
Source Code Implied Language Structure Abstraction through
Backward Taint Analysis

Zihao Wang1, Pei Wang2, Qinkun Bao2, and Dinghao Wu1

1Pennsylvania State University, University Park, USA
2Individual Researcher, USA

zihao@psu.edu,{uraj, qinkun}@apache.org, dinghao@psu.edu

Keywords: Program Analysis, Context-free Grammar, Static Analysis, Fuzzing, Data-flow Analysis, Taint Analysis

Abstract: This paper presents a novel approach for inferring the language implied by a program’s source code, without

requiring the use of explicit grammars or input/output corpora. Our technique is based on backward taint

analysis, which tracks the flow of data in a program from certain sink functions back to the source functions.

By analyzing the data flow of programs that generate structured output, such as compilers and formatters, we

can infer the syntax and structure of the language being expressed in the code. Our approach is particularly

effective for domain-specific languages, where the language implied by the code is often unique to a particular

problem domain and may not be expressible by a standard context-free grammar. To test the effectiveness

of our technique, we applied it to libxml2. Our experiments show that our approach can accurately infer the

implied language of some complex programs. Using our inferred language models, we can generate high-

quality corpora for testing and validation. Our approach offers a new way to understand and reason about the

language implied by source code, and has potential applications in software testing, reverse engineering, and

program comprehension.

1 Introduction

Modern software can be thought of as abstract ma-

chines that operate on a set of symbols, similar to

how the Turing machine operates on its tape. In com-

puter science, the set of symbols used by a program

is known as a language, which can be represented by

a formal grammar. A grammar is a set of rules that

define the structure of a language and how symbols

can be combined to form valid sentences.

Source code implied language refers to the lan-

guage that is implicitly defined by the source code of a

program or system. This language includes, but is not

limited to, program input and output formats, domain-

specific languages (DSLs), and communication pro-

tocols between different components or systems. In

contrast to a general-purpose language, source code

implied language is often tailored to a specific domain

or problem space and is often characterized by a spe-

cific syntax, grammar, and terminals.

Despite that Source code implied language are

critical in many ways, they are not always as avail-

able as the programs themselves. In some cases,

their grammars are available, but in a form that is not

friendly to computers, such as the Adobe PDF speci-

fication which is defined in a 700-page document (for

Standardization (ISO) (2008); Adobe Systems Incor-

porated (2000)) described in human language rather

than a well-defined grammar. In some other cases,

there are no formal specifications for the input lan-

guage at all, like the LLVM Intermediate Representa-

tion.

In this paper, we propose a static analysis algo-

rithm for extracting implicit grammars from program

source code. Our key insight is that object-oriented

programming languages typically define an implicit

language with classes. These classes may contain en-

coders, such as a parser, or decoders, such as a printer,

which are often written in easily comprehensible pat-

terns. By analyzing their implementation, it is pos-

sible to extract a grammar that represents a subset of

the language that the program operates on.

Our static analysis algorithm is based on static

data-flow analysis. To extract accurate and high-

quality grammars, we perform context- and path-

sensitive taint analysis. We made several carefully

calibrated trade-offs in the analysis to improve pre-

cision while maintaining scalability when analyzing

common code patterns found in target class.

We implement the above grammar extraction al-

gorithm in a prototype and apply it on programs that

can be compiled into LLVM IR to infer the target

grammars automatically. To evaluate the precision of

the abstracted grammar of pretty printers, we collect

several small printer programs and libxml2’ as test

cases, and get expected results.

Our research makes the following contributions:

• We propose a novel algorithm for implicit gram-

mar abstraction that only requires the source code

of the program generating the language. To the

best of our knowledge, our work is the first to

achieve implicit grammar extraction without re-

quiring access to program corpus or program in-

put as grammar. Our approach is capable of ab-

stracting both lexical and syntactical structures, as

well as identifiers.

• We introduce a static analysis method that infers

the possible values of string variables at each pro-

gram point, which is crucial for generating valid

inputs to a program.

