at the slow timescale (7):

∂T X = ε2
w C(Z ) − (vs‖ − vs⊥) cos � sin � sin2 �, (B4a)

∂TY = −(vs‖ − vs⊥) cos � sin � cos �, (B4b)

∂T Z = −[vs⊥ + (vs‖ − vs⊥) cos2 � sin2 �], (B4c)

∂T� = λε2
w S(Z )(λ + cos 2�), (B4d)

∂T� = λε2
w S(Z ) sin 2� sin � cos �, (B4e)

where the functions C(Z ) and S(Z ) were defined in (8).
To find the second-order solutions, we subtract (B4) from the ε2 equations to get

∂t x2 = −ε2
w

cos 2(X − t )

2 cosh2 kh
, ∂t y2 = 0,

∂t z2 = 0,

∂tφ2 = −ε2
wS(Z )λ2 cos 2(X − t ) cos 4� + λ2ε2

wC(Z ) sin 2(X − t ) sin 4� + ε2
w

sin 2(X − t )

2 cosh2 kh
sin 2�,

∂tθ2 = 1

16
λ

ε2
w

cosh2 kh
{λ sin 2(X − t ) sin 4� [1 + cos 4� cosh 2(Z + kh)]

+ 4 sin 2(X − t ) sin 2� [λ − cos 2� − 4 cos 4� cosh 2(Z + kh)]}

+ ε2
w

sin 2(X − t )

2 cosh2 kh
sin 2� + 1

8
λ2ε2

w C(Z ) sin 2(X − t ) sin 4�.

Integrating with the requirement that the wave-period average must be zero gives

x2 = 1

2
ε2

w
sin 2(X − t )

2 cosh2 kh
, (B5a)

y2 = 0, (B5b)

z2 = 0, (B5c)

φ2 = 1

2
λ

ε2
w

2 cosh2 kh
{cos 2(X − t )[λ sin 4� cosh 2(Z + kh) + sin 2�]

+ λ cos 4� sinh 2(Z + kh) sin 2(X − t )}, (B5d)

θ2 = 1

16
λ

ε2
w

2 cosh2 kh
{2 sin 2� cos 2(X − t )[λ(cos 2� + 2) − 2 cos 2�] + λ[4 sin 2� − sin(4�)]

×[sin 4� sinh 2(Z + kh) sin 2(X − t ) − cos 4� cosh 2(Z + kh) cos 2(X − t )]}. (B5e)
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For a given set of initial conditions of the full dynamics, the equivalent initial conditions in the
wave-averaged dynamics can be derived by first writing the expansion at t = 0 [e.g., x(0) = X (0) +
εx1(0) + ε2x2(0) + · · · ], then substituting in an expansion for the wave-averaged initial condition
[e.g., X (0) = X0(0) + εX1(0) + ε2X2(0) + · · · ], and finally collecting terms of the same order to
find the terms in the wave-averaged initial condition expansion [e.g., X1(0), X2(0)] in terms of the
initial conditions of the full system. Doing so for each variable results in the following projection of
the initial conditions of the full system into the wave-averaged system [correct to O(ε2)]:

X = x + εw c(z) sin x + 3

4
ε2

w
sin 2x

cosh2 kh
, (B6a)

Y = y, (B6b)

Z = z − εw s(z) cos x + 1

2
ε2

w
sinh[2(z + kh)]

cosh2 kh
, (B6c)

� = φ + λ
εw

cosh kh
[cos 2φ sin x sinh(z + kh) + sin 2φ cos x cosh(z + kh)]

−1

2
λ

ε2
w

2 cosh2 kh
{4 cosh2(z + kh)(sin 2φ sin2 x − λ sin 4φ cos2 x)

−λ cos 4φ sin 2x sinh[2(z + kh)] + λ sin 4φ{cosh[2(z + kh)] + cos 2x − 1}
+ sin 2φ[4 cos2 x sinh2(z + kh) + cos 2x]}, (B6d)

� = θ − 1

2
λ

εw

cosh kh
sin 2θ [cos 2φ cos x cosh(z + kh) − sin 2φ sin x sinh(z + kh)]

