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Abstract
Let T a closed n-dimensional manifold, N' c R™ be a
closed manifold, and let u € W5 (2, N) for s € (0, 1).

UsA We extend the monumental work of Sacks and Uhlen-

beck by proving that if 7z,(N') = {0}, then there exists
a minimizing W*5 -harmonic map homotopic to u. If
7,(N) # {0}, then we prove that there exists a WS-
harmonic map from S” to N in a generating set of
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type arguments, are unknown in the fractional frame-
work (in particular, when % # 2, one cannot argue via
an extension method), we develop crucial new tools
that are interesting on their own: such as a removabil-
ity result for point singularities and a balanced energy

estimate for nonscaling invariant energies. Moreover, we
n

prove the regularity theory for minimizing W*s -maps
into manifolds.
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1 | INTRODUCTION

In the geometric calculus of variations, it is of utmost importance to find and classify not only
absolute minimizers, but also one would like to understand the more subtle structure of critical
points (local minimizers, saddle points, etc.) within topological classes — with questions ranging
from the Willmore conjecture recently solved by Marques and Neves [74] to open questions on
existence of critical points for knot energies by Freedman-He-Wang [38] as well as Kusner and
Sullivan [58]. In this paper, we study the existence theory of minimal W5 -harmonic maps in
homotopy between two manifolds T and V.

Throughout the paper, we assume that ¥ is a smooth compact n-dimensional Riemannian
manifold without boundary, and ' C R is a connected smooth compact Riemannian manifold
isometrically embedded into RM.

The most fundamental result in existence theory for harmonic maps in homotopy classes is due
to Sacks and Uhlenbeck, [96, 97]. Harmonic maps are critical points of the Dirichlet energy

/ [Vul?> suchthat ue Wh(Z, N). )
b

We summarize the results of Sacks and Uhlenbeck, [96, Theorem 5.1] and [96, Theorem 5.5], as
follows.

Theorem 1.1 (Sacks and Uhlenbeck). Let X be a two-dimensional manifold.

(1) Ifmy(N) = {0}, then there exists a minimizing harmonic map in every homotopy class C°(Z, N).
(2) If= = S? and 1(N') = {0}, then there exists a generating set of homotopy classes in C°(S?, N)
in which minimizing harmonic maps exist.

Theorem 1.1 (1) was originally obtained independently by Lemaire [67] and Schoen and Yau
[109]. Also let us remark that the condition 7, (N') = {0} in Theorem 1.1(2) is for pure commodity
of this introduction, for 7z, (N') # {0} the same result holds up to the action of 77, (N') on 7,(N),
see Theorem 7.1.

Theorem 1.1 (2) is sharp in the case 7,(N') # {0} in the following sense: harmonic maps may
not exist in every homotopy class of 77,(N'), and a counterexample was provided by Futaki [39].

The motivation to study harmonic maps under topological assumptions is at least twofold. On
the one hand, there is the geometric interest as the image of a harmonic map from S? to A is a
conformal branched immersion (which seems to have been the main motivation for Sacks and
Uhlenbeck). On the other hand, there is an interest from the applications point of view, as the
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harmonic map energy can be interpreted as a model case for the Oseen-Frank theory of nematic
liquid crystals, see, for example, [3, 70].

In this work, we develop an existence theory for W5 -harmonic maps in homotopy classes. For
s € (0,1), such maps are defined to be minimizers or critical points of the energy

E n(u) := / % dxdy suchthat ue Ws’g(Z, N). (1.2)
s zJz -

Our main result is the counterpart to Theorem 1.1 for the energy E|

Theorem 1.2. Let X be a closed n-dimensional manifold, n > 1, s € (0, 1), g >2.1

) If 7, (N) =1{0}, then there exists a minimizing Ws’g-harmonic map in every connected
component of CO(Z, N).

Q) If==S" n>2, and m,(N') = {0}, then there exists a generating set of homotopy classes in
7,(N) in which minimizing W™ -harmonic maps exist.

(3) If £ =SS!, then there exists a generating set of homotopy classes in C°(S", N') in which
minimizing Ws’% -harmonic maps exist.

In particular, we obtain the existence of nontrivial Ws’g(S”, N')-harmonic maps whenever
7,(N') # {0}, see Corollary 7.2. Theorem 1.2 sheds some light on a question raised by Mironescu
[81] on the existence of minimizing WS (S", S™)-maps in homotopy groups (see Corollary 7.3).

Here, we also remark that in Theorem 1.2 (2), the condition 7r;(N) = {0} is not necessary: the
same result for 77, (N') # {0} holds up to the action of 7z, (N') on 7,,(N'), see Theorem 7.1.

Theorem 1.2 (1) is proven in Section 6, see Theorem 6.1, and Theorem 1.2 (2) is proven in
Section 7, see Theorem 7.1. .

Similarly as in the case of harmonic maps, there are at least two motivations for studying W*5 -
maps, one coming from geometry and the other one from applications.

First, as an example of a geometric motivation, the W%’Z—energy appears as trace energy and
one can model the free boundary of minimal surfaces with such energies, cf. Moser [86], Roberts
[93], Millot-Sire [79], and Pigati-Da Lio [91].*

Second, since the 1990’s nonlocal energies have been used by applied topologists to define
self-repulsive curvature energies for curves and surfaces. Self-repulsiveness is a property that is
desirable for models of cells, DNA, and so on, and one natural way to include this feature is a
nonlocal energy. For example, O’Hara’s knot energies [88, 89], one of which is the famous M&bius
energy [38]; or the tangent points energies proposed by Banavar et al. [4]; or the Menger curvature
suggested by Gonzalez and Maddocks [44]. We refer to [2, 114-116] for further details.

There is a close connection of these nonlocal repulsive curvature energies to W* -harmonic
maps, as was discovered in [8, 9] for the O’Hara energies: one can construct an energy E ; /s Tem-
iniscent of E; /s such that critical knots y (with respect to their knot energy) induce via their

The condition n/s > 2 is trivially satisfied if n > 2. For n = 1, it is mostly a technical assumption that plays only a role in
the regularity theory, Section 3. It should not be too much work to extend this theorem to the full case s € (0,1) forn =1
as well but we will not develop this point here.

¥ As a curious sidenote, let us mention that to a certain extent, this was actually used in Douglas’ proof of the Plateau
problem in 1932 [31].
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4 | MAZOWIECKA and SCHIKORRA

derivative y” an E; ; /;-critical map (as a map into $2). This link between self-repulsive curvature
energies and fractional harmonic map energies (at least formally) seems to extend to existence
theory; a famous theorem by Freedman-He-Wang [38] states that minimizers for the M&bius
energy exist in prime knot classes (which are generators of the ambient isotopy classes), whereas
Kusner-Sullivan [58] conjectured that minimizers may not exist in composite knot classes. This is
a very similar statement to Theorem 1.1(2) and Theorem 1.2(2) — minimizers exist in a generating
subset of the homotopy class. Moreover, as mentioned above, for harmonic maps, it is known that
minimizers may not exist in some elements of the homotopy group: there is an example due to
Futaki [39].

The techniques by Freedman-He-Wang [38] are very geometric in nature, and it is completely
unclear how to extend them to other topological curvature energies (especially for scale-invariant
self-repulsive surfaces energies. There are very few techniques available, see [105, 117]). One of the
underlying motivations of the present work is to develop an analytic foundation for techniques
that hopefully will be applicable for the wide range of scale-invariant self-repulsive critical knot
and surface energies proposed by the applied topology community.

1.1 | Outline, strategy of the proof, and main results

If we take a generic minimizing sequence in some homotopy class of the Dirichlet energy or the
E; n energy, then there is no reason that it (even weakly) converges to a minimizer in the same
hor}lotopy class. Indeed, for example, if ¥ = S” and u is a minimizer in some nontrivial homotopy
class (suppose it exists), then we can conformally rescale without changing the energy. Namely,
for any 1 > 0, u;(x) := u(r(At~!(x))), where 7 : R" — S" \ {N} is the inverse stereographic pro-
jection, satisfies Es’g(ul) = E; n(u), see Section 5. Then (u;),5 is @ minimizing sequence, but

u, weakly converges to a constant map as 4 — 0. In other words, the set of WSE(Z, N)-maps
belonging to one (nontrivial) homotopy class is not compact under the topology induced by E; ».

Sacks and Uhlenbeck mitigated this lack of compactness by introducing a special minimiz-
ing sequence. Namely, they defined the minimizing sequence (u,),-; as the minimizers of the
approximate energy

E,(u) 1= /Z(1+ |Vu)?)”.

Asa — 1%, one hopes that the sequence (u,,),- converges to a minimizer of the Dirichlet energy
E;. In the case, when X = S2, since the energy E_ is not conformally invariant, Sacks and Uhlen-
beck were able to obtain some control over the energy concentration that is likely to happen.
Crucially, they showed that in this case, energy concentration cannot happen at only one point,
but either happens nowhere or at least at two points.

