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NONLOCAL BOUNDED VARIATIONS WITH APPLICATIONS*

HARBIR ANTIL!, HUGO DIAZ}, TIAN JINGS, AND ARMIN SCHIKORRAY

Abstract. Motivated by problems where jumps across lower dimensional subsets and sharp
transitions across interfaces are of interest, this paper studies the properties of fractional bounded
variation (BV)-type spaces. Two different natural fractional analogs of classical BV are considered:
BV, a space induced from the Riesz-fractional gradient that has been recently studied by Comi-
Stefani; and bv®, induced by the Gagliardo-type fractional gradient often used in Dirichlet forms and
Peridynamics — this one is naturally related to the Caffarelli-Roquejoffre-Savin fractional perimeter.
Our main theoretical result is that the latter bv® actually corresponds to the Gagliardo-Slobodeckij
space W1, As an application, using the properties of these spaces, novel image denoising models
are introduced and their corresponding Fenchel pre-dual formulations are derived. The latter requires
density of smooth functions with compact support. We establish this density property for convex
domains.
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1. Introduction. In recent years, fractional calculus and nonlocal operators
have emerged as natural tools to study various phenomena in science and engineering.
Unlike their classical counterparts, fractional operators have several distinct abilities,
for instance, they require less smoothness and they are nonlocal in nature. Such
flexibilities have led to multiple successes of fractional derivative-based models in
practical applications. For instance, magnetotellurics in geophysics [44], viscoelastic
models [33], quantum spin chains and harmonic maps [17, 30, 3], deep neural networks
[4], repulsive curves [45], etc.

A fundamental concept in inverse problems, such as image denoising, is the use
of regularization. The article [2] introduced the fractional Laplacian as a regularizer
in image denoising as an alternative to well-known approaches such as total-variation
regularization. Subsequently, this model has been successfully used by various au-
thors in imaging science as it provides a behavior that is closer to total variation
based approaches [28], but it is easy to implement in practice. The current paper
is motivated by these observations. We also refer to [23] for a different (discrete)
nonlocal regularization in imaging.

Fundamental developments are being made in fractional calculus. In fact, now
there exist notions of fractional divergence and gradient. The aforementioned frac-
tional Laplacian, for instance, can be obtained by the composition of fractional di-
vergence and fractional gradient. This is similar to the classical integer order setting.
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2 H. ANTIL, H. DiAZ, T. JING, AND A. SCHIKORRA

Such discoveries are not only fueling further developments in analysis but are also
leading to new application areas or improving the existing ones. Motivated by image
denoising, the goal of this paper is to study fundamental properties of the space of
(nonlocal) fractional bounded variation. Based on such fractional order spaces, we
introduce novel image denoising models, and we derive Fenchel dual formulations [20,
chapter III] for these. Notice that such formulations are critical in deriving efficient
numerical methods in the classical setting. The remainder of this section provides
a precise discussion on new image denoising models to motivate the analytical tools
developed in this paper.

A well-established method to solve image denoising problems is based on total
variation minimaization [1, 37, 38]. Let un : @ C R™ — R denote a continuous repre-
sentation of an image (possibly noisy). Given a regularization parameter S > 0, a
standard image denoising problem amounts to finding u solving

. 1
(1.1) argr;1n{6|Dqu+2|u—uN||%z(Q)},

ue

where the space £ is chosen in conjunction with the norm |- |2 such that Du is well
defined at least in a distributional sense, and u can be piecewise smooth. In practice,
one of the most common spaces used is the space of functions with bounded variation
(BV) defined by

BV(Q) = {u e L'(2): Var(u; Q) < oo} .

Namely, a function u in L*(£2,R) is said to have bounded variation if and only if
Var(u; ) := sup {/ u(z) Divd(z)dz : ® € CHQ,R™),||®| @) < 1} < 0.

If the variation Var(u; <) is finite, one can show that its distributional derivative Du
is a Radon measure and Var(u; Q) = |Du|(Q2), see [5, Ch. 10]. It is well-known that
BV(Q) preserves edges, in a noisy image, better than W1(Q) while retaining several
of its properties. For instance, it is a Banach space, it is lower semi-continuous on
LY(Q2), Sobolev inequalities, etc.

In this work, we are interested in the fractional version of the problem (1.1). For
this, we first need to decide on a notion of fractional BV. We do so by replacing in the
definition above the derivative with some suitable fractional derivative. Alas, there
are many different, yet natural, fractional operators that are considered extensions of
the usual gradient — and each one induces its own BV -space.

We will consider the two most popular notions. Firstly, we will consider the space
BV* which we refer to as Riesz-type. The study of BV was initiated by Comi-Stefani
in [15], see Section 2. It relies on the notion of what is sometimes referred to as Riesz
gradient D, which is simply the usual gradient combined with a regularizing Riesz
potential.

The other type of fractional BV we consider will be denoted by bv® and is re-
ferred to as Gagliardo-type, see Section 3. We are not aware whether this has been
considered in the literature prior to this work. The notion of fractional derivative is
what we will refer to as the Gagliardo-type derivative considered in various aspects of
mathematics, e.g. Dirichlet forms [26], Peridynamics [19] and harmonic analysis [34].
This Gagliardo-type bv® is naturally related to the most popular notion of a frac-
tional perimeter defined by Caffarelli-Roquejoffre-Savin [10]. Indeed, we will show in
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NONLOCAL BOUNDED VARIATIONS WITH APPLICATIONS 3

Theorem 3.4 that bv® coincides with the Gagliardo-Sobolev space W®! — a maybe
surprising feature of the case o < 1, since this is false for « = 1: indeed it is well-
known that W1 £ BV see [22]. This is one of the main theoretical contributions of
the current paper.

Based on these notions of fractional BV, we will introduce new types of variational
models for image denoising. Namely, we study the fractional versions of (1.1),

. o]
(1.2) ar;tgen;n {,BVara(u; Q)+ EHU — uN||1£,,(Q)} .
A related model was studied by Bartels and one of the authors in [2] but working in
fractional order Hilbert space H®({2) instead of 2" = BV(Q).

We emphasize that the numerical algorithms for solving problems of type (1.1)
make use of the Fenchel dual formulations [6, 12]. However, this requires dealing
with the dual space of BV(Q), whose full characterization is still an unknown [43].
Instead one proceeds by finding a predual problem to (1.1), i.e., a problem whose
Fenchel conjugate is (1.1), see for instance [9, 11, 24]. In this case, one does not need
to deal with BV(Q)*, but instead the closure in LP(f2) of the range of a divergence-
like operator, which is the conjugate of —D : 2" C BV(Q) — M(Q,R"). We will
derive a pre-dual problem corresponding to (1.2) in Section 4. Derivation of pre-dual
requires density of smooth functions with compact support. This is highly non-trivial
in general even in the local case. We establish this result provided that the domain 2
is convex. Such results are of interest independent of this paper, see Propositions 4.4
and 4.8.

2. Fractional BV in the Riesz sense. We begin by recalling the notion of
fractional Laplacian and its inverse, the Riesz potential. Denote by F and F~! the
Fourier transform on R™. For a > 0 the fractional Laplacian of f : R® — R with
differential order a, denoted by |D|*f, is given by

D" f(x) = F~H(EI*FF(9)) ().

The notation |D|* = (—A)? is common, but we will mostly use the notation |D|® in
this paper, since it states the order of derivatives more clearly. The definition above
makes sense when o < 0. In that case, we call the operator Riesz potential. More
precisely, for all a € (0,n) we define

If(x) == F~H(EF£(8)) ().

It is then easy to see that |D|*I*f = I*|D|*f = f, at least for suitably smooth
functions with decay at infinity, i.e. the fractional Laplacian and Riesz potential are
inverses to each other. The fractional Laplacian |D|* has no gradient structure. It
does not converge to the gradient D when a — 1. Recently, many authors considered
a fractional-order operator with a gradient structure. Although this operator can be
traced as far back as [27], it has received increased interest in various applications
since the works e.g. [15, 39, 40, 42]. It is defined very simply as the usual gradient of
the Riesz potential

(2.1) D“f .= DI'7*f.

From its Fourier transform representation, it is easy to show that D® — D as a — 1.
The fractional divergence Div,, is defined as

Div,, f = div ' 7.