+ 1

32
λ

ε2
w

cosh2 kh
{λ sin 4φ sin 2x sinh[2(z + kh)](4 sin 2θ − sin 4θ )

+8 sinh2(z + kh)[λ sin 4θ sin2 2φ sin2 x + 2 sin 2θ cos 2φ(2λ cos 2φ sin2 x + cos2 x)]

+8 cosh2(z + kh)(4λ sin 2θ sin2 2φ cos2 x + λ sin 4θ cos2 2φ cos2 x + 2 sin 2θ cos 2φ sin2 x)

+λ(4 sin 2θ − sin 4θ ) cos 4φ cos 2x cosh[2(z + kh)] − 2 sin 2θ cos 2x[λ(cos 2θ + 2)

−2 cos 2φ]}, (B6e)

where initial conditions are implied [i.e., X = X (0), x = x(0), z = z(0), etc.].

[1] I. Eames, Settling of particles beneath water waves, J. Phys. Oceanogr. 38, 2846 (2008).
[2] F. Santamaria, G. Boffetta, M. M. Afonso, A. Mazzino, M. Onorato, and D. Pugliese, Stokes drift for

inertial particles transported by water waves, Europhys. Lett. 102, 14003 (2013).
[3] M. Bakhoday-Paskyabi, Particle motions beneath irrotational water waves, Ocean Dyn. 65, 1063 (2015).
[4] M. Bakhoday-Paskyabi, Turbulence-particle interactions under surface gravity waves, Ocean Dyn. 66,

1429 (2016).
[5] T. S. van den Bremer, C. Whittaker, R. Calvert, A. Raby, and P. H. Taylor, Experimental study of particle

trajectories below deep-water surface gravity wave groups, J. Fluid Mech. 879, 168 (2019).
[6] R. Calvert, C. Whittaker, A. Raby, P. H. Taylor, A. G. L. Borthwick, and T. S. van den Bremer, Laboratory

study of the wave-induced mean flow and set-down in unidirectional surface gravity wave packets on finite
water depth, Phys. Rev. Fluids 4, 114801 (2019).

[7] M. H. DiBenedetto, Non-breaking wave effects on buoyant particle distributions, Front. Marine Sci. 7,
148 (2020).

[8] J. J. Webber and H. E. Huppert, Stokes drift in coral reefs with depth-varying permeability, Philos. Trans.
R. Soc. A 378, 20190531 (2020).

074801-15

https://doi.org/10.1175/2008JPO3793.1
https://doi.org/10.1209/0295-5075/102/14003
https://doi.org/10.1007/s10236-015-0856-4
https://doi.org/10.1007/s10236-016-0989-0
https://doi.org/10.1017/jfm.2019.584
https://doi.org/10.1103/PhysRevFluids.4.114801
https://doi.org/10.3389/fmars.2020.00148
https://doi.org/10.1098/rsta.2019.0531


NIMISH PUJARA AND JEAN-LUC THIFFEAULT

[9] R. Calvert, M. McAllister, C. Whittaker, A. Raby, A. Borthwick, and T. van den Bremer, A mechanism
for the increased wave-induced drift of floating marine litter, J. Fluid Mech. 915, A73 (2021).

[10] M. H. DiBenedetto, L. K. Clark, and N. Pujara, Enhanced settling and dispersion of inertial particles in
surface waves, J. Fluid Mech. 936, A38 (2022).

[11] M. H. DiBenedetto, N. T. Ouellette, and J. R. Koseff, Transport of anisotropic particles under waves,
J. Fluid Mech. 837, 320 (2018).

[12] M. H. DiBenedetto and N. T. Ouellette, Preferential orientation of spheroidal particles in wavy flow,
J. Fluid Mech. 856, 850 (2018).

[13] M. H. DiBenedetto, J. R. Koseff, and N. T. Ouellette, Orientation dynamics of nonspherical particles
under surface gravity waves, Phys. Rev. Fluids 4, 034301 (2019).

