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Abstract. Motivated by problems where jumps across lower dimensional subsets and sharp3
transitions across interfaces are of interest, this paper studies the properties of fractional bounded4
variation (BV )-type spaces. Two different natural fractional analogs of classical BV are considered:5
BV α, a space induced from the Riesz-fractional gradient that has been recently studied by Comi-6
Stefani; and bvα, induced by the Gagliardo-type fractional gradient often used in Dirichlet forms and7
Peridynamics – this one is naturally related to the Caffarelli-Roquejoffre-Savin fractional perimeter.8
Our main theoretical result is that the latter bvα actually corresponds to the Gagliardo-Slobodeckij9
space Wα,1. As an application, using the properties of these spaces, novel image denoising models10
are introduced and their corresponding Fenchel pre-dual formulations are derived. The latter requires11
density of smooth functions with compact support. We establish this density property for convex12
domains.13
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1. Introduction. In recent years, fractional calculus and nonlocal operators16

have emerged as natural tools to study various phenomena in science and engineering.17

Unlike their classical counterparts, fractional operators have several distinct abilities,18

for instance, they require less smoothness and they are nonlocal in nature. Such19

flexibilities have led to multiple successes of fractional derivative-based models in20

practical applications. For instance, magnetotellurics in geophysics [44], viscoelastic21

models [33], quantum spin chains and harmonic maps [17, 30, 3], deep neural networks22

[4], repulsive curves [45], etc.23

A fundamental concept in inverse problems, such as image denoising, is the use24

of regularization. The article [2] introduced the fractional Laplacian as a regularizer25

in image denoising as an alternative to well-known approaches such as total-variation26

regularization. Subsequently, this model has been successfully used by various au-27

thors in imaging science as it provides a behavior that is closer to total variation28

based approaches [28], but it is easy to implement in practice. The current paper29

is motivated by these observations. We also refer to [23] for a different (discrete)30

nonlocal regularization in imaging.31

Fundamental developments are being made in fractional calculus. In fact, now32

there exist notions of fractional divergence and gradient. The aforementioned frac-33

tional Laplacian, for instance, can be obtained by the composition of fractional di-34

vergence and fractional gradient. This is similar to the classical integer order setting.35
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2 H. ANTIL, H. DÍAZ, T. JING, AND A. SCHIKORRA

Such discoveries are not only fueling further developments in analysis but are also36

leading to new application areas or improving the existing ones. Motivated by image37

denoising, the goal of this paper is to study fundamental properties of the space of38

(nonlocal) fractional bounded variation. Based on such fractional order spaces, we39

introduce novel image denoising models, and we derive Fenchel dual formulations [20,40

chapter III] for these. Notice that such formulations are critical in deriving efficient41

numerical methods in the classical setting. The remainder of this section provides42

a precise discussion on new image denoising models to motivate the analytical tools43

developed in this paper.44

A well-established method to solve image denoising problems is based on total45

variation minimization [1, 37, 38]. Let uN : Ω ¦ R
n → R denote a continuous repre-46

sentation of an image (possibly noisy). Given a regularization parameter ´ > 0, a47

standard image denoising problem amounts to finding u solving48

argmin
u∈X

{

´|Du|X +
1

2
∥u− uN∥2L2(Ω)

}

,(1.1)49

50

where the space X is chosen in conjunction with the norm | · |X such that Du is well51

defined at least in a distributional sense, and u can be piecewise smooth. In practice,52

one of the most common spaces used is the space of functions with bounded variation53

(BV) defined by54

BV(Ω) =
{

u ∈ L1(Ω): Var(u; Ω) < ∞
}

.5556

Namely, a function u in L1(Ω,R) is said to have bounded variation if and only if57

Var(u; Ω) := sup

{
∫

Rn

u(x) Div Φ(x) dx : Φ ∈ C1
c (Ω,R

n), ∥Φ∥L∞(Ω) f 1

}

< ∞.58

If the variation Var(u; Ω) is finite, one can show that its distributional derivative Du59

is a Radon measure and Var(u; Ω) = |Du|(Ω), see [5, Ch. 10]. It is well-known that60

BV(Ω) preserves edges, in a noisy image, better than W 1,1(Ω) while retaining several61

of its properties. For instance, it is a Banach space, it is lower semi-continuous on62

L1(Ω), Sobolev inequalities, etc.63

In this work, we are interested in the fractional version of the problem (1.1). For64

this, we first need to decide on a notion of fractional BV . We do so by replacing in the65

definition above the derivative with some suitable fractional derivative. Alas, there66

are many different, yet natural, fractional operators that are considered extensions of67

the usual gradient – and each one induces its own BV -space.68

We will consider the two most popular notions. Firstly, we will consider the space69

BV ³, which we refer to as Riesz-type. The study ofBV ³ was initiated by Comi-Stefani70

in [15], see Section 2. It relies on the notion of what is sometimes referred to as Riesz71

gradient D³, which is simply the usual gradient combined with a regularizing Riesz72

potential.73

The other type of fractional BV we consider will be denoted by bv³ and is re-74

ferred to as Gagliardo-type, see Section 3. We are not aware whether this has been75

considered in the literature prior to this work. The notion of fractional derivative is76

what we will refer to as the Gagliardo-type derivative considered in various aspects of77

mathematics, e.g. Dirichlet forms [26], Peridynamics [19] and harmonic analysis [34].78

This Gagliardo-type bv³ is naturally related to the most popular notion of a frac-79

tional perimeter defined by Caffarelli–Roquejoffre–Savin [10]. Indeed, we will show in80
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Theorem 3.4 that bv³ coincides with the Gagliardo-Sobolev space W³,1 – a maybe81

surprising feature of the case ³ < 1, since this is false for ³ = 1: indeed it is well-82

known that W 1,1 ̸= BV , see [22]. This is one of the main theoretical contributions of83

the current paper.84

Based on these notions of fractional BV , we will introduce new types of variational85

models for image denoising. Namely, we study the fractional versions of (1.1),86

argmin
u∈X

{

´Var³(u; Ω) +
µ

p
∥u− uN∥pLp(Ω)

}

.(1.2)87

88

A related model was studied by Bartels and one of the authors in [2] but working in89

fractional order Hilbert space Hs(Ω) instead of X = BV ³(Ω).90

We emphasize that the numerical algorithms for solving problems of type (1.1)91

make use of the Fenchel dual formulations [6, 12]. However, this requires dealing92

with the dual space of BV(Ω), whose full characterization is still an unknown [43].93

Instead one proceeds by finding a predual problem to (1.1), i.e., a problem whose94

Fenchel conjugate is (1.1), see for instance [9, 11, 24]. In this case, one does not need95

to deal with BV(Ω)∗, but instead the closure in Lp(Ω) of the range of a divergence-96

like operator, which is the conjugate of −D : X ¢ BV(Ω) → M(Ω,Rn). We will97

derive a pre-dual problem corresponding to (1.2) in Section 4. Derivation of pre-dual98

requires density of smooth functions with compact support. This is highly non-trivial99

in general even in the local case. We establish this result provided that the domain Ω100

is convex. Such results are of interest independent of this paper, see Propositions 4.4101

and 4.8.102

2. Fractional BV in the Riesz sense. We begin by recalling the notion of103

fractional Laplacian and its inverse, the Riesz potential. Denote by F and F−1 the104

Fourier transform on R
n. For ³ > 0 the fractional Laplacian of f : Rn → R with105

differential order ³, denoted by |D|³f , is given by106

|D|³f(x) := F−1 (|À|³Ff(À)) (x).107

The notation |D|³ = (−∆)
α
2 is common, but we will mostly use the notation |D|³ in108

this paper, since it states the order of derivatives more clearly. The definition above109

makes sense when ³ < 0. In that case, we call the operator Riesz potential. More110

precisely, for all ³ ∈ (0, n) we define111

I³f(x) := F−1
(

|À|−³Ff(À)
)

(x).112

It is then easy to see that |D|³I³f = I³|D|³f = f , at least for suitably smooth113

functions with decay at infinity, i.e. the fractional Laplacian and Riesz potential are114

inverses to each other. The fractional Laplacian |D|³ has no gradient structure. It115

does not converge to the gradient D when ³ → 1. Recently, many authors considered116

a fractional-order operator with a gradient structure. Although this operator can be117

traced as far back as [27], it has received increased interest in various applications118

since the works e.g. [15, 39, 40, 42]. It is defined very simply as the usual gradient of119

the Riesz potential120

D³f := DI1−³f.(2.1)121122

From its Fourier transform representation, it is easy to show that D³ → D as ³ → 1.123

The fractional divergence Div³ is defined as124

Div³ f = div I1−³f.125
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Note that Div³ is the adjoint of −D³. In fact, the following integration-by-parts126

formula holds127

∫

Rn

F ·D³gdx = −

∫

Rn

Div³ F gdx ∀F ∈ C∞
c (Rn,Rn), ∀g ∈ C∞

c (Rn),(2.2)128
129

which follows readily from the definition via the Fourier transform and Plancherel’s130

theorem. We remark on the integral definition of the above operators. For any131

³ ∈ (0, 1], we have132

(2.3)

|D|³f(x) = c1,³
∫

Rn

f(x)−f(y)
|x−y|n+α dy,

D³f(x) = c2,³
∫

Rn

(f(x)−f(y))(x−y)
|x−y|n+α+1 dy,

Div³ F (x) = c3,³
∫

Rn

(F (x)−F (y))·(x−y)
|x−y|n+α+1 dy,

133

for some constants c1,³, c2,³ and c3,³, which can be found in the literature. Having the134

notion of fractional gradient, we naturally obtain an associated notion of fractional135

BV spaces. Our definitions are very similar to [15] and different from other natural136

approaches as in [8] or an approach via a different type of nonlocal gradient and137

divergence as in [19, 34], which we will discuss later in Section 3. When using the138

notion of fractional BV spaces in this paper, most of the required properties will139

follow similar general principles as in typical BV spaces. We provide a derivation of140

the results that we could not find in the literature and provide references otherwise.141

It is possible that some of these results are known to the experts.142

To distinguish the resulting space from the one discussed in Section 3, we use the143

notations BV ³, Div³ and Var³. In Section 3 we will use bv³, div³, and var³ instead.144

Let ³ ∈ (0, 1] and f ∈ L1(Rn), the variation of f is defined as145

Var³(f ;R
n) := sup

{
∫

Rn

f Div³ Φ dx : Φ ∈ C1
c (R

n;Rn), ∥Φ∥L∞(Rn) f 1

}

.(2.4)146
147

Let Ω ¦ R
n. For any f ∈ L1(Ω), we define148

Var³(f ; Ω) := Var³(ÇΩf ;R
n),149

where ÇΩf is the extension of f by zero to R
n. The integral150

∫

Rn

f Div³ Φ dx151

is well defined for all f ∈ L1(Rn) and Φ ∈ C1
c (R

n,Rn), which is a consequence of the152

following result.153

Lemma 2.1. Let Φ ∈ C1
c (R

n;Rn), then for any ³ ∈ (0, 1] and any p ∈ [1,∞] we154

have155

Div³ Φ ∈ Lp(Rn).156

Proof. Fix Φ ∈ C1
c (R

n;Rn). For ³ = 1, we have Div³ Φ ∈ Cc(R
n) ¦ Lp(Rn) for157

all p ∈ [1,∞]. For ³ < 1, we have from (2.3) that158

|Div³ Φ(x)| ≾³

(

2∥Φ∥L∞(Rn) + ∥∇Φ∥L∞(Rn)

)

∫

Rn

min{1, |x− y|}

|x− y|n+³
dy.159
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Here ≾³ implies that the hidden constant depends on ³ (and any constant may depend160

on the dimension n). Since ³ < 1, the following integral is finite and has the same161

value for every x ∈ R
n, i.e.162

∫

Rn

min{1, |x− y|}

|x− y|n+³
dy ≡ C(n, ³) < ∞,163

which implies that164

∥Div³ Φ∥L∞(Rn) ≾³

(

∥Φ∥L∞(Rn) + ∥∇Φ∥L∞(Rn)

)

.165

It remains to prove that Div³ Φ ∈ L1(Rn). Once this is shown we conclude166

Div³ Φ ∈ Lp(Rn) for any p ∈ [1,∞] by interpolation. Taking R g 1 large enough,167

such that suppΦ ¢ B(0, R/2), then for x ∈ R
n \B(0, R) we have168

|Div³ Φ(x)| ≾³

∫

B(0,R/2)

|Φ(y)|

|x− y|n+³
dy.169

By Fubini’s theorem, we have170

∥Div³ Φ∥L1(Rn\B(0,R))

≾
∫

B(0,R/2)
|Φ(y)|

(

∫

Rn\B(0,R)
1

|x−y|n+α dx
)

dy

≾ ∥Φ∥L1(Rn) supy∈Rn\B(0,R/2)

(

∫

{x:|x−y|gR/2}
1

|x−y|n+α dx
)

.

