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Abstract:   

Transition metal dichalcogenide (TMD) moiré superlattices have emerged as a significant area 

of study in condensed matter physics. Thanks to their superior optical properties, tunable 

electronic band structure, strong Coulomb interactions, and quenched electron kinetic energy, 

they offer exciting new avenues to explore correlated quantum phenomena, topological 

properties, and light-matter interactions. In recent years, scanning tunneling microscopy (STM) 

has made significant impacts on the study of these fields, by enabling intrinsic surface 

visualization and spectroscopic measurements with unprecedented atomic scale detail. Here, 

we spotlight the key findings and innovative developments in imaging and characterization of 

TMD heterostructures via STM, from its initial implementation on the in situ grown sample to 

the latest photocurrent tunneling microscopy. The evolution in sample design, progressing from 

a conductive to an insulating substrate, has not only expanded our control over TMD moiré 

superlattices but also promoted an understanding of their structures and strongly correlated 

properties, such as the structural reconstruction and formation of generalized two-dimensional 

Wigner crystal states. In addition to highlighting recent advancements, we outline upcoming 

challenges, suggest future research direction, and advocate for the versatile use of STM to 

further comprehend and manipulate the quantum dynamics in TMD moiré superlattices.  
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1. Introduction 

Transition metal dichalcogenides (TMDs) have emerged as a promising and dynamic area 

of research within condensed matter physics, primarily due to their two-dimensional nature in 

combination with remarkable magnetic1-13, optical14-30, and electronic31-49 properties that hold 

the potential to revolutionize various technological applications and fundamentally enhance our 

understanding of the material. TMDs are characterized by the general formula MX2 where M 

represents a transition metal and X denotes chalcogen. The weak interlayer van der Waals 

interaction allows the easy preparation of monolayer TMDs by mechanical exfoliation50-53, as 

well as the fabrication of heterogeneous junctions by superposing TMD layers on top of each 

other54-58. By controlling the applied material, stacking order, or twist angle, the properties of 

the heterostructure can be engineered with unprecedented tunability59-70. Specifically, moiré 

superlattice can form when the structures of adjacent layers are close to commensurate, creating 

a long period periodicity due to the small lattice mismatch71, 72. This could be formed either by 

twisting layers of the same material at an appropriate angle, or by aligning two different 

materials with a small lattice difference. In the momentum space, the superlattice defines 

another Brillouin zone with a smaller reciprocal lattice, which folds the parabolic band structure 

defined by the atomic lattice into a sequence of new bands characterized by remarkably narrow 

bandwidths, commonly referred to as moiré flat bands73-83. Similar to their graphene 

counterparts, these TMD moiré superlattices have undergone extensive investigation in both 

theoretical studies and experiments, primarily because of the diverse quantum phenomena they 

facilitate. 

While graphene has garnered significant attention as a two-dimensional material for its 

high accessibility84-94, high symmetricity95-106, and superior carrier mobility107-118, TMD moiré 

systems offer unique advantages. Firstly, compared to graphene, which consists solely of carbon 

atoms, TMDs provide a versatile range of materials achieved by substituting either the 

transition metal or the chalcogen atoms within the same group. Numerous TMDs, such as MoS2 

and WSe2, share similar atomic structures but possess distinctive electronic properties35, 119-122. 

This abundance of options in building blocks offers a multitude of choices for crafting 

functional devices tailored to specific applications2, 25, 27, 35, 38, 40, 41, 123-127. Secondly, the natural 

existence of a bandgap close to the visible range in most TMDs also makes them suitable for a 



broad range of optoelectronic applications15, 16, 128-131. Moreover, the incorporation of heavy 

transition metals into the structural framework significantly enhances spin-orbit coupling, 

holding promise for various spintronic applications132-145. Most strikingly, the reduced 

dimension, together with limited dielectric screening from the surrounding, leads to a 

substantial amplification of the Coulomb interaction81, 146-153. Likewise, the creation of ultra-

narrow moiré flat bands can effectively modulate the charge carrier behaviors in them. The 

kinetic energy of the electrons residing in these flat bands becomes significantly restricted81, 154-

157. Consequently, the Coulomb interaction frequently takes precedence in electron interactions, 

leading to the emergence of a sequence of highly correlated quantum phenomena including 

tightly bonded moiré exciton149, 158-168, correlated insulator148, 150, 152, 169-177, and charge order 

states146, 148, 149, 151, 178-185. Unlike the magic angle sensitivity of graphene, TMD moiré systems 

exhibit these strongly correlated properties in much less stringent conditions81, 82, 186-189. While 

the moiré flat bands in TMDs may possess less topological character153, 190-198 compared to those 

in graphene, they offer a dedicated platform for investigating strongly correlated phenomena. 