This manuscript is for review purposes only.
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4 H. ANTIL, H. DiAZ, T. JING, AND A. SCHIKORRA

Note that Div, is the adjoint of —D®. In fact, the following integration-by-parts
formula holds

(2.2) F-D%dz = —/ Divy F gdx VF € C°(R",R"),Vg € C°(R"),
Rn

n

which follows readily from the definition via the Fourier transform and Plancherel’s
theorem. We remark on the integral definition of the above operators. For any
« € (0,1], we have

IDI°f(z) = cra fen HELWay,

Jx—y|nto
23) D@ = ena oo LSRRy
Diva F(z) = ey [y, EE=FOIG=0 g,

for some constants ci o, €2,o and c3,q, which can be found in the literature. Having the
notion of fractional gradient, we naturally obtain an associated notion of fractional
BV spaces. Our definitions are very similar to [15] and different from other natural
approaches as in [8] or an approach via a different type of nonlocal gradient and
divergence as in [19, 34], which we will discuss later in Section 3. When using the
notion of fractional BV spaces in this paper, most of the required properties will
follow similar general principles as in typical BV spaces. We provide a derivation of
the results that we could not find in the literature and provide references otherwise.
It is possible that some of these results are known to the experts.

To distinguish the resulting space from the one discussed in Section 3, we use the
notations BV®, Div, and Var,. In Section 3 we will use bv?®, div,, and var,, instead.

Let a € (0,1] and f € L'(R"), the variation of f is defined as

(2.4) Var,(f;R") = sup{ f Divy, ®dzx : & € CH(R™;R™), || Lo (rr) < 1}.

Rn

Let Q CR™. For any f € L'(Q), we define
Vara(f;2) := Vara(xaf;R"),

where xq f is the extension of f by zero to R™. The integral

/ f Div, @ dzx

is well defined for all f € L'(R™) and ® € C!(R™, R"), which is a consequence of the
following result.

LEMMA 2.1. Let ® € CH(R™;R"), then for any « € (0,1] and any p € [1, 0] we
have

Div, ® € LP(R").

Proof. Fix ® € C}(R™;R"™). For a = 1, we have Div, ® € C.(R") C LP(R") for
all p € [1,00]. For a < 1, we have from (2.3) that

. min{l, |z — y|}
[Diva ®(2)| Za (2||(I>||L°<>(Rn)ﬂL ||V(I)||L°°(JR”)) /R Wd
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NONLOCAL BOUNDED VARIATIONS WITH APPLICATIONS 5

Here 3, implies that the hidden constant depends on « (and any constant may depend
on the dimension n). Since o < 1, the following integral is finite and has the same
value for every x € R", i.e.

/min{l e —ylt,

P dy = C(n,a) < oo,

which implies that
| Dive @l L @) Za (1@l Lo @n) + VOl Lo @ny) -

It remains to prove that Div, ® € L'(R™). Once this is shown we conclude
Div, ® € LP(R™) for any p € [1,00] by interpolation. Taking R > 1 large enough,
such that supp ® C B(0, R/2), then for x € R™ \ B(0, R) we have

P
prvoe) s, [ Mg,
B(0,R/2) |z — |

By Fubini’s theorem, we have

| Diva (I)”Ll(R"\B(O R))
N fB (0,R/2) |(I) f]RrL\B(O R) lo—yiTe y|n+a dx) dy
=~

1
||(I’HL1(R") SUPyeRrn\B(0,R/2) f{z:\z,ygg/g} Wdﬂi) .

Here we hide the constant by using <. Using the fact that

1
/ ﬁdﬁﬁ :5,04 R < oo,
{z:|z—y|>R/2} |z -yl
we obtain
| Dive @[l L1 @\ B(0,R)) o 1Pl L)

On the complement B(0, R), we have Div, ® € L*(B(0,R)) C L'(B(0, R)). Thus,
we obtain that || Divy ®||11®n) < 0o, which finishes the proof. d

Now we are ready to define the first fractional BV space of this work, i.e. BV,

see also [15, 16, 14] where this space was considered first. This space inherits most of
its properties from the gradient structure of the Riesz-derivative D%, cf. (2.1).

DEFINITION 2.2 (Riesz-type fractional BV). For Q C R™, we define
(2.5) BVR(Q) :={feL'R"): f=0 on R"\Q, Var,(f;Q) < oo},
endowed with the norm

IfllBveco) = [Ifllz1 (@) + Vara(f; ).

In this paper, we often identify f € L'(f2) with its extension by zero yof €
L'(R™). Observe that we do not need to assume any regularity of 9§ in the above
(and below) definitions and results. The regularity of 92 only comes into play when
we consider whether constant functions in Q belong to BV*(2). Namely 1 € L'(Q)
belongs to BV (Q) (with the usual identification 1 € L'() corresponds to yq €
LY (R™)) if the a-Cacciopoli-perimeter of 9 is finite. We refer to [15] for the definition
of this perimeter. Essentially by definition we immediately obtain
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6 H. ANTIL, H. DiAZ, T. JING, AND A. SCHIKORRA

PROPOSITION 2.3. Per, (09) < oo, that is the surface 9 has finite a-Cacciopoli-
perimeter, if and only if Var,(1;£) < oo.

Observe that the Cacciopoli-perimeter above is different from the more commonly
used fractional perimeter introduced by Caffarelli-Roquejoffre-Savin [10]. The latter
one is related to the fractional version of BV functions defined using the divergence
as used in, e.g. [19, 34]. We shall discuss it in Section 3.

Next, we note that one can obtain the existence of the distributional derivative
D* f (which is a Radon measure) just like for BV, see [22, p.167, Theorem 1, Structure
Theorem] If f € BV (1), then the mapping

CHR™R") > ®— [ fDiv, ®dz
Rn

extends to a linear functional on (C.(R™;R™), |||z (rn)). By the Riesz representation
theorem [22, Section 1.8, Theorem 1], there exists a Radon measure p on R™ and a
p-measurable function o : R” — R™ such that |o| = 1 p-a.e. and

fDiv, &dx = —/ ® - odu.

n

Rn

Moreover, we have
[W(R™)| < Varg(f;€2).

The latter follows by the definition of the norm. By slight abuse of notation we will
denote by D® f both the distributional derivative and the measure D® f := o (where
L denotes the concatenation of function and measure), whichever is applicable.

We now consider the approximation of BV () functions by smooth functions.
Since f is compactly supported, the convolution f 7. is in C°(R™). Using the same
argument as in [22, Theorem 5.2], we obtain the following result.

PROPOSITION 2.4. Let Q C R™ be open and bounded. For any f € BVH () there
exists fr, € C°(R™) such that

n n k—o0
1 = Fllzr@ny + [Vara(f;R") = Vara (fi; R™)| == 0.
Equivalently, (since f vanishes outside of ),

k—o0

1f5 = fllpr@n) + [Vara(f; Q) — Varg (fr; R")| —— 0.

We also have the following embedding theorem.

PROPOSITION 2.5. Let Q C R™ be open and bounded and n > 2. Then for all
p € [1, 2] we have BV (QY) C LP(R™) and

‘n—o

I fllze@ny < C(n,p, )| fllBvg )

If n =1, then the same results hold for all p € [17 ﬁ)
Proof. Let fi, be the approximation of f as in Proposition 2.4. By the main result

n—«

in [41], for all p € |1, L} we have

I felle ey < C (1 fkllr@ey + 1D fill Ly wny) 5
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NONLOCAL BOUNDED VARIATIONS WITH APPLICATIONS 7

since f, € C°(R™). Observe that by an integration-by-parts formula, since we already
know D®f;, € L'(R",R"),

||Dosz ||L1(Rn’Rn) = Vara(fk; Rn)

Since up to subsequences fi converges to f almost everywhere we conclude from
Fatou’s lemma,

[fllrrny < liminfr oo || frllLrgn) < Climinfroo (I fell L2 @n) + Vara(fe; R™))
= C’(Hf||L1(Rn)—i—Vara(f;R")).
The proof is complete. ad

Using the duality definition of Var, and the same argument as in [22, Theorem 5.2], we
obtain the lower semicontinuity with respect to the so called intermediate convergence,
see Definition 10.1.3 and Remark 10.1.3 in [5] for details.

PROPOSITION 2.6 (Lower semicontinuity). Let Q@ C R™ be open and bounded.
Assume {fr}32, C BVE(Y), and assume that f € L'(R™) such that

k—o0
i = fllpny = 0.
Then f € BV () and we have

Var, (f; R") < liminf Var, (fx; R™).
k—o00

Or, equivalently,
Var, (f; Q) < likm inf Var, (fr; Q).
—00

COROLLARY 2.7. Let Q C R™ be bounded. Then (BVgS(Q), ]| - |pve(q)) is a com-
plete space.

Proof. Let {fi}72; be a Cauchy sequence in BV(f2). Since fi is Cauchy in
L'(R™), there exists f € L*(R™) with f =0 in R™ \ Q, such that f, — f in L*(R").
By Proposition 2.6, we find that f € BV (92). Using the lower semicontinuity of the
variation still from Proposition 2.6, we obtain

lim Var,(f — fr; Q) < lim liminf Var, (fe — fx; Q) =0,
k—o0 k—

oo £—o0

which completes the proof. ]

Using the weak*-convergence of Radon measures, and the arguments of the stan-
dard Rellich-Kondrachov compactness, see [22, Theorem 5.2 & Theorem 5.5], we have
the following result.

