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ABSTRACT  
This paper describes the development, implementation, and testing of a GNSS jammer localizer using power measurement 
profiles collected during un-crewed aerial system (UAS) fly-bys. A linearized measurement equation based on the Friis power 
transmission formula is derived in which RF channel propagation parameters are grouped into a single parameter for estimation. 
Synchronized power and UAS position measurements are processed in a batch-type sequential non-linear least squares 
algorithm for simultaneous estimation of static jammer position and received power model parameters. We develop a low size, 
weight, power, and cost (SWAP-C) quad-rotor UAS test bed that can collect and time-stamp power measurements with UAS 
position. Since GNSS jamming is illegal, a LoRa 868 MHz transmitter is used as a surrogate GNSS jammer during field testing 
– providing Received Signal Strength Indicator (RSSI) measurements to the LoRa receiver onboard the UAS. Testing is 
conducted at the Virginia Tech Kentland Experimental Aerial Systems Lab, where emitter localization is evaluated for three 
different trajectories. Experimental performance analysis suggests that meter-level localization accuracy is achievable with 
prior knowledge on source location and by accounting for antenna gain pattern variations over time in the estimation process 
with a first order Gauss Markov Process. 
 
1 INTRODUCTION 
In this paper, we develop, implement, and test a sequential, non-linear estimation method aimed at localizing a single, static 
RF emitting source using received power measurements. The prototype hardware is designed for field testing of RF interference 
(RFI) localization using a LoRa (868 MHz) protocol device as a surrogate for illegal GNSS jamming.  The algorithm is 
implemented on an un-crewed aerial system (UAS) carrying a low-cost LoRa receiver. Signal power variations during UAS 
fly-bys are used to localize the signal source. Testing performed using a quad-rotor shows that transmit power and emitting 
antenna gain variations must be estimated simultaneously with source position to achieve meter-level localization. 
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Military conflict regions around the world have experienced an increase in wide-area radio frequency interference (RFI), 
including in Syria since 2018 (Liu, 2020), near the Russia – Ukraine border in 2020 and 2021 (Goward, 2021; Jones, 2020), 
and with increased intensity and spread in the Eastern Mediterranean Sea since October 2023 (Murfin, 2023). Such high-power 
jammers are observable at far-away locations and have been successfully localized using Low Earth Orbit (LEO)-based 
receivers.  
 
Civilian applications are subject to RFI as well.  Wide-area GNSS interference events, including the one near the Dallas–Fort 
Worth airport on October 17 and 18, 2022 have been investigated but their source has yet to be identified (Joerger et al., 2023).  
Low power RFI from low-cost commercially-available GNSS jammers, including personal privacy devices (PPDs), are 
widespread but only locally observable (Pul1en & Gao, 2012). PPDs used by motorists have caused GNSS service disruptions 
at major airports and along busy aviation corridors (Jada, 2022).  
 
The increase in RFI events motivates the development of RFI source detection and localization strategies. Since these devices 
are concealable and commercially proliferating, a lightweight, cost effective, and swiftly deployable system is required. 
Authorities wishing to mitigate jamming require warrants to search vehicles.  They therefore need high-confidence jammer 
position estimates, with meter-level accuracy to single-out a vehicle in a parking lot of a port or warehouse. The estimator and 
test bed in this work assumes that localization takes place at one of these facilities, where ground detectors like those discussed 
below can provide an initial guess on RFI source position.   
 
Prior work on GNSS jamming detection includes monitoring of carrier to noise ratio (C/N0) (Borio & Gioia, 2015), relative 
received power at GPS L1 frequency band (Jada et al., 2021, 2022, 2023), and direction of arrival (Marcos et al., 2018). These 
methods provide detection but do not enable source localization.  
 
Fixed antenna systems can be locally effective for localization, but they may not be widely scalable. The RFI monitors presented 
in (Bauernfeind & Eissfeller, 2014; Šture et al., 2019) only monitor a limited region – and require multiple stations to perform 
localization. An earlier implementation, the generalized interference detection and localization system (GIDL), demonstrated 
sub-meter accuracy when receiver geometry is favorable (Gromov et al., 2000). In general, fixed antennas may not provide 
sufficient accuracy but could direct the deployment of more local RFI localization systems – such as fixed-wing or multi-rotor 
drone-based solutions. 
 