171

Here we hide the constant by using ≾. Using the fact that172

∫

{x:|x−y|gR/2}

1

|x− y|n+³
dx ≾³ R−³ < ∞,173

we obtain174

∥Div³ Φ∥L1(Rn\B(0,R)) ≾³ ∥Φ∥L1(Rn).175

On the complement B(0, R), we have Div³ Φ ∈ L∞(B(0, R)) ¢ L1(B(0, R)). Thus,176

we obtain that ∥Div³ Φ∥L1(Rn) < ∞, which finishes the proof.177

Now we are ready to define the first fractional BV space of this work, i.e. BV ³,178

see also [15, 16, 14] where this space was considered first. This space inherits most of179

its properties from the gradient structure of the Riesz-derivative D³, cf. (2.1).180

Definition 2.2 (Riesz-type fractional BV). For Ω ¢ R
n, we define181

BV ³
00(Ω) := {f ∈ L1(Rn) : f ≡ 0 on R

n \ Ω, Var³(f ; Ω) < ∞},(2.5)182183

endowed with the norm184

∥f∥BV α(Ω) := ∥f∥L1(Ω) +Var³(f ; Ω).185

In this paper, we often identify f ∈ L1(Ω) with its extension by zero ÇΩf ∈186

L1(Rn). Observe that we do not need to assume any regularity of ∂Ω in the above187

(and below) definitions and results. The regularity of ∂Ω only comes into play when188

we consider whether constant functions in Ω belong to BV ³(Ω). Namely 1 ∈ L1(Ω)189

belongs to BV ³
00(Ω) (with the usual identification 1 ∈ L1(Ω) corresponds to ÇΩ ∈190

L1(Rn)) if the ³-Cacciopoli-perimeter of ∂Ω is finite. We refer to [15] for the definition191

of this perimeter. Essentially by definition we immediately obtain192
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6 H. ANTIL, H. DÍAZ, T. JING, AND A. SCHIKORRA

Proposition 2.3. Per³(∂Ω) < ∞, that is the surface ∂Ω has finite ³-Cacciopoli-193

perimeter, if and only if Var³(1; Ω) < ∞.194

Observe that the Cacciopoli-perimeter above is different from the more commonly195

used fractional perimeter introduced by Caffarelli-Roquejoffre-Savin [10]. The latter196

one is related to the fractional version of BV functions defined using the divergence197

as used in, e.g. [19, 34]. We shall discuss it in Section 3.198

Next, we note that one can obtain the existence of the distributional derivative199

D³f (which is a Radon measure) just like for BV , see [22, p.167, Theorem 1, Structure200

Theorem] If f ∈ BV ³
00(Ω), then the mapping201

C1
c (R

n;Rn) ∋ Φ 7→

∫

Rn

f Div³ Φdx202

extends to a linear functional on (Cc(R
n;Rn), ∥·∥L∞(Rn)). By the Riesz representation203

theorem [22, Section 1.8, Theorem 1], there exists a Radon measure µ on R
n and a204

µ-measurable function Ã : Rn → R
n such that |Ã| = 1 µ-a.e. and205

∫

Rn

f Div³ Φdx = −

∫

Rn

Φ · Ãdµ.206

Moreover, we have207

|µ(Rn)| f Var³(f ; Ω).208

The latter follows by the definition of the norm. By slight abuse of notation we will209

denote byD³f both the distributional derivative and the measureD³f := Ã?µ (where210

? denotes the concatenation of function and measure), whichever is applicable.211

We now consider the approximation of BV ³
00(Ω) functions by smooth functions.212

Since f is compactly supported, the convolution f ∗ ¸ε is in C∞
c (Rn). Using the same213

argument as in [22, Theorem 5.2], we obtain the following result.214

Proposition 2.4. Let Ω ¢ R
n be open and bounded. For any f ∈ BV ³

00(Ω) there215

exists fk ∈ C∞
c (Rn) such that216

∥fk − f∥L1(Rn) + |Var³(f ;R
n)−Var³(fk;R

n)|
k→∞
−−−−→ 0.217

Equivalently, (since f vanishes outside of Ω),218

∥fk − f∥L1(Rn) + |Var³(f ; Ω)−Var³(fk;R
n)|

k→∞
−−−−→ 0.219

We also have the following embedding theorem.220

Proposition 2.5. Let Ω ¢ R
n be open and bounded and n g 2. Then for all221

p ∈ [1, n
n−³ ] we have BV ³

00(Ω) ¦ Lp(Rn) and222

∥f∥Lp(Rn) f C(n, p, ³)∥f∥BV α
00(Ω).223

If n = 1, then the same results hold for all p ∈
[

1, 1
1−³

)

.224

Proof. Let fk be the approximation of f as in Proposition 2.4. By the main result225

in [41], for all p ∈
[

1, n
n−³

]

we have226

∥fk∥Lp(Rn) f C
(

∥fk∥L1(Rn) + ∥D³fk∥L1(Rn)

)

,227
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NONLOCAL BOUNDED VARIATIONS WITH APPLICATIONS 7

since fk ∈ C∞
c (Rn). Observe that by an integration-by-parts formula, since we already228

know D³fk ∈ L1(Rn,Rn),229

∥D³fk∥L1(Rn,Rn) = Var³(fk;R
n).230

Since up to subsequences fk converges to f almost everywhere we conclude from231

Fatou’s lemma,232

∥f∥Lp(Rn) f lim infk→∞ ∥fk∥Lp(Rn) f C lim infk→∞

(

∥fk∥L1(Rn) +Var³(fk;R
n)
)

= C
(

∥f∥L1(Rn) +Var³(f ;R
n)
)

.
233

The proof is complete.234

Using the duality definition of Var³ and the same argument as in [22, Theorem 5.2], we235

obtain the lower semicontinuity with respect to the so called intermediate convergence,236

see Definition 10.1.3 and Remark 10.1.3 in [5] for details.237

Proposition 2.6 (Lower semicontinuity). Let Ω ¢ R
n be open and bounded.238

Assume {fk}
∞
k=1 ¢ BV ³

00(Ω), and assume that f ∈ L1(Rn) such that239

∥fk − f∥L1(Rn)
k→∞
−−−−→ 0.240

Then f ∈ BV ³
00(Ω) and we have241

Var³(f ;R
n) f lim inf

k→∞
Var³(fk;R

n).242

Or, equivalently,243

Var³(f ; Ω) f lim inf
k→∞

Var³(fk; Ω).244

Corollary 2.7. Let Ω ¢ R
n be bounded. Then

(

BV ³
00(Ω), ∥ · ∥BV α(Ω)

)

is a com-245

plete space.246

Proof. Let {fk}
∞
k=1 be a Cauchy sequence in BV ³

00(Ω). Since fk is Cauchy in247

L1(Rn), there exists f ∈ L1(Rn) with f ≡ 0 in R
n \ Ω, such that fk → f in L1(Rn).248

By Proposition 2.6, we find that f ∈ BV ³
00(Ω). Using the lower semicontinuity of the249

variation still from Proposition 2.6, we obtain250

lim
k→∞

Var³(f − fk; Ω) f lim
k→∞

lim inf
ℓ→∞

Var³(fℓ − fk; Ω) = 0,251

which completes the proof.252

Using the weak*-convergence of Radon measures, and the arguments of the stan-253

dard Rellich-Kondrachov compactness, see [22, Theorem 5.2 & Theorem 5.5], we have254

the following result.255

Proposition 2.8 (Weak compactness). Let Ω ¢ R
n be open and bounded. As-256

sume {fk}
∞
k=1 ¢ BV ³

00(Ω) such that257

sup
kg1

∥fk∥BV α(Ω) < ∞.258

Then there exists f ∈ BV ³
00(Ω) such that259

Var³(f ;R
n) f lim inf

k→∞
Var³(fk;R

n),260
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8 H. ANTIL, H. DÍAZ, T. JING, AND A. SCHIKORRA

or equivalently,261

Var³(f ; Ω) f lim inf
k→∞

Var³(fk; Ω),262

and there is a subsequence {fki
}∞i=1 such that for all p ∈

[

1, n
n−³

)

we have263

∥fki
− f∥Lp(Rn)

i→∞
−−−→ 0.264

Lastly, as in the local case where we know that H1,1(Ω) is a subspace of BV (Ω)265

(where H1,1(Ω) is the space of functions f ∈ L1(Ω) such that Df ∈ L1(Ω)), the266

corresponding result for the fractional situation holds as well.267

Lemma 2.9. Let f ∈ H³,1(Rn), i.e. f ∈ L1(Rn) and D³f ∈ L1(Rn;Rn). Assume268

additionally that f ≡ 0 in R
n \ Ω. Then f ∈ BV ³

00(Ω).269

Proof. We only need to show Var³(ÇΩf ;R
n) < ∞. For any Φ ∈ C1

c (R
n;Rn) such270

that ∥Φ∥L∞(Rn) f 1, we have by Fubini’s theorem271

∫

Rn

ÇΩf Div³Φ = −

∫

Rn

D³f · Φ f ∥Φ∥L∞(Rn) ∥D
³f∥L1(Rn) f ∥D³f∥L1(Rn) ,272

which implies that Var³(ÇΩf ;R
n) < ∞.273

3. Fractional BV in the Gagliardo sense. The notion of fractional BV from274

Section 2 (as in [15]) is very similar to the usual BV , since it is essentially a lifting275

by the Riesz potential. In this section, we introduce another natural notion, which is276

denoted by bv³. This notion recovers the fractional perimeter as defined by Caffarelli-277

Roquejoffre-Savin in [10]. We begin by introducing a different type of fractional278

divergence as defined in [34]. We stress that related notions were known before [19]279

and are classically used in the theory of Dirichlet forms, cf. [26].280

A (nonlocal) vector-field F on R
n is defined as an Ln × Ln-measurable map281

F : Rn × R
n → R, which is additionally antisymmetric, i.e. F (x, y) = −F (y, x).282