• We present a prototype, which implements our al-

gorithm and can produce readable grammars and

valid corpus for languages such as XML.

Overall, our contributions provide an effective and ef-

ficient way to extract program grammars and generate

valid inputs, which can significantly enhance the test-

ing and security analysis of programs.

2 Background

In recent years, there has been a growing interest

in developing machine-understandable grammars that

can be processed and analyzed by computer pro-

grams (Harkous et al. (2020); Ammons et al. (2002);

Gopinath et al. (2020); Lin and Zhang (2008)). These

grammars are designed to be easily interpreted by

software and can be used to automate a wide range

of tasks, such as natural language processing, code

generation, and data validation. By using machine-

understandable grammars, developers can increase

the efficiency and accuracy of their software and im-

prove its ability to interact with other systems. In this

paper, we explore the use of machine-understandable

grammars for program output abstracting through

backwards taint analysis, a novel technique for pro-

gram output analysis that combines symbolic execu-

tion and dynamic taint analysis.

Machine-understandable grammars have numer-

ous applications in software engineering, including

efficient test generation. Over the decades, this

technology has been extensively researched (Maurer

(1990); Sirer and Bershad (1999); Coppit and Lian

(2005)). Take input grammar as an example. Fuzz

testing and random testing are some automatic soft-

ware testing techniques that generate random, invalid,

or unbiased inputs to a program to reach abnormal tar-

get states. Utilizing the structure of inputs is crucial

to improving the success rate and efficiency of these

technologies (Chen et al. (2021); Zhong et al. (2020);

Gopinath et al. (2020); Wu et al. (2019); Toffola et al.

(2017); Wang et al. (2017); Yang et al. (2011)). With-

out knowledge of the input structure, testing methods

often remain limited to the input-checking or pars-

ing stage, failing to achieve improved test coverage.

Recent advancements in generating input corpus for

fuzzing have leveraged input grammars and grammar-

aware mutation algorithms, resulting in significant

improvements in fuzzing efficiency and coverage for

specific targets.

2.1 Mining Input Specifications

Input grammar, as a form of code implied language,

provides a description of the syntax and structure of

the inputs expected by a program. It serves as a funda-

mental type of source code implied language, making

the understanding and learning of a program’s input

language an active research area. The related work

mentioned in this section addresses related challenges

and offers valuable insights that contribute to our ap-

proach.

Ammons et al. presents a machine learning ap-

proach called specification mining for automating the

process of discovering formal specifications of pro-

tocols that code must follow when interacting with

an application program interface or abstract data type

(Ammons et al. (2002)). The approach infers a speci-

fication by observing program execution and summa-

rizing frequent interaction patterns as state machines

that capture both temporal and data dependences.

Lin et al. present the first work in extracting in-

put grammar from programs with dynamic analysis

approaches (Lin and Zhang (2008); Lin et al. (2010)).

They identify most programs’ input grammar into two

categories: top-down and bottom-up grammars, and

perform runtime analyses for each type. They per-

form the top-down grammar analysis based on dy-

namic program control dependence and the bottom-

up grammar analysis based on parsing stack track.

By doing this, Lin et al.’s work can handle some

large-scaled programs with white-box access. How-

ever, their work requires massive manual analyses and

modifications to the targets.

Höschele and Zeller use dynamic tainting to trace

the data flow of sample inputs and present their pro-

totype AUTOGRAM (Höschele and Zeller (2016)).

AUTOGRAM defines input elements which follow

the same data flow as one syntactic entity. By do-

ing this, Höschele and Zeller’s method can identify

functions related to input processing and further in-

fer all the possible syntactical entities handled by the

related functions. AUTOGRAM can address each

grammar component to its corresponding variables in

target programs, providing intuitional insights to fol-

lowing reverse engineering. Nevertheless, as the au-

thors mentioned, the grammar AUTOGRAM learned

is highly dependent on the given sample space. When

the grammar grows, it very possible to misses some

corner cases.