Un-crewed Aerial Systems (UASs) offer a platform to precisely search a local region. Localization can be performed since a 
UAS-based receiver makes observations from multiple locations. Regarding UAS localization, prior experimental work in the 
presence of live jamming shows that UAS GPS-based positioning is possible if the UAS stays far enough from the source to 
avoid being jammed, but close enough to observe power variations at GPS frequencies.  While remaining at a safe distance 
from a jammer, observed power variations were an order of magnitude larger than nominal power without the positioning 
accuracy of a standard GPS receiver (located at the monitor’s location) being altered (Jada et al., 2022). 
 
UAS deployment requires little infrastructure and enables line-of-sight collection of RFI signals that would be occluded at 
ground-based receivers. Prior work on UAS-based RF source localization includes using angle of arrival, which requires 
calibrated directional antennas (large size, weight, power, and cost (SWAP-C)) and constrained UAS rotation (Perkins et al., 
2016; Wu, 2018). Multi-UAS collaborative approaches can eliminate the need for angle of arrival measurements (Bhamidipati 
& Gao, 2018, 2019; Güzey, 2022; Liu et al., 2022) but may not be as cost-effective or scalable as single UAS strategies.  
 
Real-time reinforcement learning and particle filtering approaches have been proposed for deployment on single UAS systems 
(Hasanzade et al., 2018; Wu, 2018). These are computationally expensive algorithms – resulting in high SWAP-C platforms. 
This is addressed by Kwon and Guvenc (2023) by using linear least squares (LLS) localization algorithms. However, they 
implement a large matrix of predefined trajectory waypoints that require long flight durations for wide area coverage - 
something that could prove challenging for a low cost or small footprint UAS system.  
 
In this paper, we develop a non-linear least squares (NLS) localization algorithm with a-priori state knowledge that leverages 
range variations over multiple UAS fly-bys to localize the RFI source. Range variations are derived from power measurements 
modeled using the Friis power transmission formula. Unknown source antenna gain variations over line-of-sight changes during 
UAS flyby are modeled as a time-correlated random process.  We also design a UAS-based RFI source localization test bed 
using low SWAP-C components. The regulations on transmitting at GPS L1 make data collection and field testing of GPS 
jamming challenging. Instead, we use the LoRa (“long range”) communication protocol as a surrogate RFI signal to collect 
relative power measurements at the 868 MHz frequency.  
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The remainder of this paper is organized as follows.  In Section 3, we derive the power measurement error model and its 
incorporation in a NLS localization algorithm.  Section 4 outlines the test bed architecture.  Section 5 presents experimental 
results.  Concluding remarks are given in Section 6.  
 
2 BACKGROUND AND JAMMER LOCALIZATION PRINCIPLE 
 
2.1 Background and Motivation: Field Observations 
In prior work (Jada et al., 2021, 2022), we processed months of GNSS carrier to noise ratio (C/N0) data from Continuously 
Operating Reference Stations (CORS) and from the International GNSS Service (IGS).  We implemented the high-sensitivity, 
self-calibrating C/N0 monitors developed in (Jada et al., 2021) to detect drops in C/N0 simultaneously occurring on all GPS 
L1 satellite signals, which are a strong indication of jamming.   
 
An example result of this research is shown in Figures 1(a)-(b) for C/N0 monitoring near the Schriever Air Force Base in 
Colorado Springs, Colorado during the months of January to August 2022.  Figure 1(a) shows detected events on a day-of-year 
(y-axis) versus time-of-day (x-axis).  The color-code from blue to red represents days of the week, from Monday to Sunday.  
The marker size shows the intensity of the detected event as measured by the test statistic described in (Jada et al., 2022).  The 
window insert shows an example event where the GPS L1 C/N0 drops for all 10 satellite signals visible at that time and location.  
The C/N0 then quickly rises again to its nominal value indicating that the vehicle carrying the jammer quickly approached and 
left the location.  Figure 1(b) is a histogram of the number of detection occurrences versus day of week.  Figures 1(a)-(b) 
suggests that the user of a jammer is regularly driving to and from a daily activity (probably work) every weekday at 6:00AM 
and 2:00PM, respectively. 
 