These strongly correlated systems often involve periodic alternation in a small spatial 

region or undergo phase transitions in response to nanoscale environments where their 

properties change significantly, high spatial resolution enables the mapping of the spatial 

distribution of different quantum phases, helping to identify critical points and boundary 

regions that might not be apparent at larger scales. To enable the atomic-scale visualization of 

surface topography and spectroscopic measurements, scanning tunneling microscopy (STM), 

together with a few other real space imaging approaches172, 199-214, has been introduced to study 

TMD moiré systems. The unparalleled spatial resolution of STM, derived from the exponential 

relationship between quantum tunneling probability and the distance between the tip and a 

substrate, significantly empowers the direct imaging of the moiré pattern and the identification 

of its periodicity and phase215, 216. Scanning tunneling spectroscopy (STS) further helps to 

provide detailed information about the local electronic structure, allowing for the identification 

of flat bands and other unique electronic features. For TMD moiré superlattices on conductive 

substrates, STM has been instrumental in validating the formation of an unexpectedly large 

periodic potential217, which facilitates the formation of flat bands. For TMD moiré superlattices 

on insulating substrates, STM, by circumventing phenomena such as Fermi level pinning and 



electronic screening218-220, has provided a more intrinsic view of the moiré flat bands, the 

sensing and manipulation electron-electron correlation, the direct observation of the 2D 

generalized Wigner crystal lattice in real space, and the visualization of photoexcited moiré 

excitons. This spotlight article explores the pivotal role of STM in elucidating the structural and 

electronic properties of TMD moiré superlattices, tracing the progress of the exploration of the 

strongly correlated quantum phenomena hosted by these systems. 

 

2. Recent STM Studies on TMD Moiré Heterostructures 

2.1 STM Studies on TMD Moiré Heterostructures on Conductive Substrates 

To understand the stacking configurations and interlayer coupling in moiré superlattice, in 

2017, Chendong et al. employed STM to image the R stacking (zero-degree rotational angle) 

MoS2/WSe2 hetero-bilayers grown on graphite surface under various bias voltages221. Their 

work utilized scanning transmitted electron microscope (STEM) to resolve the stacking types 

[AA ABSe Bridge (Br) and ABw] within a superlattice [Fig. 1(A)&(B)], complemented by first-

principles calculations to predict critical points in the electronic structure, such as Kw, Гw states. 

These critical points expected a direct gap could be maintained in the bilayer and were then 

measured using STS [Fig. 1(C)]. Based on the Tersoff-Hamann model, the dI/dV signal 

measured in STS is directly proportional to the local density of states (LDOS). In this study, the 

authors also utilized a less common approach, by keeping the feedback loop close and 

measuring the differential change of tip height at different bias voltage (∂Z/∂V)I [Fig. 1(D)]. 

Different to the traditional dI/dV, the (∂Z/∂V)I measurement provides additional sensitivity to 

the states that decay fast in the z-direction. By comparing the dI/dV spectra and the valence 

bands’ (∂Z/∂V)I and decay constant k spectra [Fig. 1(E)] for different local alignments, they 

observed a sudden drop in the (∂Z/∂V)I spectrum, when the sample bias shifted from below to 

above Гw states in the WSe2 layer. This confirmed the loss of Гw states, which arises from 

different lateral alignments of the S/Se’ pz orbitals at various tacking types. This result was 

further proved by the local minimum behavior in the k spectrum for the parallel momentum 

k||=0 at Г point and k=√
2𝑚ϕ0

ℏ2
+ 𝑘||

2 , where 𝜙0 is the barrier height. After cohesively analyzing 

the behaviors on both VBM and CBM on different sites [Fig. 1(F)], they found that the local 

bandgap Eg is site-dependent, resulting in a periodic modulation as large as 0.2 eV, hence an 



electronic superlattice [Fig. 1(G)&(H)]. This has been further validated by bias-dependent STM 

images wherein states at different sites gradually moved out of the tunneling window.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a following work, Yi et al. explored the electronic states in the MoS2/WSe2 moiré 

superlattice grown on graphene substrate at temperature of 5 K in 2018222. They found that 

while the spectral shifts up to 0.2 eV between the maxima (AA) and minima (ABw or ABSe) of 

the moiré corrugation remain, unreported sharp peaks appear in the tunneling spectra near the 

band edge for Гw VB at ABw and ABSe and for KM CB at ABw and disappear at higher 

temperature (80 K) [Fig. 2(A)&(B)]. These peaks were attributed to quantum-confined states 

in the moiré unit cell, which were further demonstrated by the distinct rings around ABw in the 

constant-height conductance map at +0.6V [Fig. 2(C)&(D)]. The spatial conductance maps 

along the line for CB and VB are also consistent with the previous statement, where two ABW-

 
Fig. 1 (A) Atomically resolved STEM image. Typical regions in an R-stacked heterostructure—AA, ABSe, Br, and ABW—are 

labeled. The top views and side views of simulated atomic models (based on an R-type stacking) are displayed in (B) 

respectively. The calculated interlayer separations for four atomic alignments are labeled in (B). dI/dV spectra (C), (∂Z/∂V)I 