Furthermore, Wu et al. (2019) present REINAM,

a reinforcement-learning approach to synthesize input

grammar. Their two-phase approach includes: first

using dynamic symbolic execution and satisfiability

modulo theory (SMT) solver to obtain the program

input grammar (Tillmann and de Halleux (2008); Xie

et al. (2009)), and second generating a probabilis-

tic context-free grammar (PCFG) with the help of

GLADE.

2.2 Grammar-Assisted Fuzzing

When fuzzing programs that take structured inputs,

coverage-based fuzzers often use grammar-sensitive

approaches to increase the coverage of the inputs they

test. These approaches can be classified into three

categories: grammar-based mutation (Holler et al.

(2012); Veggalam et al. (2016); Guo (2017); Groß

(2018); Zhong et al. (2020); Chen et al. (2021); Wang

et al. (2019)) grammar-based generation (Ruderman

(2007); Valotta (2012); Aschermann et al. (2019);

Yang et al. (2011); Godefroid et al. (2017)), and pro-

gram input synthesis without knowledge of the in-

put structure (Godefroid et al. (2008); Wang et al.

(2017)).

3 Method

This section introduces our grammar-extracting algo-

rithm. We will first present an overview of our ap-

proach and then describe some important details of

the algorithm.

3.1 Overview

We first identify the source and sink functions of our

analysis target using human knowledge. Then, we

perform forward taint analysis based on the identified

functions to extract all the functions that are transi-

tively called by the source functions and call the sink

functions. This provides us with the necessary data

flow for abstracting the output grammar. We represent

the source functions and tainted functions as nonter-

minal tokens, and primitive variables as terminals, in

order to present the EBNF grammar. To improve the

presentation of the grammar, we use a strongly regu-

lar syntax to approximate the abstracted grammar. Fi-

nally, we obtain a EBNF grammar of the output con-

text represented by a series of production rules, which

use regular expressions for lists.

3.2 Inter-Procedural Analysis

Once the source functions and the sink functions are

determined, we perform a backward taint analysis.

This analysis begins with the sink functions, which

are a set of high-level printing or assembly functions

located at the end of the output data flow. We then

analyze the data flow to propagate taint backward to

the determined source functions, as shown in Algo-

rithm 1.

To better explain the program, we use an Inter-

procedural Control-Flow Graph (ICFG) instead of

the Control-Flow Graph (CFG). Unlike the CFG, the

ICFG contains two additional edges: call and return

edges. The call edge represents the control flow from

the caller to the callee, while the return edge indicates

the reverse flow. By traversing the ICFG, we analyze

the calling and called relationship for each function

that is called. To ensure a context-sensitive data flow

analysis, we use a function memory map to keep track

of the data-flow context and status. For each function

and its corresponding state, we create a node in our

data flow. We limit our analysis to data flows that are

feasible for both sources and sinks. For each feasible

edge between the source and sink functions, we cal-

culate, update, and propagate the data-flow summary

to all callers.

We record the input state of each basic block

within the given function and calculate its outgoing

state based on the following three different situations:

If the basic block contains a call instruction, we

cache the context switching behaviors to acceler-

ate the calculation in the analyzeCallInContext

function. This caching mechanism helps improve the

performance of the analysis when encountering call

instructions within the program. In the getSummary

function, we reuse the existing analysis results if the

summary is outdated and the new input state matches

the old-n summary. However, if the new input state

differs, we reanalyze this call with the updated sum-

mary input state and caller information.