PROPOSITION 2.8 (Weak compactness). Let Q C R™ be open and bounded. As-
sume {fr}32, C BV () such that

sup || fx|| Bve (o) < oo.
k>1

Then there exists f € BV () such that

Vara(fiR") < lim inf Vara (£ "),
— 00

This manuscript is for review purposes only.
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8 H. ANTIL, H. DiAZ, T. JING, AND A. SCHIKORRA

or equivalently,
Var, (f; Q) < likm inf Var, (fr; Q),
—00

and there is a subsequence { fi,}32, such that for all p € [1, ﬁ) we have

fr: = FllLe@n) —= 0.
Lastly, as in the local case where we know that H>!(Q) is a subspace of BV ()
(where H%1(Q) is the space of functions f € L'(Q) such that Df € L'(Q)), the
corresponding result for the fractional situation holds as well.

LEMMA 2.9. Let f € H*Y(R"), i.e. f € LY(R") and D*f € L*(R™;R"™). Assume
additionally that f =0 in R™\ Q. Then f € BV (Q).

Proof. We only need to show Var, (xaf;R") < co. For any ® € C}(R";R") such
that ||®( e ®n) < 1, we have by Fubini’s theorem

/ Xaf Dive® = —/R DA @ <P poo ey 1D fll L1 gmy < NP fllgeny »

which implies that Var, (xqf; R™) < oco. 0

3. Fractional BV in the Gagliardo sense. The notion of fractional BV from
Section 2 (as in [15]) is very similar to the usual BV, since it is essentially a lifting
by the Riesz potential. In this section, we introduce another natural notion, which is
denoted by bv®. This notion recovers the fractional perimeter as defined by Caffarelli-
Roquejoffre-Savin in [10]. We begin by introducing a different type of fractional
divergence as defined in [34]. We stress that related notions were known before [19]
and are classically used in the theory of Dirichlet forms, cf. [26].

A (nonlocal) vector-field F' on R™ is defined as an L™ x L"-measurable map
F : R® x R® — R, which is additionally antisymmetric, i.e. F(x,y) = —F(y,x).
As in [34] the set of such vector-fields is denoted by M(/,,R"), where od stands for
off-diagonal and (as in the theory of Dirichlet forms) A, stands for a sort of one-form
(we will not really use this aspect, we recommend the reader to take it as a purely
notational choice).

We say that F' € LP(A\ ,R") if F € M(A,,R") and

I E e (A, , ') 2= (/ / |m—y|” dxdy) < oo

for p € [1,00), and

||FHLOO(/\ rny = esssup |F(z,y)| < oo
z,yER™

for p = co. For Q C R", we say F' € Lijy(A\,, Q) if F € LP(A\,,R™) and F(z,y) =0
for L"-a.e. x € R"\ Q (and thus for a.e. y € R™\ Q).

The (Gagliardo sense) fractional derivative d,, , which has similar properties as the
gradient of a function, takes an L£"-measurable function f : R™ — R into a vector-field

J@) = ()

(@af)my) = Ho

This manuscript is for review purposes only.



296
297
298

299

300
301

316
317
318

319

w W W
SRS
N =

323
324

325

NONLOCAL BOUNDED VARIATIONS WITH APPLICATIONS 9

Let us remark that if one was to consider stability as a — 1, then it would make more

sense to set
flx) = fy)
[z —yl>
However, we will not use this definition in the paper, for the simplicity of presenta-
tion.
The scalar product of two vectorfields ' and G is given by

F(z,y)G(z,y)
|z —y|™

(daf)(z,y) = (1 - )

(3.1) (F-G)(z) = / dy.

The fractional divergence div,, is then the formal adjoint to — d, with respect to the
L?(R™) scalar product, i.e. for all ¢ € C2°(R"), we have

(3.2) / divy, F pdx == — / F-dypdr = — / / l+a¢(y))dydaz.
n R’Vl n n

The multiplication of a scalar function f(x) and a vector field F(z,y) is defined as:

1)+ )
2

(3-3) (fF)(x,y) = (z,y).

Using (3.2), we can obtain the integral formula of div,,. By antisymmetry F(x,y) =
—F(y,z) and the Fubini’s theorem, we have

which enables us to give the integral definition of div, F' by

(divy F)(z) := —Q/R 7F($,gla dy = — F(T;yzylf_g’x) dy

n |z —yl R"

In what follows, by yet another slight abuse of notation we are going to use this
formulation even when F(x,y) # —F(y,x):

(3.4) (dive F)(z) := — / F(z,y) — an,x) dy

|z —yl

It was shown in [34] how this fractional divergence naturally appears and leads to
conservation laws and div-curl type results in the theory of fractional harmonic maps.
With the Fourier transform, one can check that

(3.5) (—A) f = —cdiva(daf)

for some constant ¢ = ¢(n, a).
Armed with the fractional divergence div,,, we can define the fractional bounded
variation in the Gagliardo sense.

DEFINITION 3.1 (Gagliardo-type fractional BV). Let f € L}
set 2 C R™, we define

(R™). For an open

loc

vary (f; ) := sup{ fdiva®dr: @ CF(QxQ), [P pemnxrn) < 1} )

R
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10 H. ANTIL, H. DIAZ, T. JING, AND A. SCHIKORRA
Observe that this is equivalent to
var, (f; ) = sup {/ fdiva®de: @ C(QxQ), [P|r=mxn) < 1} .
Q

We say that f € bv*(Q) if

[ looe () := I fllL1 (@) + vara(f;€2) < oc.

The notion var, (f;2) is well-defined by the following observations. First, to have
consistency, we observe that
LEMMA 3.2. Let ® € CL(R™ x R™), then for all a € (0,1) and all p € [1,00], we
have
div, ® € LP(R™).
Observe that we exclude the case a = 1 since div, @ is not well defined for a = 1. A
multiplication with (1 — ) would lead to a stable theory as a — 1.

Proof. Observe that by differentiability of ®,
[@(z,y) = P(y, 2)| < [®(z,y) = P(z, 2)|+|P(2, 1) = (y, )| < 2||DP|| Lo mr xrn) |2yl
Then, using a similar argument as in Lemma 2.1, we have

min{1, |z — yl}

[(dive @) ()] < 2 (|| @l oo (mn xrn) + [ DP]| oo ®7 xRm)) 7 =y

(3.6)
Sa (12l Lo ®r xrn) + [ D®]| oo (mr xRm) ) 5

which implies that || dive ®|| e rn) < 00. It remains to prove that || dive @|| L1 @n) <
oo. Then the required result can be obtained using interpolation. Since ® is compactly
supported, we may suppose supp ® C B(0, M) x B(0, M) for some M > 0. Thus, we

obtain
3 (I)(.’E,y) 7(1)(y71')

Jdiva @l sy = [ [ W) 4y o
37 Bo.M) [JBOM) T =yl
(3.7) ,

/j ||D(I)HL°°(R"><]R")/ / Wdydz < 00,
B(0,M) JBO.M) |2 — Y|

which finishes the proof. ]

We introduce the definition of space W*1(Q), see [34] for details.
DEFINITION 3.3. Let Q C R™ be an open set. A function f is in W%(Q2) when
f e LY Q) and

[f(x) = f(y)]

(38) [f]Wa,l(Q) = / o dydr < oo.
ala |z —yl

The norm of W*1(Q) is defined as

(3.9) ”f“Wavl(Q) = Hf||L1(Q) + [flwer(a)-

We now state our main theorem of this section, which is in strong contrast to the
Riesz-type fractional BV functions, cf. Lemma 2.9. The fractional BV space bv®
is actually equivalent to W', which makes this space more tractable and probably
more attainable for numerical purposes.
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THEOREM 3.4. Let a € (0,1). Let Q@ C R™ be any open set. Then bv®(QQ) =
WeL(Q). More precisely, for any f € L*(Q) we have

varg (f; Q) = [flwer(q)s

whenever one of the two sides are finite.

Remark 3.5. Tt is well known that Theorem 3.4 is false for « = 1: e.g. take any
nonempty open and bounded set 2 with finite perimeter. Then xo € W(R") (e.g.
because it is not continuous on almost all lines). However, we have xq € BV(R"). In
that sense, Theorem 3.4 may be surprising at first. Let us mention that, although we
are not aware of Theorem 3.4 in the literature, intuitively related observations have
been made by people working with fractional perimeters.

Remark 3.6. An immediate corollary is that the fractional perimeter as defined
by Caffarelli-Roquejoffre-Savin, [10], Per,(Q;R®) = var,(xqo;R"). Thus, the space
bv® is the naturally associated notion for a fractional BV space when working with
that perimeter.

We prove several lemmas before proving Theorem 3.4.