(D), decay constant k spectra of valence bands (E), and calculated energy values at key critical points (F) for AA, ABSe, Br, 

and ABW sites are displayed respectively. The energies are with respect to the vacuum level. The shaded regions in (D) and 

(F) represent the valence band edges and show consistent movements of the energy locations of ГW (black) and KW (cyan). In 

a deeper lying energy range, the spectral features marked by red and green arrows in (C) to (E) correspond to the energy 

window where the lower energy states labeled in (F) are located. The complicated movements in their relative energy locations 

result in a complex behavior in k spectra [red arrows in (E)]. (G) Energy differences between KW and ГW (ΔK−Г) for the four 

atomic alignments via experiments and DFT calculations. (H) Local bandgap Eg formed between the CBM of MoS2 and the 

VBM of WSe2 via experiments and DFT calculations. 

 



confined states are observed in the CB region and confined states at ABW and ABSe are observed 

in the VB region [Fig. 2(E-H)]. To explain the origin of these spectral peaks, Yi et al. employed 

a nearly free electron (NFE) model on a hexagonal moiré lattice with the potential term 

|VG|=21meV and derived the wavefunction at the Гw point, which shows strong confinement of 

the state at ABSe. However, it is important to note that the MoS2/WSe2 heterostructures used in 

both studies were grown using chemical vapor deposition (CVD), which can present limitations 

in terms of sample quality, as well as control over the stacking order and twist angle. Besides, 

the conductive substrate could largely screen the Coulomb interaction, potentially hindering the 

formation of strongly correlated phases218-220. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In 2020, Zhiming et al. advanced the moiré electronic structure measurement of bilayer 

WSe2, prepared through the high-quality monolayers from mechanical exfoliation and specific 

twist angles of 3° and 57.5° from precise stacking, as it enables the manipulation of inversion 

symmetry223. The superlattice was transferred onto a graphite substrate and then measured with 

STM and STS [Fig. 3(A)]. While the 0° (AA) rotation breaks the inversion symmetry in TMD, 

the 60° (AB) rotational symmetry maintains, which is different with the twisted bilayer 

graphene systems. The authors directly measured moiré flat bands and localized states using 

 
Fig. 2 Selected STS data acquired at 5K (A) and at 80K (B) for different local alignments, with insets showing expanded view 

of band-edge peaks and including data from nearby spatial locations. Here the blue, red, and green lines correspond to AA, 

ABW, and ABSe site respectively. (C) A STM constant-current image of heterobilayer of MoS2 on WSe2. (D) A constant-height 

conductance map acquired at 600 mV. In (D), distinct rings are seen around ABW, which are associated with quantum-confined 

states in the moiré unit cell. (E) STM image, with moiré locations AA, ABW, and ABSe indicated. (F) Constant-height 

conductance map taken along the yellow line in (E) for voltages in the conduction band-edge region, revealing two ABW-

confined states (marked by arrows) and the band onset at higher energy (broader ABW-centered conductance feature). (G) 

Same as (E) but at a different area of the MoS2−WSe2 moiré structure. (H) Constant-height conductance map taken along the 

yellow line in (G) for voltages in the valence band-edge region; confined states occur at locations ABW and ABSe. All 

measurements from (C) to (H) are operated at 5K. 



STS and observed distinct differences between these two angles. In the case of 3° twisted 

bilayer WSe2, the flat band was found to be localized on the hexagonal network between the 

AA sites, while the first flat band in 57.5° twisted layer WSe2 was localized on the AB sites. 

Constant-height STS measurements of 3° twisted bilayer WSe2 revealed bandgaps of 2.2 eV 

for the AA stacking and 2.1 eV for other stackings, with a valence band edge shift of 

approximately 80 meV [Fig. 3(B)]. Additionally, constant-current STS measurements exhibited 

sharp peaks at specific sites, confirming the presence of flat bands, while the local density of 

states (LDOS) maps provided further evidence of the localization of the flat band wave function 

[Fig. 3(C)&(D)]. Furthermore, in a tWSe2 device with a 57.5° twist angle, a distinct moiré 

pattern and energy bands were observed, featuring isolated flat bands and quantum-confined 

states [Fig. 3(E-G)]. Compared to CVD, the mechanical exfoliation approach offers enhanced 

controllability over the formation of superlattices. However, the undesirable coulomb screening 

associated with conductive substrates like graphite could still hinder the formation of many 

strongly correlated phases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 (A) Schematic of the STM set-up on the tWSe2 device. (B) Constant-height dI/dV versus bias voltage data, acquired at 

I= 100 pA, probing states in both the conduction and valence band on the four stacking alignment points for the 3° tWSe2. (C) 

Constant-current dI/dV versus bias voltage, acquired at I= 10 pA, probing states in the valence band on the four stacking 

alignment points for the 3° tWSe2. (D) LDOS map for the 3° tWSe2 at the flat-band energy (Vbias=−1.1 V), acquired at I= 10 

pA, featuring a conductive hexagon enclosing the insulating AA region. (E) LDOS map for the 57.5° tWSe2 at the flat band, 

acquired at Vbias=−1.09 V, I= 50 pA. (F) Atomic-resolution STM topography on the 57.5° tWSe2 sample. Different stacking 

alignment points and the unit cell are labelled in (E) and (F). (G) Constant-current dI/dV spectra along the yellow line in (F), 

acquired at I= 50 pA. The isolated flat band at the AB region is featured by the sharp peak around −1.1V and quantum-confined 

states are evidenced by the multiple sharp peaks between −1.2V and −1.3V. 