If the basic block contains a Phi node, which is

a special instruction in the LLVM framework used

Algorithm 1: Inter-Procedural Analysis

1 Function analysisBasicBlock(f ,c):
/* f: the analysis target

function */

/* c: the input state */

2 forall BasicBlock b ∈ f do

3 if b contains outdated call then

4 c.update()

5 analysisFunction(b.Callee,

c)
6 else

7 if b contains Phi node then

8 forall Incoming BasicBlock

ib do

9 c.update(ib.Context)

10 end

11 else if f is source then c←

taint(b)

12 propagate(b)

13 end

14 end

15 end

/* Entry of the inter-Procedural

analysis, */

/* analyze the whole program */

16 Function analysisInterProcdural(a):
/* a: the analysis target program

*/

17 Context c← /0

18 forall Function f ∈ a do

19 analysisFunction(f ,c)
20 end

21 end

for merging incoming values from different predeces-

sor basic blocks, we perform a Phi resolution. This

involves calculating the output state individually for

each possible incoming value with the given input

state. We then assign the computed output states

to the corresponding following basic blocks in the

meetOverPHI function. This resolution step ensures

that the appropriate output state is propagated based

on the different incoming values.

If the basic block is within a source function, the

transfer function determines if the basic block belongs

to a source function and initiates the propagation pro-

cess. The transfer function plays a crucial role in

propagating the data flow within the source function,

ensuring that the relevant data and state information

are properly analyzed and propagated. By consider-

ing these different situations and applying the respec-

tive functions, we are able to accurately track the data

flow and determine the outgoing state for each basic

block within the given function.

3.3 Intra-Procedural Analysis

Based on the context-sensitive inter-procedural anal-

ysis, an intra-procedural analysis described in Algo-

rithm 2 is performed for each derived function.

Within the basic block calling sinks, we extract

output context with a type-specific sink extractor and

build it into a production rule. If only one value is ex-

tracted from the sink, we append a terminal token to

the basic block production. Otherwise, we append the

conjunction of all possible values to the basic block

production. For each basic block, we build a con-

trol flow graph and calculate the constraints with a

checker, PathChecker.

Algorithm 2: Intra-Procedural Analysis

/* Analysis Path Context-Sensitively

*/

1 Function analysis(p,c):

2 if isBranch(p) then

3 DestMap← /0

4 split (p)

// Split p into (p0, . . . , pi),

// where p0 is the default path

5 for ∀pi, p j ∈ p, and pi.Dest =

p j.Dest do

6 if pi == p0 then delete p j

7 else Disjunction (pi.c, p j.c)

8 end

9 for ∀pi.c /∈ DestMap do

10 DestMap.add (pi.c)

11 analysis (pi, c.casei)

12 end

13 end

14 end

/* Entry of the intra-procedural

analysis, */

/* analyze the whole function */

15 Function analysisFunction(f):
/* f: the analysis target

function */

16 b← f . f irstBasicBlock // BasicBlock

17 p← b.start // Path

18 c← /0 // Condition

19 analyze (p, c)

20 end

For branch analysis, since there may be multiple

cases (including the default one) going to the same

destination, the path constraints are aggregated into a

disjunction as in Algorithm 2 from line 2 to line 12.

First, a destination map collects path conditions that

lead to the same destination. If any of the possible

cases share the same destination, a condition disjunc-

tion is created or updated (line 7). We use a cache

to store newly created path conditions. Whenever

a cache miss happens, we need to construct a fresh

value. Especially, if any two cases share the same

destination with the default, the other case would be

removed (line 6), because the default path condition

guarder can be obtained by negating all other condi-

tions.

4 Evaluation

In this section, we evaluate our tool on real-world ap-

plications by extracting their output language gram-

mar and generate output samples.

4.1 Experiment Setup and Subjects

For the sake of independence, constancy and repro-

ducibility, we conduct all experiments within docker

containers living in a dedicated host machine. The

configuration of the host machine and docker contain-

ers is shown as follows.

• CPU: Intel Xeon E5–2690

• Memory: 378 GB

• OS: Ubuntu 18.04 LTS

• Docker Base Imagine: ubuntu:16.04

• Compiler: GCC 5.4.0, Clang 6.0.1

• Linker: GNU gold linker 1.11

We evaluate PRETTYGRAMMAR based on several

small test cases collected from GitHub. We build

these projects with clang as well as GNU gold linker

and archive all the temporary files.