LEMMA 3.7. Suppose f € W*L(Q), then we have f € buv*(Q) and var,(f; ) =
[flwe1(q)-

Proof. Given any ® € C1(Q x Q,R). Without loss of generality, we may suppose
supp® C K x K, while K is a compact subset of 2. Then we obtain that also
div,® = 0 outside K.

We have from Fubini’s theorem (since f € W*1(Q), both sides converge abso-
lutely)

. L f(@) — fy) dyda
(3.10) - fdiv,®de = /Q/Q P @(m,y)u_y‘n.

Since L>(Q x Q) is the dual of L*(Q x ), from (3.10) we obtain

varg (f; Q) = [flwe1(q),

which completes the proof. ]

The lemma above has not yet proven Theorem 3.4: if we only know f € bv®(Q)
we cannot yet apply Lemma 3.7. However, Lemma 3.7 does give us the direction
varg (f; ) < [flwe.1(q) whenever the right-hand side is finite (because in that case
we can indeed apply Lemma 3.7).

Next, we observe the following lower semi-continuity result.

LEMMA 3.8. Suppose f, € bv*(Q) for all k € N and ||fy = fllp1q) — 0 as k —
0o. Then we have
vary (f; Q) < likm inf var, (fr; ),
—00

and in particular f € bv™(Q).
Proof. Consider any ® € C}(Q x Q) with [P/l e (xe) < 1. Since fr = f in

L'(Q2), and div,® is bounded by Lemma 3.2, we have || fydiv,® — fdiva®@| 11 q) — 0.
Thus, we have

(3.11) / fdiv,®dx = lim fediv,@de < liminf var, (fx; Q).
Q k—o00 k—o0

Q
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Taking the supremum over all admissible ®, we have

(3.12) vary (f; ) < likminfvara(fk;ﬁ),
—00

which completes the proof. 0

To prove var, (f;€2) > [flwe1(q) (whenever the left-hand side is finite), the last
missing ingredient is the following recovery sequence result. In the following we say

that a set G is compactly contained in a set (2, in symbols G CC Q, if G is bounded
and G C Q.

LEMMA 3.9. Let  C R" be any open set. Assume f € L*(2) with var,(f; Q) <
oo. Then for any open G CC ) there exists fr, € C° (), for all k € N, such that

fr = f in LYG)

and
lim sup var, (fr; G) < vary(f; Q).
k— o0

Proof. Since G CC €, there exist open sets U and V such that G CC U CC
V cc Q. Pick ¢ € C*(V) such that ¢ = 1 on U and ¢ < 1 in all of R™. Take
g0 > 0 such that B.(G) := {z € R" : dist (2,G) < e} CcC U and B.(V) cC Q for
any € € (0,e0). Let n € C°(B(0,1)), [n = 1, be the usual mollifier kernel and set
Ne == e "™n(-/e). For € € (0,e0), we define f. := n. % (f{), then suppf. C Q. Given
any ® € C}(G x G) with ||®| poo(rnxrr) < 1. Using (3.4), the Fubini’s theorem and
the substitution 2’ = x — z and y' = y — 2, we obtain
(3.13)

£. div,®da
R’n

= / Ne * (f¢)divy Pdx
G

-/ < JRCCIEE C(:E—z)dz> (-] q’ﬁjﬂﬁfﬁ’””)dy) "

=L e <x—z>na<)q>(ﬁfiy|fﬁa %) 42 dy da
/ / /f () DELEY T D Z MBI g gy gy,

! —
B.(G) B.(G) B(0,¢) | v

Notice that since n.(—z) = n-(z), we have

(3.14) (. x @) (2',y) := / ne(2) (®(2' + 2,y +2) — @Y + z,2" + 2)) d=.
B(0,e)

Thus, by (3.13) we have

f]Rn fedive®dr = — fBE(G) IBE(G) f(a") ¢(@') %dy'dx

|z

¢
= I S0 F@) HC) + () LoD ay g
1
2

|z

~ Ity Jpocy 1) 3¢ = Cy)) Yt dy dar

|z
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Since B:(G) C U and ¢ =1 in U, the second term vanishes. Setting

W) = LG+ CW)) O * ®) (o),

we see that U, € C°(Q x Q), U (2/,y) = -V (¢, 2'), and
fe divg @dx = / f divy U, da’.
R Q
It is easy to check that

1

5 @) + <) (e @) (w'»y')‘ < (e % @) (2, y)] < || oo @ xmny < 1.

Thus, we have shown that for any ® € C°(G x G) with || ®|| o ®nxrr) < 1, and any
€ < ggp, there is

fediva ®dz < vary(f; Q).
R

Taking the supremum over such test-functions ® we obtain

sup varg(fe; G) < vara(f; ().
e€(0,e0)

In particular,

lim sup var, (fe; G) < var,(f; Q).
e—0

By usual mollifier arguments we have f. — (f in L*(R™) as e — 0. Since ( =1 in G,
we have f. — f in L'(G) as € — 0. |

We now finish the proof of the main theorem.

Proof of Theorem 3.4. Let f € L*(Q). In Lemma 3.7, we have proved

[flwer(q) = vara(f; Q),

whenever the left-hand side is finite. So we only need to establish

[ﬂWa,l(Q) < varg(f; ),

whenever the right-hand side is finite.

Given any G CC €, we can take a sequence {f}7>, as stated in Lemma 3.9.
Since f € C°(Q), we have fr € W*!(G), so Lemma 3.7 is applicable. Combining
Lemma 3.7 and Lemma 3.9, we find

lim sup[fi)we.s () < limsupvar (fi; G) < vara(f; Q).

k—o0 k—o0

Since fr — f in L'(G), up to passing to a subsequence, we may assume that fi(z)
converges to f(x) a.e. in G. Using Fatou’s lemma, we obtain

(3.15) /G Gwdydx <hm1nf// [fr(@ y|n+a )|d dx.

|z
Thus, we obtain

(3.16) [f]Wa,l(G) S h]?_l}{gf[fk]wal(g) S vara(f; Q)
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Picking an increasing sequence of open sets {G,,}, such that G,, CC Q and

(3.17) G = Q.

1

S8

Applying the above argument to G = G,,, we have [flya.1(q,,) < vara(f; Q) for any
m € N. Using Fatou’s lemma again, we have

[Flwer) < lminfy o [ fo HELldyde

(3.18) o
< liminf,, oo [flwe1(a,,) < vara(f; Q),

which concludes the proof. O
Using Theorem 3.4, we can easily obtain the following result.

PROPOSITION 3.10 (Weak compactness). Let 2 C R™ be an open and bounded
set with Lipschitz boundary. Assume that {fi}72, C bu*(Q2) such that

sup || fx[[poe () < 0.
kEN

Then there exists f € bv®(Q) such that

vary (f; Q) < liminf var, (fx; Q),
k— o0

and there is a subsequence {fi, }32,, such that for all p € {1 L)

' n—a

1—00

I fr; = fllr@) — 0.

Proof. By Theorem 3.4, we have

vary (fi, Q) = [felwea ().

Since €2 is a Lipschitz domain, it is regular in the sense of [46]. Thus, by the main
result of [46], we can find an extension f;, € W®1(R") with compact support, fx = f
a.e. in €2, such that R
[frlwer@ny 2 [felwer ()
From the usual Rellich theorem, we find a subsequence (fg,):en, such that for all
pe [1, ﬁ)
I fr, = FllLe@) — 0,

see [18, Corollary 7.2]. In particular, in view of Lemma 3.8,

vary (f; Q) < liminf var, (fr; Q).
k—oo []

Using Theorem 3.4, we also readily obtain the Sobolev embedding theorem, which
can be proved using the extension theorem as in Proposition 3.10 above and then [32,
Theorem 9.

PROPOSITION 3.11. Let Q C R"™ be an open and bounded set with Lipschitz bound-
ary. Then there exists a constant C' = C(n, o) > 0 such that for any f € bv™(Q),

1], 725 ) < Cvara(f: ).
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NONLOCAL BOUNDED VARIATIONS WITH APPLICATIONS 15

We also obtain the following density result, which might be known to experts
(observe that this density is not true for o = 1, cf. [22, Theorem 5.3 and remark
after]). Using the identification in Theorem 3.4, the extension property in [46] , and
the usual mollifcation in [18, Theorem 2.4.] or [35, Lemma 26], we have the following
result.

COROLLARY 3.12. Let o € (0,1). Let Q C R™ be any open and bounded set with
Lipschitz boundary, then €°°(Q2) is dense in bv*(Q).

Let us make a last remark about traces. For a classical BV function there is a
trace, [5, Theorem 10.2.1]. However, this will not be true for bv®(£2), since W*(Q)
does not have a reasonably defined trace. The typical approach is then the notion of
a fat boundary trace, which we do not pursue in this paper.