As in [34] the set of such vector-fields is denoted by M(
∧

od R
n), where od stands for283

off-diagonal and (as in the theory of Dirichlet forms)
∧

od stands for a sort of one-form284

(we will not really use this aspect, we recommend the reader to take it as a purely285

notational choice).286

We say that F ∈ Lp(
∧

od R
n) if F ∈ M(

∧

od R
n) and287

∥F∥Lp(
∧

od Rn) :=

(
∫

Rn

∫

Rn

|F (x, y)|p

|x− y|n
dx dy

)
1
p

< ∞288

for p ∈ [1,∞), and289

∥F∥L∞(
∧

od Rn) := ess sup
x,y∈Rn

|F (x, y)| < ∞290

for p = ∞. For Ω ¢ R
n, we say F ∈ Lp

00(
∧

od Ω) if F ∈ Lp(
∧

od R
n) and F (x, y) = 0291

for Ln-a.e. x ∈ R
n \ Ω (and thus for a.e. y ∈ R

n \ Ω).292

The (Gagliardo sense) fractional derivative d³ , which has similar properties as the293

gradient of a function, takes an Ln-measurable function f : Rn → R into a vector-field294

(d³f)(x, y) :=
f(x)− f(y)

|x− y|³
.295
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Let us remark that if one was to consider stability as ³ → 1, then it would make more296

sense to set297

(d³f)(x, y) := (1− ³)
f(x)− f(y)

|x− y|³
.298

However, we will not use this definition in the paper, for the simplicity of presenta-299

tion.300

The scalar product of two vectorfields F and G is given by301

(3.1) (F ·G)(x) :=

∫

Rn

F (x, y)G(x, y)

|x− y|n
dy.302

The fractional divergence div³ is then the formal adjoint to − d³ with respect to the303

L2(Rn) scalar product, i.e. for all φ ∈ C∞
c (Rn), we have304

(3.2)

∫

Rn

div³ F φdx := −

∫

Rn

F · d³φdx = −

∫

Rn

∫

Rn

F (x, y)(φ(x)− φ(y))

|x− y|n+³ dydx.305

The multiplication of a scalar function f(x) and a vector field F (x, y) is defined as:306

(3.3) (fF )(x, y) :=
f(x) + f(y)

2
F (x, y).307

Using (3.2), we can obtain the integral formula of div³. By antisymmetry F (x, y) =308

−F (y, x) and the Fubini’s theorem, we have309

∫

Rn

∫

Rn F (x, y)φ(x)−φ(y)

|x−y|n+α dydx = 2
∫

Rn

∫

Rn

F (x,y)

|x−y|n+α dy φ(x) dx,310

which enables us to give the integral definition of div³ F by311

(div³ F )(x) := −2

∫

Rn

F (x, y)

|x− y|n+³ dy = −

∫

Rn

F (x, y)− F (y, x)

|x− y|n+³ dy.312

In what follows, by yet another slight abuse of notation we are going to use this313

formulation even when F (x, y) ̸= −F (y, x):314

(3.4) (div³ F )(x) := −

∫

Rn

F (x, y)− F (y, x)

|x− y|n+³ dy.315

It was shown in [34] how this fractional divergence naturally appears and leads to316

conservation laws and div-curl type results in the theory of fractional harmonic maps.317

With the Fourier transform, one can check that318

(3.5) (−∆)³f = −c div³(d³f)319

for some constant c = c(n, ³).320

Armed with the fractional divergence div³, we can define the fractional bounded321

variation in the Gagliardo sense.322

Definition 3.1 (Gagliardo-type fractional BV). Let f ∈ L1
loc(R

n). For an open323

set Ω ¢ R
n, we define324

var³(f ; Ω) := sup

{
∫

Rn

f div³ Φ dx : Φ ∈ C∞
c (Ω× Ω), ∥Φ∥L∞(Rn×Rn) f 1

}

.325
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Observe that this is equivalent to326

var³(f ; Ω) = sup

{
∫

Ω

f div³ Φ dx : Φ ∈ C∞
c (Ω× Ω), ∥Φ∥L∞(Ω×Ω) f 1

}

.327

We say that f ∈ bv³(Ω) if328

∥f∥bvα(Ω) := ∥f∥L1(Ω) + var³(f ; Ω) < ∞.329

The notion var³(f ; Ω) is well-defined by the following observations. First, to have330

consistency, we observe that331

Lemma 3.2. Let Φ ∈ C1
c (R

n × R
n), then for all ³ ∈ (0, 1) and all p ∈ [1,∞], we332

have333

div³ Φ ∈ Lp(Rn).334

Observe that we exclude the case ³ = 1 since div³ Φ is not well defined for ³ = 1. A335

multiplication with (1− ³) would lead to a stable theory as ³ → 1.336

Proof. Observe that by differentiability of Φ,337

|Φ(x, y)−Φ(y, x)| f |Φ(x, y)−Φ(x, x)|+|Φ(x, x)−Φ(y, x)| f 2∥DΦ∥L∞(Rn×Rn) |x−y|.338

Then, using a similar argument as in Lemma 2.1, we have339

(3.6)
|(div³ Φ) (x)| f 2

(

∥Φ∥L∞(Rn×Rn) + ∥DΦ∥L∞(Rn×Rn)

)

∫

Rn

min{1, |x− y|}

|x− y|n+³
dy

≾³

(

∥Φ∥L∞(Rn×Rn) + ∥DΦ∥L∞(Rn×Rn)

)

,

340

which implies that ∥ div³ Φ∥L∞(Rn) < ∞. It remains to prove that ∥ div³ Φ∥L1(Rn) <341

∞. Then the required result can be obtained using interpolation. Since Φ is compactly342

supported, we may suppose suppΦ ¦ B(0,M)×B(0,M) for some M > 0. Thus, we343

obtain344

(3.7)

∥div³ Φ∥L1(Rn) =

∫

B(0,M)

∣

∣

∣

∣

∣

∫

B(0,M)

Φ(x, y)− Φ(y, x)

|x− y|n+³ dy

∣

∣

∣

∣

∣

dx

≾ ∥DΦ∥L∞(Rn×Rn)

∫

B(0,M)

∫

B(0,M)

1

|x− y|n+³−1 dydx < ∞,

345

which finishes the proof.346

We introduce the definition of space W³,1(Ω), see [34] for details.347

Definition 3.3. Let Ω ¦ R
n be an open set. A function f is in W³,1(Ω) when348

f ∈ L1(Ω) and349

(3.8) [f ]Wα,1(Ω) :=

∫

Ω

∫

Ω

|f(x)− f(y)|

|x− y|n+³ dydx < ∞.350

The norm of W³,1(Ω) is defined as351

(3.9) ∥f∥Wα,1(Ω) := ∥f∥L1(Ω) + [f ]Wα,1(Ω).352

We now state our main theorem of this section, which is in strong contrast to the353

Riesz-type fractional BV functions, cf. Lemma 2.9. The fractional BV space bv³354

is actually equivalent to W³,1, which makes this space more tractable and probably355

more attainable for numerical purposes.356
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Theorem 3.4. Let ³ ∈ (0, 1). Let Ω ¦ R
n be any open set. Then bv³(Ω) =357

W³,1(Ω). More precisely, for any f ∈ L1(Ω) we have358

var³(f ; Ω) = [f ]Wα,1(Ω),359

whenever one of the two sides are finite.360

Remark 3.5. It is well known that Theorem 3.4 is false for ³ = 1: e.g. take any361

nonempty open and bounded set Ω with finite perimeter. Then ÇΩ ̸∈ W 1,1(Rn) (e.g.362

because it is not continuous on almost all lines). However, we have ÇΩ ∈ BV (Rn). In363

that sense, Theorem 3.4 may be surprising at first. Let us mention that, although we364

are not aware of Theorem 3.4 in the literature, intuitively related observations have365

been made by people working with fractional perimeters.366

Remark 3.6. An immediate corollary is that the fractional perimeter as defined367

by Caffarelli-Roquejoffre-Savin, [10], Per³(Ω;R
n) = var³(ÇΩ;R

n). Thus, the space368

bv³ is the naturally associated notion for a fractional BV space when working with369

that perimeter.370

We prove several lemmas before proving Theorem 3.4.371

Lemma 3.7. Suppose f ∈ W³,1(Ω), then we have f ∈ bv³(Ω) and var³(f ; Ω) =372

[f ]Wα,1(Ω).373

Proof. Given any Φ ∈ C1
c (Ω×Ω,R). Without loss of generality, we may suppose374

suppΦ ¦ K × K, while K is a compact subset of Ω. Then we obtain that also375

div³Φ = 0 outside K.376

We have from Fubini’s theorem (since f ∈ W³,1(Ω), both sides converge abso-377

lutely)378

(3.10)

∫

Rn

fdiv³Φdx = −

∫

Ω

∫

Ω

f(x)− f(y)

|x− y|³
Φ(x, y)

dydx

|x− y|n
.379

Since L∞(Ω× Ω) is the dual of L1(Ω× Ω), from (3.10) we obtain380

var³(f ; Ω) = [f ]Wα,1(Ω),381

which completes the proof.382

The lemma above has not yet proven Theorem 3.4: if we only know f ∈ bv³(Ω)383

we cannot yet apply Lemma 3.7. However, Lemma 3.7 does give us the direction384

var³(f ; Ω) f [f ]Wα,1(Ω) whenever the right-hand side is finite (because in that case385

we can indeed apply Lemma 3.7).386

Next, we observe the following lower semi-continuity result.387

Lemma 3.8. Suppose fk ∈ bv³(Ω) for all k ∈ N and ∥fk − f∥L1(Ω) → 0 as k →388

∞. Then we have389

var³(f ; Ω) f lim inf
k→∞

var³(fk; Ω),390

and in particular f ∈ bv³(Ω).391

Proof. Consider any Φ ∈ C1
c (Ω × Ω) with ∥Φ∥L∞(Ω×Ω) f 1. Since fk → f in392

L1(Ω), and div³Φ is bounded by Lemma 3.2, we have ∥fkdiv³Φ− fdiv³Φ∥L1(Ω) → 0.393

Thus, we have394

(3.11)

∫

Ω

fdiv³Φdx = lim
k→∞

∫

Ω

fkdiv³Φdx f lim inf
k→∞

var³(fk; Ω).395
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Taking the supremum over all admissible Φ, we have396

(3.12) var³(f ; Ω) f lim inf
k→∞

var³(fk; Ω),397

which completes the proof.398

To prove var³(f ; Ω) g [f ]Wα,1(Ω) (whenever the left-hand side is finite), the last399

missing ingredient is the following recovery sequence result. In the following we say400

that a set G is compactly contained in a set Ω, in symbols G ¢¢ Ω, if G is bounded401

and G ¢ Ω.402

Lemma 3.9. Let Ω ¦ R
n be any open set. Assume f ∈ L1(Ω) with var³(f ; Ω) <403

∞. Then for any open G ¢¢ Ω there exists fk ∈ C∞
c (Ω), for all k ∈ N, such that404

fk → f in L1(G)405

and406

lim sup
k→∞

var³(fk;G) f var³(f ; Ω).407

Proof. Since G ¢¢ Ω, there exist open sets U and V such that G ¢¢ U ¢¢408

V ¢¢ Ω. Pick · ∈ C∞
c (V ) such that · = 1 on U and · f 1 in all of Rn. Take409

ε0 > 0 such that Bε(G) := {z ∈ R
n : dist (z,G) < ε} ¢¢ U and Bε(V ) ¢¢ Ω for410

any ε ∈ (0, ε0). Let ¸ ∈ C∞
c (B(0, 1)),

∫

¸ = 1, be the usual mollifier kernel and set411

¸ε := ε−n¸(·/ε). For ε ∈ (0, ε0), we define fε := ¸ε ∗ (f·), then suppfε ¦ Ω. Given412

any Φ ∈ C1
c (G × G) with ∥Φ∥L∞(Rn×Rn) f 1. Using (3.4), the Fubini’s theorem and413

the substitution x′ = x− z and y′ = y − z, we obtain414

(3.13)
∫

Rn

fε div³Φdx

=

∫

G

¸ε ∗ (f·)div³ Φdx

=

∫

G

(

∫

B(0,ε)

¸ε(z) f(x− z) ·(x− z)dz

)

(

−

∫

G

Φ(x, y)− Φ(y, x)

|x− y|n+³ dy

)

dx

= −

∫

G

∫

G

∫

B(0,ε)

f(x− z) ·(x− z) ¸ε(z)
Φ(x, y)− Φ(y, x)

|x− y|n+³ dz dy dx

= −

∫

Bε(G)

∫

Bε(G)

∫

B(0,ε)

f(x′) ·(x′) ¸ε(z)
Φ(x′ + z, y′ + z)− Φ(y′ + z, x′ + z)

|x′ − y′|n+³ dz dy′ dx′.

