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We congratulate Chenguang Dai, Buyu Lin, Xin Xing and Jun 
Liu on their development of interesting methods for asymptotic 
FDR control and related theory in generalized linear models. 
We appreciate this opportunity to comment on their thought- 
provoking paper. 

knoc koffs of Z1, ..• ,Zp, 

Sj =  sgn(Zj -  Z1), ¾0 =   sjw(Zj,ZJ), (1.3) 

with a function satisfying/w(x, x ) = fw(x , x) :::: o.T he y pro- 
posed to use the threshold test¢1(Wj  )  at   the    adaptive threshold 
level 

1. Introduction 

Consider testing null hypotheses Hi : 0i = 0 with statistics 

 
T (W[p]) =  inf{  t: 

8   +   RtC-   W[pJ) } 
- - - ----=-"'- ::; q , 
1 v R1(W[p]) 

 
(1.4) 

Zj,  j   E     [p].  Let So   = U E [p]  :  0i  =   0} be the  index set 
for the true  nulls. Suppose  it  is  sensible to  reject  Hj  when  Zj 
is large.  Let <l>t(x  )  =   I{x   ::::   t}   denote the  threshold  test   For 
tests with a common threshold level t, R1(X[pJ)  =   L =}   l   <Pt(  Xj ) 
is the total number of  rejected  hypotheses  and  R0,1(X[p])  = 
LjESo ¢1(xj) the total numberof false rejections. Benjamini and 
Hochberg (1995)  advocated to  measure the Type-I error by FDR 
in multiple testing and proved thatfor independent teststatistics 
½with a known common continuous null survival function G0, 
the adaptive threshold level 

T  =  inf {t : R1(Z[Jp)  :::: Go(t)p/q} (1.1) 

of the global test for the intersection null n=f   1Hj in Simes (1986) 
also controls the FDR: 
 

FDR=     IE[  Ro,T(Z[pJ)   ]  <  /o, (1.2 ) 
1 V RT(Z[p]) - p 

where p0 = IS ol- Benjamini and Yekutieli (2001) relaxed the 
mutual independence assumption on the test statistics to the 
positive regression dependency on each one from the subset So 
(P RDS), and the strict null assumption to lF{Zj    ::::  t}  ::; G0 (t -  ) 
with G0(t - ) = qk/p fork E [p],j E S0. 

and pro ved FDR::; q for the rule with 8 = 1 and a related error 
bound for 8 = 0. A crucial feature of the knockoffs is the sign 
symmetry {sj,j E So} ~ un iform{- 1, l}So in the null set. The 
knockoff approach has been further developed in Candes et al. 
(2018) and Huang and Janson (2020 ). 
The beautyof the above results is the non-asymptoticnature 

of the FDR guarantee.Still, the PRDSassumption and the knowl- 
edge of the null survival function, or the knockoffs, may not be 
available in practice. 
Following Xing, Zhao, and Liu (2021) and Dai et al. (2022), 

Dai et al. (2023) advocates the use of the thresholding level 
(1.4) on mirror statistics. Sufficient cond itions are developed for 
approximate FDR control in moderate- and high-dimensional 
generalized linear models (GLM). Mirror statistics can be con- 
structed  by data splitting (DS) when  asymptotically normal 
estimates of 0j are available. Lete{;/ and be   two independent 
estimators of 9lPJ·   The     mirror statistics are defined by 
 

Sj = sgn(BJ> )sgn   (0]2  >), Mj  = sj M(el  J1>1, 10 ]2>1), (1.5 ) 
 
with a function  s atisfying/M(x, x ) =  /M(x,x):::: 0asthe/w(·, •) 
in (1.3). Suppose 

Barber and Candes (2015) introduced knockoffs to expand 
the realm of non-asymptotic FDR control. Statistics Z , . . . ,Z 

-0;;j-(k ) / an  D N( µ,n,j, 1 ),  k = 1, 2, (1.6) 

are knockoffs of Z1, . . . , Z,, if (Zj,z1, j  E    B, Zk>Z 'k' k  E   Be) has 
the same joint distribution as its B-swapped version (Z1,z j,   j  E 

for some unknownparameters an and /1,nJ satisfying sgn(µ,nJ ) = 
sgn (0j  )-   For example,  in  Proposition  3.1 of Dai et al. (2023), 