This regular pattern makes jamming at that location predictable. We deployed our own dedicated equipment, including an RF 
front-end receiver (a Universal Software Receiver Peripheral, or USRP) and collected power data at that location.  The resulting 
measurements, in uncalibrated RF front-end units, are shown in Figure 1(c).  This is “live” jamming data from a fast-moving 
jammer collected at a slowly moving location driving in the opposite direction.  Figure 1(c) shows an increase in received 
power, reaching up to ten times the nominal power level followed by a decrease in received power.  A sudden dip in received 
power at time 219 s was probably caused by line-of-sight occlusion from another vehicle driving between emitter and receiver.      
 
 
 
 
 

 
FIGURE 1 Relevant prior research in (Jada et al., 2022) (a) C/N0-based detection events,  (b) Number of detected events per 
day of week, (c) Power profile of a car-based jammer observed at a static receiver. 
 

Example event

(a) (b) (c)

5 seconds

1171



Many such power profiles were observed during our data collection campaigns both at static and moving receivers.  In parallel, 
we collected data from a commercial u-blox M8 receiver to perform sanity checks.  In most cases, including in the case of 
Figure 1(c), the u-blox receiver seemed unaffected by the interference:  the u-blox receiver kept track of its position and did 
not exhibit significant C/N0 variations during the event.  This suggests that if the power monitor is sensitive enough, RFI 
sources can be detected and localized while maintaining GNSS service for use by the UAS. After spectrogram analysis, we 
determined that the jammer in Figure 1(c) was a personal privacy device (PPD).  This supports the use of a UAS in the presence 
of these style of jammers, as GPS can be used to determine the position of a (moving) jammer-localizer (such as a UAS) as 
long as the jammer-localizer stays far enough from the RFI source. 
 
2.2 Jammer Localization Principle 
This paper addresses the use case of a jammer entering a facility that needs to be protected against RFI, such as an automated 
port, airport, or delivery warehouse. Figure 2 illustrates a conceptual overview of the system. We assume that fixed ground 
monitors at the facility’s entry points, or other wide-area monitors like those mentioned in Section 1, are able to detect jammers.  
Such detection triggers the deployment of one or more UAS.  The UAS uses the ground monitor’s indication as rough prior 
knowledge of the jammer’s location.  It flies to that approximate location with the objective of localizing the source of emission 
with meter-level accuracy. This position estimate must be accurate enough to identify the jammer-carrying vehicle.  This 
estimate can then be used as evidence by competent authorities at the Federal Communications Commission (FCC) to perform 
a search of the designated vehicle.   
 

  
 

FIGURE 2 Overview of the jammer localization concept. 

 
3 POWER-BASED JAMMER LOCALIZATION ALGORITHM DERIVATION 
A UAS flying by an RFI source experiences a peak in received power at the UAS-to-jammer closest point of approach (CPA), 
as long as the UAS maintains an un-obstructed line-of-sight (LOS) to the jammer.  If the emitting and receiving antennas have 
isotropic gain patterns, the received power should ramp-up and ramp-down as the UAS approaches and departs from the static 
jammer location.  In a more realistic scenario, this profile can only be roughly observed because of unknown antenna gain 
variations.  This rough profile is exploited in this implementation to estimate the jamming location and evaluate jamming 
localization accuracy.  This section describes the non-linear received power measurement model, its linearization, and its 
incorporation in a jammer localization algorithm.  
 
3.1 Received Power Measurement Model 
Uncalibrated received power measurements, including those given by the LoRa device’s received signal strength indicator 
(RSSI) which serve as surrogate RFI, can be modeled using the Friis power transmission formula (Wang et al., 2012).  In units 
of decibels of milli-Watts (dBm), this formula can be expressed as (Seidel & Rappaport, 1992) 
 

  
2

10 210log
(4 )RX TX TX RX PnP P G G v

d




 
     

 
  (1) 

 
where 

RXP  is the received power measurement in dBm, 

TXP   is the unknown jammer transmitted power in dBm, 
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TXG  is the unknown transmit antenna gain in the direction of the receiver, which is unitless and often specified in dBi, 
i.e., as a multiplying factor in log-scale relative to an isotropic antenna, 

RXG  is the receiver antenna gain in the direction of the transmitter, in dBi, which may not be calibrated, 
   is the emitted signal wavelength, in unit of length, which is roughly known when targeting a jamming signal (e.g., 

centered at GPS L1), 
d   is the emitter-to-receiver distance in unit of length, 
n  is the signal path loss coefficient, also referred to as environmental factors’ coefficient, 

Pv  is the received power measurement error in dBm.   
 