We follow a similar philosophy, but we have to develop several novel arguments to over-
come the problem of nonlocality of the energies E; , /. Specifically, there are only few available
Pohozaev-type arguments and they seem not to be working in our case (in contrast to the
case of local equations be it harmonic or n-harmonic maps). Indeed, the only case where
such arguments (and consequently monotonicity estimates, etc.) are known is the case n/s = 2,
cf. Millot-Sire [79].
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N
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Following the Sacks-Uhlenbeck approach, we will first construct the minimizing sequence for

E via minimizers u,, t > s, of the energy

s,n/s

Et,ﬂ(U,Z) :=/ Md_xd‘y'
s s Jx |x_y|n+§

That is, we try to approximate W* s -minimizing maps by W"s -minimizing maps and let t — s*."
In Section 3, we develop a regularity theory for minimizers of E; ». More precisely, we show that

on balls where the E »-energy of u, is not concentrating, we have regularity estimates in WS
for some s, > s, WhiChSiS independent of t — s, see Theorem 3.1.

Then, from a standard covering argument, one obtains that the minimizing sequence u, con-
verges strongly to u, outside of a singular set consisting of finitely many points. The crucial next
result we need is that u is regular. Sacks and Uhlenbeck remove the point singularities by using
a Pohozaev-type argument. In the nonlocal situation, Pohozaev-type arguments are still under
development, see [25, 40, 94]. Another option is to show that u is a critical point of the Ws’g-
harmonic map equation (which is easy, see Proposition 4.7) and use regularity theory for critical
points. Also, this approach is not feasible for us, because the regularity theory for critical points
into general target manifolds for the E » -energy (and also for the local analog n-harmonic maps)
is a major open problem since the 1990§, cf. [106]. Our approach is to show in Section 4 that the
limit ug is actually still a minimizer (but in its own homotopy class, which might be different from
the homotopy class of u, ), see Theorem 4.1, which is (vaguely) reminiscent of Lions’ concentration
compactness principle [72]. With the regularity theory from Section 3 for minimizers, we then get
the desired regularity for the limit map u, see Theorem 4.6.

The probably most crucial novelty of our work is contained in Section 5: we essentially show
that if £ = S", the minimizers of the nonscaling invariant energy E n,t>s, will not have energy
concentration in only one point as t — s (it has to be either no posint or at least two points of
energy concentration). We establish this statement by showing in Theorem 5.1 that the energy of
a E, »-minimizer on a small ball is controlled by the energy of the complement of that ball. We
are not aware of such a statement in the literature even in the local case of p-harmonic maps, see
Theorem 5.2. However, see [63], where the authors seem to use a similar effect to show that not
all harmonic maps can be obtained from a Sacks-Uhlenbeck approximation. In our case, we use
Theorem 5.1 to replace the role of Sacks and Uhlenbeck’s [96, Lemma 5.3], which is based on a
rather explicit computation of the Euler-Lagrange equation which we could not reproduce in our
nonlocal setting.

The remaining outline is as follows: in Section 2, we recall the basic notion of homotopy for
Sobolev maps. In Section 6, we prove the analog of Theorem 1.1(1), and in Section 7, we prove the
analog of Theorem 1.1(2).

As corollaries we obtain in Corollary 7.2, the existence of nontrivial Ws’ﬁ(S”, N)-harmonic
maps whenever 7,(N) # 0 and in Corollary 7.4 existence of minimizers in any nontrivial
homotopy class I that has small minimal energy infy E

n.
s

"It would be more in line with the original approach of Sacks-Uhlenbeck if we chose Ws’%“—minimizers, a — 1*. How-
n
ever, that would have the technical drawback that WS« % W;o; for &« > 1 and s € (0, 1), see [83]. But we do have the

embedding whi o W;UE fort > s [95].
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6 | MAZOWIECKA and SCHIKORRA

1.2 | Remarks on earlier extensions of Sacks-Uhlenbeck theory

The work by Sacks and Uhlenbeck has been extended to finding n-harmonic maps in 7, (N);
a version of [96, Theorem 5.1] follows from White’s [122], for a version of [96, Theorem 5.5] see
Kawai-Nakauchi-Takeuchi [56]. [96, Theorem 5.5] uses a removability theorem for n-harmonic
maps, see, for example, [87] or [32]. Recently, some of those results were also generalized to the
polyharmonic case, see [53]. See also [92] for viscosity methods for minimal surfaces. In [61], Kuw-

ert analyzed the topological decomposition of weak limits of maps in W%’Z([R{ /7, N), see also
Duzaar-Kuwert [33] for the W1"-version.

There also has been a tremendous amount of work dedicated to the analysis of bubbles forming
in the process of the minimization procedure — for harmonic maps [37, 62, 66, 69, 90], for H-
surfaces see [18], for Willmore surfaces [5], for n-harmonic maps [33], for biharmonic maps [65],
for Dirac-harmonic maps [14, 55], and for fractional harmonic maps [24, 64]. Let us also mention
the flow-technique developed for harmonic maps by Struwe [113] which he used to show the exis-
tence of nontrivial minimal harmonic maps (cf. Corollary 7.2). For results concerning 1-harmonic
maps, we refer to [42].

1.3 | A brief history of fractional harmonic maps

The theory of fractional harmonic maps, that is, critical points and minimizers of the energy in
(1.2), can be traced back to the 1930s when Douglas [31] used them (implicitly) to solve the Plateau
problem and win the Fields price. Analytically, they were introduced in the pioneering work by
Da Lio and Riviére [26, 27] who coined the notion of fractional harmonic maps and developed

the regularity theory for critical (i.e., not necessarily minimizing) W%’z-harmonic maps on lines
into manifolds. This regularity theory for critical points was extended to various variations of the
energy functional [23, 28, 29, 75,99, 102, 103] — in particular, the notion of (critical) W*P-harmonic
maps and their regularity theory into spheres was introduced in [101] (see also [76]). The question
of existence of minimizing Ws’g(S”, S")-maps of degree one was raised earlier, see Mironescu
[81]. Degree one maps were proved to exist in the case n = 1 and s € (%, ﬁ] for some ¢ > 0, see
[82].

Moser [86] and Roberts [93] developed a theory of intrinsic fractional harmonic maps and their
regularity theory. Moser [86], Roberts [93], and Millot-Sire [79] used the technique of harmonic

extension to the upper half-plane to characterize W%’z-harmonic maps as a partial free bound-
ary problem of a classical harmonic map and obtain regularity theory from arguments for free
boundary harmonic maps due to Scheven [98] — see also [91]. Millot-Sire [79] obtained from this
approach a monotonicity formula for fractional harmonic maps that lead to the partial regularity
theory of stationary harmonic maps. Sadly, the harmonic extension technique is as of now only
available for L2-type functionals, that is, W*2-harmonic maps, thus not applicable in our case.

The singular set of stationary and minimizing W*2-harmonic maps (in the supercritical
dimension) was analyzed in [77, 78, 80].

One challenge that keeps appearing when analyzing fractional harmonic maps (e.g., with
respect to monotonicity formulas) is the lack of understanding of the fine estimates known for
local equations — such as Pohozaev identities. There has been some important progress in this
direction [25, 40, 94], but in many cases, the techniques available are bound to some form of the
harmonic extension technique introduced for fractional harmonic maps by [79, 86] — which is
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not available for W -harmonic maps we consider here (unless n/s = 2). This is very different to
the situation of n-harmonic maps, where Pohozaev-type estimates are readily available.

1.4 | Notation

Throughout the paper, we assume that T is a closed Riemannian n-manifold embedded into R”
and N is a closed Riemannian manifold embedded into RM.
For the fractional Gagliardo seminorm, we use the standard notation

u(x) — u(y)|P ’
[ [ B )

for any open Q C %.
We will also write

[u(x) —u()I?
E, ,(u, Q) : // X — [ dxdy.
We will write N, = N U {0}. We denote by B(x, r) the geodesic ball about x of radius r in X. When
the center of the ball will not play any role, we will simply write B(r).
For simplicity of notation, we write < if there exists a constant C (not depending on any crucial

quantity) such that A < C B. We use X in a similar way. Finally, A ~ B means that A < B and
B 3 A.

2 | PRELIMINARIES ON HOMOTOPY THEORY FOR SOBOLEV MAPS

The purpose of this section is to recall the definition for homotopy classes of maps u €
W5 (Z,N). Here and henceforth, we always assume that ¥ is a smooth n-dimensional
compact manifold without boundary, and N C RM is a smooth embedded manifold, also
without boundary.

Let us stress that all of the definitions and statements in this section are well known and we
claim no originality whatsoever.

We make no effort to give the most general notion (e.g., considering £ with boundary), but
concentrate on what is needed for our purposes. For more detailed exposition, we refer, for exam-
ple, to [51, Section 4]. Maps in u € Ws’%(E, N') may not be continuous, so one needs to define
homotopy classes WS (£, N) via approximation.