4. Image Denoising and Predual Problem. Let Q C R™ be a open and

bounded set with a Lipschitz continuous boundary, a € (0,1), p € (1,00), p>° := -2

n—ao’

and uy € LP(Q). Based on the two fractional variations considered in this work we
consider the (primal) problems for some fixed positive parameters 8 and ~

(78) it {2l g + Ve (s |
- i

Note that the condition of u having bounded fractional variation is imposed implicitly,
and it is also clear that both problems are strictly convex for p > 1. Therefore, we use
well-known results from convez analysis, cf. [20], to study the minimizers of Problems
(PR) and (P¢). Regularity theory to a related problem to P was recently studied
in [36, 7].

Convex Analysis and Optimization. As usual in convex optimization, we
consider the so-called dual problem, which usually gives new insights about the struc-
ture of the primal problem. In this work, we consider a different but related approach
coined as predual method. Here we mainly follow the approach given in [9, 13, 24]. In
order to introduce this method, we need some definitions, cf. [20, Ch. I]. Consider a
Banach space V and its topological dual V*, with duality paring denoted by (-, )y« v.
Given .Z : V — R, its Fenchel conjugate is given by .F* : V* — R,

(4.1) u = Fr(u) = sup {(u", )y v — F(u)}.

ueV
We denote by 9.7 (u) the subdifferential map of .# at the point u € V, see [20,
Definition I.5.1]. The following characterization holds,

u* € 0.% (u) if and only if .% (u) is finite and

4.2

(42) (W v —u)y.  +F(u) < F(v), Yv e V.

We now introduce a process known as dualization [20, Chs. III-IV], here we will focus
on problems of the form:

(2) inf {F(u) + G(Aw},

where Y is a Hausdorff topological space with dual Y*, A € Z(V,Y), with transpose
A e L(Y*,V*),and F: V - R, G:V — R. We define the dual problem of (2) as

(2%) sup —P*(0,v),
veEY *
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where ®* : V* x Y* — R is the Fenchel conjugate (dual) of ® : V x Y — R, (u,p)
®(u,p) = F(u) + G(p + Au), see (4.1). The next theorem gives conditions for the
so-called Fenchel’s duality, cf. [20, Theorem III.4.1] and [21, Pg. 130].

THEOREM 4.1. Assume V and Y are Banach spaces, F and G are conver and
lower semicontinuous (l.s.c.), and there ezists vo € V' such that F(vg) < 0o, G(Avg) <
00, and G is continuous at Avg. Then, the problems (2) and (2*) are related by:

inf {F(u) + G(Au)} = sup —®*(0,v)
ueV veEY*
= sup {—F*(A*v) — G*(—v)},
veEY *

and there exists at least one solution to (2*). Moreover, if u and U are solutions for
(2) and (2%), respectively, then

A*T € OF (1),

(43) -7 € 0G(Au).

In general, there are different choices for F,G and A in order to write a given
problem as in (2). Here we consider one that satisfy the hypothesis of Theorem
4.1 in a straightforward manner. We now show existence and characterization for
minimizers of problems (#g) and (Zg).

Riesz-type. By Proposition 2.5, for p € [1,p*], with p> := —2— we can con-
sider the problem (Zg) defined on LP(Q2) or BV{,(Q2), cf. (2.5), interchangeably.
The next lemma shows that the problem (Zg), related to the Riesz-type of fractional
bounded variation, has a solution and for p > 1 it is unique.

LEMMA 4.2. For p € (1,p™), the problem (Zr) has a unique solution U €
BV (€)

Proof. Let p € [1,00), define _#g : (LP(), ]| - | 1r(2)) — R, given by
(4.4) Fr(u) = %Hu —un [} + BVara(xau; R").

It is clear that
0< ueiL%f(Q) Fr(u) < %HUNHI[),P(Q)'
Now, let (ug)ren € LP(2) be a minimizing sequence associated to the problem (Z2g),
then for each k € N
lukllzr@) < lluk = unllLe@) + lunllze@) < 2[lunllLr(), and
Vara(xeui B") < @)

Then, for p € [1,p>), Propositions 2.5 and 2.8 imply there exist © € BV{,(Q) —
LP(R™) and a subsequence {uy, }ien such that

Var(T; R") < liminf Varg(ug,; R")  and [k, — un|?, ) = [T — unll?,q)-
71— 00

Thus, the existence of a solution for (#g) follows from the fact that w = yqu, a.e.,
for the uniqueness it is enough to notice that #g, cf. (4.4), is a strictly convex
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functional for p > 1. In fact, if u; and we were two different solutions to (£gr), then
for A € (0,1),
Ir(\u + (1 — N)ug)
:%Hml + (1 = N2 — uall}, o) + BVara(xe (A1 + (1 - \)@2); R")

v _ _
=L INE — 10) (1= X) (2 — ) 3,

+ BVara(xa(Ma1 + (1 — Nue); R™)

N gl _
<A = allpy gy + - (= Al = uallLy )

+ BVary(xa(Auy + (1 — N)uz); R™)
SASR() + (1= A) Fr(U2).
Thus, U, = Uy a.e. and by the definition of Var,, cf. (2.4), the proof concludes. ]

Next, we will derive an expression of the predual of (#g). In order to do that, we
start with the regularity for the “test functions” in (2.4). It is clear that if u € L*(R")
and suppu C €2, then fRn u Div, ® dz does not depend on Div,, ®|ge. This motivates
e gy T | Diva <I>||qu(Q) for ® € C}(R™; R"), where
q:= ﬁ. We consider the space XRiess := XRiesz(£2, ¢, @), given by

us o define 8] xy,., == /1],

XRiesz = W‘l'nxlﬁesz .
We also define an auxiliary problem
1
. s q B .
(25) Ll {qn Diva 82,0 /Q uy (~ Divy @) +1ﬁ(q>)},
where Ig denotes the convex indicator function defined as

T ((I)) — 0 : ||(b||L°°(R") < /Ba
A ' +o00 : otherwise.

We will establish that (2g) is the pre-dual problem to (#g), i.e., dual of (Zpr) will
be (Zr) if Q is convex.

We begin by noticing that (Zg) fits in the abstract framework of (2) if we
consider the spaces: Y := (L), || - [ a(e)), V := (XRiesz: || * | Xniees) » and the oper-
ators:

— 1
G:Y >R, G):= §Hv||%q(m — /QuNde,

(4.5) FiV R F(®) =),

A:V =Y, A(P):=(—Divy D)|q.

To compute the dual problem of (2g), we compute the Fenchel conjugate of F, G and
A, given in (4.5).

PROPOSITION 4.3. Let Q CR"™ be open, bounded, convex. Let

Vo= (LU - Mlgo) s V= (Xriess | [ Xpie)s
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and operators F,G and A be defined as in (4.5), then

_ 1
G :Y*" >R, uw— ;”u"'uNHiP(Q)’

F*:V* 3R, U* sup (T*, Py« v,
dcV
2| Loo rr)y<B

F*oA*:Y* =R, uw BVary(xou;R™).

Proposition 4.3, while in principle looking very similar to the arguments in [24,
Section 2], contains a quite serious subtlety. Observe that [24] does not consider
test-functions with the natural restriction ||®| g ®») < 3, but resorts to discussing
component-wise control |®*| < 8, ¢ = 1,...,n (leading to a nonstandard BV -space)
— which is crucially needed in their argument to compute the predual.

Instead we show in our paper that for bounded, open, convex sets 2 we do not need
such unnatural restrictions. The main property we use is the controllable distance
of rescaled sets, cf. Lemma A.1 and Lemma A.2. The main novelty is contained in
the next proposition. Notice that such a result is even critical to prove the result in
[24, 25], where « = 1, for the natural BV -space.

PROPOSITION 4.4. If Q is convex, then for all ® € Xpjess,
I5(®) = I5(®),
where
0 2 if there exists Wy, € CP(R™), Uy — @ in Xpies:
I3(®) := such that supy, || poe mny < B,
400 : otherwise.
Proof. We first observe that
(4.6) I5(®) =0 = I3(®) = 0.

Indeed, if I5(®) = 0 then there exists a sequence W), € C°(R") with Wkl Loy < B,

such that ¥j, — @ in XRies,. In particular, we have ||¥) — @/ 1qgn) 5200, Then
there exists a subsequence, still denoted by ¥y, such that ¥ converges a.e. to @,
which implies that |®(z)] < 8 a.e. in R", ie. ||®[~@n) < 8. By the definition of
Ig, we have I3(®) = 0, which proves (4.6).