B, Zk,Z1c, k E  eB   ) for every null subset B S0. Let Z , . . . , Z be 0i = •j/3r,an = a*/ .../n and /1,n,j = a* 0i/an. Similar to the test 
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statistic Wj in (1.3), Mj is approximately marginallysymmetric 
when 0j =  0 and likely to  be positive and large  when 0j -:fa  0 . 
Th is motivates the use of the threshold rule <f>t on the mirror 
statistics at t  =  T8(M[pJ  )  as   in (1.4). In an asymptotic analysis, 
a condition on the level of dependence can be imposed instead 
of the independence of the signs {Sj, j E So} as required in the 
non-asymptotic FDR control with knockoffs. 
Compared with the knockoff approach, the mirror statistics 

are more readily available with sufficiently large samples. 
Compared with asymptotic FDR cont rol with the Benjamini- 
Hochberg rule (1.1) based on (1.6), the mirror statistics 
approach does not require a specification of the scale O"n. 
Moreover, as mentioned in Dai et al. (2023), the asymptotic 
symmetry IP'{Mj  >   t} :::; IP{' Mj    :::: -  t} for j  E   S0,  sufficient for 
the mirror statistic to make sense, may kick in with a smaller 
sample size requirement than the asymptotic normality(1.6). 
 

2. Relationship of Mirror Statistics to Knockoffs 

As functions ofdata, mirror statistics are equivalent to knockoff 
test statistics through an algebraic transformation. Consider 
two-sided tests for simplicity.Given estimatorse&/ and el;/,let 

zj =   /0J1> + eJ2 >1; 2, z; =   le]'> -  eJ2 > / / 2, i E   [pl 
We have /0]1>1 v  10]2> / =   ½ +  z1, /0]1>1 I\     /0}2> / =    IZ j  -   z;  1, 
and sgn@ l))sgn(ey>) = sgn(Zj - z1) with  the convention 
sgn(0) = 0.Thus, the mirror statistics can bewritten as 

Mj  =  sgn{oJ1")  ) sgn@      2 )  )f  M( /e]1 )  'I !e]2 )  I) 
= sgn(Zj - Z;)fw(Zj,ZJ) 
=  wj (2.1) 

withf w(x, x') = /M(X +  x', Ix -  x'  I). Con versely,/ M(x, x')  = 
fw( lx + x' l/ 2,lx - x' l/ 2) given a choice o f fw(·, •). Fo r example, 
Mj with/ M(x, x' ) = ( lx l + lx' l)/ 2 matches Wj with fw(x, x' ) = 
Jx J v Jx'  J  and Mj  with / M(x, x')  =  Jxx'  J  matche  s  Wj   with 
fw(x,x' ) = lx 2 - x' 2 1; 

known noise level o-, Gaussian mirror (Xing, Zhao, and Liu 
2021)  can  be constructed  in  one shot  by generating z   1 with 
:En/2 = o-2(XT X-)  1. Mirror statistics M[pJ areequivalentto test 
statistics W [p] based on knockoffs if and only if I:n is diagonal. 
In an asymptotic analysis based on (1.6), the mirror statistic 

and knockoff methods would haveasymptoticallythe same FDR 
and power due to their algebraic equivalence (2.1) when the 
dependence between the test statistics has only an infinitesimal 
impact on the operating characteristics of the tests. This condi- 
tionon dependence is typicallyimposed intheliterature th rough 
the sparsity of the correlation of the estimates in (1.6). In this 
asymptopia, an advantage of mirror statistics is their availability 
through DS. 
Asymptotic FDR control in moderately high- and high- 

dimensionalsettings has been considered in Liu(2013),Xia,Cai, 
and Li (2018), Javanmard and Javadi (2019), and Ma, Tony Cai, 
and Li (2021) with the Benjamini-Hochberg (BH) rule, and in 
Xing, Zhao, and Liu (2021) and Dai et al. (2022) with mirror 
statistics. The theoretical results in Dai et al. (2023) on data- 
splitting-based mirror statistics in GLM further develop this 
direction. 
 

3. Scale-Free FDR Control 

For asymptotic FDR control, the unknown scaling factor o-* in 
Sur and Candes (2019) and  Proposition  3.1 of Dai et al. (2023) 
is no longer a sticking issue with DS. Under (1.6), scale-free 
asymptotic FDR control can be achieved by the BH rule with 
familiarStudent's t-statistics. Still, mirror statistics may relyless 
heavily on the asymptotic normality. 
When the asymptotic normality holds with a common 

asymptotic variance as in (1.6) and pis large, the BH rule (1.1 ) 
can be used with the two-sided test statistics 
 

(3.1) 

 
and the standard absolute Gaussian survival function Go(t) = 
2<l>( - t) . 