We first recall the usual notion of a homotopy for continuous maps. Two maps, u, v € coz, N,
are homotopic, in symbols u ~ v, if there exists a homotopy H € C°([0,1],C°(Z, N')), namely, an
H that satisfies

HO)=u, H()=nu.
Since £ and N are smooth Riemannian manifolds, there is no difference between continuous

homotopy and smooth homotopy — and one does not distinguish between them. This is the
content of the following lemma.

a ‘0 "0SLL69YT

woiy

sdny) suonIpuOD) pue SWL 3y 33§ [€202/S0/6T] U0 A1eIqrT SUIUO A3[1A ‘BUnqIamIZ -PIRJAIAIE 4 £Q 69LTI SWII/Z I [ 1°01/10p/woo Ka[im-Areaqr

Konm-Areaquouy

25URDIT SUOWWIOD) AATIEAI) AqENIdE A1 £q PAUIAAGS A1 SOOI VO SN JO Sa[M J0] ATEIqIT AUIUQ KA[IAY UO (STOT



8 | MAZOWIECKA and SCHIKORRA

Lemma 2.1. Let u,v € C®(Z, N). The following relations are equivalent:

s u~vinCO thatis, there exists H € C°([0,1], C°(Z, N)) such that H(0) = u and H(1) = v;
* u~vinC®, thatis, there exists H € C*®([0,1], C®(Z, N)) such that H(0) = u and H(1) = v.

The proof of Lemma 2.1 is by approximation (using a standard mollification argument in [0, 1] X
¥ by constant extension to (—1,2) X X).

Remark2.2. Asasidenote let usremark, that Lemma 2.1 may not be true on non-Riemannian man-
ifolds, for example, sub-Riemannian manifolds, Carnot groups, or more general metric spaces.
See, for example, [47-50, 111, 121].

We can make sense of the concept of homotopy for Ws’g(Z, N')-maps, even if these maps are
not necessarily continuous. This is possible because these maps can be approximated by smooth
maps in C®(Z, N).

Indeed, the following is going to be the definition of homotopy that we are going to use from
Nnow on.

Definition 2.3. Letu,v € WS E, N).

(1) Wesay u ~ v (u is homotopic to v) if the following holds: for any smooth approximation u, of
u and v, of v in W5, we find an ¢, > 0 such that for every ¢ € (0, ¢,), we have u, ~ v, in C*.
(2) We define the homotopy class [u] as

[u] = {v IS Ws’g(Z,N): v~ u}.
Remark 2.4. Let us remark that one can define equivalently the relation
u~v in Ws’%(Z,J\f)

foru,ve Ws’%(E, N') as: there exists a path H(t) € C°([0,1], WS’%(E, N)) such that H(0) = u
and H(1) = v, cf. [17, Section 4].

The justification for Definition 2.3 is contained in the following proposition. In partic-
ular, it implies that we do not need to distinguish between W*5(Z, N')-homotopies and
CO(Z, N')-homotopy classes.

Proposition 2.5. Definition 2.3 is well defined in the following sense:

(1) Any map u € Ws’g(Z, N) can be approximated by maps w, € C*(Z, N') with respect to the
W5 -norm.

(2) Foranymapu € WS’%(E, N), there exists a small number € = £(u) > 0 such that any map v €
WSS A Co(z, N) with |Ju — U”WS’%(Z) < g is of the same C°-homotopy type.

3) If u,v e c'n WS’%(Z, N), then u ~ v in the continuous sense, if and only if u ~ v in the
W5 (Z, N)-sense.

For the convenience of the reader, we give the proof of Proposition 2.5 below.
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‘We begin by recalling the fact that the manifolds we work with have a tubular neighborhood on
which there exists a smooth nearest point projection. For a proof, we refer to [110, Section 2.12.3].

Lemma 2.6. Let N C RM be a smooth, compact manifold without boundary. There exists & =
8(N) > 0 such that on the tubular neighborhood,

Bs(N) := {p e RM : dist(p, N) < &},
there exists the nearest point projection 7\ € C®(Bs(N'), N) such that
|7 (p) — pl = dist(p, N')  Vp € Bs(N).

Moreover, for p € N, TI(p) := Dx \/(p) € RM*M g the tangential projection that maps a vector
v € RM orthogonally into the tangent plane T pJ\/ .

Proposition 2.5 (1) is a consequence of the following lemma, which was observed by Schoen
and Uhlenbeck in their celebrated paper [107, Section 3]. We remark that as shown by Schoen and
Uhlenbeck [108, Section 4], an approximation as in Lemma 2.7 may not be possible if u € W*P
if sp < n. We refer the interested reader to [6, 7, 13, 20, 51] for the theory of the approximation of
manifold valued Sobolev maps by smooth maps.

Lemma 2.7. Letu € WSE(Z, N') then u can be approximated by smooth maps u, € C*(Z, N) in
the W™5s (2, RM)-norm.

Proof. For clarity of the proof, we assume that X = R". Let ¢ > 0 and let us first approximate u by
unconstrained smooth maps. To do so, we mollify the function u € W*s (R", ') by considering

A,(x) = / 7 (x — y)u(y)dy = / nOulx — £) dy,
Rn Rn

where 7 € C*(R",[0,1]), suppn C B(0,1), 7.(x) := s‘”n(f), and [,,n=1. Then,
i, € C*(R",RM) and

-0 n
il, u strongly in W*s (R", RM),
The smooth map @, may not map into N, but we can ensure that the image of @, is close to the
manifold N'.
Let Bs(N') be the tubular neighborhood of N from Lemma 2.6, on which the nearest point
projection 7 s : B5(N') — N is well defined.

Let z € R" be an arbitrary point, then we estimate for every x € R",
dist (. (x), N) < |1 (x) — u(x —ez)| = '/ nulx —ey)dy — u(x — ez)
Rn
=| /| 70— ey~ ux = eznay
Rn

< / nO)|ulx — ey) — u(x — e2)| dy.
RVI
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10 | MAZOWIECKA and SCHIKORRA

Thus, multiplying both sides by 7(z) and integrating over R" with respect to the variable z, we
obtain

dist (@, (x), N) < / / nn(z)|ulx — ey) — u(x — ez)| dy dz,
[Rn Rn
which combined with the support of 7 leads to the estimate

dist (@1.(x), N') 3 72( : |lu(y) — u(z)| dy dz.

B(x,e)

Applying Holder’s inequality, we get

dist (), A') < ]i( ) - u@l dy e

B(x,e)

2n 1_% n %
< ][ ][ ly —z| 57" dydz ][ ][ Q) ~ @I+ u(zz)l dydz
B(x,e)J B(x,¢) B(x,e) J B(x,) ly —z|*"
; e—0
TR o)l N\,
B(x.,e) JB(x,¢) ly —z|*"

where the last convergence is a consequence of the absolute continuity of the integral, and holds
for a.e. x € R".

Thus, for ¢ sufficiently close to 0, we know that @i, € Bs(N'). This implies that the maps
u, := 7 yrofi, € C*°(R", N) are well defined, Lemma 2.6. Moreover, since 7 5 is smooth, we also
have

n
u, = 7 yofl, » wyou=u strongly in W*s (R",RM) as ¢ — 0. ]

Next, we state a helpful lemma that says that if two maps are uniformly close, then they are
homotopic.

Lemma 2.8. Let N be a smooth manifold without boundary embedded into RM. Then there exists
ane = e(N') > 0such thatif f,g € CO(Z, N') and ||f — gll;~ < &, then f is homotopic to g.

Proof. Letm, : B.(N) — N be the nearest point projection into the manifold that must exist for
some € > 0, Lemma 2.6. If || f — g||;~ < €, then

dist (1 = )f () + t9(), M) < If = gl <& VEE[0,1],x €Z,

that is, H(t, x) = m,((1 — t) f(x) + tg(x)) is well defined for all t € [0, 1]. It is easy to check that
H is a homotopy between f and g. O

Proposition 2.5(2) is a consequence of the following.
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Ww*'S -HARMONIC MAPS IN HOMOTOPY CLASSES | 11

Lemma2.9. Letu € Ws’g(Z, N), then there exists ¢ = £(u) > 0 such that whenever g, g, € C° N
wW*s (2, N) with

lu =gl gy + [u— gi]Ws,gf(E) <e fori=1,2, (CAY)
then ¢, and g, are homotopic.

Proof. Again, for simplicity of notation, we assume that ~ = R".

By Lemma 2.6, there exists y =y(N) and a smooth nearest point projection from a
y-neighborhood of A into A" which we denote by 7 : B,(N) = N.