415

Notice that since ¸ε(−z) = ¸ε(z), we have416

(3.14) (¸ε ∗ Φ) (x
′, y′) :=

∫

B(0,ε)

¸ε(z) (Φ(x
′ + z, y′ + z)− Φ(y′ + z, x′ + z)) dz.417

Thus, by (3.13) we have418

∫

Rn fεdiv³Φdx = −
∫

Bε(G)

∫

Bε(G)
f(x′) ·(x′) (¸ε∗Φ)(x′,y′)

|x′−y′|n+α dy′dx′

= −
∫

Bε(G)

∫

Bε(G)
f(x′) 1

2 (·(x
′) + ·(y′)) (¸ε∗Φ)(x′,y′)

|x′−y′|n+α dy′dx′

−
∫

Bε(G)

∫

Bε(G)
f(x′) 1

2 (·(x
′)− ·(y′)) (¸ε∗Φ)(x′,y′)

|x′−y′|n+α dy′dx′.

419
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Since Bε(G) ¢ U and · ≡ 1 in U , the second term vanishes. Setting420

Ψε(x
′, y′) :=

1

2
(·(x′) + ·(y′)) (¸ε ∗ Φ) (x

′, y′),421

we see that Ψε ∈ C∞
c (Ω× Ω), Ψε(x

′, y′) = −Ψε(y
′, x′), and422

∫

Rn

fε div³ Φdx =

∫

Ω

f div³ Ψε dx
′.423

It is easy to check that424

∣

∣

∣

∣

1

2
(·(x′) + ·(y′)) (¸ε ∗ Φ) (x

′, y′)

∣

∣

∣

∣

f |(¸ε ∗ Φ) (x
′, y′)| f ∥Φ∥L∞(Rn×Rn) f 1.425

Thus, we have shown that for any Φ ∈ C∞
c (G×G) with ∥Φ∥L∞(Rn×Rn) f 1, and any426

ε < ε0, there is427
∫

Rn

fεdiv³Φdx f var³(f ; Ω).428

Taking the supremum over such test-functions Φ we obtain429

sup
ε∈(0,ε0)

var³(fε;G) f var³(f ; Ω).430

In particular,431

lim sup
ε→0

var³(fε;G) f var³(f ; Ω).432

By usual mollifier arguments we have fε → ·f in L1(Rn) as ε → 0. Since · ≡ 1 in G,433

we have fε → f in L1(G) as ε → 0.434

We now finish the proof of the main theorem.435

Proof of Theorem 3.4. Let f ∈ L1(Ω). In Lemma 3.7, we have proved

[f ]Wα,1(Ω) g var³(f ; Ω),

whenever the left-hand side is finite. So we only need to establish

[f ]Wα,1(Ω) f var³(f ; Ω),

whenever the right-hand side is finite.436

Given any G ¢¢ Ω, we can take a sequence {fk}
∞
k=1 as stated in Lemma 3.9.437

Since fk ∈ C∞
c (Ω), we have fk ∈ W³,1(G), so Lemma 3.7 is applicable. Combining438

Lemma 3.7 and Lemma 3.9, we find439

lim sup
k→∞

[fk]Wα,1(G) f lim sup
k→∞

var³(fk;G) f var³(f ; Ω).440

Since fk → f in L1(G), up to passing to a subsequence, we may assume that fk(x)441

converges to f(x) a.e. in G. Using Fatou’s lemma, we obtain442

(3.15)

∫

G

∫

G

|f(x)− f(y)|

|x− y|n+³ dydx f lim inf
k→∞

∫

G

∫

G

|fk(x)− fk(y)|

|x− y|n+³ dydx.443

Thus, we obtain444

(3.16) [f ]Wα,1(G) f lim inf
k→∞

[fk]Wα,1(G) f var³(f ; Ω).445
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Picking an increasing sequence of open sets {Gm}, such that Gm ¢¢ Ω and446

(3.17)

∞
⋃

m=1

Gm = Ω.447

Applying the above argument to G = Gm, we have [f ]Wα,1(Gm) f var³(f ; Ω) for any448

m ∈ N. Using Fatou’s lemma again, we have449

(3.18)
[f ]Wα,1(Ω) f lim infm→∞

∫

Gm

∫

Gm

|f(x)−f(y)|

|x−y|n+α dydx

f lim infm→∞[f ]Wα,1(Gm) f var³(f ; Ω),
450

which concludes the proof.451

Using Theorem 3.4, we can easily obtain the following result.452

Proposition 3.10 (Weak compactness). Let Ω ¢ R
n be an open and bounded453

set with Lipschitz boundary. Assume that {fk}
∞
k=1 ¢ bv³(Ω) such that454

sup
k∈N

∥fk∥bvα(Ω) < ∞.455

Then there exists f ∈ bv³(Ω) such that456

var³(f ; Ω) f lim inf
k→∞

var³(fk; Ω),457

and there is a subsequence {fki
}∞i=1, such that for all p ∈

[

1, n
n−³

)

458

∥fki
− f∥Lp(Ω)

i→∞
−−−→ 0.459

Proof. By Theorem 3.4, we have460

var³(fk,Ω) = [fk]Wα,1(Ω).461

Since Ω is a Lipschitz domain, it is regular in the sense of [46]. Thus, by the main462

result of [46], we can find an extension f̃k ∈ W³,1(Rn) with compact support, f̃k = fk463

a.e. in Ω, such that464

[f̃k]Wα,1(Rn) ≾ [fk]Wα,1(Ω).465

From the usual Rellich theorem, we find a subsequence (fki
)i∈N, such that for all466

p ∈
[

1, n
n−³

)

467

∥fki
− f∥Lp(Ω)

i→∞
−−−→ 0,468

see [18, Corollary 7.2]. In particular, in view of Lemma 3.8,469

var³(f ; Ω) f lim inf
k→∞

var³(fk; Ω).470

Using Theorem 3.4, we also readily obtain the Sobolev embedding theorem, which471

can be proved using the extension theorem as in Proposition 3.10 above and then [32,472

Theorem 9].473

Proposition 3.11. Let Ω ¢ R
n be an open and bounded set with Lipschitz bound-474

ary. Then there exists a constant C = C(n, ³) > 0 such that for any f ∈ bv³(Ω),475

∥f∥
L

n
n−α (Ω)

f C var³(f ; Ω).476
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We also obtain the following density result, which might be known to experts477

(observe that this density is not true for ³ = 1, cf. [22, Theorem 5.3 and remark478

after]). Using the identification in Theorem 3.4, the extension property in [46] , and479

the usual mollifcation in [18, Theorem 2.4.] or [35, Lemma 26], we have the following480

result.481

Corollary 3.12. Let ³ ∈ (0, 1). Let Ω ¢ R
n be any open and bounded set with482

Lipschitz boundary, then C∞(Ω) is dense in bv³(Ω).483

Let us make a last remark about traces. For a classical BV function there is a484

trace, [5, Theorem 10.2.1]. However, this will not be true for bv³(Ω), since W³,1(Ω)485

does not have a reasonably defined trace. The typical approach is then the notion of486

a fat boundary trace, which we do not pursue in this paper.487

4. Image Denoising and Predual Problem. Let Ω ¢ R
n be a open and488

bounded set with a Lipschitz continuous boundary, ³ ∈ (0, 1), p ∈ (1,∞), p∞ := n
n−³ ,489

and uN ∈ Lp(Ω). Based on the two fractional variations considered in this work we490

consider the (primal) problems for some fixed positive parameters ´ and µ491

inf
u∈Lp(Ω)

{

µ

p
∥u− uN∥pLp(Ω) + ´Var³(ÇΩu;R

n)

}

,(PR)492

inf
u∈Lp(Ω)

{

µ

p
∥u− uN∥pLp(Ω) + ´var³(u; Ω)

}

.(PG)493
494

Note that the condition of u having bounded fractional variation is imposed implicitly,495

and it is also clear that both problems are strictly convex for p > 1. Therefore, we use496

well-known results from convex analysis, cf. [20], to study the minimizers of Problems497

(PR) and (PG). Regularity theory to a related problem to PG was recently studied498

in [36, 7].499

Convex Analysis and Optimization. As usual in convex optimization, we500

consider the so-called dual problem, which usually gives new insights about the struc-501

ture of the primal problem. In this work, we consider a different but related approach502

coined as predual method. Here we mainly follow the approach given in [9, 13, 24]. In503

order to introduce this method, we need some definitions, cf. [20, Ch. I]. Consider a504

Banach space V and its topological dual V ∗, with duality paring denoted by ï·, ·ðV ∗,V .505

Given F : V → R, its Fenchel conjugate is given by F ∗ : V ∗ → R,506

u∗ 7→ F ∗(u∗) := sup
u∈V

{ïu∗, uðV ∗,V − F (u)} .(4.1)507
508

We denote by ∂F (u) the subdifferential map of F at the point u ∈ V, see [20,509

Definition I.5.1]. The following characterization holds,510

u∗ ∈ ∂F (u) if and only if F (u) is finite and

ïu∗, v − uðV ∗,V + F (u) f F (v), ∀v ∈ V.
(4.2)511

512

We now introduce a process known as dualization [20, Chs. III-IV], here we will focus513

on problems of the form:514

inf
u∈V

{F (u) +G(Λu)},(Q)515
516

where Y is a Hausdorff topological space with dual Y ∗, Λ ∈ L (V, Y ), with transpose517

Λ∗ ∈ L (Y ∗, V ∗), and F : V → R, G : V → R. We define the dual problem of (Q) as518

sup
v∈Y ∗

−Φ∗(0, v),(Q∗)519
520

This manuscript is for review purposes only.
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where Φ∗ : V ∗ × Y ∗ → R is the Fenchel conjugate (dual) of Φ : V × Y → R, (u, p) 7→521

Φ(u, p) := F (u) + G(p + Λu), see (4.1). The next theorem gives conditions for the522

so-called Fenchel’s duality, cf. [20, Theorem III.4.1] and [21, Pg. 130].523

Theorem 4.1. Assume V and Y are Banach spaces, F and G are convex and524

lower semicontinuous (l.s.c.), and there exists v0 ∈ V such that F (v0) < ∞, G(Λv0) <525

∞, and G is continuous at Λv0. Then, the problems (Q) and (Q∗) are related by:526

inf
u∈V

{F (u) +G(Λu)} = sup
v∈Y ∗

−Φ∗(0, v)527

= sup
v∈Y ∗

{−F ∗(Λ∗v)−G∗(−v)} ,528
529

and there exists at least one solution to (Q∗). Moreover, if u and v are solutions for530

(Q) and (Q∗), respectively, then531

Λ∗v ∈ ∂F (u),

−v ∈ ∂G(Λu).
(4.3)532

533

In general, there are different choices for F,G and Λ in order to write a given534

problem as in (Q). Here we consider one that satisfy the hypothesis of Theorem535

4.1 in a straightforward manner. We now show existence and characterization for536

minimizers of problems (PR) and (PG).537

Riesz-type. By Proposition 2.5, for p ∈ [1, p∞], with p∞ := n
n−³ , we can con-538

sider the problem (PR) defined on Lp(Ω) or BV³
00(Ω), cf. (2.5), interchangeably.539

The next lemma shows that the problem (PR), related to the Riesz-type of fractional540

bounded variation, has a solution and for p > 1 it is unique.541

Lemma 4.2. For p ∈ (1, p∞), the problem (PR) has a unique solution u ∈542

BV³
00(Ω)543

Proof. Let p ∈ [1,∞), define JR :
(

Lp(Ω), ∥ · ∥Lp(Ω)

)

→ R, given by544

JR(u) :=
µ

p
∥u− uN∥pLp(Ω) + ´Var³(ÇΩu;R

n).(4.4)545
546

It is clear that
0 f inf

u∈Lp(Ω)
JR(u) f

µ

p
∥uN∥pLp(Ω).