[14] L. K. Clark, M. H. DiBenedetto, N. T. Ouellette, and J. R. Koseff, Settling of inertial nonspherical particles
in wavy flow, Phys. Rev. Fluids 5, 124301 (2020).

[15] L. K. Clark, M. H. DiBenedetto, N. T. Ouellette, and J. R. Koseff, Dispersion of finite-size, non-spherical
particles by waves and currents, J. Fluid Mech. 954, A3 (2023).

[16] K. Ma, N. Pujara, and J.-L. Thiffeault, Reaching for the surface: Spheroidal microswimmers in surface
gravity waves, Phys. Rev. Fluids 7, 014310 (2022).

[17] M. A. R. Koehl, J. A. Strother, M. A. Reidenbach, J. R. Koseff, and M. G. Hadfield, Individual-based
model of larval transport to coral reefs in turbulent, wave-driven flow: Behavioral responses to dissolved
settlement inducer, Mar. Ecol.: Prog. Ser. 335, 1 (2007).

[18] M. A. R. Koehl and M. A. Reidenbach, Swimming by microscopic organisms in ambient water flow,
Exp. Fluids 43, 755 (2007).

[19] H. L. Fuchs and G. P. Gerbi, Seascape-level variation in turbulence- and wave-generated hydrodynamic
signals experienced by plankton, Prog. Oceanogr. 141, 109 (2016).

[20] F. M. Ventrella, N. Pujara, G. Boffetta, M. Cencini, J. L. Thiffeault, and F. De Lillo, Microswimmer
trapping in surface waves with shear, arXiv:2304.14028.

[21] G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. London A
102, 161 (1922).

[22] É. Guazzelli, J. F. Morris, and S. Pic, A Physical Introduction to Suspension Dynamics, Cambridge Texts
in Applied Mathematics (Cambridge University Press, Cambridge, 2011).

[23] O. Bühler, Waves and Mean Flows, Cambridge Monographs on Mechanics (Cambridge University Press,
2009).

[24] E. van Sebille, S. Aliani, K. L. Law, N. Maximenko, J. M. Alsina, A. Bagaev, M. Bergmann, B. Chapron,
I. Chubarenko, A. Cózar et al., The physical oceanography of the transport of floating marine debris,
Environ. Res. Lett. 15, 023003 (2020).

[25] L. Bergougnoux, G. Bouchet, D. Lopez, and É. Guazzelli, The motion of solid spherical particles falling
in a cellular flow field at low Stokes number, Phys. Fluids 26, 093302 (2014).

[26] D. Lopez and É. Guazzelli, Inertial effects on fibers settling in a vortical flow, Phys. Rev. Fluids 2, 024306
(2017).

[27] S. Agarwal, F. K. Chan, B. Rallabandi, M. Gazzola, and S. Hilgenfeldt, An unrecognized inertial force
induced by flow curvature in microfluidics, Proc. Natl. Acad. Sci. USA 118, e2103822118 (2021).

[28] J. Happel and H. Brenner, LowReynolds Number Hydrodynamics, with Special Applications to Particulate
Media (Martinus Nijhof, 1983).

074801-16

https://doi.org/10.1017/jfm.2021.72
https://doi.org/10.1017/jfm.2022.95
https://doi.org/10.1017/jfm.2017.853
https://doi.org/10.1017/jfm.2018.738
https://doi.org/10.1103/PhysRevFluids.4.034301
https://doi.org/10.1103/PhysRevFluids.5.124301
https://doi.org/10.1017/jfm.2022.968
https://doi.org/10.1103/PhysRevFluids.7.014310
https://doi.org/10.3354/meps335001
https://doi.org/10.1007/s00348-007-0371-6
https://doi.org/10.1016/j.pocean.2015.12.010
http://arxiv.org/abs/arXiv:2304.14028
https://doi.org/10.1098/rspa.1922.0078
https://doi.org/10.1088/1748-9326/ab6d7d
https://doi.org/10.1063/1.4895736
https://doi.org/10.1103/PhysRevFluids.2.024306
https://doi.org/10.1073/pnas.2103822118