By the absolute continuity of the integral, for any 6 > 0, there exists a §, = §,(u, ) such that

sup uf n <6. 22
B(zaog)cz[ ]W"S(B(Zr?o)) (2.2)

Fori=1,2,letg s :=ns * g;, 6 < &, where n € CZ(B(0, 1)), /R" 7 = 1is the usual mollifier.
As in the proof of Lemma 2.7,

dist (,5(x), N) < C() ][ ][ 190 — 6:2)] dy dz
B(x,5)) B(x,6)

<C(n,s) [gi]Ws%(B(zé))

<C(n9)([u - g1 [u]

WS ses) T WS’?(B(z&))

< C(n,s)(+0),

where in the last inequality, we used (2.2) and (2.1).
So, ife and 6 are small enough so that C(n, s)(¢ + 6) < y,we have j; 5 := 7 rog; 5 is well defined
foranyi =1,2and any § < §,,.
Observe that § 5 [0,6] — 5 is a homotopy, so g; and ; 5, are homotopic for each i = 1, 2.
Moreover,

1 €
916, — 925, Il < C(")57||91 = gl < C(”l)y-
0 0

So if we choose € = ¢(u) > 0 possibly even smaller so that C(n)5in < &(N), where g(WNV) is from

0
Lemma 2.8, then we know that g, 5 is homotopic to g, 5, . That is, we have shown

91~ ey ™ D, ™ G2

This concludes the proof. ]

Proof of Proposition 2.5(3). Letu,v € C°n WS (Z, N) and assume u ~ v with respect to contin-
uous homotopy. Denote the usual convolution of u and v with the standard mollifier respectively
by us and vs. Then us converges uniformly to u. In particular, for all small §, we have that 7 \,ous
is C%-homotopic to u, by Lemma 2.8. Similarly, 7 ,-ovs is C°-homotopic to v. Since v and u are

a0 ‘0SLL69YT

woiy

sdny) suonIpuOD) pue sud L, 3 33§ [€20Z/S0/6T] U0 AIeaqrT SUIUQ K3[1 A ‘BUnqIamIZ -PIRJAIIE A1) £Q 69LT1SWII/Z I [ 1°01/10p /w0 Kafim

Konm-Areaquouy

25URDIT SUOWWIOD) AATIEAI) AqENIdE A1 £q PAUIAAGS A1 SOOI VO SN JO Sa[M J0] ATEIqIT AUIUQ KA[IAY UO (STOT



12 | MAZOWIECKA and SCHIKORRA

C%-homotopic, this implies that 77 \rous and 7 ,rovs are C°-homotopic to each other for all small .

But 7 \rous is a smooth approximation of u with respect to the WS -norm, and similarly, 7z \sovs
of v. By Lemma 2.9, this means that any other smooth approximation of v and u, respectively,
is also eventually C°-homotopic to each other. By Definition 2.3, this means that u and v are
WS -homotopic.

For the converse, we argue similarly. If u and v are Ws’g -homotopic as defined in Definition 2.3,
7 \rous and 7 \rovs must be homotopic for all small 6. For small &, we have 7 rous is CO-
homotopic to u (by uniform convergence and Lemma 2.8) and likewise 7 ,-ovs is C°-homotopic
to v. This implies that u is C°-homotopic to v. O

Similar to Lemma 2.9, we also obtain the following.

Lemma 2.10. For any manifold =, N as above and s € (0, 1), there exist ¢ = £(N, Z) such that the
following holds.
Ifue W>s(Z, N') and

[u] <g, (2.3)

WS )

then u is homotopic to a constant map in the sense of Definition 2.3.

Proof. Let (u)y := |Z|~! [, u. From (2.3), we obtain as in the proof of Lemma 2.7
dist (w)g, N) S €.

If ¢ is small enough, this implies that v := 7 ,+((u)y) is well defined by Lemma 2.6.
Also, denoting by us := 15 * u the usual mollification, we have

dist (us, N) Se¢ Vé<1.

Setting ws := 7 \r(us), we have that w; is homotopic to u in the sense of Definition 2.3. Moreover,
we have

lwy = vl < CE N = @l 3 [l <

So, choosing € small enough, we have from Lemma 2.8 that w; and v are homotopic. This implies
that u and v are homotopic, and v is a constant map. O

3 | REGULARITY THEORY FOR MINIMIZERS IN HOMOTOPY

The main result of this section is the following regularity theory for minimizers.

Theorem 3.1. Let =, N be as above. If n = 1, then assume that s < % if n > 2, then assume that
s € (0,1). There exists € > 0 and s, > s such that the following holds for any t € [s, s;].
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Ww*'S -HARMONIC MAPS IN HOMOTOPY CLASSES | 13

Assume thatu € WS (=, N) and that for a geodesic ball B(R) C Z, the following holds:

n
* U is a minimizing W -harmonic map in B(R), that is,

E n(u,Z) < E n(v,Z)

holds forallv € whs (=, N) such that

- u=vinX\ B(R) and

- u ~ v in homotopy (as defined in Definition 2.3).
¢ [ul

s <¢
W5 (B(R))

Thenu € WS (B(R/2)) N C~5(B(R/2)) and we have the estimate

5—S 1=z
(lesmsaam/an + 18 8 g ) S O R O[u]WS"?(B(R»<[u]w&’§(z> * [u]WS";@))' G

The important feature of Theorem 3.1 is that the regularity estimate is uniform as t — s*. By
Morrey-Sobolev embedding, any map u € W[’g(Z, N) is C'=S-continuous if ¢ > s, but it may not
be C%~*-continuous.

Clearly, global minimizers (without any assumptions on homotopy type) also fall under the
realm of Theorem 3.1, and we record the following.

n
Corollary 3.2. Let u € W¥5(Z, N') be a minimizing harmonic map (without restriction to any
homotopy class) in an open set Q C %, that is, assume that

Egn(u,2) < En(v,%)

forallv e WS’%(E, N) with u = v on QF. Then u is Holder continuous in Q.

Remark 3.3. While the initial step in the proof of Theorem 3.1, namely, Theorem 3.5, relies on the
minimizing property, this is probably only really necessary in the case t = s. Most likely, for ¢ > s,
one could test the Euler-Lagrange equations to obtain a similar result (but due to the necessity
for uniform Hélder exponents, we did not attempt to do this)

That is, most likely Theorem 3.1 holds for critical W" ¥ -harmonic maps as long as t > s. In
particular, it seems that a similar statement as in Theorem 3.1 could be made, for example, for
maps u € WSP(Z,RM), s — % > 0, satisfying

[ D= O H) ) =00,

=y

[uGo) = u(y)|?
s [ Lol 2= axay

This is not necessary for our purposes, so we do not follow this direction.

Remark 3.4. For t = s and “round” target spaces N' = S"~! or N, a compact Lie group Theo-

rem 3.1 holds also for (possibly nonminimizing, but only) critical W*s -harmonic maps [76, 101].
For nonround targets, this is a major open question even for the p-harmonic map case s = 1,
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14 | MAZOWIECKA and SCHIKORRA

P # 2, and only partial results are known under nongeometric assumptions [34, 57, 100], see also
the survey [106].

The proof of Theorem 3.1 consists of three steps:

Step 1. We first prove in Theorem 3.5 local C*-regularity of the solution. We do not require a
precise estimate of [u].«, but we crucially get that « is independent of ¢.

Step 2. In Theorem 3.7, we show that the C*-regularity from above translates into a WSR-S
regularity for § = (a) using a technique developed by Brasco and Lindgren, [15, 16]. We
then choose s, := s+ .

Step 3. The estimate in Theorem 3.1 is a consequence of a priori estimates of the Euler-Lagrange
equations, that is, of the respective harmonic map equation, under the assumption that
the solution already belongs to W05 This will be done in Theorem 3.10, and is based on
a stability estimate for the fractional p-Laplacian, see [104].

3.1 | Step 1: Uniform Holder continuity

We begin the proof of Theorem 3.1 by first proving Holder continuity of minimizers — with a uni-
form Holder exponent & > 0, which does not change as t — s*. Namely, we obtain the following
theorem.

Theorem 3.5. Let s € (0,1) and =, N be as above. There exists a > 0 and s; > s such that the
following holds for any t € [s, s;).

Assume thatu € Wt’%(E, N) and for a geodesic ball B(R) C T u is a minimizing W -harmonic
map in B(R), that is,

Et,%(ua Z) < El,g (U’ E)

holds for all v € WS (=, N') such that

* u=vinZ\ B(R), and
* u ~ v in homotopy (as defined in Section 2).

Thenu € C;’(‘)C(B(R)).

Let us remark that Millot-Sire-Yu [80] already obtained partial regularity for E; ,-minimizers
forn=1,5s < %

The proof of Theorem 3.5 follows from a Cacciopoli-type estimate (and the technique probably
can be traced back to Morrey [85]).

The first step is to construct a suitable competitor map. For ¢ > s, this is simply the interpolation
between u and the mean value (4)g(, )\ p(+/2)- For t = s, we have to be more careful, and apply an
argument similar to Luckhaus’ lemma. Namely, we have the following.

Lemma3.6. Let T, N beasabove, s € (0,1) and s, € (s, 1). There exists a constant C > 0 such that
the following holds for any t € [s, s;].
Letu € W"s (2, N'). There exists an € > 0 (possibly depending on ) such that the following holds.
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Assume that for some r € (0,1) and some ball B(10r) C Z,

If t =s,
/ M dxdy <e5. (3.2)
B(10r) [x — y["
If t >,
lu(x) —u(y)| <e Vx,y € B(10r). (3.3)

Then, there existsa v € W' (Z, N) such that

(1) v=uinX\ B(r),
(2) v is homotopic to u, and
(3) we have

[ [zl ) = g
. BEr\B(r/2)

+t2 +t2
lx — y|"*"s lx — y|™*"s

Proof of Lemma 3.6 for t > s. For simplicity of the presentation, we assume that X = R";
moreover, without loss of generality, we can assume B(r) = B(0, r).

Since N is a smooth compact manifold without boundary, there exists a tubular neighborhood
B.(N) ¢ RM and a smooth projection 7, : B.(N') = N, Lemma 2.6. We choose ¢ possibly even
smaller so that s||D7r Nllpeo < EW), where f(j\f ) is the small quantity from Lemma 2.8.

Setn € C°°(B( 5[0, 1) andn =1 1nB(1Or) |[Vn| < r L. Set

w =1 —nu+nu) 4.