From (4.6) we conclude I5(®) > I5(®). It remains to prove I5(®) < I5(®). If the
right-hand side is 400 then there is nothing to show. Thus, we only need to show

(4.7) Ig@)=0 = I3(®)=0.
Suppose that ® € Xpies, and Ig(®) = 0. In order to establish (4.7), we need to show
(4.8) Ve > 030 € C(R™R"), [O]remn) < B, [0 = P xppen, <&

We proceed in several steps.
Step 1: We first show that
(4.9)
Ve > 0 3071 € XRjesz, Supp©; CC R”, ||®1HL°°(]R") < B, ||@1 - (I)”XRiesz <e.
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For m € N, we choose a smooth cut-off function 0 < (,,, < 1, such that {,, = 1 when
|x] < m; §n =0 when |z| > 2m; and |V (| 3 % For sufficiently large m, we set

@1 = Cm¢)~

It is clear that ||©1||p~®n) < [[(n®||Le@®n) < [ Le@n) < B. Thus, we only need
to show
19Cm = @[ Lo(eny + [IDIVa(PCn) = Diva®|Lq(q) = 0.

Since |®(y,| < |®| and ¢, — 1 almost everywhere on R", using the Lebesgue
dominated convergence theorem, we have || ®(y — @||7qgny — 0. Since m is suf-
ficiently large, we may assume without loss of generality that (,(z) = 1 when
dist(z,Q) < 1. Since ® € XRiess, there exists a sequence @y € C°(R™), such that

k—o0

||(Pk - CI)HXRiesz — 0 and

| o= [ Diva@) Vo c(@),
n Q

By the definition of XRgjes,-convergence, we can take the limits of both sides, which
implies

/ <I>-Do‘<p:—/Diva(<I>)<p, Ve € C2(Q).
n Q

Now we claim that Div, (¢, ®) € L1(Q2). Indeed, let ¢ € C°(£2), then

Jn ®Cm - D = [ @ - D¥((np) + [ @ - (CnD¥() — D*(Cmep))
= fRn D - Da(p + fRn - (CmDa(QD) - Da((m(p)) .

In the last step we used that (0 = ¢ by the definition of (,, and the support of .
Using e.g. the Coifman-McIntosh-Meyer commutator estimate (e.g., see [31, Theorem
6.1] or [29, Theorem 3.2.1]), we have

16 D% () = D (G| o’ @y 3 [Gomlip 112l o oy

where T17% denotes the Riesz potential and ¢/ = q%l. Since ¢ has compact support
in the bounded set 2, we have by Sobolev-Poincaré inequality

Il L @y S 12l Lo 0

which follows from the usual blow-up argument used for the classical Poincaré in-
equality. That is, we have shown that for any ¢ € C°(Q),

[ piva @6, - 9) o[ =| [ (@6, - 3). 0%

<C(, @1l Laen) lloll Lo gny [Cm]Lip -

Observe that [(y]Lip 3 L, so we have shown by duality that

1 m o0
— @ La(rn) — 0,
m

|| Div, (‘I)Cm - @) ||L‘1(Q) 3

which establishes (4.9)
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Step 2: By translation we may assume €2 is convex and 0 € 2. For p > 1, we set
(4.10) Qi =pQ={pr: xeQ}

Then, from Lemma A.1 and Lemma A.2, we have Q CC Q, for p > 1.
In this step, we show that

Ve > 0 303 € XRiesz, p > 1,supp 6, CC Rn,DiVQ 0, € Lq(Qp),

(4.11)
2]l ®ry < B, [|O2 — || xpsee, < €

By the results in Step 1, we only need to show (4.11) with ® replaced by ©;. We let
¥ := ©; for convenience. For p > 1,

W, (@) = U /p).
Then we have
1ol Lo ®ny = ¥l Loemn) < B
Moreover, in view of Lemma A.4, we have
p—>1Jr
1%, — ¥/ La@ny — 0.

It remains to show Div, ¥, € L9(),) and

.
| Divy ¥, — Divy ¥ ooy £ 0.

We first observe that
[ v prets= g [ 0D )

Thus, from ¢(-) € C°(Q,) we have ¢ (p -) € C°(). Then we conclude
Divy U, (z) = p~*(Dive ¥)(x/p) for ae. x €.
In particular Div, ¥, € L%(2,). We now have

I Dive ¥, — Diva ¥]|1o(q)
< || Dive ¥, — p~@ Dive Y| La(q) + [|p~ Dive ¥ — Divy V[ £a(q)
= p~ *|[(Diva ¥)(-/p) = (Diva W) ()| La(e) + (1 = p~*) [ Diva ¥l Le(o)

p—>1Jr

— 0,

where we have used Lemma A.4 for the first term and Div, ¥ € LI(Q) for the second
term. This implies that (4.11) is satisfied, by considering ¥, for p > 1 close enough
to 1.

Step 3: Conclusion Given € > 0, we take ¥ := ©4 and pick p > 1 such that (4.11)
is satisfied for § instead of . Since 2 is convex, by Lemma A.1 and Lemma A.2, there
exists D > 0 such that dist (€, 9,) > D. We let 0 := 15 and choose d € (0, dp).
Let n € C°(B(0,1)) be the usual symmetric mollifier kernel, and set

\115 =15 *x v,
Since supp ¥ CC R”, we have ¥5 € C°(R") and

W5 oo mry < [ poomny < B
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We also have by usual mollification

5
[Ws — ¥l La(mn) =0 0.

Lastly, for ¢ € C2°(€2) we have by Fubini’s theorem

/\Il(;-Do‘go:/ U - D¢ *1n5).

Observe that ¢ € C°(Q) implies that ¢ * 5 € C°(B(£,6)) C C*(Q,). Thus, we
have

/ Us ~Da<p:/ Div, ¥(p*ns5) Yo € C(Q).
Since Div, ¥ € L4(S,), we conclude that
Div, U5 = (Div, ¥) x5 in Q.

Then, since Div, ¥ € L(Q,) we have that (Div, ¥)*ns converges to Div, ¥ in L(()
as & — 0, i.e.
| Diva U5 — Diva Wl| o0y ~=2 0.
Thus, we conclude that
195 = Wl =50
Now by choosing ¢ > 0 sufficiently small, we have

3

||\I]5 - (DHXRiesz < ||\115 - \IIHXRiesz + ||\I] - ¢||XRiesz < 5 t5=¢

N ™

Letting © := U5, we have shown (4.8), which implies (4.7). Therefore, we have proved
I3(®) < Ig(®), which completes the proof. |

With the help of Proposition 4.4, we can now continue with the optimizing prob-
lem.

Proof of Proposition 4.3. For G* the procedure is standard, cf. [20, Ch. I], and
follows from (4.1),

G*:Y* 5 R,
1
G*(u) = sup {/ vudx — G(v)} = f||u+uN||1£p(Q).
veLa(Q) LJq p

As for F*, we follow [24, Section 2], with the crucial adaptation of using Proposi-
tion 4.4 in the last step

F*:V* 5 R,
FH(U7) = sup {(U*, @)y v — F(®)} = sup {{¥", @) x- x — I3(P)}
PV PV
= sup {<\I/*,<I>>X*7X — 1:5(@)} = sup (U, ®)y» y.
eV PEVNC™(R™)
12| Loo rr)y<B
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The condition in the last line that we can assume ® € C°(R"™) is the crucial point
of Proposition 4.4, and the only place where convexity of 2 appears. Finally, by
definition we have A* : Y* — V*. Therefore,

F*(A*u) = sup  (Au, Py« y = sup (U, AQ)y-y
PeVNCT(R™) PeVNCT(R™)
[[@]| Loo mny<B [ @] Loo (rny<B

=4 sup / xau(— Div, @)dz = fVary(xqu; R™),
scCc> (R R") JRn
[I®]| Loogn)<1

which concludes the proof. 0
From Theorem 4.1, we have the following result.

COROLLARY 4.5. If Q is convex, the problems (Pr) and (2r) are related by

1
min {|—Diva<I>||%q(Q)—/uN(—Divaq))dﬂc—i—Ig((I))}
q Q

@EXRzesz
s Y., P .7
= uer?g(lﬂ) {p lu = unl}0(q) + BVara(xou; R )} :

It is important to mention that the (predual) problem (Z2pg) has at least one
solution. Moreover, we have the following results for the optimality conditions, cf.
(4.3),

LEMMA 4.6. Let U be the unique solution for (2g) and let ® be any solution for
(2r). Then we have
(4.12) ANu € 0F (D) & (MT,v—P) <0 Vv € Xpjess,

(4.13) —7 € 9G(AT) & — = — |Divy B|* *Divy @ — uy.

Proof. It is clear that (4.12) follows from (4.2). On the other hand, if G is Gdteaux
differentiable at v € Y, then 0G(u) = {G'(u)}, cf. [20, Prop. 1.5.3]. In turn, the
following property about the duality map, it is also well known:

Ol 14,0 Q) - LP(Q)

u e {qlul™"?u},

which proves (4.13) and finishes the proof. |

Gagliardo-Type. Next, we focus on the Gagliardo case. We refer to [36] where
they studied a related problem. As in case of Riesz, we begin by establishing the
existence and uniqueness of solution to (Z¢).