Table 1: Subjects revolved in evaluation.

Target Language Output Program Input Program

Static String HelloWorld, staticXMLPrinter

Dynamic String loopPrinter, XMLPrinterClass

Expression printExpression

Algebraic Equation aePrinter

XML testWriter xmllint

The related subjects are listed in Table 1. Test-

Writer is a test program that comes with the libxml2

project. Xmllint is a tool within the libxml2 project

that parses XML files and outputs the result of the

parsing.

4.2 Correctness of Inferred Grammar

To analyze the accuracy of the output grammar ab-

stracted by PRETTYGRAMMAR, we collected three

small programs that produce human-understandable

output language: a static string printer (HelloWorld),

an algebraic equation printer (aePrinter), several xml

printers (staticXMLPrinter, XMLPrinterClass), and

an expression printer (printExpression).

First, we evaluate PRETTYGRAMMAR on several

static printers and successfully get its precise output

grammar. The test indicates that PRETTYGRAMMAR

is able to identify all source and sink functions of dif-

ferent types of terminal as designed. The exact value

of printed terminals are also abstracted correctly.

Next, we evaluate PRETTYGRAMMAR on two

printers that requires input and contains conditional

output branches. The raw result for each pro-

gram is shown in Figure 1. Figure 1a shows that

PRETTYGRAMMAR is able to inferring the type

of terminals, and interpreting production guards.

Since we have performed context-sensitive and path-

sensitive taint analysis, PRETTYGRAMMAR abstracts

three different non-terminals from the same function

printer::printExpression(), each from a different set of

input and output variable status. However, as we can

see in Figure 1a, some deterministic terminals such

as "=" and "\n" have been identified as possible ter-

minals. This is a common false positive caused by the

implementation of security check in the llvm and C++

printing methods. It can be eliminated by identifying

the characteristic data-flow and control-flow pattern.

4.3 Performance on Real-World

Applications

An ideal program language analysis tool should be

able to assist researchers effectively, correctly, and ef-

ficiently. In this part, we evaluate PRETTYGRAM-

MAR from three aspects. We first generate corpus

with the algorithm described in the following part,

and then feed the corpus to a program that takes valid

input under the same language with the output we ab-

stracted.

4.3.1 Effectiveness

For software testing, the coverage of input sam-

ples are crucial. A high coverage sample are much

more meaningful than vast random samples which are

likely rejected in a very early stage of the program

process. Thus, we observe the average coverage of

source code in terms of lines and functions of our

1000 generated corpus, and list the results in Table 2,

1 <Start> ::= <main@0@0>

2 <main@0@0> ::= <print::printout()@0@d7a7a0>

3 <print::printout()@0@d7a7a0> ::= ("Illegal␣operation." | "<!dec!>" "<!string!>"? "<!dec!>" "="? "<!

dec!>") "\n"?

(a) Algebraic equation printer

1 <Start> ::= <main@0@0>

2 <main@0@0> ::= <printer::printExpression(Exp∗, bool)@0@efc0b0>

3 <printer::printExpression(Exp∗, bool)@0@efc0b0> ::= "("? "<!string!>"? "<!string!>"? ("<!string!>" |

<printer::printExpression(Exp∗, bool)@efc0b0@ef9350> | "") ")"? "\n"?

4 <printer::printExpression(Exp∗, bool)@efc0b0@ef9350> ::= "("? "<!string!>"? "<!string!>"? ("<!string

!>" | <printer::printExpression(Exp∗, bool)@ef9350@ef9350> | "") ")"? "\n"?

5 <printer::printExpression(Exp∗, bool)@ef9350@ef9350> ::= "("? "<!string!>"? "<!string!>"? ("<!string

!>" | <printer::printExpression(Exp∗, bool)@ef9350@ef9350> | "") ")"? "\n"?

(b) Expression printer
Figure 1: The abstracted context-free grammar of simple printers

Table 2: Corpus average static coverage of xmllint.