To further elucidate the intricate relationship between twist angles and the electronic 

properties of TMD moiré patterns, in 2021, En et al. employed STM and STS to explore the 

twisted bilayer WSe2 on a graphite substrate224. They investigated a range of twist angles, 

specifically 54.1°, 57°, 57.4°, 57.8°, and 58.4°, and discovered that at twist angles substantially 

deviating from 60°—as in the 54.1° sample—the interlayer hybridization yields only two 

spatially distinct flat bands with bandwidths on the order of tens of meV. However, when the 

twist angle approaches within 3° of 60°, lattice reconstruction occurs and, together with strong 

interlayer interactions, leads to the formation of triangular quantum-confined states that feature 

multiple energy-separated ultra-flat bands with bandwidths of just a few meV—significantly 

smaller than the estimated on-site Coulomb repulsion energy. These experimental results are 

consistent with theoretical calculations and provide a groundwork for the continued exploration 

of correlated phases in TMD moiré systems.  

 

2.2 STM Studies on TMD Moiré Heterostructures on Insulating Substrates 

The increasing desire for the direct visualization of correlated quantum phases in TMD 

moiré superlattices has spurred a growing interest in the study of TMD moiré superlattices on 

insulating substrates225. This will enable the tuning of charge carrier density in the superlattices 

by applying a gate voltage, a crucial step toward realizing many strongly correlated quantum 

phases. However, a major challenge arises from the low sample conductivity at cryogenic 

temperatures. The sample area located a few micrometers away from the contact electrode 

becomes insufficiently conductive for STM measurements. In 2021, Hongyuan, et al. overcame 

this problem and explored moiré superlattices in WSe2/WS2 heterostructures, utilizing 

hexagonal BN (hBN) as the electrically insulating substrate226. In this study, a comb-shaped 

array of graphene nanoribbons was employed as a contact electrode to apply sample bias to the 

mechanically fabricated TMD superlattice [Fig. 4(A-D)]. The approximately 200 nm wide 

TMD areas situated between two adjacent graphene nanoribbons remained unaffected by the 

screening and maintained sufficient conductivity even at the temperature of liquid helium. 

Utilizing this innovative sample structure, Hongyuan, et al. employed STS and ab initio 

simulations as investigative tools to probe and check the atomically reconstructed moiré 

superlattice and the consequent flat bands. Their findings revealed a pronounced 3D buckling 



reconstruction and extensive in-plane strain redistribution in the WSe2/WS2 moiré 

heterostructures [Fig. 4(E-G)]. Notably, they observed a narrow, highly localized K-point moiré 

flat band with a mere 10meV width at the valence band edge of the heterostructure, in addition 

to other moiré flat bands originating from the Г point [Fig. 4(H-M)]. Interestingly, these 

observations via STS challenge pre-existing theoretical models which had predicted the AA site, 

rather than the BSe/W site, as the localization of the 10 meV band. To tackle this issue, the authors 

conducted ab initio simulations using a calculated extensive 3D reconstructed moiré 

superlattice. By accounting for both in-plane strain and out-of-plane reconstruction, the 

theoretical simulations aligned closely with the experimental observations [Fig. 5]. Hongyuan, 

et al. concluded that the strain redistribution and 3D buckling in TMD heterostructures play a 

dominant role in shaping the moiré electronic structure and the corresponding moiré flat bands 

with low electron kinetic energy. This study thus offers critical insights into the structural and 

electronic properties of moiré superlattices in TMD heterostructures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 (A) Schematic of gate-tunable WSe2/WS2 heterostructure device. Graphene nanoribbons (Gr) are placed on top of the 

WSe2/WS2 as contact electrodes. (B) Room-temperature ambient atomic force microscopy image of the sample surface. 

Exposed WSe2/WS2 and graphene-covered areas are labelled. (C) Ultrahigh vacuum STM image of the exposed WSe2/WS2 

and graphene-covered area (T= 5.4 K), acquired at Vbias=−3 V, I= 100 pA. A moiré superlattice can be seen clearly in both 

areas. (D) STM image of the exposed WSe2/WS2 area, acquired at Vbias=−3V and I= 100 pA, shows a moiré period of ~8 nm. 