Now, let (uk)k∈N ¦ Lp(Ω) be a minimizing sequence associated to the problem (PR),547

then for each k ∈ N548

∥uk∥Lp(Ω) f ∥uk − uN∥Lp(Ω) + ∥uN∥Lp(Ω) f 2∥uN∥Lp(Ω), and549

Var³(ÇΩuk;R
n) f

µ

p´
∥uN∥Lp(Ω).550

551

Then, for p ∈ [1, p∞), Propositions 2.5 and 2.8 imply there exist u ∈ BV³
00(Ω) ↪→552

Lp(Rn) and a subsequence {uki
}i∈N such that553

Var³(u;R
n) f lim inf

i→∞
Var³(uki

;Rn) and ∥uki
− uN∥pLp(Ω)

i→∞
−−−→ ∥u− uN∥pLp(Ω).554

555

Thus, the existence of a solution for (PR) follows from the fact that u = ÇΩu, a.e.,556

for the uniqueness it is enough to notice that JR, cf. (4.4), is a strictly convex557
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functional for p > 1. In fact, if u1 and u2 were two different solutions to (PR), then558

for ¼ ∈ (0, 1),559

JR(¼u1 + (1− ¼)u2)560

=
µ

p
∥¼u1 + (1− ¼)u2 − ud∥

p
Lp(Ω) + ´Var³(ÇΩ(¼u1 + (1− ¼)u2);R

n)561

=
µ

p
∥¼(u1 − ud) + (1− ¼)(u2 − ud)∥

p
Lp(Ω)562

+ ´Var³(ÇΩ(¼u1 + (1− ¼)u2);R
n)563

<
µ

p
¼∥u1 − ud∥

p
Lp(Ω) +

µ

p
(1− ¼)∥u2 − ud∥

p
Lp(Ω)564

+ ´Var³(ÇΩ(¼u1 + (1− ¼)u2);R
n)565

f¼JR(u1) + (1− ¼)JR(u2).566567

Thus, u1 = u2 a.e. and by the definition of Var³, cf. (2.4), the proof concludes.568

Next, we will derive an expression of the predual of (PR). In order to do that, we569

start with the regularity for the “test functions” in (2.4). It is clear that if u ∈ L1(Rn)570

and suppu ¢ Ω, then
∫

Rn u Div³ Φ dx does not depend on Div³ Φ|Ωc . This motivates571

us to define ∥Φ∥XRiesz :=
q

√

∥Φ∥qLq(Rn,Rn) + ∥Div³ Φ∥qLq(Ω) for Φ ∈ C1
c (R

n;Rn), where572

q := p
p−1 . We consider the space XRiesz := XRiesz(Ω, q, ³), given by573

XRiesz := C1
c (R

n;Rn)
∥·∥XRiesz .574575

We also define an auxiliary problem576

inf
Φ∈XRiesz

{

1

q
∥ −Div³ Φ∥qLq(Ω) −

∫

Ω

uN (−Div³ Φ) + I´(Φ)

}

,(QR)577
578

where I´ denotes the convex indicator function defined as579

I´(Φ) :=

{

0 : ∥Φ∥L∞(Rn) f ´,

+∞ : otherwise.
580

581

We will establish that (QR) is the pre-dual problem to (PR), i.e., dual of (QR) will582

be (PR) if Ω is convex.583

We begin by noticing that (QR) fits in the abstract framework of (Q) if we584

consider the spaces: Y :=
(

Lq(Ω), ∥ · ∥Lq(Ω)

)

, V := (XRiesz, ∥ · ∥XRiesz) , and the oper-585

ators:586

G : Y → R, G(v) :=
1

q
∥v∥qLq(Ω) −

∫

Ω

uNvdx,

F : V → R, F (Φ) := I´(Φ),

Λ : V → Y, Λ(Φ) := (−Div³ Φ)|Ω.

(4.5)587

588

To compute the dual problem of (QR), we compute the Fenchel conjugate of F,G and589

Λ, given in (4.5).590

Proposition 4.3. Let Ω ¦ R
n be open, bounded, convex. Let591

Y := (Lq(Ω), ∥ · ∥q,Ω) , V := (XRiesz, ∥ · ∥XRiesz
),592
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18 H. ANTIL, H. DÍAZ, T. JING, AND A. SCHIKORRA

and operators F,G and Λ be defined as in (4.5), then593

G∗ : Y ∗ → R, u 7→
1

p
∥u+ uN∥pLp(Ω),594

F ∗ : V ∗ → R, Ψ∗ 7→ sup
Φ∈V

∥Φ∥L∞(Rn)f´

ïΨ∗,ΦðV ∗,V ,595

F ∗◦ Λ∗ : Y ∗ → R, u 7→ ´Var³(ÇΩu;R
n).596597

Proposition 4.3, while in principle looking very similar to the arguments in [24,598

Section 2], contains a quite serious subtlety. Observe that [24] does not consider599

test-functions with the natural restriction ∥Φ∥L∞(Rn) f ´, but resorts to discussing600

component-wise control |Φi| f ´, i = 1, . . . , n (leading to a nonstandard BV -space)601

– which is crucially needed in their argument to compute the predual.602

Instead we show in our paper that for bounded, open, convex sets Ω we do not need603

such unnatural restrictions. The main property we use is the controllable distance604

of rescaled sets, cf. Lemma A.1 and Lemma A.2. The main novelty is contained in605

the next proposition. Notice that such a result is even critical to prove the result in606

[24, 25], where ³ = 1, for the natural BV -space.607

Proposition 4.4. If Ω is convex, then for all Φ ∈ XRiesz,608

I´(Φ) = Ĩ´(Φ),609

where610

Ĩ´(Φ) :=











0 : if there exists Ψk ∈ C∞
c (Rn), Ψk → Φ in XRiesz

such that supk ∥Ψk∥L∞(Rn) f ´,

+∞ : otherwise.

611

Proof. We first observe that612

(4.6) Ĩ´(Φ) = 0 ⇒ I´(Φ) = 0.613

Indeed, if Ĩ´(Φ) = 0 then there exists a sequence Ψk ∈ C∞
c (Rn) with ∥Ψk∥L∞(Rn) f ´,614

such that Ψk → Φ in XRiesz. In particular, we have ∥Ψk − Φ∥Lq(Rn)
k→∞
−−−−→ 0. Then615

there exists a subsequence, still denoted by Ψk, such that Ψk converges a.e. to Φ,616

which implies that |Φ(x)| f ´ a.e. in R
n, i.e. ∥Φ∥L∞(Rn) f ´. By the definition of617

I´ , we have I´(Φ) = 0, which proves (4.6).618

From (4.6) we conclude Ĩ´(Φ) g I´(Φ). It remains to prove Ĩ´(Φ) f I´(Φ). If the619

right-hand side is +∞ then there is nothing to show. Thus, we only need to show620

(4.7) I´(Φ) = 0 ⇒ Ĩ´(Φ) = 0.621

Suppose that Φ ∈ XRiesz and I´(Φ) = 0. In order to establish (4.7), we need to show622

(4.8) ∀ε > 0 ∃Θ ∈ C∞
c (Rn;Rn), ∥Θ∥L∞(Rn) f ´, ∥Θ− Φ∥XRiesz

< ε.623

We proceed in several steps.624

Step 1: We first show that625

(4.9)
∀ε > 0 ∃Θ1 ∈ XRiesz, suppΘ1 ¢¢ R

n, ∥Θ1∥L∞(Rn) f ´, ∥Θ1 − Φ∥XRiesz
< ε.626
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For m ∈ N, we choose a smooth cut-off function 0 f ·m f 1, such that ·m = 1 when627

|x| < m; ·m = 0 when |x| > 2m; and |∇·m| ≾ 1
m . For sufficiently large m, we set628

Θ1 := ·mΦ.629

It is clear that ∥Θ1∥L∞(Rn) f ∥·mΦ∥L∞(Rn) f ∥Φ∥L∞(Rn) f ´. Thus, we only need630

to show631

∥Φ·m − Φ∥Lq(Rn) + ∥Div³(Φ·m)−Div³Φ∥Lq(Ω) → 0.632

Since |Φ·m| f |Φ| and ·m → 1 almost everywhere on R
n, using the Lebesgue633

dominated convergence theorem, we have ∥Φ·m − Φ∥Lq(Rn) → 0. Since m is suf-634

ficiently large, we may assume without loss of generality that ·m(x) ≡ 1 when635

dist(x,Ω) f 1. Since Φ ∈ XRiesz, there exists a sequence Φk ∈ C∞
c (Rn), such that636

∥Φk − Φ∥XRiesz

k→∞
−−−−→ 0 and637

∫

Rn

Φk ·D³φ = −

∫

Ω

Div³(Φk)φ, ∀φ ∈ C∞
c (Ω).638

By the definition of XRiesz-convergence, we can take the limits of both sides, which639

implies640
∫

Rn

Φ ·D³φ = −

∫

Ω

Div³(Φ)φ, ∀φ ∈ C∞
c (Ω).641

Now we claim that Div³(·mΦ) ∈ Lq(Ω). Indeed, let φ ∈ C∞
c (Ω), then642

∫

Rn Φ·m ·D³φ =
∫

Rn Φ ·D³(·mφ) +
∫

Rn Φ · (·mD³(φ)−D³(·mφ))
=

∫

Rn Φ ·D³φ+
∫

Rn Φ · (·mD³(φ)−D³(·mφ)) .
643

In the last step we used that ·mφ = φ by the definition of ·m and the support of φ.644

Using e.g. the Coifman-McIntosh-Meyer commutator estimate (e.g., see [31, Theorem645

6.1] or [29, Theorem 3.2.1]), we have646

∥·mD³(φ)−D³(·mφ)∥Lq′ (Rn) ≾ [·m]Lip ∥I
1−³φ∥Lq′ (Rn),647

where I1−³ denotes the Riesz potential and q′ = q
q−1 . Since φ has compact support648

in the bounded set Ω, we have by Sobolev-Poincaré inequality649

∥I1−³φ∥Lq′ (Rn) ≾Ω ∥φ∥Lq′ (Ω),650

which follows from the usual blow-up argument used for the classical Poincaré in-651

equality. That is, we have shown that for any φ ∈ C∞
c (Ω),652

∣

∣

∣

∣

∫

Rn

Div³ (Φ·m − Φ) φ

∣

∣

∣

∣

≡

∣

∣

∣

∣

∫

Rn

(Φ·m − Φ) ·D³φ

∣

∣

∣

∣

fC(Ω, q)∥Φ∥Lq(Rn) ∥φ∥Lq′ (Rn)[·m]Lip .