Based on offline analysis of nominal received power measurements obtained both at GPS L1 using a USRP and at 868MHz 
considering a LoRa receiver’s RSSI, we assume that Pv  is normally distributed with zero mean and variance 2

P .  We use the 
notation: 2~ (0, )P Pv N  .   
 
A modified version of Equation (1) is used to capture the facts that: (i) we are not able to distinguish unknown quantities, (ii) 
we assume uncalibrated received power measurements scaled by an unknown constant quantity, and (iii) some terms other than 
d  will vary during UAS fly-by.  The modified version of Equation (1) is given by 
 

 1010 log ( )RX E E PP n d P v        with   1020log
4E E TX TX RXP P G G 




 
      

 
 (2) 

 
where 

EP  is a constant term that accounts for the constant components of TX TX RXP G G  + 1020log ( / 4 )  , and for 
possible scaling constants, 

E   is a time-varying term that accounts for changes in TX TX RXP G G   which are expected because PPD antennas 
(e.g., dipole antennas) are anisotropic and cause received power variations as the line-of-sight to the UAS-carried 
receiver changes during fly-by.    

 
In this phase of the research, a reasonable compromise between model fidelity and practicality is to assume that E is a time-
correlated random variable that can be modeled as a first order Gauss Markov process (FOGMP) such that: 2~ (0, )E EN   
with a time constant E  that will be determined using experimental data.  Modeling time-correlation is reasonable in the sense 
that variations are caused by changes in emitter-to-receiver line-of-sight, which vary over time.  It is practical because FOGMPs 
are easily incorporated in sequential estimators such as Kalman filters by state augmentation, or in batch estimators as will be 
shown below.  
 
We can express the distance d as a function of the three-dimensional jammer position coordinate vector Jx (unknown parameter 
of interest) and the known UAS position vector UASp , both set in local East-North-Up (ENU) navigation frame. We will account 
for uncertainty on UASp  in Sections 3.2.  The emitter-to-receiver distance d is given by: 
 

  2 2 2( ) ( ) ( )E E N N U Ud p x p x p x        (3) 
 
where  

T

J E N Ux x x   x    and   
T

UAS E N Up p p   p   (4) 

 
We use the vector norm notation  UAS Jd  p x  (5) 
 
Thus, the non-linear received power measurement equation can be expressed as 
 
   RX E PP h v  x     (6) 
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where      1010 log ( ) Eh n d P  x    and   
TT

J EP n   x x   (7) 

 
Vector x is the vector of unknown state parameters to be estimated. 
 
3.2 Linearized Measurement Equations 
Using a first order Taylor series approximation to linearize ( )h x  about an initial guess x  of the state vector x, Equation (6) 
becomes 
 
     T

RX E PP h v    x h x x  (8) 
 

where  
TT

J EP n   x x  (9) 

 
The initial guess Jx  can be computed by the ground monitor and only needs to provide enough accuracy to deploy the UAS 
toward the affected region.  Nominal values on EP  and n  are given in Section 5 and are sufficient for the algorithm to quickly 
converge. EP can also be estimated at initialization using Equation (2) given n , Jx , and an initial measurement RXP .  The 1 5  
observation vector Th  is expressed as 
 

  10
( ) ( ) ( ) ( ) 10 1 10log

ln(10)
T T

J E

h h h h n d
nP d

      
     

     x x

x x x xh e
x x

 (10) 

 

where  UAS Jd  p x   and   
( ) ( )T T

T UAS J UAS J

UAS J d
 

 


p x p x
e

p x
 (11) 

 
and ln( )  is the natural logarithm function.  We can express d  as ( )T

UAS Jd  e p x . 
 