Here A(r) = B(r) \ B(r/2) and (u) 4, denotes the mean value on that set. Observe that

dist ((1 = 7CDUC) + 7AW A N) < (1= u(x) + 7(t) o) — ()|
nCOI(x) = (W) |

<eg,

we used (3.3) in the last inequality.
Thus, we can compose w with 7 ,» and set

L= T \row.
Observe,
() = VOO S D7l [106) = (W) ) | X3y () S IDT N Nl 55 < EN).

From Lemma 2.8, we obtain that u and v are homotopic.
It remains to prove the estimate (3.4). By Lipschitz continuity of 5, we have

[u(x) — v(y)l lw(x) — w(y)l
dxdy <C
/Bm/w FENTEES o )/ <r>/w = yI"He
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16 | MAZOWIECKA and SCHIKORRA

Now we have

w(x) — wy) =1 — n(x)ux) + 9w 4y — (A = nNuB) + 9@ 4¢ry)
=(1 — n(0)(u(x) — u@) — (x) = ) (u®) = Wap))-

So, we have, decomposing R"” = B(r) U R" \ B(r) (it is important to observe that we can choose
all of the constants to be independent of t as long as t € [s, 5;]),

/ / Iv(X)—v(y)I dyS/ (1_n(x))glu(x)—u(y)nls dx dy
By Jrr |y — p"tS B(r) JB(r) |x — y|™ts
/ / In(x) — n(y)lslu(y)—(u)AmIa
+ dx dy
B(r) JB(r) Ix — y|"*5

w[ ] a—ney I rgy
B(r) JRM\B(r) lx —y|"ts

/ / () = )|+ Iu(y)—(u)AmIs
+ dx dy.
B(r) JR™\B(r) Ix — y|"*5

In view of the support of # and 1 — 7, we find

[v(x) =)l o) |u(x) —u)s u@)|
dxdy dy
By Jrr |x — p"tS B0) JBONBG/)  |x =y
u(y) — W) a0+
/ / Y = A —————dxdy
B0) JBo) |x — y|HEDT
N / / Iu(X)—u(y)nls dx dy
B(r) JRN\B()  |x — y|"tS

/ / () = )|+ Iu(y)—(u)AmIs
+ dy
B(r) JR™\B(r) Ix — y|"*5

Integrating in x and then using Jensen’s inequality, we have

_E lu(y) — (U)A( |S ¢ n
/ / O dxdy 37 / [u(y) — W)l dy
B0) JB() | — y|"HEDT B(r)

/ / lu(y) —u(@)[s u(z)|>
B») JB0)/BGr/2) |y — 2MHS
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Ww*'S -HARMONIC MAPS IN HOMOTOPY CLASSES 17

Moreover,

[ ) —u I
B(r) JR™B()  |x — y|n+I
[ ol MO s [ mmuOr
B(r) J B(2r)\B(r) |x y|"+t B(r) JRM\B(2r) |x_y|n+t;
<[ [ s ) —u I o
B@\B() JR®  |x — y|"+f
u@) = W a5 Ju(x) = () 40|
/ / PV ZRAOT Gy ay + / / A0l 4y dy
B(r) JRM\BQ2r)  |x — y|"+t B JRM\B2r)  |x — y|"
< / / Iu(X)—u(y)nls dx dy
B@N\B() IR |x — y|"FS

—tZ n _ ulx ulz
+r ts/ |u(y)—(u)A(r)|s dy +r "/ / / Md dzdy
B(r) B(r) JB(r)/B(r/2) JRM\BCr)  |x — y|"+f

- / / Ju(x) — u)l*
™ JBer\BG/2) Jrn |x — y|"+f

In the last step, we used that if x € R" \ B(2r), y € B(r), and z € B(r) \ B(r/2), then |x — y| >
|r — |x]|| and

|x — z| < dist(x, B(r)) + 2r + dist (z, B(r)) < 4dist (x, B(r)) < 4|r — |x|]|.

Similarly,

/ / In(x) = )1+ Iu(y)—(u)Aa)Is dxdy
B(r) JR"\B(r) |x — y|"+t

x) — Su) — (u s
5/ / In(x) =)+ | (y)n W dxdy
B(r) JB2r\B(r) lx — "5

/ / In(x) = I+ Iu(y)—(u)A(r)Is
+ dx dy
B(r) JR1\B(2r) Ix — y|™*s

" ) — (W4 |5 ) — W4
- / / O dxdy+ / / 20T axay
B®) JB@ONBE) [x — y|HDS Be) Jrn\B@)  |x — |t

/ / Iu(x)—u(y)nls dx dy.
BO\B(r/2) JR™ | x — p|"FS

ZA

A
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18 | MAZOWIECKA and SCHIKORRA

This establishes (3.4) and the proof is complete (in the case t > s). O
Proof of Lemma 3.6 for t = s. In the following, we restrict for simplicity to the case n > 2, but
the statement remains true for n = 1 with easy modifications. Again, for the simplicity of the

presentation, we assume that ¥ = R".
We claim that there exists an radius p € (%r, ér) such that

r/ / [u(6) — u(w)|s u(@)| s dedco+r/ / [u(6) — u(w)|s u(w)|s 46 do
B(o) JB2N\BGr/2) 16— BEEE aB(p) JaBe) 10— e

/ / lu(x) — u(zy)l dxdy.
B(O\B(r/2) JB@r\B(r/2)  |X —Y|*"

Indeed, by Fubini’s theorem for any x € (0, %), there exists aset A, C (%r, %r), with El((%r, %r) \
A,) < xrsuchthatforanyr € A4,,

/ / lu(x) — u(;o)l dx deo <K—1/ / dedy.
aB(@) JB@\B(r/2)  |X — @[ BOO\B(/2) JB@r\BGr/2) 1% = Y|*"

(3.6)

(3.5)

Indeed, if (3.6) was not true onaset A C (%r, %r) of £'-measure > xr, we integrate both sides over
that set and get

/ / Iu(x)—u(;o)l ’ dede >/ / |u(x) —u(zy)ls dx dy,
B(2r)\B(3r) JBer\BG/D)  |X — ] BO\B(r/2) JB@\B(r/2)  1X = Y|*"

a contradiction to the monotonicity of the integral with respect to its integration domain.
Also, by Fubini’s theorem for any o € (0, %), there exists a set B, C (%r, %r), with El((%r, %r) \
B,) S orsuchthatforanyr € A,

/ / |u(w) —u(@)|s u(®)|* dewdo
580y Josy) o — 6121

< 0_1/ / Iu(y)—u(ZX)Is dy dx
B\B(r/2) JBe\B(r/2) |V — X|*"

for every 7 € B,. The arguments to obtain (3.7) are a bit more complicated, although well known
to experts. For simplicity, let 7 = 1, the right power for the factor involving r follows from scaling
arguments. One argument for (3.7) goes via the Gagliardo extension,” we have

/ / Iu(y)—u(ZX)I dy dx ~ mf/ o yp)s
BA\B(1/2) JBONB(1/2) |y —x|*" B(\B(1/2)x[0,00)

T This was popularized in the PDE community by [22], see also the harmonic analysis side in [21, 112] or, for an collection
of identifications, [68, Proposition 10.2].

(3.7
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Ww*'S -HARMONIC MAPS IN HOMOTOPY CLASSES | 19

where the infimum is taken over all smooth maps U : B(1)\B(1/2) X [0, 00) = RM with U = u
in the trace sense on B(1)\B(1/2) % {0}. Now we can apply the argument via Fubini’s theorem in
B(1)\B(1/2) x [0, o0) and find a large set B, so that for each slice p € B,

/ £57IVULS S 0‘1/ £ VULS,
3B(p)x[0,00) B(1)\B(1/2)x[0,00)

By the trace theorem, we have

n

W, s/ £y,
w5 (8B(p)) 9B(p)x[0,00)

Suitably scaling this argument, we obtain (3.7) for any r € (0, 1).

Combining (3.6) and (3.7), taking o and x small enough, we can ensure that A, N B, # @ and
for p € A, N B, (3.5) holds.

From now on we fix such “good slice,” thatis,a p € (%r, gr) such that (3.5) holds.

We know from Morrey-Sobolev embedding that Ws’g @B(p)) cC " (0B(p)) with

- w2 10— ol
[u(8) — u(w)| 316 — | [u]W“Y(aB(P))

s s |u(x) — u)|s "
S8 —wlnr / / —;:ldxdy (.8)
B(\B(r/2) JBer\BGr/2) X — I .

/ / ul) - u(zy)l dxdy |  forall6, w € 3B(p).
B)\B(r/2) JB@r\BGr/2) X — Y|

Set fora é € (0, %),

u(x) x| > p
w(x) 1= 1@ =n(xDu®) +n(Ix)Wspe) € =prg, IxI € (1= 0)p,p)
(Wsp(e) [x] < (1 —=0)p,

wheren : R, — [0,1]is smooth with n(¢t) = 0fort > (1 — g)p andy=1on(0,(1 — %d)p], 7’| <
100
ép°

We apply a lemma reminiscent of Luckhaus’ lemma, namely, Lemma C.1. Observe from (3.8)
and (3.2), we obtain

dist (w)gp (), N) S €
From Lemma C.1 and again (3.2), we obtain

dist (w, N) S e.