653

Observe that [·m]Lip ≾ 1
m , so we have shown by duality that654

∥Div³ (Φ·m − Φ) ∥Lq(Ω) ≾
1

m
∥Φ∥Lq(Rn)

m→∞
−−−−→ 0,655

which establishes (4.9)656
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Step 2: By translation we may assume Ω is convex and 0 ∈ Ω. For Ä > 1, we set657

(4.10) ΩÄ := ÄΩ = {Äx : x ∈ Ω}.658

Then, from Lemma A.1 and Lemma A.2, we have Ω ¢¢ ΩÄ for Ä > 1.659

In this step, we show that660

(4.11)
∀ε > 0 ∃Θ2 ∈ XRiesz, Ä > 1, suppΘ2 ¢¢ R

n,Div³ Θ2 ∈ Lq(ΩÄ),

∥Θ2∥L∞(Rn) f ´, ∥Θ2 − Φ∥XRiesz
< ε.

661

By the results in Step 1, we only need to show (4.11) with Φ replaced by Θ1. We let662

Ψ := Θ1 for convenience. For Ä > 1,663

ΨÄ(x) := Ψ(x/Ä).664

Then we have665

∥ΨÄ∥L∞(Rn) = ∥Ψ∥L∞(Rn) f ´.666

Moreover, in view of Lemma A.4, we have667

∥ΨÄ −Ψ∥Lq(Rn)
Ä→1+

−−−−→ 0.668

It remains to show Div³ ΨÄ ∈ Lq(ΩÄ) and669

∥Div³ ΨÄ −Div³ Ψ∥Lq(Ω)
Ä→1+

−−−−→ 0.670

We first observe that671
∫

Rn

ΨÄ ·D
³φdx = Än−³

∫

Rn

Ψ ·D³ (φ (Ä ·)) dx.672

Thus, from φ(·) ∈ C∞
c (ΩÄ) we have φ (Ä ·) ∈ C∞

c (Ω). Then we conclude673

Div³ ΨÄ(x) = Ä−³(Div³ Ψ)(x/Ä) for a.e. x ∈ ΩÄ.674

In particular Div³ ΨÄ ∈ Lq(ΩÄ). We now have675

∥Div³ ΨÄ −Div³ Ψ∥Lq(Ω)

f ∥Div³ ΨÄ − Ä−³ Div³ Ψ∥Lq(Ω) + ∥Ä−³ Div³ Ψ−Div³ Ψ∥Lq(Ω)

= Ä−³∥(Div³ Ψ)(·/Ä)− (Div³ Ψ)(·)∥Lq(Ω) + (1− Ä−³)∥Div³ Ψ∥Lq(Ω)

Ä→1+

−−−−→ 0,

676

where we have used Lemma A.4 for the first term and Div³ Ψ ∈ Lq(Ω) for the second677

term. This implies that (4.11) is satisfied, by considering ΨÄ for Ä > 1 close enough678

to 1.679

Step 3: Conclusion Given ε > 0, we take Ψ := Θ2 and pick Ä > 1 such that (4.11)680

is satisfied for ε
2 instead of ε. Since Ω is convex, by Lemma A.1 and Lemma A.2, there681

exists D > 0 such that dist (Ω, ∂ΩÄ) > D. We let ¶0 := D
100 and choose ¶ ∈ (0, ¶0).682

Let ¸ ∈ C∞
c (B(0, 1)) be the usual symmetric mollifier kernel, and set683

Ψ¶ := ¸¶ ∗Ψ.684

Since suppΨ ¢¢ R
n, we have Ψ¶ ∈ C∞

c (Rn) and685

∥Ψ¶∥L∞(Rn) f ∥Ψ∥L∞(Rn) f ´686
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We also have by usual mollification687

∥Ψ¶ −Ψ∥Lq(Rn)
¶→0
−−−→ 0.688

Lastly, for φ ∈ C∞
c (Ω) we have by Fubini’s theorem689

∫

Rn

Ψ¶ ·D
³φ =

∫

Rn

Ψ ·D³(φ ∗ ¸¶).690

Observe that φ ∈ C∞
c (Ω) implies that φ ∗ ¸¶ ∈ C∞

c (B(Ω, ¶)) ¢ C∞
c (ΩÄ). Thus, we691

have692
∫

Rn

Ψ¶ ·D
³φ =

∫

Rn

Div³ Ψ(φ ∗ ¸¶) ∀φ ∈ C∞
c (Ω).693

Since Div³ Ψ ∈ Lq(ΩÄ), we conclude that694

Div³ Ψ¶ = (Div³ Ψ) ∗ ¸¶ in Ω.695

Then, since Div³ Ψ ∈ Lq(ΩÄ) we have that (Div³ Ψ)∗¸¶ converges to Div³ Ψ in Lq(Ω)696

as ¶ → 0, i.e.697

∥Div³ Ψ¶ −Div³ Ψ∥Lq(Ω)
¶→0+
−−−−→ 0.698

Thus, we conclude that699

∥Ψ¶ −Ψ∥XRiesz

¶→0+
−−−−→ 0.700

Now by choosing ¶ > 0 sufficiently small, we have701

∥Ψ¶ − Φ∥XRiesz
f ∥Ψ¶ −Ψ∥XRiesz

+ ∥Ψ− Φ∥XRiesz
f

ε

2
+

ε

2
= ε.702

Letting Θ := Ψ¶, we have shown (4.8), which implies (4.7). Therefore, we have proved703

Ĩ´(Φ) f I´(Φ), which completes the proof.704

With the help of Proposition 4.4, we can now continue with the optimizing prob-705

lem.706

Proof of Proposition 4.3. For G∗ the procedure is standard, cf. [20, Ch. I], and707

follows from (4.1),708

G∗ : Y ∗ → R,709

G∗(u) = sup
v∈Lq(Ω)

{
∫

Ω

vudx−G(v)

}

=
1

p
∥u+ uN∥pLp(Ω).710

711

As for F ∗, we follow [24, Section 2], with the crucial adaptation of using Proposi-712

tion 4.4 in the last step713

F ∗ : V ∗ → R,714

F ∗(Ψ∗) = sup
Φ∈V

{ïΨ∗,ΦðV ∗,V − F (Φ)} = sup
Φ∈V

{ïΨ∗,ΦðX∗,X − I´(Φ)}715

= sup
Φ∈V

{

ïΨ∗,ΦðX∗,X − Ĩ´(Φ)
}

= sup
Φ∈V ∩C∞

c (Rn)
∥Φ∥L∞(Rn)f´

ïΨ∗,ΦðV ∗,V .716

717
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The condition in the last line that we can assume Φ ∈ C∞
c (Rn) is the crucial point718

of Proposition 4.4, and the only place where convexity of Ω appears. Finally, by719

definition we have Λ∗ : Y ∗ → V ∗. Therefore,720

F ∗(Λ∗u) = sup
Φ∈V ∩C∞

c (Rn)
∥Φ∥L∞(Rn)f´

ïΛ∗u,ΦðV ∗,V = sup
Φ∈V ∩C∞

c (Rn)
∥Φ∥L∞(Rn)f´

ïu,ΛΦðY ∗,Y721

= ´ sup
Φ∈C∞

c (Rn,Rn)
∥Φ∥L∞(Rn)f1

∫

Rn

ÇΩu(−Div³ Φ)dx = ´Var³(ÇΩu;R
n),722

723

which concludes the proof.724

From Theorem 4.1, we have the following result.725

Corollary 4.5. If Ω is convex, the problems (PR) and (QR) are related by726

min
Φ∈XRiesz

{

1

q
∥ −Div³ Φ∥qLq(Ω) −

∫

Ω

uN (−Div³ Φ)dx+ I´(Φ)

}

727

= − min
u∈Lp(Ω)

{

µ

p
∥u− uN∥pLp(Ω) + ´Var³(ÇΩu;R

n)

}

.728
729

It is important to mention that the (predual) problem (QR) has at least one730

solution. Moreover, we have the following results for the optimality conditions, cf.731

(4.3),732

Lemma 4.6. Let u be the unique solution for (PR) and let Φ be any solution for733

(QR). Then we have734

Λ∗u ∈ ∂F (Φ) ô
〈

Λ∗u,v − Φ
〉

f 0 ∀v ∈ XRiesz,(4.12)735

−u ∈ ∂G(ΛΦ) ô −u = −
∣

∣Div³ Φ
∣

∣

q−2
Div³ Φ− uN .(4.13)736737

Proof. It is clear that (4.12) follows from (4.2). On the other hand, if G is Gâteaux738

differentiable at u ∈ Y , then ∂G(u) = {G′(u)}, cf. [20, Prop. I.5.3]. In turn, the739

following property about the duality map, it is also well known:740

∂∥ · ∥qLq(Ω) : L
q(Ω) → Lp(Ω)

u 7→ {q|u|q−2u},
741

742

which proves (4.13) and finishes the proof.743

Gagliardo-Type. Next, we focus on the Gagliardo case. We refer to [36] where744

they studied a related problem. As in case of Riesz, we begin by establishing the745

existence and uniqueness of solution to (PG).746

Lemma 4.7. For p ∈ (1, p∞), the problem (PG) has a unique solution u ∈747

bv³(Ω) ∩ Lp(Ω).748

Proof. The proof is similar to the Riesz case in Lemma 4.2, after using Proposition749

3.10.750

Now, we characterize the minimizers of (PG) using the predual strategy as discussed751

in the Riesz case. Note that u does not need to be extended by zero outside Ω. As a752

result, our approach is largely motivated by [9, Section 2]. We now study the predual753
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problem associated to (PG). In a similar way as in the Riesz case, we consider the754

spaces755

XGagliardo = {Φ : Φ ∈ C1
c (Ω× Ω), Φ(x, y) = −Φ(y, x)}

∥·∥XGagliardo ,(4.14)756757

where758

∥Φ∥XGagliardo
:= q

√

∥Φ∥qLq(
∧

od Ω) + ∥ div³ Φ∥qLq(Ω) ,759
760

which is well defined because of Lemma 3.2. Observe that we can equivalently assume761

Φ ≡ 0 in (Rn × R
n) \ (Ω× Ω) and set762

∥Φ∥XGagliardo
:= q

√

∥Φ∥qLq(
∧

od Rn) + ∥ div³ Φ∥qLq(Rn) .763
764

As in the Riesz case, we will use the indicator function I´ for some ´ > 0. For765

Φ ∈ XGagliardo, we define766

I´(Φ) :=

{

0 : ∥Φ∥L∞(Rn×Rn) f ´,

+∞ : otherwise.
767

768

As in the Riesz case, our main novelty is that we are able to pass from I´ to a769

new Ĩ´ which has better approximation properties.770

Proposition 4.8. If Ω is convex then for all Φ ∈ XGagliardo,771

I´(Φ) = Ĩ´(Φ),772

where773

Ĩ´(Φ) :=











0 : if there exists Ψk ∈ C∞
c (Ω× Ω),

Ψk → Φ in XGagliardo such that supk ∥Ψk∥L∞(Rn×Rn) f ´,

+∞ : otherwise.

