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1. Introduction

Consider testing null hypotheses /17 : 0i = 0 with statistics
Zi,jE [p. LetSo =Uce [p]:0i = 0}bethe index set
for the true nulls. Suppose it is sensible to reject Hj when Zj
is large. Let <Pf(x ) = I{x ::: t} denote the threshold test For
tests with a common threshold level 7, R1(X[p)) = L =1 <Py Xj)
is the total number of rejected hypotheses and Ro(X[p]) =
LjESo ¢1(xj) the total numberof false rejections. Benjamini and

Hochberg (1995) advocated to measure the Type-I error by FDR
in multiple testing and proved thatfor independent teststatistics

1/2 withaknowncommon continuous nullsurvival function Go,
the adaptive threshold level

T = inf {t: R1(Zlp) : Got)p/q} (1.1)

of'the global test for the intersection null ¥ | Hj in Simes (1986)
also controls the FDR:

FDR= IE[ Ro.T(Z[p)) ] < /o,

IVRIZpD- P

(1.2)

where po = IS ol- Benjamini and Yekutieli (2001) relaxed the
mutual independence assumption on the test statistics to the
positive regression dependency on each one from the subset So
(P RDS) and the strict null assumption to IF{Z :: t} ;5 Go(t- )
with Go(t- ) = gk/p fork E [p],j E So.

Barber and Candes (2015) introduced knockoffs to expand
the realm of non-asymptotic FDR control. Statistics Z , . . . ,Z
are knockoffs of Z1,...,Z,, if (Zj,Z1,j E B, Zk>Zk'k E Be) has
the same joint distribution as its B-swapped version (Z1,zj‘ jE

B, Zk,Z1c, kE eB) for every null subset B Sp LetZ, ..., Z be
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knoc koffs of Z,. .. ,Zp,
sj= sgn(Zj - 21), 0 = sjw(Zj,2J),

with a function satisfying/w(x, x ) = fw(x , x) 1 0.T he y pro-
posed to use the threshold test¢ (W ) # f adaptive threshold
level

(1.3)

. 8 + RiC-_WipJ). }
— £t ---——=="=0 , 1.4
T (W[p]) = m{ t ) Rl(W[ ]) q ( )

and pro ved FDR::; q for the rule with § = 1 and a related error
bound for § = 0. A crucial feature of the knockoffs is the sign
symmetry {sj,j E So} ~ un iform{- 1, 1}So in the null set. The
knockoff approach has been further developed in Candes et al.
(2018) and Huang and Janson (2020 ).

The beautyofthe above results is the non-asymptoticnature
oftheFDR guarantee.Still,the PRDSassumptionand the knowl-
edge of the null survival function, or the knockoffs, may not be
available in practice.

Following Xing, Zhao,and Liu (2021) and Dai et al. (2022),
Dai et al. (2023) advocates the use of the thresholding level
(1.4) on mirror statistics. Sufficient cond itions are developed for
approximate FDR control in moderate- and high-dimensional
generalized linear models (GLM). Mirror statistics can be con-
structed by data splitting (DS) when asymptotically normal

estimates of ()j are available. Let€ { ,'/ and be twoindependent
estimators of 9IP Tk  mirror statistics are defined by

s=sgn(BI>)sgn (0]2 >), Mj =sj M@l J1>1, 10]2>1),  (1.5)

with a function s atisfying/M(x, x ) = /M(x,x):::: Oasthe/w(-, *)
in (1.3). Suppose

07 7an ® Neunj, 1), k=12, (1.6)

for some unknownparameters an and /1,nJ satisfying sgn(unJ) =
sgn (0} For example, in Proposition 3.1 of Dai et al. (2023),

0i = +/3r,an=a*/.../N and /1,n,j = a* Oi/an. Similar to the test
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statistic Wj in (1.3), Mj is approximately marginallysymmetric
when 0j = 0 and likely to be positive and large when 0j -fu 0.
Th is motivates the use of the threshold rule </ on the mirror
statisticsat t = Ts(M[p| s in (1.4). In an asymptotic analysis,
a condition on the level of dependence can be imposed instead
of the independence of the signs {sj j E So} as required in the
non-asymptotic FDR control with knockoffs.