The error in the estimate ˆUASp  of the UAS position vector UASp  is defined as 
 
  ˆδ UAS UAS UAS p p p  (12) 
 
The main impact of δ UASp  in Equation (8) is on ( )h x , which can be expressed as 
 

  

10

10

10

10

( ) 10 log ( )

ˆ10 log ( +δ )

δˆ10 log ( ) 1
ˆ( )

ˆ10 log ( )

T
UAS J E

T
UAS UAS J E

T
T UAS

UAS J ET
UAS J

T
UAS J E UAS

h n P

n P

n P

n P v

     

     

  
      

   

      

x e p x

e p p x

e p
e p x

e p x

e p x

 (13) 

 

where  10
δ

10 log 1
ˆ( )

T
UAS

UAS T
UAS J

v n
 

   
 

e p
e p x

. (14) 

 
For small values of the UAS positioning error δ UASp , Equation (14) becomes 
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δ 0 10 δ

ˆln(10)

UAS
T

UAS UAS
UAS J

nv





p

e p
p x

  (15) 

 
The random variable δ UASp  in Equation (15) is assumed to be obtained using Real Time Kinematic (RTK) GNSS and can be 
modeled as a zero mean normally distributed random vector, such that UASv  is be modeled as  
 

  2~ (0, )UAS UASv N     with    
2

2 2
22

100

ˆ[ln(10)]
T

UAS UAS UAS

UAS J

nE v  


e P e
p x

  (16) 

 
where  E  is the expected value operator and UASP  is the 3×3 UAS positioning error covariance matrix.   
 
Substituting Equation (13) into (8) and rearranging to group all known terms on the left hand side, we obtain the following 
scalar linearized measurement equation: 
 
  Tz v h x  (17) 
 
where  10 ˆ10 log ( )T T

RX UAS J Ez P n P      e p x h x    and   UAS E Pv v v     (18) 
 
3.3 Non-Linear Least Squares Estimator 
Power measurements kz  are collected at time step k  at time kt , for 1,...,k q , i.e., over the duration of one or more UAS fly-
bys to estimate the constant state parameter vector x .  In this early implementation, we post-process data in a batch non-linear 
least-squares (NLS) estimator using a Newton-Raphson method with a priori information.  Future implementations will explore 
sliding window mechanisms and extended Kalman filters.  The linearized batch measurement equation is written as: 
 
   z Hx v  (19) 
 

where   
1

q

z

z

 
 

  
 
 

z    ,   
1
T

T
q

 
 

  
 
 

h
H

h
   ,   and   

,1 ,1 ,1

, , ,

E UAS P

E q UAS q P q

v v

v v





  
 

  
   

v . 

 
Over an interval it  to jt , the discrete-time FOGMP can be expressed as 
 

  , ,j i j i iv        where    | |/
,

i j Et t
i j e 


 

  
 
The FOGMP driving noise ,iv  is zero mean white Gaussian noise.  The measurement error model assumptions in Sections 3.1 
and 3.2 are captured in the following q×1 measurement error vector model: 
 
  ~ ( , )Nv 0 V  (20) 
 

with  

2 2 2 2 2
,1 1,2 1,

2 2 2 2
1,2 ,2

2 2 2 2
1, ,

E UAS P E E q

E E UAS P

E q E UAS q P

      

    

    

  
 

  
 
 

   

V . 

 
Matrix V is a Toeplitz matrix, which makes it easy to construct in practice.  The time correlation due to UAS positioning errors 
is small relative to that of E  and is neglected in this implementation. 
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Section 3.2 describes the initial guess x  ( [ ]T T

J EP nx x ) on the state vector.  We assume the following prior knowledge 
covariance matrix:  
 

  2

2

0
0

J

E

n





 
 

  
 
 

P 0 0
P 0

0
 (21) 

 
We derive a state estimate vector x̂  and its covariance matrix P̂  (and, over multiple iterations, we refine the linearization point 

*x  (initially, * x x ) and the resulting coefficients of
*

* 
x

H H H ) using the following equations:  

 
  1

* * * *ˆ ( ) ( )T T    x x PH V H PH z H x  (22) 
 
 1

* * * *
ˆ ( )T T   P P PH V H PH H P  (23) 

 
We monitor the following convergence metric: 
 
  1

* *
ˆˆ ˆ( ) ( )T  x x P x x  (24) 

 
which decreases exponentially in all experimental tests described below. 
 