(E) Theoretical in-plane strain distribution (in %) for the WSe2 layer from simulation. (F) 3D view of the reconstructed 

WSe2/WS2 moiré superlattice from simulation. (G) Schematic of the buckling process. (H) Illustration of the atomic-scale 

wavefunction interference pattern. K-point states have a 2π phase winding over the adjacent three W atoms, while Γ-point 

states have identical phases over all Se atom sites. (I) Large-scale dI/dV mappings of K-point states for Vbias=−1.52 V. The 

positions of BSe/W (red), BW/S (green) and AA (blue) sites are labeled here. (J) Tip–sample distance(d)-dependent STS at the 

BSe/W site, acquired at Vbias=−2.15 V and I= 50, 100, 200, 400, 800, 1,600 pA respectively. A second peak near Vbias=−1.5 V 

emerges with decreased d, indicating that it has a larger decay constant and originates from K-point states. (K) High-resolution 

dI/dV spectrum measured at the BSe/W site. A sharp peak with FWHM of 12 mV ± 1 mV can be observed near Vbias=−1.5 V. 

(L)&(M) dI/dV density plot of K-point (L) and Γ-point (M) states along the two-segment yellow path shown in (I). In (L)&(M), 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to the quenched electron kinetic energy, the strong Coulomb interaction 

represents another critical characteristic meriting exploration within TMD moiré superlattices. 

Hongyuan, et al. have delineated a STM methodology for visualizing and manipulating the 

charge states of correlated electrons within a gated WS2/WSe2 moiré superlattice on hBN227 

[Fig. 6(A)]. They demonstrated that the local moiré sites' charge states could be imaged via 

their impact on the STM tunneling current at different bias, similar to the phenomena previously 

observed near a single molecule absorbent or a localized defect [Fig. 6(B)]. Furthermore, they 

successfully manipulated the charge state of correlated electrons by modulating the bias on the 

STM tip, leading to a localized discharge cascade within the moiré superlattice [Fig. 6(C)&(H-

J)]. This innovative technique facilitated the determination of the nearest-neighbor Coulomb 

interaction (UNN) by examining the Hamiltonian of their moiré system and discerning the 

 
Fig. 5 (A) Calculated electronic band structure plotted in the folded mini-BZ (left) and the corresponding plot of the density 

of states (DOS) with 10 meV Gaussian broadening (right). Four important energy ranges (E1–E4) are labelled (green shaded 

areas) to highlight the topmost states folded from the K point (E1&E2) and Γ point (E3&E4). (B-E) Calculated LDOS maps. 

The LDOS maps are averaged over different energy ranges as labelled in (A) and over the out-of-plane direction. (F) 

Calculated 3D buckling of the heterostructure and comparison to experiment. Grey and black dots show the simulated 

positions of W atoms for a freestanding heterostructure and a heterostructure supported by hBN, respectively. (G)&(H) Large-

scale dI/dV mappings of K-point states for Vbias=−1.52 V (G) and Vbias=−1.59 V (H). (I)&(J) Large-scale dI/dV mappings of 

Γ-point states for Vbias=−1.73 V (I) and Vbias=−1.78 V (J). Panels (B-E) and (G-J) show the same region of the sample surface. 

Solid dots in (G) label the positions of BSe/W (red), BW/S (green) and AA (blue) sites. 

 



difference between the potential energy shifts induced by Vb and Vg at successive transition 

sites of the charge state of the ground state energy [Fig. 6(D-G)]. The on-site energy within the 

moiré superlattice was also ascertained by analyzing the spatial variation in the measured 

single-site discharge voltage. Specifically, at the midpoint between two or three neighboring 

moiré sites, a supplementary bias voltage is required to concurrently extract multiple electrons 

from these sites compared to the process of removing each electron individually. This additional 

energy penalty is the result from the inter-site coulomb interaction. Therefore, by modeling the 

local electric field at the STM junction, Hongyuan, et al. converted this bias difference into the 

electron-electron correlation energy. The experimental value of UNN is determined as about 

25meV, which is about one order of magnitude larger than the electron bandwidth determined 

as about 5meV previously calculated by density functional theory (DFT) and a tight-binding 

model, warranting a platform to host strongly correlated phases. Moreover, Hongyuan, et al. 

experimentally observed the discharging behavior on the dI/dV map of the WS2/WSe2 moiré 

superlattice and the inhomogeneity in the on-site energy influenced by a proximate point defect 

[Fig. 6(K-N)]. This study has successfully showcased a versatile tool for the microscopic 

characterization of electron properties in materials, effectively confirming the presence of 

strong electron-electron correlations within TMD moiré superlattices. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the research referenced earlier, it becomes evident that within the isolated 

WS2/WSe2 moiré superlattice, the prevailing influence of long-range Coulomb interaction 

energy outweighs the effects of quantum fluctuations on electron motion. Consequently, this 

scenario leads to the anticipation of the emergence of a predicted state known as the generalized 

 



Wigner crystal state—an orderly arrangement resembling a crystalline structure formed by 

electrons49, 148, 152, 172, 228-233. However, the direct observation of the 2D Wigner crystal lattice in 

real space has remained a challenge. Conventional STM, despite its high spatial resolution, can 

induce perturbations in the semiconducting samples due to the tip-induced band-bending 

referenced earlier. This could significantly affect the delicate 2D generalized Wigner crystal 

lattice during experimentation. To address this issue, Hongyuan, et al. developed a non-invasive 