Compared with the knockoff approach, the mirror statistics
are more readily available with sufficiently large samples.
Compared with asymptotic FDR cont rol with the Benjamini-
Hochberg rule (1.1) based on (1.6), the mirror statistics
approach does not require a specification of the scale om.
Moreover, as mentioned in Dai et al. (2023), the asymptotic
symmetry [P'{Mj > t} = IPPM -t} forj E Sy, sufficient for
the mirror statistic to make sense, may kick in with asmaller
samplesize requirement than the asymptotic normality(1.6).

2. Relationship of Mirror Statisticsto Knockoffs

Asfunctions ofdata, mirrorstatisticsareequivalentto knockoff
test statistics through an algebraic transformation. Consider

two-sided tests for simplicity.Given estimators€ &/ ande l ,'/, let
zj= 0+ L2, ;= >~ el 2,0 s [pl
Wehave (1> 102>/ = % + /Q1>1 > A A

and sgn@ l))sgn(ey>) = sgn(Z_] - with the convention
sgn(0) = 0.Thus, the mirror statistics can bewritten as

Mj = sgnfoll] |l 2 | M(k]l) 1 le]2) |)
=sgn(Zj - Z;)fw(Z},2))
= wj 2.1
withf w(x, x") = /M(X + x', Ix - x' I). Con versely,/ M(x, x') =

fw(lx +x'1/ 2,1x - x'1/2) given a choice o ffw(", *). Fo r example,
Mj with/ M(x, x') = (Ix1+ Ix'1)/2 matches Wj with fw(x, x') =
Ilv I ] and I\/Ij with / M(x, x") = Ixx' | matche s Wj with
fwxx')=Ix?x'"?

/Mx, x)=(Ix!+1x'])/2,

/M(x,x') =

sen(Zj - Z'.)(ZjVZ'.),

M .
L[ osen(Zj -z 12) - z;él,

I ¢ an beseen that the natural choice is/ M(x, x') = (Ix1+ Ix') 1
in the firstexample.

The algebraci transformation of Wj to Mj is not guaranteed
to offernewstatistical insight,andviceversa. Forexample, when
Wj are defined through the Lasso path in linear regression with
non-orthogonaldesigns,theinterpretationofthecorresponding

M; is unclear.

When€ &/ and€ l ,'/ aretwo independent copies ofa Gaussian
vector N(O-n /1,n,[p], :En),

21" I mn oy, En2yr, zgpy INO, :En/ 2y,

and Z[p and z | are independent. Thus, the use of mirror
statistics is equivalent to generating a copy of noise vector and
treatingitasaknockoffofZIP|,with thecorrespondencebetween
IML ) andf wC -) in (2.1). For example, in linear regression
with a design matrix X of rank p and Gaussiannoise with a
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known noise level o-, Gaussian mirror (Xing, Zhao, and Liu
2021) can be constructed in one shot by generating z | with

:En/2 = o- (XT X) .Mirror statistics M[pJ areequivalentto test
statistics 7 [p/ based on knockoffs if and only if I:n is diagonal.

In an asymptotic analysis based on (1.6), the mirror statistic
and knockoffmethods would haveasymptoticallythe same FDR
and power due to their algebraic equivalence (2.1) when the
dependence between the test statistics has only an infinitesimal
impact on the operating characteristics of the tests. This condi-
tionon dependence is typicallyimposed intheliterature th rough
the sparsity of the correlation of the estimates in (1.6). In this
asymptopia,anadvantage of mirrorstatisticsistheiravailability
through DS.