Coverage # Coverage Ratio

Corpus Line Function Line Function Branch Branch Taken Call

(Out of 72998) (Out of 3122) (Out of 1383) at least Once (Out of 763)

empty 1819 179 2.5% 5.8% 11.42% 5.86% 1.57%

random strings 1845.1 180.1 2.5% 5.8% 11.42% 5.86% 1.57%

PRETTYGRAMMAR 2858.0 249.8 3.9% 8.0% 16.34% 8.39% 2.10%

valid 2765.4 243.3 3.8% 7.8% 16.34% 8.39% 2.10%

where we refer the code coverage of one static input

as static coverage, knowing form the dynamic gener-

ate or mutated input during the fuzz testings, in which

we refer the coverage as dynamic coverage. Due to

the scalability of gcov, which is the coverage analy-

sis tool we adopt, we can only count the coverage of

libxml2.

As shown in Table 2, corpus generated by PRET-

TYGRAMMAR achieves the best performance in static

coverage. PRETTYGRAMMAR has outperformed

empty and random samples in all coverage indicators.

The result of random strings almost evens with the

empty one, indicating that in such situations, random

input is very unlikely to pass the basic input checker

as well as the empty input in real-world applications.

However, corpus generated by PRETTYGRAMMAR

has reached source code in a decent level. In terms

of software testing, trigging more source code can

greatly increase the chance of finding new bugs or

trigging new crashes. Compared with empty and ran-

dom corpus, PRETTYGRAMMAR generated corpus

has greatly improved the effectiveness of corpus cov-

erage.

On the other hand, PRETTYGRAMMAR also out-

performs valid corpus which are grammar-correct xml

files we collected. We consider two possible reasons:

1) PRETTYGRAMMAR generates some incorrect sam-

ples and triggered error handling path that the valid

Table 3: Correctness of XML, Checked by libxml2 xmllint

Check Result Fraction (%)

Semantic Correct 3.22

Syntactic Correct 38.7

Syntactic Error 58.06

samples would never touch. 2) After observing some

samples form both corpus, we notice both the struc-

ture complexity and the length of synthesis samples

is apparently higher than collected ones. While larger

and more complex inputs are more likely triggering

more source code.

4.3.2 Correctness

To evaluate the correctness of the synthesized gram-

mar, we performed an evaluation targeting the

libxml2 XML linter xmllint. We fed the corpus we

generated from libxml2 to xmllint and collected the

feedback in the Table 3.

Table 3 presents the correctness evaluation re-

sults of the synthesized grammar for XML checked

by libxml2 xmllint. The table shows the fraction of

the check results in three categories: semantic cor-

rect, syntactic correct, and syntactic error. Among the

tested corpus, only 3.22% are semantically correct,

while 38.7% are syntactically correct, and 58.06% are

syntactically incorrect.

5 Future Work

While our approach shows promising results, there

are several directions for future work that could im-

prove the algorithm’s effectiveness and applicability.

We discuss some of these potential directions below.

5.1 Handling More Complex Languages

Our current algorithm can handle languages with both

lexical and syntactical structures, as well as entity

identifiers. However, it may struggle with more com-

plex languages that include features such as nested

structures or complex type systems. One direction for

future work could be to extend the algorithm to handle

more complex languages, potentially by handle more

complex languages.

5.2 Improving Precision of Static

Analysis

Our static analysis method currently can partially in-

fers possible values for string variables at each pro-

gram point. While this is useful for generating valid

input strings, it may not capture all possible behav-

iors of the program. In future work, we could ex-

plore more advanced static analysis techniques to im-

prove the precision of our inferred string values, po-

tentially by leveraging more advanced static analysis

techniques.

5.3 Applying the Algorithm to

Real-World Programs

While we demonstrate the effectiveness of our ap-

proach on a set of small example programs, it remains

to be seen how well it would perform on more real-

world programs. Future work could involve applying

our algorithm to a wider range of programs and evalu-

ating its effectiveness in generating high-quality input

strings. Additionally, we could explore the feasibil-

ity of integrating our approach into existing software

testing frameworks.