STM spectroscopy technique in 2021, utilizing a graphene sensing layer over the WSe2/WS2 

moiré superlattice234. In their experimental design, the carrier densities in the WSe2/WS2 moiré 

superlattice and the top graphene sensing layer were controlled by the top gate voltage (VTG) 

and bottom gate voltage (VBG) in their setup [Fig. 7(A)]. They determined that a VTG of 

approximately 0.5 V is optimal as it elevates the WSe2/WS2 heterostructure Fermi level near 

the conduction band edge while maintaining the graphene sensing layer close to charge 

neutrality [Fig. 7(B)]. This balance allowed for higher sensitivity in imaging Wigner crystal 

states and minimized the screening effect on the moiré electron-electron interactions. In their 

experiments, they observed that the graphene layer underwent electron doping when the 

WSe2/WS2 moiré superlattice exhibited fractional filling of n=1/3, 1/2, 2/3 at the AA stacking 

site with VBG>7V and VTG=0.53V [Fig. 7(C)]. This observation indicated the presence of 

correlated gaps in the corresponding states in the heterostructure, rendering the WSe2/WS2 

heterostructure electronically incompressible and forcing electrons into the graphene sensing 

layer. Utilizing this principle, they employed 2D dI/dV mapping of the graphene sensing layer 

to image the 2D electron lattice of the correlated insulating states in real space. The tunnel 

current between the STM tip and the graphene varies depending on the charge state of the 

detected moiré site. They observed a honeycomb lattice under n=2/3, a triangular lattice under 

n=1/3, and a stripe phase under n=1/2 [Fig. 7(D)]. To further investigate their imaging method, 

they examined the evolution of the n=2/3 dI/dV map with increasing bias voltage (Vbias) and 

constant gate voltages. As Vbias increased, the AB1 stacking site became brighter, forming ring-

like features, similar to the behavior observed under tip-induced electrical discharging [Fig. 

7(E)]. This result suggests that the imaging of Wigner crystal lattices in dI/dV maps is enabled 

by the discharging of the moiré electron beneath the tip when Vbias exceeds a threshold value. 

This study lays a foundation for understanding Wigner crystal states in moiré heterostructures 



and proposes a general approach for imaging novel correlated electron lattices in other systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to solely relying on the tunneling electron to probe material properties, 

combining STM with optical excitation has also spurred the investigation of the moiré quantum 

phenomena related to light-matter coupling. In 2023, Hongyuan, et al. introduced a pioneering 

method termed photocurrent tunneling microscopy (PTM)235. This technique was devised to 

directly visualize the electron and hole distribution within the photoexcited in-plane charge-

transfer (ICT) moiré exciton in twisted bilayer WS2 (t-WS2). This technique was achieved by 

 

Fig. 7 (A) Schematic of the dual-gated WSe2/WS2 moiré heterostructure device. The top hBN thickness (5 nm) is slightly 

smaller than the moiré lattice constant (8 nm). Top gate (VTG) and bottom gate (VBG) voltages are applied to separately control 

the carrier density in the WSe2/WS2 heterostructure as well as the top graphene sensing layer. (B) Schematic of the 

heterostructure band alignment and Fermi levels for VTG = 0 with VBG > 0 and VTG > 0 with VBG > 0. At VTG=0, the Fermi level 

of the WSe2/WS2 heterostructure is located in the bandgap while an appropriate positive VTG allows the Fermi level to be lifted 

into the conduction band. (C) VBG-dependent dI/dV spectra measured on the graphene sensing layer over an AA stacking site 

for VTG = 0.53 V. Notable electron doping of the graphene layer takes place at n = 1/3, 1/2, 2/3 and 1. The tip height was set 

by the following parameters: Vbias = −200 mV and I = 100 pA. Right graph vertically line-cutting through the VBG-dependent 

dI/dV spectra in left at Vbias = 0.1 V shows peaks at n = 1, 2/3, 1/2 and 1/3. (D) Upper left: dI/dV map of the n = 1 Mott insulator 

(Vbias = 160 mV, VBG = 30 V, VTG = 0.53 V); bottom left: dI/dV maps of the generalized Wigner crystal states of n = 2/3 state 

(Vbias = 160 mV, VBG = 21.8 V, VTG = 0.458 V); upper right: dI/dV maps of the generalized Wigner crystal states of n = 1/3 state 

(Vbias = 130 mV, VBG = 14.9 V, VTG = 0.458 V); middle right: dI/dV maps of the generalized Wigner crystal states of n = 1/2 

state (Vbias = 125 mV, VBG = 18.7 V, VTG = 0.458 V); bottom right: a typical STM topographic image of the moiré superlattice 

shows a perfect lattice without distortion or defects. Electron-filled AB1 sites are labelled with solid red dots and the empty 

AB1 sites are labelled with open red circles. (E) Evolution of dI/dV maps for the n = 2/3 generalized Wigner crystal state with 

increased Vbias at 130mV, 145mV, 160mV, 175 mV, and 190 mV respectively from top to bottom and left to right, acquired at 

VBG = 21.8 V and VTG = 0.458 V. The red dot labels one typical electron-filled AB1 site where a discharging ring can be 

observed that gets larger and brighter with increased Vbias. 