 
4 EXPERIMENT SETUP 
 
4.1 Test Bed 
Figure 3 shows the test bed, which consists of a quad-rotor UAS equipped with an RF receiver, a surrogate jammer providing 
RSSI measurements, a lightweight onboard computer to collect and time-stamp position and power measurements, and a ground 
station for UAS telemetry and RTK corrections. 
 

 
FIGURE 3 Hardware setup at the Virginia Tech Kentland Experimental Aerial Systems lab (KEAS): (a) Control, 
RTK reference, and surrogate jammer stations (b) RTK-configured quad-rotor UAS with onboard PC  (c) Heltec 

LoRa ESP32 development board with antenna.  
 
Figure 4 gives an overview of the experimental hardware components.  The UAS uses a flight controller with integrated IMU 
and RTK-GPS receiver to fly pre-determined trajectories and estimate UAS locations with sub-meter-level accuracy. The 
surrogate jammer and monitor are ESP32 LoRa development boards, one mounted to a tripod acting as a jammer while the 
other is onboard the UAS. These transceivers exchange data packets using a LoRa protocol over 868 MHz frequency from 
which RSSI is extracted at the UAS. A Raspberry-Pi 4 is mounted on the UAS to collect and time-stamp RSSI and vehicle 
pose using the Robotic Operating System (ROS).  
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FIGURE 4 Experimental hardware and communication architecture. 

 
The hardware in Figure 4 was selected for its low SWAP-C characteristics and commercial availability. Future implementations 
where jammer localization is performed in flight to localize actual GNSS jammers will require more capable onboard computer 
and a software-defined receiver. 
 
4.2 Experiment Scenarios 
Three flight scenarios were planned as shown in Figure 5. The first two tests were conducted with the UAS serving as a mobile 
sensor payload that was held 1.5-meter-high and walked in a desired trajectory near the surrogate jammer. The third experiment 
was performed with the UAS flying a pre-planned trajectory roughly 5 meters above the RF source.  These trajectories are 
intended to provide LOS measurements oriented in both the East and North directions. While the RF sensors, onboard computer, 
and ground station hardware were identical for each experiment, the UAV and associated flight controllers used in the hand-
held and flying experiments were different models. The experiments were performed in the VT KEAS test area without any 
occlusions between transceivers. The data was post-processed in MATLAB.  
 

    
                        (a)                                                         (b)                                                          (c) 

 
FIGURE 5 Maps of three planned flight trajectories: (a) (carried) Circling, (b) (carried) Lawnmower, and (c) Flying  
 
 
5 EXPERIMENTAL RESULTS 
Table 2 lists initial state and measurement error model parameter values used for all three experiments. The initial location 
assumed on the location of the jammer differs for each experiment, but is within 5 meters in all three dimensions of the true 
location for the given experiment.  
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TABLE 2  

Localization parameters and initial conditions 

Parameter Initial Value Units 
T
Jx   , 5 5 5T

J true x  m 

EP  -85 dBm 
n  2.1 unit-less  

EP
  20 dBm 

J  10 m 

EP  10 dBm  

P  15 dBm  

n  0.5 unit-less 

UAS  0.09 m 

E  30 s 
 
 
5.1 Data Set 1:  Carried Payload – Circling Trajectory 
Figure 6 shows the algorithm’s performance in modeling distance and received power (RSSI) compared to true and measured. 
Figure 6(a) shows the measured receiver power, RXP , as a function of true distance to the jammer: ,true UAS J trued  p x . The 

estimated RSSI model is received power estimated over time as:  10
ˆˆ ˆ ˆ10 logRX EP P n d  , where ˆ ˆUAS Jd  p x . Figure 6(b) 

compares trued  to d̂ over time, while figure 6(c) does the same for RXP  and R̂XP . The light blue shaded region is the estimated 
RSSI uncertainty (1σ).  