774

Proof. We may assume without loss of generality that Ω is convex and 0 ∈ Ω.775

First, we establish that I´(Φ) f Ĩ´(Φ) for all Φ ∈ XGagliardo . The case Ĩ´(Φ) = ∞ is776

trivial. Suppose that Ĩ´(Φ) = 0, then there exist Ψk ∈ C∞
c (Ω × Ω) with Ψk(x, y) =777

−Ψk(y, x) and supk ∥Φk∥L∞(Rn×Rn) f ´, such that Ψk → Φ in XGagliardo. From the778

Lq(
∧od

R
n)-convergence of Ψk, we can find a subsequence, still denoted by Ψk, such779

that780
|Ψk(x, y)− Φ(x, y)|

|x− y|
n
q
+s

k→∞
−−−−→ 0 for L2n-a.e. (x, y) ∈ R

2n,781

which in particular implies782

|Ψk(x, y)− Φ(x, y)|
k→∞
−−−−→ 0 for L2n-a.e. (x, y) ∈ R

2n.783

Thus, we have784

|Φ(x, y)| f ´ for L2n-a.e. (x, y) ∈ R
2n,785

which implies that I´(Φ) = 0 and proves that I´(Φ) f Ĩ´(Φ) for all Φ ∈ XGagliardo.786

Now we to prove the opposite direction, i.e. I´(Φ) g Ĩ´(Φ) for all Φ ∈ XGagliardo.787

If I´(Φ) = ∞ there is nothing to show, so we actually need to show788

I´(Φ) = 0 ⇒ Ĩ´(Φ) = 0.789
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Assuming that Φ ∈ XGagliardo satisfies ∥Φ∥L∞(Rn×Rn) f ´, we prove that790

(4.15) ∀ε > 0 ∃Θ ∈ C∞
c (Ω× Ω), ∥Θ∥L∞(Rn×Rn) f ´, ∥Θ− Φ∥XGagliardo

< ε.791

Step 1: In contrast to the Riesz case, we scale the functions inwards for the792

Gagliardo case, which ensures that the mollification produces a function still in793

C∞
c (Ω). Using again the notation794

ΩÄ := ÄΩ = {Äx : x ∈ Ω}795

in (4.10) with Ä < 1. Since Ω is convex and 0 ∈ Ω, we have that ΩÄ ¢¢ Ω for any796

Ä < 1. We prove that797

(4.16)
∀ε > 0 ∃Θ1 ∈ XGagliardo, ∃Ä < 1, suppΘ1 ¢ ΩÄ × ΩÄ, ∥Θ1∥L∞(Rn×Rn) f ´, and

∥Θ1 − Φ∥XGagliardo
< ε.

798

For Ä < 1, we define799

ΦÄ(x, y) := Φ

(

x

Ä
,
y

Ä

)

.800

Then we have suppΦÄ ¢ ΩÄ × ΩÄ and ∥ΦÄ∥L∞(Rn×Rn) = ∥Φ∥L∞(Rn×Rn) f ´. So in801

order to establish (4.16) we need to show802

(4.17) ∥ΦÄ − Φ∥XGagliardo

Ä→0
−−−→ 0.803

We first observe that804
ΦÄ(x, y)

|x− y|
n
q

= Ä−
n
q
Φ(x/Ä, y/Ä)

|x/Ä− y/Ä|
n
q

.805

So we have806

∥ΦÄ − Φ∥Lq(
∧

od Rn)

f
∣

∣

∣
Ä−

n
q − 1

∣

∣

∣

∥

∥

∥

∥

Φ(x/Ä, y/Ä)

|x/Ä− y/Ä|
n
q

∥

∥

∥

∥

Lq(Rn×Rn)

+

∥

∥

∥

∥

Φ(x/Ä, y/Ä)

|x/Ä− y/Ä|
n
q

−
Φ(x, y)

|x− y|
n
q

∥

∥

∥

∥

Lq(Rn×Rn)

=
∣

∣

∣
Ä−

n
q − 1

∣

∣

∣
Ä

2n
q

∥

∥

∥

∥

Φ(x, y)

|x− y|
n
q

∥

∥

∥

∥

Lq(Rn×Rn)

+

∥

∥

∥

∥

Φ(x/Ä, y/Ä)

|x/Ä− y/Ä|
n
q

−
Φ(x, y)

|x− y|
n
q

∥

∥

∥

∥

Lq(Rn×Rn)

=
∣

∣

∣
Ä−

n
q − 1

∣

∣

∣
Ä

2n
q ∥Φ∥Lq(

∧
od Rn) +

∥

∥

∥

∥

Φ(x/Ä, y/Ä)

|x/Ä− y/Ä|
n
q

−
Φ(x, y)

|x− y|
n
q

∥

∥

∥

∥

Lq(Rn×Rn)

Ä→1
−−−→0,

807

where for the first term we use that ∥Φ∥Lq(
∧

od Rn) = ∥Φ∥Lq(
∧

od Ω) < ∞, for the second808

term we use Lemma A.4 in R
n×R

n. Moreover, a direct computation from (3.4) yields809

div³ ΦÄ(x) = Ä−³(div³ Φ)(x/Ä) a.e. x ∈ R
n.810

So again with Lemma A.4 we have811

∥ div³ ΦÄ − div³ Φ∥Lq(Rn)

f
∣

∣Ä−³ − 1
∣

∣ ∥(div³ Φ)(·/Ä)∥Lq(Rn) + ∥(div³ Φ)(·/Ä)− div³ Φ∥Lq(Rn)

=
∣

∣Ä−³ − 1
∣

∣ Ä
n
q ∥(div³ Φ)∥Lq(Rn) + ∥(div³ Φ)(·/Ä)− div³ Φ∥Lq(Rn)

Ä→1
−−−→0

812

This manuscript is for review purposes only.



NONLOCAL BOUNDED VARIATIONS WITH APPLICATIONS 25

where we used crucially that by the support of Φ in Ω× Ω we have813

∥ div³ Φ∥Lq(Rn) = ∥ div³ Φ∥Lq(Ω) < ∞.814

This establishes (4.17) and thus (4.16) is proven.815

Step 2: Let Θ1 and Ä ∈ (0, 1) be from Step 1. Set ¶0 := D
100 where D :=816

dist (ΩÄ, ∂Ω) > 0. Let ¸ ∈ C∞
c (B(0, 1)) be the usual symmetric mollifier, i.e. ¸ g 0817

and
∫

¸ = 1. For ¶ ∈ (0, ¶0), we define ¸¶(x) := ¸(x/¶)/¶n. Using the notation from818

(3.14), we define819

Ψ¶(x, y) := (¸¶ ∗Θ1) (x, y).820

Then Ψ¶ ∈ C∞
c (B(ΩÄ×ΩÄ, ¶)) ¢ C∞

c (Ω×Ω) and ∥Ψ¶∥L∞(Rn×Rn) f ∥Θ1∥L∞(Rn×Rn) f821

´. Notice that822

(4.18)
(¸¶ ∗Θ1) (x, y)

|x− y|n/q
= (¸¶ ∗ Ξ) (x, y)823

where Ξ(x′, y′) := Θ1(x
′, y′)/ |x′ − y′|n/q. By the definition of Θ1 ∈ Lq(

∧

od R
n), we824

have Ξ ∈ Lq(Rn × R
n). Thus, we have825

(4.19) ∥Ψ¶ −Θ1∥Lq(
∧1

od Rn)
¶→0
−−−→ 0.826

For any x ∈ R
n, by letting y′ = y − z, we obtain827

(4.20)

(div³Ψ¶) (x) = (div³ (¸¶ ∗Θ1)) (x) = −

∫

Rn

(¸¶ ∗Θ1) (x, y)− (¸¶ ∗Θ1) (y, x)

|x− y|n+³ dy

= −

∫

Rn

(
∫

Rn

¸¶(z) (Θ1(x− z, y − z)−Θ1(y − z, x− z)) dz

)

dy

|x− y|n+³

=

∫

Rn

¸¶(z)

(

−

∫

Rn

Θ1(x− z, y′)−Θ1(y
′, x− z)

|(x− z)− y′|n+³ dy′
)

dz

=

∫

Rn

¸¶(z)(div³Θ1)(x− z)dz = (¸¶ ∗ (div³Θ1)) (x).

828

Thus, we have829

(4.21) ∥div³Ψ¶ − div³Θ1∥Lq(Rn) = ∥¸¶ ∗ (div³Θ1)− div³Θ1∥Lq(Rn) → 0830

as ¶ → 0+. Using (4.19) and (4.21), for a sufficiently small ¶, the function Θ := Ψ¶831

satisfies the requirements in (4.15), which completes the proof.832

Now we continue with the optimizing problem. We set833

V =
(

XGagliardo, ∥ · ∥XGagliardo

)

, and Y =
(

Lq(Ω), ∥ · ∥Lq(Ω)

)

834

and the operators835

G : Y → R, G(v) :=
1

q
∥v∥qLq(Ω) −

∫

Ω

uNvdx,

F : V → R, F (Φ) := I´(Φ),

Λ : V → Y, Λ(Φ) := − div³ Φ.

(4.22)836

837

Similarly as in Lemma 4.3, we have838
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Corollary 4.9. Let Ω be open, bounded, and convex set,839

V =
(

XGagliardo, ∥ · ∥XGagliardo

)

, and Y =
(

Lq(Ω), ∥ · ∥Lq(Ω)

)

840

, and let F,G and Λ defined as in (4.22), then for all u ∈ Lp(Ω)841

G∗(−u) =
1

p
∥u− uN∥pLp(Ω), and842

F ∗(Λ∗u) = ´var³(u; Ω).843844

This motivates us to consider the problem845

inf
Φ∈XGagliardo

{

1

q
∥ − div³ Φ∥qLq(Ω) −

∫

Ω

uN (− div³ Φ) dx+ I´(Φ)

}

.(QG)846
847

We have the following result (see, Corollary 4.5 for the Riesz case).848

Corollary 4.10. If Ω is an open, bounded, and convex set, the problems (PG)849

and (QG) are related by850

min
Φ∈XGagliardo

{

1

q
∥ − div³ Φ∥qLq(Ω) −

∫

Ω

uN (− div³ Φ) dx+ I´(Φ)

}

851

= − min
u∈Lp(Ω)

{

µ

p
∥u− uN∥pLp(Ω) + ´var³(u; Ω)

}

.852
853

Finally, we have the following optimality conditions as consequences of Theorem 4.1.854

Corollary 4.11. Let u be the unique solution to (PG) and let Φ be any solution855

to (QG), then856

Λ∗u ∈ ∂F (Φ) ô
〈

Λ∗u,Ψ− Φ
〉

f 0 ∀Ψ ∈ XGagliardo, and(4.23)857

−u ∈ ∂G(ΛΦ) ô −u = −
∣

∣div³ Φ
∣

∣

q−2
div³ Φ− uN .(4.24)858859

Appendix A. Scaling in Lp-norms and star-shaped domains. In this860

appendix we state and prove for the convenience of the reader some facts about star-861

shaped domains that are most likely well-known to experts.862

Denote the n − 1-dimensional unit sphere by S
n−1 := {x ∈ R

n : |x| = 1}. For863

x ∈ S
n−1.864

Lemma A.1. Assume ¼ : Sn−1 → (0,∞) is continuous and consider865

Ω =

{

x ∈ R
n \ {0} : |x| < ¼

(

x

|x|

)}

∪ {0}.866

For Ä > 0 set867

ΩÄ := {Äx : x ∈ Ω}868

then we have for any Ä1 < Ä2869

dist (ΩÄ1
,Rn \ ΩÄ2

) > 0.870

Proof. We first observe871

(A.1) ∂Ω =

{

x ∈ R
n \ {0} : |x| = ¼

(

x

|x|

)}

.872

This manuscript is for review purposes only.