We choose the ¢ in the assumptions of Lemma 3.6 small enough so that the map w lies in the
tubular neighborhood of the manifold A, cf. Lemma 2.6.
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20 | MAZOWIECKA and SCHIKORRA

We set
L =TT, ow.

We need to show (3.4).
Let A(p) = B(%p) \ B(p) and denote by (u) Ap) = (v) A(p) the mean value of u = v on A(p).

/ /Iv(x) v(zy)l e dy</ / Iv(x)—v(zy)l dxdy
B Jmn X —y[" B2o) JB2p) X — Y|

|u(x) = W) ()| *
+/ / an dx dy (3.9)
B(%p) R"\B(2p) [x =yl

[©)acp) — VO]
+/ / A(p)—zdx dy.
B(%p) R"\B(2p) [x — y[*"

Now observe thatif z € A(p), x € R" \ B(2p)and y € B(%P), then

|x — z| < dist (x, B(4/3p)) + dist (z, B(4/3p)) < 2dist (x, B(4/3p)) < 2 <lx =yl

4
§—|x|

Consequently,

() — (W) a0 —u@)
/ / —f(p) dxdy 3 p™ / / / —lu(x) u(zz)l dxdzdy
B<§p> R™\B(2p) [x —y|*" B(gp) Ap) JRM\B2p) X —Y|*
/ / / lu(x) — u(ZZ)I dx dz dy
A Jrm\Bey X —z|*"

/ / lu(x) — u(ZZ)Is d dz
A() Jem\Bap) X —z|*"

< / / M dx dz'
Be\BGr/2) Jrn  |Xx —z|*"

(3.10)
Also, integrating in x, we have
(V) agp) = VO ,
[ [ e vy [ (0 o0 dy
B<§p> R"\B(2p) |x =yl B(%p)
(3.11)

/ / [u(x) — v(zy)l dx dy,
Bp) JB2p) X — Y|
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Lastly, observe that since v = 7 yrow and 7 5, is Lipschitz

/ / v — v(2y)| dxdy < C(my) / wix) wgy)l dx dy. (3.12)
B2p) JB2p) X —y[" B(2p) JB2p) X — Y[

Plugging (3.11), (3.10), and (3.12) into (3.9), we arrive at

/ / lu(x) — v(zy)l dxdyﬁ/ / Iu(x)—u(zy)lsdxdy
B(r) Jrn  |X—Yy|*" BQr\B(r/2) Jrn X —Y|*"

/ / lw(x) — wgy)l dx dy.
B2p) JB2p)  1X — Y™

From the estimate of Lemma C.1, namely, from (C.2), combined with (3.5) and (3.8), we have

(3.13)

W . Sl / / Lo L axay. G0
W*s (B(20)) WS (BepNB(®)  JBO\B(r/2) JBe\B(r/2) X = YI*"

Plugging (3.14) into (3.13), we obtain

/ / —'”(x)_”(zy)'s dxdy 3 / / —'”(x)_“(zy I 4y ay. (3.15)
B() Jrn  |x =Yy B@r\B(r/2) Jrn X = Y|*"

In particular, (3.4) is established.
It remains to show that u and v are homotopic.
Since u = v outside of B(r), we have in particular from (3.15) and (3.2)

[u—v]

W gy S
(R™)

From Poincaré inequality, we obtain

llu = vl gny + [ — U]Ws,g(w) g3

Choosing ¢ small enough, we can conclude that for e(u) from Lemma 2.9, we have

e(u)

llu = vll ey + [u— U]WS’%(R”) < -
In view of Lemma 2.9, we have that u and v are homotopic in the sense of Definition 2.3. This
finishes the proof of Lemma 3.6. O

Proof of Theorem 3.5. Holder continuity is a local property, and since we are not interested in any
sort of estimate at this point, it suffices to prove Holder continuity around any point x, € B(R).
Without loss of generality, we may assume that x, = 0.

Let € be from Lemma 3.6.
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22 | MAZOWIECKA and SCHIKORRA

If t > s, by Sobolev embedding any map u € Wb s uniformly continuous in B(R), so there
exists r, > 0 such B(10ry) C B(R) and |u(x) — u(y)| < € for all x,y € B(10r), that is, (3.3) is

satisfied for any r < ry,.

If t = s, by absolute continuity of the integral, there exists r, > 0 such that (3.2) is satisfied for

any r < r.

For any r < r, and any ball B(10r) C B(R), we apply Lemma 3.6 and obtain a competitor v for

the minimizer u, that is,
E,2() < B, 2 (0).

Since u = v in R" \ B(r), this implies

[ w0l ff s,
®RONBER  |x — y|S ®ROABOF?  |x — y|"TS

Here we denote
(R™)*\ (B(r)*)* =(R" x R™) \ (R" \ B(r) X R" \ B(r))
=(B(r) x B(r)) U (R" \ B(r) x B(r)) U (B(r) X R" \ B(r))

=(R" X B(r)) U (B(r) x R" \ B(r)).

In particular, we have

/ / |ux) —u@)ls u@)|* / / Iv(X)—v(y)I dy
B(r) Jmn |x_y|"+f- ®RO\BOFP  |x — y|"FS

o) — o)l
L(r) An |x y|n+[ y

Applying (3.4) we find

/ / |u(x) —u®)ls u(y)ls y<C/ / dedy,
B R x — y|"S BOO\B(/2) SR |x — y|"Hs

where C is a constant depending only on s and s;, noton t € [s, s;].
We now perform the hole filling trick by adding

/ / [ux) —u®)ls u)|s dx dy
B/ R |x — |t

to both sides of (3.17), and find for 7 := CL-H <1

/ / lu(x) — u(y)l y<1/ / Iu(x)—u(y)nls dx dy.
B(r/2) JRY  |x — y|”+f B2r) Jrn |x—y|"+‘§

(3.16)

(3.17)
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This inequality holds for any r < r,. Applying it to r = 4~¥r,, we have

/ / u(x) — u(y)l dxdy < / / u(x) — u(y)l dy.
Batrg) Jrn | — S Bro) Jrn | — S

Setting 8 := log, 7, this implies

/ / lu(x) —u@)ls uy)|s dx dy<4—kﬁ/ /dedy,
Baktrg) Jre (xS Blro) JRT - x — |t

Since for any r € (0, ry), we can find k € N, such that VL ~ 47k we conclude for any r € (0,ry)
0

n B _ %
/ / |u(x) — u(y)l dx dy 5<L> / / lu(x) u(y)nl dx dy.
B Jrn |y — S "o/ JBGg) Jmr  |x — y|™*'5

Observe that 8 only depends on 7 (and thus on s and s;, but noton t € [s, s;]).
Since s < t, we have in particular for any r < r,

_ H 0 B
/ / [u(x) u(zy)IA dx dy < 9% <L> / / lu(x) — u)|s dy.
B JB(r) X —y[" ro B(r) JR" | x — y|"+f

This, in turn, readily implies
£ = | < Cgur
B(r)
Ift € [s,5], then

‘f I = (| < Clrgp )P
B(r)

So, u belongs to a Campanato space in B(r) and this implies that u € Cii (B(r)), see [43, III,
Theorem 1.2]. Setting o := 8 % > 0, we conclude. O

3.2 | Step 2: Higher differentiability
We show that the Euler-Lagrange equation for harmonic maps combined with the Hélder conti-
nuity from Theorem 3.5 implies higher differentiability. The following theorem is strongly inspired

by the techniques for the fractional p-Laplacian due to Brasco and Lindgren [15, 16].

Theorem 3.7. Let p > 2. Assume that u € WSP(R"), f € L'(R") solve

/ / |u(x) — u@)IP2(ulx) — u())(@x) = ¢(1) dxd
Rl’l Rl’l

=yl

_ /Rg fo VpeCIBR). (18)

Ifu € L® N C*(B(R)) for some a > 0, then u € WSt""P(B(R/2)) for any y < min{%, 1}
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24 | MAZOWIECKA and SCHIKORRA

Proof. Without loss of generality, we can assume that % < 1because ifu € C*(B), thenu € C#(B)
for any 8 < a, and we could simply work with f instead of a.

While this is not their statement, the proof of Theorem 3.7 is strongly motivated by the argument
in [15], in particular, we take inspiration in [15, Proposition 3.1]. This is why we also follow the
notation in [15].

Forh € R"and f : R" - RM, weset f,(x) := f(x + h), §,f(x) := f(x + h) — f(x). Also, for
vERM et

. )
Jp(v) = [v]P~=v.