Asymptotic FDR control in moderately high- and high-
dimensionalsettings has been considered in Liu(2013),Xia,Cai,
and Li (2018), Javanmard and Javadi (2019), and Ma, Tony Cai,
and Li (2021) with the Benjamini-Hochberg (BH) rule, and in
Xing, Zhao, and Liu (2021) and Dai et al. (2022) with mirror
statistics. The theoretical results in Dai et al. (2023) on data-
splitting-based mirror statistics in GLM further develop this
direction.

3. Scale-Free FDR Control

For asymptotic FDR control, the unknown scaling factor o-* in
Sur and Candes (2019) and Proposition 3.1 of Dai et al. (2023)
is no longer a sticking issue with DS. Under (1.6), scale-free
asymptotic FDR control can be achieved by the BH rule with
familiarStudent's t-statistics. Still, mirror statistics may relyless
heavily on the asymptotic normality.

When the asymptotic normality holds with a common
asymptotic variance as in (1.6) and pis large, the BH rule (1.1)
can be used with the two-sided test statistics

[0 +8@|

Zi = J J 3.1
T, @0 82 p - )

and the standard absolute Gaussian survival function Go(t) =
2<1€7\(7é Qdmpare this procedure (3.1), denoted as "8"n- BH': with

DS and Gaussian mirror (GM) in Dai et al. (2023), the BH rule
on the MLE (BHq), BH rule with adjusted p-values(ABHq) in
Surand Candes (2019), and model-X knockoff (KN) in Candes
et al. (2018). Specifically, Figure 1 reports the simulation com-
parison among the above six procedures for feature selection
in logistic regression in the same setting as in Figure 3 of Dai
et al. (2023). Each point in Figure 1 represents the average of
50 independent replications with N(O, I:) iid designs, where
:Eij=rlijl, g =0.1, n= 3000, p = 500, 11.B*1lo = 50, and
L.Bl1= signal forj e SZ. It can be seen from these resultsthat
"7n-BH quite consistently exhibits FDR :::; gpo/p = 0.09, slightly
more power than DS, and less power than ABHq, GM and KN.
We note that ABHq, GM and KN rely more heavilyon Gaussian
design.

In the case of p > n, debiased Lasso exhibits heteroscedas-
ticity (Candes et al. 2018; Dai et al. 2023). In the presence of

heteroscedadticity,0 }k )/' o] g N, , ) sk & asymp-
totic FDR control can be achieved with the absolute Cauchy
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Figure 1. Leftpanel:the signalstrength is fixedat /fJf | = 11 forj E S8,and the corre lationsamong the covariates vary. Right panel:the correlation isfixedat ,

the signal strength varies. Here"sBH"standsforan-BH.
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ing Go( t) =1 - (2/ n) arctan(t). However, our simulation
experiment demonstrates that a cost of this robustnessagainst
heteroscedasticityis a significant loss of power.

statistic Zj = Oj? | amd te correspond-
)

4. Multiple Data Splitting

As knockoff and mirror statistics are randomized, it would be
interesting to find methods to aggregate multiple randomized
tests based on them for further improvement. See for example
the discussion in section 7.2.3 ofCandes et al. (2018). In Dai et al.
(2022), the authors proposed a multiple data splitting (MDS)
strategy to achieve thisgoal.

Similarto Daietal. (2022), Proposition3.3 seems to focus on
specialregimesaimed atthe nearly complete FDRcontrolin the
form of FDR= o(l). This can be seen as follows.

Letlj= E*[JUES}/(ISiV 1)] fora randomized selectord ¢
J;p] where E* denotesavera&ng over many copieso! random d
Sgiven data.lf the selector S controls the FDP = IS nSel/ (1S1Vv
1), [:tSo 1 :s gt op(l). Let 1(1) :S * = = :S I (p) be the ordered
entries of 7 /p/- Define i1(m ) by

J(n + - +](m)qu< ](1)+"'+I(m+1)- 4.1

Dai et al. (2023) proposes to test Hj by thresholding i at level
1(m ) and provides sufficient conditions for the asymptotic FDP
control by such MDS schemes. The following lemma provides a
sketch of a more explicit versionof the proofs in Dai et al. (2022,
2023).