 



integrating laser excitation with STM [Fig. 8(A)]. Originating from the competition between the 

electron-hole Coulomb interaction and the moiré potential landscape, ICT moiré excitons own a 

special characteristic of producing opposing tunneling currents based on the tip's position over 

the exciton [Fig. 8(B)]. Utilizing this property, Hongyuan, et al. constructed a photocurrent map 

of t-WS2 under specific conditions with a laser power of 600uW, a bias voltage (Vbias) of -0.60V, 

and a bottom gate voltage (VBG) of 0 [Fig. 8(C)&(D)]. This map revealed positive photocurrents 

at AB sites and negative photocurrents at BW/W sites, providing experimental evidence for the 

presence of ICT moiré excitons [Fig. 8(E)]. Furthermore, both computational and experimental 

data presented by Hongyuan, et al. indicated that the bias voltage range for the coexistence of 

positive photocurrent at AB sites and negative photocurrent at BW/W sites is approximately 

200mV [Fig. 8(F)]. The development of the PTM technique for the first time enables imaging 

of ICT moiré excitons with sub-nanometer resolution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 (A) Sketch of experimental setup for laser-STM measurement of a near-58-degree twisted bilayer WS2 (t-WS2) device. 

The hBN and graphite substrate serve as the gate dielectric and back gate respectively. A back gate voltage VBG is applied 

between the t-WS2 and the graphite back gate. A graphene nanoribbon (GNR) array is placed on top of the t-WS2 to serve as 

the contact electrode. A sample-tip bias Vbias is applied between the t-WS2 and the STM tip to induce a tunnel current. A 520nm 

wavelength continuous-wave laser is focused on the tip tunnel junction. (B) Schematic for tip-position dependent tunnel 

current from an ICT exciton. When the STM tip sits above the electron (top panel) the larger tunnel probability for the electron 

yields a negative current. A positive current is detected when the tip sits above the hole (bottom panel). (C)&(D) STM tunnel 

current spectra measured at the (C) BW/W and (D) AB stacking sites with the laser turned off (orange) and on (blue). VBG = 0. 

For the laser-off case, the current at both the BW/W and the AB sites reflect an energy gap for -2V <Vbias< 1V. For the laser-on 

case (P = 600uW), photocurrent emerges in the energy gap region and the BW/W and AB sites show different photocurrent 

spectral shapes. (E) A photocurrent map of t-WS2 measured with the laser on (P = 600uW) for Vbias = -0.60V and VBG = 0 

shows positive (negative) photocurrent at the AB (BW/W) sites. (F) Evolution of t-WS2 photocurrent maps for increasing Vbias 

at -985mV, -889mV, -793mV. -697mV, and -602mV respectively from top to bottom and left to right. Spatially alternating 

current polarity occurs for a Vbias range of ~200mV, existing only in the three Vbias in the middle, while negative (positive) 

current dominates in the lowest (highest) Vbias. (G) Diagrams of tip-induced ICT exciton dissociation effect, where V0 is the 

bias voltage offset that compensates the work function difference between the tip and the back gate graphite. For Vbias – V0 ≈ 

0, the tip does not significantly perturb the ICT exciton, hence both photocurrent polarities are seen. For Vbias – V0 > 0, negative 



 

 

 

 

 

 

3. Conclusion and Outlook  

In this spotlight article, we have discussed the development of STM studies on imaging 

and characterizing TMD moiré superlattices. This evolution has significantly expanded our 

understanding of these intricate systems, through continuous innovation of device design, 

integration of photon excitation with STM, and meticulous research. Initially, the samples that 

are suitable for STM study were predominantly grown using chemical vapor deposition (CVD) 

on graphite substrates. This method facilitated the observation of electronic band structural 

influenced by the periodic moiré potential221. Notably, evident quantum-confined states near 

the band edge at stacking configurations ABw and ABSe were identified, corroborated by 

constant-height conductance maps and the NFE model222. However, CVD-grown samples 

presented challenges, including compromised sample quality and limited control over stacking 

order and twist angle. The use of conductive substrates further introduced strong Coulomb 

screening, impeding the exploration of strongly correlated phases218-220. 