Setd = ;RR. Let |h| < 6, and let ¢ € C°(B(R — 29)). Then ¢, € C°(B(R)), and thus, we have
by substitution and with the help of (3.18)

/ / Tp(up(X) — u, () p(x) — () dxdy
R}’l Rn

|x — y|n+sp

B / / Tpu(x) = u(¥))pn(x) — ¢u(¥))
rRr JRn

|x — y|n+sp
= / S on
Rn

Subtracting (3.18) from the above equality, we find for any ¢ € CZ°(B(R — 25))

dxdy

/ / (I p(up () = u, (1)) = T p(u(x) — u(¥))) (P(x) — #())
R" JRP

=y

axdy= | foi-o

Letn € C°(B(R — 209), [0,1]) withn = 1in B(R — 306) and | V7| 3 %. By a density argument, we
may choose

@ :=ndu

and obtain

/ / (T p () = up, (1)) = T, ((x) = u(¥))) ()8, ulx) — N8, u®)) dxdy
Rn Rn

|x — y|n+sp
- / £8,(8 ).
Rn

By assumption u € C*(B(R)), so

/ / (T p@n(x) = up, (1)) = T, ((x) = u())) ()8, ulx) = N8, u®)) dxdy
rRr JRn

|x _ylVH-Sp

3 [wleam@pllf i @ny 1R
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Similarly as in [15, p. 320], by analyzing the support of 7 and using the symmetry of the integral,
we split the integral on the left-hand side into two pieces:

/ / (I pup () = u, (1)) = T p((x) — u(¥))) (n(x)8,u(x) — n(¥)S,u»)) dxdy> I, - 21,
RV[ Rn

e = [P

where

1, = / / (Jp(uh(x) —up(¥) = Jp(u(x) - u(y))(n(x)8,u(x) — n(y)5,u(»)) dxdy
B(R) JB®)

=y

and

IZ=

/ / (I (x) = up, () = T, (u(x) — u()))n(x)8,u(x) axdyl.
R\B(R) J B(R—200)

|x — y|n+sp

We first estimate 7,. Observe that in the integrand |x — y| % &, so there is no singularity.

|1y, (x) — up,WIP™ + |u(x) — u(y)|P?
1, < |h|a[u]coc/ / h h o dx dy
R"\B(R) J B(R—208) [x =yl

lu(x) — u(y)|P*
<2|h|a[u]ca/ / —n)jrsdedy
R"\B(R—58) J B(R—155) [x =yl

1

_ 1 P
< 21h|* [ul e P2t / / 1 dxd
IR [ule [u]WS’p(R")< RM\B(R-56) J B(R-158) |X — y|"*5P Sl

-1 _ 13
~ 2|1 [l caluly, a5 RP.

We now estimate 7.

= Y[ ¢

1, 2/ / () (7 p(uy () = u, () = T p((x) — u())) (8,u(x) — 8,u(»)) o
B(R) JB(R)

xdy

75 () = up () = T, (u(x) = u )| InG) = n(v)
- / / 16, u(y)l d
B(R) JB(R)

|x —_ y|n+sp

_/ / ) (Jp(uh(x) —up(¥) = Jp(u(x) - u())) (uy(x) — up,(v) — (w(x) — u(y))) dxd
B B(R) B(R)77 Y

=y

xdy.

75 () = () = T, (u(x) = u )| InG) = n(v)
- [ [ s d
B(R) JB(R)

EET
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26 | MAZOWIECKA and SCHIKORRA

For the first term, we use the famous p-Laplace inequality which holds for p > 2 and v, w € RM,
p0) =T, —w) Z Jv—wl?,

see [71, Section 12 (I)] or [15, Lemma B.3, (B.4)]. For the second term, we use Lipschitz continuity
of 7. Then we have (recall 5 > 0 everywhere)

I / / lup () — w, () = (u(x) — u@))|? dxdy
t B(R—305) J B(R—308) |x — y|"tsp

_ p—1 + _ p—1
— C|h|a[u]ca5_1/ / [, (%) — up, ()1 [u(x) — u(y)| dxdy
B(R) JB(R) |x — y|n+sp—1

dxdy

/ |uCx) —u()IP~!
B

p _ a -1
> (80l (ros05y) ~ 21AI7 [U]cad / (Re5) X — y| D=9

B(R+6)

p PSTAT: —1y,,1p—1 1 P
> Lonithyonsosy = 2RI ltle Lty (B(R+5))</B(R+5) /B(R+5) |x — y|r=0=sp . dy)

- p _ a —1r. 1p-1 24+(1-s)
~ [5h“]ws,p(3<ze—3oa)) 211 [ulc=d [”]WS’P(B(R+6))RP
That is, we have shown that for any |h| < 6,
ol Cw,5,R, )
p u S u,o, K, .
[l |7 ]W&P(B(R—305)) !
From Lemma 3.8, we obtain that u € W*t7:P for any y < %. 1

Above we used the following difference quotient estimate for fractional Sobolev spaces. For
WLP, astatement like the one below is well known, see [36, §5.8.2, Theorem 3], for Sobolev spaces,
it can be argued via the characterization of Besov-Nikol’skii spaces Bg’m.

Lemma3.8. Lets € (0,1), p € (1,0), a > 0andy < min{s + «, 1}. Assume thatu € W5P(Q) and
that for some Q' C Q, we have

sup [lhl_a5hu]Ws,p(Q/) < oo,
|h|<dist (/,0Q)

4 /
thenu € W «h.

Proof. In view of [15, Lemma 3.3], we find that u € B;ﬁ’;(ﬂ’ ), where BZ + denotes the Besov-
Nikol’skii space.
Combining [15, (3.20)] with [15, Proposition 2.7], we obtain that u € Wlsoty’p ). O

Remark 3.9. Let us conclude this subsection by remarking that in the proof of Theorem 3.1, it seems
likely that one could construct a different argument for higher differentiability that is based on
the fractional Gehring’s lemma, developed in [60], see also [59].
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3.3 | Step 3: A priori estimates

Theorem 3.10 (A priori estimates). Let s € (0,1) (ifn = 1let s < % ). There existsan 5 € (s, 1) such
that for any s, € (5, 5), there exists an s; € (s, sy) such that the following holds. T

Let ¥ be an n-dimensional compact manifold without boundary, and N' C RM a compact
manifold without boundary.

There exists an € = e(N, %, s, 5y, §) > 0 depending on the choices above such that the following
holds forany t € [s,s].

Assume thatu € WS (Z, N) and for a geodesic ball B(R) C =

* ue W (BR);
* wis a critical W"s -harmonic map in B(R) for some t € [s, 5115

* [u]

Then we have the estimate

sn <¢g
W5 (B(R)

N

ul n <K CR Go=9[yn | ul " 4+ u] n . 3.19
Behy o iy [ ]WS'?(B(R)) ([ ]WW(Z) Wyt 19
The proof of Theorem 3.10 is based on estimates of the Euler-Lagrange equations, and the
stability estimates for the fractional p-Laplacian in [104].
We will also need the following iteration lemma, see [43, Chapter V, Lemma 3.1].

Lemma 3.11 (TIteration lemma). Let0 < a < b < oo and f : [a, b] = [0, o) be a bounded function.
Suppose that there are constants 0 € [0,1), K, K,, a > 0 such that

K
fr)<6f(p)+ —— +K, foralla<r<p<b. (3.20)

(p—r)
Then we obtain the bound

Kl
W'FKZ foralla<r<b

f(r)<c<

fora constant C = C(6,a) > 0.

Proof of Theorem 3.10. For simplicity of notation, we assume* that = = R".
Below we will establish the following estimate for any r, p with % <r<p< %R,

BE

1, .5
5 [u] ) so. 1L
w0's (B(p))

<

[u] n =X
WS (B(r) 2

(3.21)

—so—)" [ R g i1 5
+C(p—r) S)S<_—> <[U]S L )MWS" )
P p—r WS (R?) w*'s (R7) 5 (BR))

T The relation between those numbersis 0 < s < §; <y < § < 1.

¥ Since  is compact, the manifold has a bounded geometry, so it is locally comparable to R" and by an extension theorem,
this assumption changes mainly the notation.
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28 | MAZOWIECKA and SCHIKORRA

wls

Once (3.21) is established, we apply Lemma 3.11 to f(r) := [u] , which gives

WS (B(r)

n n
N

n n -1
ul® < CRC0™I5 ([u]® +[ul® , ul . n .
[ ]WSO’E(B(R/Z)) [ ] 53 (RN [ ] WS (R1) [ ]WS'?(B(R))

This readily implies (3.19).
‘We now need to establish (3.21). From now on, we fix some r, p such that % <r<p< %R. We

denote § := ﬁ € (0,R).

As a W5 -harmonic map u solves the following inequality for any ¢ € C°(B(R)), cf. [76,
Lemma 5.1].