5.4 Integration with Fuzzing

Techniques

Our approach provides a useful tool for generating

input strings for software testing, but it does not di-

rectly address the process of actually testing the soft-

ware. Future work could involve integrating our al-

gorithm with existing fuzzing techniques to automati-

cally generate and test input strings. This could poten-

tially involve leveraging machine learning techniques

to guide the generation of input strings towards unex-

plored parts of the program.

6 Conclusion

Deriving source code implied language is significant

for a wide variety of applications. In this paper,

we propose a static analysis that learns the implicit

language from a program’s source code. Our ap-

proach performs context-sensitive and path-sensitive

taint analysis within the targeted class. To main-

tain context-sensitivity, we assign indirect calls with

a potential callee pool and propagate the context en-

vironment to every possible candidate in the pool.

To maintain path sensitivity, we represent conditional

branches as nodes with constraints.

We implemented a prototype called PRETTY-

GRAMMAR in C++, based on the LLVM framework.

Our experiments demonstrate that PRETTYGRAM-

MAR is effective and efficient in extracting grammar

structures and generating output corpora for desired

program output languages, such as XML.

Furthermore, we evaluated PRETTYGRAMMAR’s

output grammar using libxml2’s XML linter, xmllint,

and found that a large proportion of generated sam-

ples were syntactically correct.

Overall, our proposed approach shows promise in

automatically generating program output corpora and

can benefit a range of applications, including software

testing, reverse engineering, and vulnerability analy-

sis.

Acknowledgements

This research was supported in part by the National

Science Foundation (NSF) grant CNS-1652790.

References

Adobe Systems Incorporated (2000). PDF Reference.

Ammons, G., Bodík, R., and Larus, J. R. (2002). Mining
specifications. ACM SIGPLAN Notices, 37(1):4–16.

Aschermann, C., Frassetto, T., Holz, T., Jauernig, P.,
Sadeghi, A.-R., and Teuchert, D. (2019). Nautilus: Fish-
ing for deep bugs with grammars. In Network and Dis-
tributed System Security Symposium, Reston, VA. Inter-
net Society.

Chen, Y., Zhong, R., Hu, H., Zhang, H., Yang, Y., Wu, D.,
and Lee, W. (2021). One Engine to Fuzz’em All: Generic

Language Processor Testing with Semantic Validation.
In Proceedings of the 42nd IEEE Symposium on Security
and Privacy (IEEE S&P), pages 1–17.

Coppit, D. and Lian, J. (2005). Yagg: an easy-to-use gener-
ator for structured test inputs. In Proceedings of the 20th
IEEE/ACM international Conference on Automated soft-
ware engineering - ASE ’05, page 356, New York, New
York, USA. ACM Press.

for Standardization (ISO), I. O. (2008). ISO 32000-
1: 2008 Document Management–Portable Document
Format–Part 1: PDF 1.7.

Godefroid, P., Kiezun, A., and Levin, M. Y. (2008).
Grammar-based whitebox fuzzing. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 206–215.

Godefroid, P., Peleg, H., and Singh, R. (2017). Learn&fuzz:
Machine learning for input fuzzing. In Proceedings of
the 32Nd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2017, pages 50–59,
Piscataway, NJ, USA. IEEE Press.

Gopinath, R., Mathis, B., and Zeller, A. (2020). Mining
input grammars from dynamic control flow. In Pro-
ceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 172–183,
New York, NY, USA. ACM.

Groß, S. (2018). Fuzzil: Coverage guided fuzzing for
javascript engines. Master’s thesis, TU Braunschweig.

Guo, R. (2017). MongoDB’s JavaScript fuzzer. Communi-
cations of the ACM, 60(5):43–47.