LEMMA 4.7. For p € (1,p*>), the problem (P¢) has a unique solution T €
bu, () N LP(Q).

Proof. The proof is similar to the Riesz case in Lemma 4.2, after using Proposition
3.10. 0

Now, we characterize the minimizers of () using the predual strategy as discussed
in the Riesz case. Note that u does not need to be extended by zero outside €. As a
result, our approach is largely motivated by [9, Section 2]. We now study the predual
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problem associated to (Z¢). In a similar way as in the Riesz case, we consider the
spaces

|-
(4.14) X%@wb=@x¢ecg9xm,m@w:_@@wﬂmwwm%

where

120 Xangiorae = {120, ) + 1 diva @ Ea(q

which is well defined because of Lemma 3.2. Observe that we can equivalently assume
®=01in (R™ x R™)\ (2 x Q) and set

1@l xeneio = /1200, o)+ 11diVa @ gny -

As in the Riesz case, we will use the indicator function Iz for some 3 > 0. For
® e XGagliardo, we define

I (q)) — 0 : H(I)HLm(R"XR") S ﬁ,
P ' +00  : otherwise.

As in the Riesz case, our main novelty is that we are able to pass from Ig to a
new Ig which has better approximation properties.

PROPOSITION 4.8. If § is convez then for all ® € X gagliardo,

0 s if there exists Uy, € C° (2 x Q),
Ig(‘l’) = U, — ® in XGagliardo such that supy; ||\I/k||Lao(Rn><Rn) < ﬁ,
+o00  : otherwise.

Proof. We may assume without loss of generality that 2 is convex and 0 € €.
First, we establish that I5(®) < fﬁ (®) for all & € Xaagliardo - The case I~3(<I>) =00 is
trivial. Suppose that I5(®) = 0, then there exist ¥), € C°(Q x Q) with ¥ (z,y) =
—V(y,z) and supy, [| P/ o @®n xrr) < B, such that ¥y — @ in Xqagliardo- From the
Li( /\Od R™)-convergence of ¥y, we can find a subsequence, still denoted by ¥y, such

that
|\Ilk(x7y) - (I)(xvy)l k—ro0

o —y[s*
which in particular implies

0 for £%"-a.e. (z,y) € R?",

Up(2,y) — B(z, )| 22250 for £L2"-ae. (z,y) € R2™.

Thus, we have
|®(z,y)| < B for L2™ae. (x,y) € R*",

which implies that I3(®) = 0 and proves that I5(®) < I5(®) for all & € XGagliardo-
Now we to prove the opposite direction, i.e. Ig(®) > I5(®) for all ® € Xqagiiardo-
If I5(®) = oo there is nothing to show, so we actually need to show

Ig@)=0 = Iz(®)=0.
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Assuming that ® € Xqagliardo satisfies || ®|| o rnxrn) < B, we prove that
(4'15) Ve > 0310 € OEO(Q X Q)v ||®||L°°(]R"><]R") < 63 ”6 - (I)”Xc;agliardo <e.

Step 1: In contrast to the Riesz case, we scale the functions inwards for the
Gagliardo case, which ensures that the mollification produces a function still in
C2°(Q). Using again the notation

Q,=p0={px: zeQ}

in (4.10) with p < 1. Since Q is convex and 0 € 2, we have that 2, CC Q for any
p < 1. We prove that
(4.16)

Ve > 030, € XGagliardoa E'p < 1, supp 0, C Qp X Qp, ||@1||Lco(Rn><Rn) < 5, and

||@1 - ‘I)”XGagliardo <Eé.

For p < 1, we define

Ty
P, (z,y) =P (,) .
o(7,y) >
Then we have supp ®, C Q, x Q, and [P,z ®rxrr) = [P oo @ xrr) < B. So in
order to establish (4.16) we need to show

p—0

(4'17) H(I)p - (I)HXGaguardo — 0.
We first observe that
Dpla,y) _ _a ®(x/p,y/p)
|z —yl« lz/p—y/ple

So we have

@5 — @l La(p,, &)

<l - ‘I’(x/p,y/pi fI’(x/p,y/pi 3 <I>(w7y)ﬂ
[2/p = y/pl | pagnxrny  Hz/p=y/pl" |z =yl |l pognxpn)
|3 1,2 (@, y) ®(z/py/p) _ Py
|z =yl |l Lo mn srn) lz/p—y/ple |z =yl | pa@nwrn)
| T T ®@/p.y/e) - 2(z.y)
lz/p—y/pls 2=yl |l Lemnxrn)
2240,

where for the first term we use that ||®||za(p, &) = [®[|Le(p,, @) < 00, for the second
term we use Lemma A .4 in R” x R™. Moreover, a direct computation from (3.4) yields

divy @,(x) = p~“(dive @)(z/p) ae. z € R™
So again with Lemma A.4 we have
|| diva (I)p - diVa (b”Lq(Rn)
<[ = 1| (ive D)(-/p) | agae) + | (diva ®)(-/p) — dive @/l o)
o7 = 1] pFI(diva @) ageny + | (dive ®)(-/p) — dive @] o

—1
p_>0
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where we used crucially that by the support of ® in  x 2 we have
|| div, (I)”Lq(Rn) = H div, (I)”Lq(Q) < 0.

This establishes (4.17) and thus (4.16) is proven.

Step 2: Let ©; and p € (0,1) be from Step 1. Set dy := % where D :=
dist (2,,09Q) > 0. Let n € C*(B(0,1)) be the usual symmetric mollifier, i.e. 7 > 0
and [ = 1. For § € (0,8), we define n5(x) := n(z/d)/6". Using the notation from
(3.14), we define

\115(x7y) = (775 * @1) (I,y)
Then \115 S CSO(B(QI)XQI,,(S)) C CSO(QXQ) and ||\IJ6||L00(R7ZX]RTL) < ||@1HLoc(]Rn XR™) <
8. Notice that

(ns * ©1) (,y)

(4.18)
& — y|"

= (15 % Z) (z,y)

where Z(z',y/) := Oy (z',y')/ |2/ — y/|"/?. By the definition of ©; € LI(A,,R"), we
have 2 € L1(R™ x R™). Thus, we have

550
(4.19) Vs — ©1llpacpr, mny — 0.

For any x € R™, by letting i/ = y — 2z, we obtain

(4.20)
(diva ¥s) (x) = (dive (s * ©1)) (x) = — /n (15 % 61) ﬁf};ﬁi* o) .2)

dy

:7/71 (/nné(z)(Gl(xz,yz)@1(3/27582))5&) |x_dyyn+a

= /n 15(2) (— / Oule i;flz))__?fn{f —2) dy') dz

_ / (2) ([va®) (& — 2)dz = (i * (dive®1) ()

Thus, we have
(4.21) ||[divePs — diva@1||Lq(Rn) = [|ns * (diva©1) — diva@lHLq(Rn) —0

as § — 0. Using (4.19) and (4.21), for a sufficiently small ¢, the function © := U,
satisfies the requirements in (4.15), which completes the proof. O

Now we continue with the optimizing problem. We set
V= (XGagliardm H ' ||Xc,ag1;ardo) , and Y = (Lq(Q)a || : HL‘Z(Q))
and the operators
— 1
G:Y =R, G):= aHUHqu(Q) — /Qqudx,
(4.22) F:V SR, F(®):=Id),
AV =Y, A®):=-—div, D.

Similarly as in Lemma 4.3, we have
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COROLLARY 4.9. Let Q be open, bounded, and convex set,

V = (XGagliardoa H : ||XGaglza'rdo) ) andY = (Lq(Q)v H ! ||L‘1(Q))
, and let F,G and A defined as in (4.22), then for all u € LP(Q2)

. 1
G*(—u) = EHU — uN||’£p(Q), and

F*(A*u) = Bvary(u; Q).
This motivates us to consider the problem
1
. - _ . q _ _ .
(Q@G) <I>€chrelx£1iardo { q H dive (I)”Lq(Q) /Q UN( diva (I)) et Iﬁ((I))} .

We have the following result (see, Corollary 4.5 for the Riesz case).

COROLLARY 4.10. If Q is an open, bounded, and convex set, the problems (P¢)
and (2¢) are related by

. 1 . .
min {q” fdlvaq)”qu(m —/QuN(fdlva D) dIJrIg((I))}

D€ X qagliardo

- — mi M — P .
= uenl}il)r(lﬂ) {p lu = un |70 (q) + Bvara(u; Q)} .

Finally, we have the following optimality conditions as consequences of Theorem 4.1.