 
FIGURE 6 Model vs measured values for the carried circling experiment conducted on 7/11/2023, where: (a) received 

power (RSSI) vs distance between recievers, (b) distance between recievers over time, and (c) RSSI over time. 
 
Both estimated jammer-UAS distance and RSSI model track with the true and measured values closeley. Figure 7 shows the 
full trajectory with a final three-dimensional (3D) jammer location estimate error of 0.8m, which is within the predicted jammer 
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position estimate covariance ellipse.  By circling the source, adequate measurements were taken in both the North and East 
directions, leading to a near circular 1σ estimate error covariance ellipse. 
 

 
FIGURE 7 UAS trajectory, measured RSSI, and true and estimated jammer location for the circling carried experiment 
conducted at KEAS on 7/11/2023.  
 
5.2 Data Set 2:  Carried Payload – Lawnmower Trajectory 
Figures 8 and 9 show the same performance metrics as above for the carried lawnmower trajectory experiment conducted on 
9/11/2023. Figure 9 shows the semi-minor axis of the position estimate error covariance ellipse aligned in the northeast 
direction, which is expected from greater motion and more measurements taken in the northeast direction for this trajectory. 
The final 3D jammer position estimate is 1.3m to the northeast of the true location of the jammer.  

  

 
FIGURE 8 Model vs measured values for the carried UAS in a lawnmower pattern experiment conducted on 9/11/2023, 
where: (a) received power (RSSI) vs distance between recievers, (b) distance between recievers over time, and (c) RSSI over 
time.  
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FIGURE 9 Experimental RF source localization result for the UAS flight experiment on 9/11/2023. 

 
5.3 Data Set 3:  Flying Payload  
Figures 10 and 11 show the performance of the localizer during the UAS flight experiment conducted on 12/24/2023. Figure 
10(b) and (c) show that the model fits the sparse data well. Figure 10(a) shows the estimated RSSI (blue) as a function of UAS-
jammer distance. In Figure 10 (b), d̂  does not match trued  as closely as in previous data sets.  Sparse data collection in the first 
leg of the experiment were due to occlusions caused by the UAS battery. This can be seen when comparing Figure 5(c) to the 
northwest section of Figure 11.  
 
The RSSI heat map in Figure 11 does not match expectations nearly as well as in the carried experiments. All three northeast-
aligned legs of the trajectory show power measurements that are inconsistent with the concept that received power increases as 
the UAS approaches the source. Yellow and green markers at the northeast-most sections of the trajectory are separated from 
the jammer’s true location by weak power readings (blue). This indicates the presence of an occlusion (battery, or part of the 
UAS).  Other contributing factors include antenna gain pattern effects not observed in the previous experiments where the two 
transceiver antennas were nearly coplanar.  In particular, power drops can be explained by the UAS vertical dipole antenna 
flying at a higher altitude near the zenith of emitter’s vertical dipole antenna.  The two antenna’s combined effect may explain 
the gap in power measurements between 160s and 200s in Figure 10(c). Future work will further analyze the impacts of antenna 
gain patterns.  In Figure 11, the jammer’s 3D position estimate was 3.8 meters off of the true position. 
 

  
FIGURE 10 Model vs measured values for the flying experiment conducted on 12/21/2023, where: (a) received power 
(RSSI) vs distance between recievers, (b) distance between recievers over time, and (c) RSSI over time.  
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FIGURE 11 UAS trajectory, measured RSSI, and true and estimated jammer location for the flying experiment on 
12/21/2024.  
 
 
6 CONCLUSION 
We developed and tested a method for localizing a GNSS jammer using power measurements collected on a UAS flying a pre-
planned trajectory. A linearized power measurement equation based on Friis’ power transmission law was implemented in a 
NLS sequential batch estimation algorithm. Three experiments were conducted with different trajectories using an 868 MHz 
LoRa WiFi as a surrogate jammer. Meter-level RF source localization errors in all directions were achieved across experiments 
when coarse prior knowledge on jammer location is provided and variations due to unknown RF transmission parameters are 
accounted for using a first order Gauss Markov process.  Future work includes further sensitivity analysis of the impacts on 
localization accuracy of received power model fidelity and prior knowledge of jammer location.  
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