Harkous, H., Groves, I., and Saffari, A. (2020). Have Your
Text and Use It Too! End-to-End Neural Data-to-Text
Generation with Semantic Fidelity. COLING 2020 - 28th
International Conference on Computational Linguistics,
Proceedings of the Conference, pages 2410–2424.

Holler, C., Herzig, K., and Zeller, A. (2012). Fuzzing with
Code Fragments. In 21st USENIX Security Symposium
(USENIX Security 12), pages 445–458, Bellevue, WA.
USENIX Association.

Höschele, M. and Zeller, A. (2016). Mining input gram-
mars from dynamic taints. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 720–725, New York, NY, USA.
ACM.

Lin, Z. and Zhang, X. (2008). Deriving input syntactic
structure from execution. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Founda-
tions of software engineering - SIGSOFT ’08/FSE-16,
page 83, New York, New York, USA. ACM Press.

Lin, Z., Zhang, X., and Xu, D. (2010). Reverse Engineering
Input Syntactic Structure from Program Execution and
Its Applications. IEEE Transactions on Software Engi-
neering, 36(5):688–703.

Maurer, P. M. (1990). Generating test data with enhanced
context-free grammars. IEEE Software, 7(4):50–55.

Ruderman, J. (2007). Introducing jsfunfuzz. URL
http://www. squarefree. com/2007/08/02/introducing-
jsfunfuzz, 20:25–29.

Sirer, E. G. and Bershad, B. N. (1999). Using production
grammars in software testing. ACM SIGPLAN Notices,
35(1):1–13.

Tillmann, N. and de Halleux, J. (2008). Pex–White Box
Test Generation for .NET. In Beckert, B. and Hähnle, R.,
editors, Tests and Proofs, pages 134–153, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Toffola, L. D., Staicu, C., and Pradel, M. (2017). Saying
‘Hi!’ is not enough: Mining inputs for effective test gen-
eration. In 2017 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages
44–49.

Valotta, R. (2012). Taking browsers fuzzing to the next
(dom) level. Proceedings of the DeepSec.

Veggalam, S., Rawat, S., Haller, I., and Bos, H. (2016).
IFuzzer: An Evolutionary Interpreter Fuzzer Using Ge-
netic Programming. In Askoxylakis, I., Ioannidis, S.,
Katsikas, S., and Meadows, C., editors, Computer Secu-
rity – ESORICS 2016, pages 581–601, Cham. Springer
International Publishing.

Wang, J., Chen, B., Wei, L., and Liu, Y. (2017). Skyfire:
Data-Driven Seed Generation for Fuzzing. In IEEE Sym-
posium on Security and Privacy, pages 579–594. IEEE.

Wang, J., Chen, B., Wei, L., and Liu, Y. (2019). Superion:
Grammar-Aware Greybox Fuzzing. In 2019 IEEE/ACM
41st International Conference on Software Engineering
(ICSE), volume 2019-May, pages 724–735. IEEE.

Wu, Z., Johnson, E., Yang, W., Bastani, O., Song, D., Peng,
J., and Xie, T. (2019). REINAM: reinforcement learn-
ing for input-grammar inference. In Proceedings of the
27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering - ESEC/FSE 2019, pages 488–
498, New York, New York, USA. ACM Press.

Xie, T., Tillmann, N., de Halleux, J., and Schulte, W.
(2009). Fitness-guided path exploration in dynamic sym-
bolic execution. In IEEE/IFIP International Conference
on Dependable Systems Networks, pages 359–368.

Yang, X., Chen, Y., Eide, E., and Regehr, J. (2011). Finding
and understanding bugs in C compilers. In Proceedings
of the 32nd ACM SIGPLAN conference on Programming
language design and implementation - PLDI ’11, page
283, New York, New York, USA. ACM Press.

Zhong, R., Chen, Y., Hu, H., Zhang, H., Lee, W., and
Wu, D. (2020). SQUIRREL: Testing Database Man-
agement Systems with Language Validity and Coverage
Feedback. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
pages 955–970, New York, NY, USA. ACM.