COROLLARY 4.11. Let @ be the unique solution to (P ) and let ® be any solution
to (2¢), then

(4.23) Au e OF (D) & (Mu, ¥ — @) <0 V¥ € Xgagiiardo, and
(4.24) —7 € 0G(AD) & 11 = — |div, ®|" diva & — un.

Appendix A. Scaling in LP-norms and star-shaped domains. In this
appendix we state and prove for the convenience of the reader some facts about star-
shaped domains that are most likely well-known to experts.

Denote the n — 1-dimensional unit sphere by S"~! := {z € R" : |z| = 1}. For
xreSnl.

LEMMA A.1. Assume X :S"~! — (0,00) is continuous and consider

Q:{xeR"\{O}:|x</\(x>}u{0}.

||

For p > 0 set
Q,i={pz: z€Q}

then we have for any p1 < po
dist (Q,,,R*\ Q,,) > 0.

Proof. We first observe

(A1) 8Q:{xeR"\{0}:|x|:/\($>}.

||
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Indeed T € 2. Since 0 € Q) and €2 is open by continuity of A, we have Z # 0. Then
there exists 0 # xx € , 0 # yr, € R™\ Q such that limy, |z, — Z| = limg |yx — Z| = 0.

We have
2] < A <‘””’“ > el > A (y’“ ) k.
|| Y|

Since zy, yi, T # 0 these expressions are continuous and passing to the limit as k — oo,

(i) m2a() @

This implies |Z| = A(2) and thus we have established

an{xeR"\{O} 'x|_k(| |>}

Now assume Z € R™ \ {0} with |Z]| = A (Iw\) Then for 1 > 0 we have

ln@| = pA ( i )
||

Thus, if ¢ > 1 we have uz ¢  and if u < 1 we have puz € Q. In particular,
1, 1
:(1—E)x€§2, yp = (1+ )ngQ

and limg o0 2p = limg o0 Y = T, 50 T € QN R™ \ Q = 9Q. This implies

aQQ{v’CGRn\{O} |x|_A(| |>}

So (A.1) is established.
Next we observe

Qp:{meR”\{O} |x|<p)\<| |)}u{0}.

In particular if p; < p2 we have that

O N R\ ) = ool < pd (5), and el 2 paa ()3 =0
Since €,, and (R™\ §,,) are disjoint, and €2,, is bounded we conclude that

dist (Q2,,,R"\ Q,,) = dist (09Q,,,09,,)
= infy yern |1 mA(é\) P2 \y|>\(|y )‘
= inf, yegn-1 [pr1aA(z) — p2yA(y)].
Since A(+) is continuous and S"~! is compact, this infimum is attained at some Z,§ €
Sn—l,
dist (2, R"\ Q,) = [p12A(@) — po3A(7)|

We claim that |p1ZA(Z) — p2gA(7)] > 0. Indeed if this was not the case we would have

P1EA(T) = payA(y)
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Fic. 1. Ezamples of star-shaped sets with discontinuous A. Both sets are star-shaped with
respect to the origin, and the first has even Lipschitz continuous boundary — however the conclusions
of Lemma A.1 are not true.

Since the scalar factors p1, p2, A(Z), A(y) are all positive — and |Z| = |y| = 1 this
implies that £ = §. Whence we would find

p1>\(:f) = P2)\(5_U)a

and thus — since A\(Z) € (0,00), p1 = p2 — a contradiction to p; < ps. Thus we have
established
dist (22,,,R"\ Q,,) > 0. O

In Lemma A.2, the continuity of A is not guaranteed for generic star-shaped
domain — even if their boundaries are Lipschitz. We provide two examples in Figure
1. The first example is the union of an open disk and an open sector. The second is
an open unit disk with a slit, i.e. the ray {(c+1/2,c¢+1/2) : ¢ > 0} is excluded from
the disk.

However, the assumptions of the set Q in Lemma A.1 are satisfied if ) is star-
shaped w.r.t to an open neighborhood of the origin — this can be obtained by a careful
inspection of the proof below. We will focus on convexity here.

LEMMA A.2. Let Q be an open, bounded, convex set with 0 € Q, then there exists
continuous X : S"~! — (0,00) such that

(A.2) Q= {xER”\{O} |z <>\(m>}u{0}.

||

In particular the results of Lemma A.1 are true.

Proof. For z € S"~1, we define

(A.3) Az) :==sup{r>0:rzeQ}.

for all

Since 2 is open and 0 € Q there exists a ball B(0,a) C Q, and thus \(z) > r
< b for all

x € S"L. Since Q is bounded there must be some b > 0 such that \(z)
xeSth

We first establish (A.2). If © € Q then |x|ﬁ €  and since 0 € 2 we have that
rﬁ € Q for all r € [0, |z|]. Since § is open, there actually must be some § > 0 such
that 727 € Q for all r € [0, |z] 4+ 6]. Thus A(z/|x]) > |z + 6 > |z|.

On the other hand if € R"™ \ {0} and |z| < A(z/|z|), then by definition of A()
there must be some r > |z| such that rz/|z| € Q. Since 0 €  and Q is convex we
conclude that = = |z|z/|z| € Q2. Thus (A.2) is established.

It remains to prove the continuity of A on S*~!. Given any z € S !, we let

{x}52, € S"! be a sequence such that zy, Lt Ny
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A(T) + &

Fic. 2. Assuming that the ball B(0,a) in the proof is actually equal to B(0,1) (which can
always be obtained by scaling) the above figure explains the proof of Lemma A.2.
First picture: if A(zg) < A(Z) — € and zy, is sufficiently close to T then A(zy)xy must belong to the
cone A. Second picture: if N(xr) > XNZ) + € and zy, is sufficiently close to T then T must belong
to Ay (using that the cone Ag has a minimal aperture that does not change and is determined by
B(0,a) as k changes)

Recall that the open ball B(0,a) C €. We denote the open cone from A(Z)Z to
B(0,a) as

(A.4) A= {ON@)T + (1 —0)z: 2z € B(0,a), 0 € [0,1)}.

Clearly, A is an open set. Also, whenever 6 € [0,1) we have that OA(Z)Z € Q, by
convexity of 2 and definition of A(-). Since z is taken from an open ball B(0,a) C
we conclude that 07 4+ (1 — 0)z € Q. That is we have A C Q.

Similarly, we define the open sets Ay by

(A.5) A = {0\ (zp)xp + (1 —0)z:z € B(0,a), 6 €1[0,1)} CQ

Now we assume that there exists € > 0 and a sequence x;, € S*~! converging to

z € S"! such that A(zy) < A\(Z) —e. Then zxA(zx) C A when k is sufficiently large,
see Figure 2. Thus we have lower semicontinuity of A:
AMT) < liminf A(z).

Sn=1lsz—z

On the other hand, if there exists € > 0 and a sequence 3, € S"~! converging to
z € S"7! such that A(zx) > A(Z) + €. Then we have that z\(Z) € Ay, for all large k,
see Figure 2. Thus we have established upper semicontinuity of A

A(T) > limsup A(z).
Sn—lsz—z a

Therefore, we have proved the continuity of .

Remark A.3. We leave the technical details to the reader, but observe that the
lower semicontinuity of A holds under the assumption that €2 is open and star-shaped.
It is the upper semiconintuity of A that requires the center of {2 containing an open
neighborhood of the origin B(0, a) (which in particular is a consequence of convexity
and openness).

LEMMA A.4. Let 2 C R™ be an open domain star-shaped with respect to the
origin. Fiz p € [1,00), let f € LP(Q) and set for p > 1

fo=C/0).
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Then
15y = Fllisey 22 0.
Proof. Let € > 0. Since p € [1,00) we have C°(Q) is dense in LP(f2), and thus
there exists g € C?(R™) with
If = gllLee) <e
Set for some p € (1,2),
90 = 9(-/p)-

Since € is star-shaped with respect to the origin,

n p<2 n
1 fo = gpller) =p" 7 |If —9llrrzo) < 27(1f = gllLr) <27e.

Then we have for any p > 1,
(A.6) )
I fo—Fllzey < 1fo—9ollo) + I1f = 9llno@) 19— 9ol o) < 27 e+ 19— gpll Lo ()-

Take R > 0 such that
suppg C B(0,R/4).

Since g has compact support we can find such an R. Then g is uniformly continuous

on B(0, R) and thus there exists some pg € (1,2) such that

£ -

lg(z) —g(x/p)| < vz € B(0,R),Vp € [1, pol.

B0, R)|?
On the other hand if = ¢ B(0, R) then

g(x) = g(z/p) =0 Vpell,2].

Thus we have .

———— VYp e[l p
|B(0, R)|?

lg — ngLoo(Rn) <
and thus

lg = goller) = 19 — 9pllr(B0,R)) < B0, R)|* |lg — gpll Lo mn) < &

Combining this with (A.6), we have shown

1o = Fllry < 27T+ 1)e,

which holds for any p € [1, pg). We can conclude. d
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