NONLOCAL BOUNDED VARIATIONS WITH APPLICATIONS 27

Indeed x̄ ∈ ∂Ω. Since 0 ∈ Ω and Ω is open by continuity of ¼, we have x̄ ̸= 0. Then873

there exists 0 ̸= xk ∈ Ω, 0 ̸= yk ∈ R
n \ Ω such that limk |xk − x̄| = limk |yk − x̄| = 0.874

We have875

|xk| < ¼

(

xk

|xk|

)

, |yk| g ¼

(

yk
|yk|

)

∀k.876

Since xk, yk, x̄ ̸= 0 these expressions are continuous and passing to the limit as k → ∞,877

|x̄| f ¼

(

x̄

|x̄|

)

, |x̄| g ¼

(

x̄

|x̄|

)

∀k.878

This implies |x̄| = ¼( x̄x̄ ) and thus we have established879

∂Ω ¦

{

x ∈ R
n \ {0} : |x| = ¼

(

x

|x|

)}

.880

Now assume x̄ ∈ R
n \ {0} with |x̄| = ¼

(

x
|x|

)

. Then for µ > 0 we have881

|µx̄| = µ¼

(

µx̄

|µx̄|

)

.882

Thus, if µ > 1 we have µx̄ ̸∈ Ω and if µ < 1 we have µx̄ ∈ Ω. In particular,883

xk := (1−
1

k
)x̄ ∈ Ω, yk := (1 +

1

k
)x̄ ̸∈ Ω,884

and limk→∞ xk = limk→∞ yk = x̄, so x̄ ∈ Ω ∩ Rn \ Ω = ∂Ω. This implies885

∂Ω §

{

x ∈ R
n \ {0} : |x| = ¼

(

x

|x|

)}

.886

So (A.1) is established.887

Next we observe888

ΩÄ =

{

x ∈ R
n \ {0} : |x| < Ä¼

(

x

|x|

)}

∪ {0}.889

In particular if Ä1 < Ä2 we have that890

ΩÄ1
∩ (Rn \ ΩÄ2

) = {x : |x| < Ä1¼

(

x

|x|

)

, and |x| g Ä2¼

(

x

|x|

)

} = ∅.891

Since ΩÄ1
and (Rn \ ΩÄ2

) are disjoint, and ΩÄ1
is bounded we conclude that892

dist (ΩÄ1
,Rn \ ΩÄ2

) = dist (∂ΩÄ1
, ∂ΩÄ2

)

= infx,y∈Rn

∣

∣

∣
Ä1

x
|x|¼(

x
|x| )− Ä2

y
|y|¼(

y
|y| )
∣

∣

∣

= infx,y∈Sn−1 |Ä1x¼(x)− Ä2y¼(y)| .

893

Since ¼(·) is continuous and S
n−1 is compact, this infimum is attained at some x̄, ȳ ∈894

S
n−1,895

dist (ΩÄ1 ,R
n \ ΩÄ2) = |Ä1x̄¼(x̄)− Ä2ȳ¼(ȳ)|896

We claim that |Ä1x̄¼(x̄)− Ä2ȳ¼(ȳ)| > 0. Indeed if this was not the case we would have897

Ä1x̄¼(x̄) = Ä2ȳ¼(ȳ)898
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Fig. 1. Examples of star-shaped sets with discontinuous λ. Both sets are star-shaped with
respect to the origin, and the first has even Lipschitz continuous boundary – however the conclusions
of Lemma A.1 are not true.

Since the scalar factors Ä1, Ä2, ¼(x̄), ¼(ȳ) are all positive – and |x̄| = |ȳ| = 1 this899

implies that x̄ = ȳ. Whence we would find900

Ä1¼(x̄) = Ä2¼(x̄),901

and thus – since ¼(x̄) ∈ (0,∞), Ä1 = Ä2 – a contradiction to Ä1 < Ä2. Thus we have902

established903

dist (ΩÄ1
,Rn \ ΩÄ2

) > 0.904

In Lemma A.2, the continuity of ¼ is not guaranteed for generic star-shaped905

domain – even if their boundaries are Lipschitz. We provide two examples in Figure906

1. The first example is the union of an open disk and an open sector. The second is907

an open unit disk with a slit, i.e. the ray {(c+1/2, c+1/2) : c g 0} is excluded from908

the disk.909

However, the assumptions of the set Ω in Lemma A.1 are satisfied if Ω is star-910

shaped w.r.t to an open neighborhood of the origin – this can be obtained by a careful911

inspection of the proof below. We will focus on convexity here.912

Lemma A.2. Let Ω be an open, bounded, convex set with 0 ∈ Ω, then there exists913

continuous ¼ : Sn−1 → (0,∞) such that914

(A.2) Ω =

{

x ∈ R
n \ {0} : |x| < ¼

(

x

|x|

)}

∪ {0}.915

In particular the results of Lemma A.1 are true.916

Proof. For x ∈ S
n−1, we define917

(A.3) ¼(x) := sup {r g 0 : rx ∈ Ω} .918

Since Ω is open and 0 ∈ Ω there exists a ball B(0, a) ¢ Ω, and thus ¼(x) g r for all919

x ∈ S
n−1. Since Ω is bounded there must be some b > 0 such that ¼(x) f b for all920

x ∈ S
n−1.921

We first establish (A.2). If x ∈ Ω then |x| x
|x| ∈ Ω and since 0 ∈ Ω we have that922

r x
|x| ∈ Ω for all r ∈ [0, |x|]. Since Ω is open, there actually must be some ¶ > 0 such923

that r x
|x| ∈ Ω for all r ∈ [0, |x|+ ¶]. Thus ¼(x/|x|) g |x|+ ¶ > |x|.924

On the other hand if x ∈ R
n \ {0} and |x| < ¼(x/|x|), then by definition of ¼(·)925

there must be some r > |x| such that rx/|x| ∈ Ω. Since 0 ∈ Ω and Ω is convex we926

conclude that x = |x|x/|x| ∈ Ω. Thus (A.2) is established.927

It remains to prove the continuity of ¼ on S
n−1. Given any x̄ ∈ S

n−1, we let928

{xk}
∞
k=1 ¦ S

n−1 be a sequence such that xk
k→∞
−−−−→ x̄.929
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x

xk

λ(x) − ε

λ(x)x

λ(xk)xk

x

xk

λ(x) + ε

λ(x)x

λ(xk)xk

Fig. 2. Assuming that the ball B(0, a) in the proof is actually equal to B(0, 1) (which can
always be obtained by scaling) the above figure explains the proof of Lemma A.2.
First picture: if λ(xk) < λ(x̄)− ε and xk is sufficiently close to x̄ then λ(xk)xk must belong to the
cone A. Second picture: if λ(xk) > λ(x̄) + ε and xk is sufficiently close to x̄ then x̄ must belong
to Ak (using that the cone Ak has a minimal aperture that does not change and is determined by
B(0, a) as k changes)

Recall that the open ball B(0, a) ¢ Ω. We denote the open cone from ¼(x̄)x̄ to930

B(0, a) as931

(A.4) A := {¹¼(x̄)x̄+ (1− ¹)z : z ∈ B(0, a), ¹ ∈ [0, 1)}.932

Clearly, A is an open set. Also, whenever ¹ ∈ [0, 1) we have that ¹¼(x̄)x̄ ∈ Ω, by933

convexity of Ω and definition of ¼(·). Since z is taken from an open ball B(0, a) ¢ Ω934

we conclude that ¹x̄+ (1− ¹)z ∈ Ω. That is we have A ¢ Ω.935

Similarly, we define the open sets Ak by936

(A.5) Ak := {¹¼(xk)xk + (1− ¹)z : z ∈ B(0, a), ¹ ∈ [0, 1)} ¢ Ω937

Now we assume that there exists ε > 0 and a sequence xk ∈ S
n−1 converging to938

x̄ ∈ S
n−1 such that ¼(xk) f ¼(x̄)− ε. Then xk¼(xk) ¢ A when k is sufficiently large,939

see Figure 2. Thus we have lower semicontinuity of ¼:940

¼(x) f lim inf
Sn−1∋x→x̄

¼(x).941

On the other hand, if there exists ε > 0 and a sequence xk ∈ S
n−1 converging to942

x̄ ∈ S
n−1 such that ¼(xk) g ¼(x̄) + ε. Then we have that x̄¼(x̄) ∈ Ak for all large k,943

see Figure 2. Thus we have established upper semicontinuity of ¼944

¼(x) g lim sup
Sn−1∋x→x̄

¼(x).
945

Therefore, we have proved the continuity of ¼.946

Remark A.3. We leave the technical details to the reader, but observe that the947

lower semicontinuity of ¼ holds under the assumption that Ω is open and star-shaped.948

It is the upper semiconintuity of ¼ that requires the center of Ω containing an open949

neighborhood of the origin B(0, a) (which in particular is a consequence of convexity950

and openness).951

Lemma A.4. Let Ω ¦ R
n be an open domain star-shaped with respect to the952

origin. Fix p ∈ [1,∞), let f ∈ Lp(Ω) and set for Ä > 1953

fÄ := f(·/Ä).954
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Then955

∥fÄ − f∥Lp(Ω)
Ä→1+

−−−−→ 0.956

Proof. Let ε > 0. Since p ∈ [1,∞) we have C0(Ω) is dense in Lp(Ω), and thus957

there exists g ∈ C0
c (R

n) with958

∥f − g∥Lp(Ω) f ε.959

Set for some Ä ∈ (1, 2),960

gÄ := g(·/Ä).961

Since Ω is star-shaped with respect to the origin,962

∥fÄ − gÄ∥Lp(Ω) = Ä+
n
p ∥f − g∥Lp( 1

ρ
Ω)

Ä<2

f 2
n
p ∥f − g∥Lp(Ω) f 2

n
p ε.963

Then we have for any Ä > 1,964

(A.6)
∥fÄ−f∥Lp(Ω) f ∥fÄ−gÄ∥Lp(Ω)+∥f−g∥Lp(Ω)+∥g−gÄ∥Lp(Ω) f 2

n
p
+1ε+∥g−gÄ∥Lp(Ω).965

Take R > 0 such that966

supp g ¢ B(0, R/4).967

Since g has compact support we can find such an R. Then g is uniformly continuous968

on B(0, R) and thus there exists some Ä0 ∈ (1, 2) such that969

|g(x)− g(x/Ä)| f
ε

|B(0, R)|
1
p

∀x ∈ B(0, R), ∀Ä ∈ [1, Ä0].970

On the other hand if x ̸∈ B(0, R) then971

g(x) = g(x/Ä) = 0 ∀Ä ∈ [1, 2].972

Thus we have973

∥g − gÄ∥L∞(Rn) <
ε

|B(0, R)|
1
p

∀Ä ∈ [1, Ä0]974

and thus975

∥g − gÄ∥Lp(Ω) = ∥g − gÄ∥Lp(B(0,R)) f |B(0, R)|
1
p ∥g − gÄ∥L∞(Rn) f ε.976

Combining this with (A.6), we have shown977

∥fÄ − f∥Lp(Ω) f (2
n
p
+1 + 1)ε,978

which holds for any Ä ∈ [1, Ä0). We can conclude.979

REFERENCES980

[1] L. Álvarez, P.-L. Lions, and J.-M. Morel, Image selective smoothing and edge detection by981
nonlinear diffusion. ii, SIAM Journal on Numerical Analysis, 29 (1992), pp. 845–866.982

[2] H. Antil and S. Bartels, Spectral Approximation of Fractional PDEs in Image Processing983
and Phase Field Modeling, Comput. Methods Appl. Math., 17 (2017), pp. 661–678, https:984
//doi.org/10.1515/cmam-2017-0039.985

[3] H. Antil, S. Bartels, and A. Schikorra, Approximation of fractional harmonic maps, IMA986
J. Numer. Anal., 43 (2023), pp. 1291–1323, https://doi.org/10.1093/imanum/drac029,987
https://doi.org/10.1093/imanum/drac029.988

This manuscript is for review purposes only.



NONLOCAL BOUNDED VARIATIONS WITH APPLICATIONS 31
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