To enhance sample quality, the focus shifted to mechanically exfoliated samples, offering 

superior control over TMD moiré pattern formation. These samples elucidated variations in 

electronic structures of TMD superlattices attributable to different twist angles. Initially, the 

exfoliated sample was transferred to a graphene substrate223. Addressing the conductivity 

challenges of TMD heterostructures at low temperatures, researchers transitioned to insulating 

substrates like hBN, incorporating graphene nanoribbons as contact electrodes on the top of the 

samples. Combining both mechanical exfoliation approach and insulating substrates, this 

innovative design facilitated the examination of strain redistribution and 3D buckling in TMD 

heterostructures, confirming the presence of strongly correlated flat bands with low electron 

kinetic energy226. Taking advantage of the strong Coulomb interaction within TMD 

superlattices, this new device also enabled the imaging and manipulation of correlated electron 

charge states by adjusting the STM tip bias227. 

Given the inherent properties of TMD moiré superlattices, including quenched electron 

kinetic energy and strong electron-electron correlations, the potential emergence of a 

generalized Wigner crystal state was expected. However, perturbations from the STM tip 

presented observational challenges. To get rid of such perturbations, a graphene sensing layer 

was introduced atop the TMD moiré pattern234. This layer facilitated electron transfer to 

graphene when the TMD heterostructure exhibited electronic incompressibility under certain 

fractional fillings and the bias voltage surpassed a threshold. Beyond mere tunneling electrons, 

optical excitations have also garnered interest in STM studies. A prime example is the 

measurement of photocurrent, highlighting advancements in visualizing photoexcited in-plane 

charge-transfer moiré excitons in TMD heterostructures by probing the opposing tunneling 

current across exciton sites235. 



Apart from the previously mentioned correlated phenomena, STM shows a promising 

future in exploring other correlated features of moiré quantum phases as well, such as the 

correlated insulator state70, 148, 152, 179, 236-246 and superconductivity122, 247-254 in TMD moiré 

materials. For example, the charge-transfer insulator state emerges in multiple TMD materials 

when on-site Coulomb repulsion dominates electron kinetic energy at one hole per superlattice 

site (corresponding to half-band filling)70, 255. This state corresponds to the freezing of the 

charge degree of freedom, allowing electrons only to move between anion-like and cation-like 

orbitals within the unit cell, to reduce on-site Coulomb repulsion247. Meanwhile, collective spin 

excitations from local magnetic moments dictate the low-energy dynamics. This phenomenon 

has been corroborated through temperature-dependent magnetic circular dichroism (MCD) 

measurements, taking advantage of the spin-valley-locked band structure and the valley-

dependent optical selection rules inherent to monolayer TMDs32, 70, 128, 150, 256. Additionally, the 

spin relaxation lifetime in the charge-transfer insulator state was found to be significantly longer 

than that of charge excitations and further studies are needed to investigate how the persistent 

spin excitations from the charge-transfer insulator state can elucidate its spin configuration148. 

Aiming to reduce the overall Coulomb repulsion in TMD heterostructures at half-filling, doping 

with holes results in the formation of tightly-bound charge-2e excitations, known as trimers, 

which comprise a pair of holes bound to a charge-transfer exciton247. When the bandwidth of 

doped holes is small, the trimers form insulating pair density waves at specific doping levels, 

denoted as n= 1+p/q >1, where p and q are integers, with periodicity in alignment with the 

moiré lattice. As the bandwidth approximates the pair binding energy, a resonant interaction 

occurs between itinerant holes and charge-2e trimers, leading to unconventional 

superconductivity. The complexity and intrigue surrounding these correlated electron 

phenomena necessitate a microscopic understanding, underscoring the significant potential of 

STM in advancing future research. 

In addition to the demonstrated successes in hard condensed matter phases, TMD moiré 

systems also hold significant potential in the field of chemistry 151, 181, 255, 257-260, particularly 

concerning charge transfer behavior. For example, recent studies have observed modification 

of the chemical reactivity of the moiré heterostructures, which is attributed to the interplay 

between the moiré potential and Coulomb interactions. In the case of WSe2/WS2 

heterostructures with a 3° twist angle, STS detected charge transfer occurring over distances on 

the order of 10 nm, from MM to MX spots. This phenomenon is a consequence of increasing 

filling factors and the resulting rise in repulsive interaction particularly in the context of charge 

transfer behavior255. Moreover, the twist angle itself has been identified as a critical variable in 

modulating charge transfer kinetics within moiré patterns257. In the case of twisted bilayer 

graphene with a twist angle below 5°, the observed intrinsic electron transfer rate at AA sites, 

where flat bands are localized, significantly exceeds predictions made by the Gerischer-Marcus 

model. This significant local electrochemical enhancement is optimized near the magic angle 

of 1.1° and is attributed to the presence of moiré-derived highly localized flat bands and the 

structural relaxation of the moiré superlattice.  

Looking ahead, we foresee that manipulating the moiré potential will emerge as a central 

strategy for both manipulating the electron correlated phenomena and enhancing chemical 

reactivity. Notably, many of these phenomena remain unexplored at the nanoscale, signaling 

the existence of a vast research frontier yet to be traversed. In this endeavor, STM is poised to 



be an invaluable tool for navigating these uncharted waters with unparcelled spatial visibility. 
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