Lemma 1. Let S1= [p]\ So,P1 =P - Po,and I[[p b ay veor

of nonnegative statistics satisfying IGil Lal LifESor; oS
gt El. Letm beasin (4.1). In the event where p- m
and L ESoj,ES/{1j 'S L;} :S EiPoPl,

Fop - L B0 1L > Lo

p-m

Klpl
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where E; = Ei/(q T E1).

In the nonsparse case, Proposition 3.3 of Dai et al. (2023)
provides FDP = op(l ) because the assumptions imply E1

o(l), E2 =o(1) and k 1 is bounded away from zero in (4.2).

5. Fast Data Splitting Methods

In sparse GLM where Data = (X,y) E JRnx(p+]), a debiased

estimatoroff3j*canbewrittenas """"’(7.] ,uj,Data)where 7Jisan

initialestimate of /3 *and ujis an estimate ofthe direcﬁ n uj for
?I and U

x estimated by the Lasso, the comp utationalcost 0ff3/f,,,.g1ven
Data is

Cost( - "(.BWW,'

the least favorae submodel for the estimation of f3/- !

Data),j E [p]) x pCost(Lasso).

We ignore the computational cost of estimating scaling factors
such as the « ad o i the discussion below (1.6) as they
could be viewed as b products of the debiased Lasso program.
LetData(l] ,Dm (7], € E , be data generated in MDS If
]k )= B ....... (Data<k ) and rjk D= u" "'°(DataCk 1)) are used,

the computatlonal cost of MDS is T'x p x Cost(Lasso).
Under proper sparsity and regularity conditions, the debiased
Lasso provides

""m"( ,B"”",Ut ",Data) - 14 (f3* uj Data) = op@n K ),

so that the asymptotic normality is valid with a singleuj'°(Data)

foreach j based on the entire data in DS and MDS. We propose
such procedures as fast DS and MDS algorithms in Table 1.
08.fast needs to run Lassop t+ 2 times while DS 2(p +1)

times. The computational cost of MOS.fastis ofthe order (T +
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Table1. FastDSand MOSalgo rithms.

DS.fast(Da ta)

L . Computeuj = u\-""'( Data),j E[p].

2 Generate Data<f>, Data <2> bysplitting dataat random.

3 . Forj E [p],compute M' (p " (D
<e)uj, Data <)and respective scaling factors, kK = 1,2.

4. Compute8 1),9;{2) a M = Mj(@{l),(j 2>)‘ en(Fy )

5. . Computeand output<sE (M[f),

MDS.fast( Data,U[p]) with input U[p] as inStep 1 ofDS.fast

1. Fore E €1, genera te Data <I, 1), Data 2> by splitting data atrandom.
2. Forj E [pl,compute- " ("fi'-"" (Data <k]l)) ,Uj,Data<k,l))
and respective scaling factors, k = 1, 2

Compute eJ 11 ['f.2l)andMy > :M](&H,l/{ 8F Dk nd(Fod |
4. Compute <Pt (M 1),s(/] andll) =Us (I >I; W >LjE [pl.end(Fore)

Compute/j = I :t,l /T, JE[p],and/(m)as in (4.1).
Compute and output/{/ > /(m)},j E [p].

AN

p) x Cost(Lasso) while the cost of MDS is of the order Tx p x
Cost( Lasso).

Figure 2 reports simulation performance of DS,0S.fast, MDS
and MOS fast in the settings of Figure 5 in Dai et al. (2023).
Each point is averaged based on 50 independen t replications.
The results demonstrate compara ble performance between DS
and OS.fast and that between MDS and MOS fast.

Supplementary Materials

In the supp lement, we provide a proof of Lemma 1 and the R code for the
simulation results reported in Figures I and 2.
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