M·- 
sgn(Zj -    Z'.)(Zj v Z'.), /M(x , x') = (Ix ! + lx' J) / 2, We compare this procedure (3.1), denoted as "8"n- BH': with 

1 [ ; J /M(x,x') =  Jxx'I. DS and Gaussian mirror (GM) in Dai et al. (2023), the BH rule - sgn(Zj - z; ) IZJ - z ;21, 

It  c an beseen that the natural choice is/ M(x, x')  =  ( lx l +  Ix' I) /2 
in the first example. 
The algebraci transformation of Wj to Mj is not guaranteed 

to offer newstatistical insight, andvice versa. For example, when 
Wj are defined through the Lasso path in linear regression with 
non-orthogonaldesigns, the interpretation of the corresponding 
Mj is unclear. 
When e&/ andel;/ are two independent copies of a Gaussian 

vector N(O-n /1,n,[p], :En), 

Z[p] "' IN (O'n /Ln,[p], :En/2) /, Z[p] "' IN(0, :En/ 2) /, 
and Z[pJ   and z  1 are independent.  Thus, the  use  of  mirror 
statistics is equivalent to generating a copy of noise vector and 
treatingit asa knockoffof ZIP1, with thecorrespondence between 
!ML·) andf wC ·) in (2.1). For example, in  linear regression 
with a  design  matrix  X  of  rank  p and Gaussian noise with a 

on the MLE (BHq), BH rule with adjusted p-values(ABHq) in 
Sur and Candes (2019), and model-X knockoff (KN) in Candes 
et al. (2018). Specifically, Figure 1 reports the simulation com- 
parison among the above six procedures for feature selection 
in logistic regression in the same setting as in Figure 3 of Dai 
et al. (2023). Each point in Figure 1 represents the average of 
50 independent  replications  with N(0, I:)  iid designs, where 
:Eij = r-li j l, q = 0.1, n =  3000, p =  500, 11.B* llo  =  50, and 
1.Bl l =  signal for j  E   sg. It   can be seen from these results that 
'7n-BH quite consistently exhibits FDR :::; qp0 /p = 0.09, slightly 
more power than DS, and less power than ABHq, GM and KN. 
We note that ABHq, GM and KN rely more heavilyon Gaussian 
design. 
In the case of p > n, debiased Lasso exhibits heteroscedas- 

ticity (Candes et al. 2018; Dai et al. 2023). In the presence of 

heteroscedasticity,o}k )/ o-n,j  g N(µ,nj, , 1),    scale     -fr  ee   asymp- 
totic FDR control can be achieved with the absolute Cauchy 
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Figure 1. Left panel: the sig nal strength is fixed at lfJt I = 11 for j E S8,and the corre  lat io ns among the covariates  vary. Right panel: the correlation isfixed at , = 0.2, and 
the signal strength varies. Here"sBH"standsforan-BH. 

 
statistic Zj  =   loJ1   + Oj2  I / loJ1 Oj2  I and the    correspond- 1  +  E Po + E2.,/popl  E2   Po/ P1} 

 > ) l    - ) <   max , , -   -  -   - , (4.2) 
 

 

ing G0( t) = 1 - (2/ n ) arctan(t). However, our simulation 
experiment demonstrates that a cost of this robustnessagainst 
heteroscedasticityis a significant loss of power. 
 

4. Multiple Data Splitting 

As knockoff and mirror statistics are randomized, it would be 
interesting to find methods to aggregate multiple randomized 
tests based on them for further improvement. See for example 
the discussion in section 7.2.3 ofCandes et a!. (2018). In Dai et al. 
(2022), the authors proposed a multiple data splitting (MDS) 
strategy to achieve this goal. 
Similar to Dai et al. (2022), Proposition3.3 seems to focus on 

special regimes aimed at the nearly complete FDRcontrol in the 
form of FDR = o(l ). This can be seen as follows. 
Letl j =  E*[JU E S}/ (IS i v  1)]   for a randomized selectorS c 

J;p] whereE* denotesavera&ng over many copieso!_random d 
Sgiven data.If the selector S controls the FDP = IS nS01/ ( 1S1 v 
1),   I:tSo I;  :S q + op(l ). Let 1(1) :S • • • :S l (p) be the ordered 
entries of I [p]· Define I(m ) by 

J ( I)  + ··· +I (m ) :S q < I(I) +···+I   (m + I) · (4 .1) 

Dai et al. (2023) proposes to test Hj by thresholding Ij at level 
I(m ) and provides sufficient conditions for the asymptotic FDP 
control by such MDS schemes. The following lemma provides a 
sketch of a more explicit versionof the proofs in Dai et al. (2022, 
2023). 

- { 1 + E1Po + Pi KJ 

where E; = Ei/(q + E1) . 
In the nonsparse case, Proposition 3.3 of Dai et al. (2023) 

provides FDP = op(l ) because the assumptions imply E1 
o(l), E2 = o( l ) and K 1 is bounded away from zero in (4.2). 

 
5. Fast Data Splitting Methods 

In sparse GLM where Data = (X,y) E JRnx(p+I), a debiased 
estimator off3j* can be written as """"'(7J,u j,Data) where7J is an 
initial estimate of /3* and U j is an estimate of the direction Uj for 
the least favorable submodel for the estimation of f3l- and   uj 
are    estimated by the Lasso, the comp utationalcost off3/'t,;,.given 
Data is 

Cost ( - "(.Bww, ' Data),j E [p]) x pCost(Lasso). 

We ignore the computational cost of estimating scaling factors 
such as  the  <j     and O'n      in   the discussion  below  (1.6)  as  they 
could be viewed as byproducts of the debiased Lasso program. 
Let Data(l,l)  , Data ,C2l)  ,  e E    [11  ,  be  d a t a  generated in  MDS. If 
jk.l)= ,B......,(Data <k,l )) and rfk .l) = u':"'°(DataCk.l)) are used, 
J J J J 
the computational cost of MDS is T x p x Cost(Lasso). 
Under proper sparsity and regularity conditions, the debiased 

Lasso provides 

Lemma 1.  Let S1 =  [p] \ So,P1 =  P -  Po, and I[pJ   be   any    vector 
of nonnegative statistics satisfying I=:fI  Ij    =    1   and I:fESo I ;  :S 

""""'(,B"""' ,ut '',Data) - .ie1,;a' ( f3*,Uj, Data) =  op(-n  11 2 ) , 

q + E1.  Let m  be as in (4.1).  In  the event where p -  m K1p1 
and L E; Soj,E St I{Ij :'S I;} :S Ei PoP1, 

L  iESo I{I; >  1(m)} 
FDP = ------------------ - 

p - m 

so that the asymptotic normality is valid with a singleuj'°(Data) 
foreach j based on the entire data in DS and MDS. We propose 
such procedures as fast DS and MDS algorithms in Table 1. 
OS.fast  needs to run  Lasso p + 2 times while DS 2(p + 1) 

times. The computational cost of MOS.fast is of the order (T + 
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Table 1. Fast DSa nd MOS algo rithms. 

 
DS.fast(Da ta) 

U.S. National Institutesof Health grants ROlHGO10171 and R01MH116527 
and Natio nal Science Foundation grant DMS-2112711.Zhang's research is 

   supported in part by National Science Foundation grants CCF-1934924, 
1. . Computeuj = u\-""'( Data),j E [p]. 
2. Generate Data<f>, Data <2 > bysplitting data at random. 
3. .  For j E  [p],compute   M;  "  ( pu   ""   ( Data     

<k>) ,uj,   Data   <k>) and respective scaling factors, k = 1, 2. 
4. Compute8i   l ), ;0i;{2) an  dM j  = M j(0ni {l ), 0i  2>),  e n d( For  '}J. 
5. . Compute a nd output <l>T&  ( M[p]), 

 
 

MDS.fast( Data,U[p]) with input U[p] as inStep 1 ofDS.fast 
 

 

1. For e E en, genera te Data <l, l) , Data <2.l > by splitting data at random. 
2. For  j  E   [p],compute - " ("fi'--"" (Data <k,l )) ,Uj,Data<k,l) ) 

and respective scaling factors, k = 1, 2 
3. Compute eJ1·1)   i,f.2l )and My > = M j(eJ1,l ),8j2 e nd(For11 
4. Compute <f>&r   ( M  l ),s(l )   and1l) = IU E  s( l  >J;  jW  >1, j E  [p],end(Fore) 
5. Compute/j = I:t, / T, j E [p], a nd /(m) as in (4.1). 
6. Compute a nd output /{j /  >   / ( m)},j E  [p]. 

 
 

 
 
p) x Cost(Lasso) while the cost of MDS is of the order T x p x 
Cost( Lasso). 
Figure 2 reports simulation performance of DS,OS.fast,MDS 

and MOS.fast in the settings of Figure 5 in Dai et al. (2023). 
Each point is averaged based on 50 independen t replications. 
The results demonstrate compara ble performance between DS 
and OS.fast and that between MDS and MOS.fast. 
 

Supplementary Materials 
 
In the supp lem ent, we provide a proof of Lemma l and the R code for the 
simulation results reported in Figures l and 2. 
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