[/ 1) = uO)I ) — uONEE) = PO |
Rn Rn

|x_y|n+t§
Ju(x) — u(y)| u(x) — ()| 1p(x) — e
3 dyd n dydx (3.22)
/Rn Rn LA Ix —y|™* x+/[R"/R” lx — y|"ts rer
<3/ Ico(x)lw dy dx.
R™ JR™ lx—yl"

e S o1 e
Pick7] € C°(B(p — 108)) such that7] = 1in B(r + 106),and | V7| 3 5.Setn := 7%.Then |Vn| +
1 . .
Va1l 3 5- We define the test function
¢ = nu— Wpr)-

We collect the main estimates of ¢:
First,

R1-S0ts
. n + ——-|u| .n .
WS (B(p)) é [ ]W“?(B(R))

3 [u] (3.23)

(]

.n
Wbovg(Rn)

e . < / / () = PO oy / / POy,
WS (R") B(p—58) JB(p-58) |x — y|"+Sos B(p—108) JB(p—56)° |x — y|n+803
/ / [u(x) —u)ls u@)ls
B(o—56) J B(p=58) |x — y|"+SoA
/ / () = I Julx) — (u)B(R)l‘
+ dxdy
B(p—58) J B(p~56) lx — y|"*%0%

[u(y) — (u) Is
+ / / o R Gy dy.
B(p—108) J B(o—58)¢ |x_y|”+30§
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That is,

L u(x) — u(y) (=s0)5 "
o, 5 HEZEUL C geay+ 20 [ 1) = g | dx
wos @)~ e Jae) |x -yt 55 Jrw

1 n
¥ / () — W | dy
§%%5 JBW®)
n (I-sp+$)5  n
S, A,
WS (B(p)) 5s W™ (B(R))

This establishes (3.23).
Recall that the fractional §-Laplacian for § € (0, 1) is defined as

(—A)ggo(x) = C/W %dy,

or — equivalently — via the Fourier transform 75’((—A)§~ ©)(&) = cl€I’F(p)(E), cf. [30, 41].
With this notation, for any 0 < § < s,

ul .o . (3.24)

A)2
[( ) 90] W™ 3, WS‘S(B(R))

Ool';u

n <
(R")

Indeed, from the theory of Triebel-Lizorkin spaces F ; o~ WP [95], we have

[(-8)3 ] ~[¢]

<N n .
WS (R1) w*s (R?)

Now the estimate (3 24) follows as (3.23).
Also, for any 0 < § < sand any y € (0,1),

—A):p(x) = (=A) 0|5 " )
/ / [(=A)2(x) —( 32;0(Y)| dx dy < R77SH[y] o ] (3.25)
R"\B(R) Jr" |x — y|n+7; W5 (B(R))

Indeed,

/ / (=A)3p(x) — (=) 3 eI ¢ dx dy
R"\B(R) JR" |x — y|n+7
5/ / (=8)3p(x) = (=) 3 )| dx dy
R™\B(R) JB(y,3R) Ix — y|™7s

A —(=A)>
. / / (=8)79(x) = (~A)Tp)I5 dx dy
RP\B(R) JR"\B(y,1R) |x =yl n§
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30 | MAZOWIECKA and SCHIKORRA

Now we employ the estimate

1fG) = fOII 3 1x =y (MVf(xX) + MV f(y)),

where M is the Hardy-Littlewood maximal function, cf. [11, 46]. Then,

_A 3 —(—A 3 1
/ / [(=4)2p(x) — ( quo(y)l dx dy
RT\B(R) JR" Ix — y|"*7s

< / MY (=8) ()| / 1 dyax
R™\B(R) Ix=yIsR |x — y|"HODT

+ / (=8)2 ()| / — 1 dxdy
R™\B(R) lx—yIZR |x — y|n+7;
< p-nt 5 (-n-1-5)% —yt z (cn-)"
3R el gen /RH\B(R) |x| dx + RSNl gy - |x| dx
(cy-n—s+)% 15
SR [l P

< R(—y—n—§+s)§ Rng[u]% .
W5 (B(R))

ROV
W*s (B(R))

Similarly, for any 0 < § < s and any y € (0, 1),

—A)20(x) — (=A)2p()|+ " ]
/ / [(=A)zp(x) —( 32¢(Y)| dx dy < 5—(y+s)RS[u] o ) (3.26)
R"\B(0—46) JR" |x — y|"+7§ W5 (B(R)

Also, for any 77 € C®(B(p), [0, 1]) with 7 = 1 in a -neighborhood of supp ¢ and with |V7| 5§77,
we have for any y € (0,1) and § € [0,1) such thaty + § < 1,

— ) (— s n < §—(r+3) ps u
(A= DB S 6 ORI e G27)

Indeed, observe that by the disjoint support of 1 — 77 and ¢, we have

(1= A)(=A) s p(x) ~ / I — 2" p(2) d.

|x—z|%8

In particular, we have from Young’s convolution inequality
- ﬁ)(—A)3§0”LP(W) 3 5_§||§0||LP(R")-

In a similar way,

[v(a-neaie)w

< ’Vﬁ(—A)§¢(x)

+ / |x —z|7"57 ! o(2)| dz,
|x—z|%6
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so that

38 ellpeny.
LP(R")

[v(a-neae)

From interpolation [118], we then have

(1 = DDz @lwro@ny 3679l Lo@n)-

Applying Poincaré inequality for p = %, this leads to

—A(—A) n S8R n
[(1 77)( A)Zqo]WV;g(Rn) ~ o R [u]WS’E(B(R))'

Inequality (3.27) is established.
Now we begin to estimate u:

For ¢ := \/ﬁ(u — (Wpw)s

n _ g—Z ~ = 2
lt < / / 1) —uOI 19 eI |
B(p—38) JB(p—36)

WS (B(r)) |x — y| %

Now

B(x) — @) = (v/n(x) = /() w(x) — W)pr) + V/n(Wx) — u)).
So that (recall ¢ = /1),
1$(x) = I = (/n(x) = \/nM)(u(x) — W) - () — ()

+ u(x) = uNH/NG) = /n())P(x)
+ (u(x) — u()(e(x) — ().

That is,
15(x) — I 3 'xf;y' |4(x) — W) | (1B(X) = O] + [ulx) — u)I)
+ (u(x) —u())e(x) — ().
Then,
W . =< / / 460 — U —uO) @)~ 90D 4
WS (B(r)  JB(p-36) JB(o-38) |x — |05

21
u(x)—u s |u(x) — (u
+5_1/ / ) = w0 = Wl
B(p—36) J B(p—39)

n
|x _y|n+30;—1

_ T 21500) — & _
45! / / [u(x) — u@)s 7 1(x) — g ulx) — (Wpr| dxdy.
B(p—36) J B(p—36)

Ix — y|n+sog—1
(3.28)
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32 | MAZOWIECKA and SCHIKORRA

Now observe that for any w : R” — RM, we have

Ju(x) — w2 w(x) — w)I[u(x) = W
5"1/ / Y Y B®) dxdy
B(p—36) J B(0—36) |x — y|" 00~ D5

=5 / / juG) = U2 Jw(x) —w)| 1) = Wawl _dxdy
B(p—38) J B(o—35) )l (§—2) |x —yl|s |x_y|5+(50—s);—1 [x —y|"
") () = W)+ "

S sl [ O ay (3.29)
W*s (B(R)) W™’ (B(R)) B(R) JB®R) |x_y|n+(s+(so—s)§—1)§
n u(x) - Wplt . |"

S | [, ol
WS BR) WS BR)| Jpr) RE+G—HF-DF

SR, w]
whS@BER) WS BR)

Here we ensure that s, is close enough to s so that s + (s, — s)% —-1<0.
Applying (3.29) to the last two terms in (3.28) first for w = u and then for w = @, we obtain in
view of (3.24) with § = 0

ut s / / 400 — U —u ) G~ 90D
5@ JB(p-38) JB(p—30) o

lx =yl (3.30)

+ 5_1R1_(SO_S)% (1 + B ) [u] . .
§/7 whs BR)

For the remaining term, we observe

/ / JuCx) = u()|5 ) = u) (@) - PO 4
B(p~36) J B(p~35)

|x y|n+S0
lu(x) — u(y)|“2(u(x) u(y)) 2()—¢().

[
- xdy.
B(p—36) J B(p—36) |x — y|n+t§

We now follow the ideas in [104]. We use the following identity that holds foranyn > 8 > a > 0,

(—A)ip(x) = /R =2y () dz, (331)

for a constant ¢ > 0, which from now on changes from line to line.
Lety > 0,0 <t <s; suchthaty + (s — t)% € (0,n), and set

|x — Z|7+(30—t)§—n _ |y _ Z|7+(So—f)%—" B _
k(x’y,z)=( (s t)n —(IX—Zly n_ly_zl}’ n)'
I — y| 0008
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Then (3.31) implies

+(50 t)f — S0 t)f (so I)f
J O ((A) P(0) - (-8) T ¢@Q
|x _yl(so t);

/ / JuCx) — w15 ) - uR) (@) = () dxd
(p—38) J B(p~36)

=y
__2 (s~ :)7 (so—'%
[u(x) — u()|s " (ulx) — u(y)) <( —A)T T p(x) = (=4) 2 <0(y)>
= c/ / — dxdy
B(p~35) J B(p~35) Ix — y|"*5
+ cR(u, ),
(3.32)
where
n y+(s0—z)¥
|u(x) — u@)|= ~>(ux) — u(y)) k(x,y, 2)(— T 9(2)
R(u,p) = - dz dxdy.
(.9) /(p 35)/(,; 35)/ |x —y|**5 2y

The main observation is that for s, — t = 0, we have k = 0 and thusR = 0. In [104, Theorem 1.1],
an estimate of R for small |s, — t| was obtained. Namely,"

ﬂ

R <S—t on
RO L PN C

-1
< —_ S n
|sg — 5] [u] ok sy [P, 502 ®") (3.33)
n R1=S0+s a
sto=si(f) L $ B,
05 (B(p)) W=s (B(R)
in the last inequality we used (3.23).
Next, we begin the estimate of the first term of the right-hand side of (3.32)
s _t)
Ju(x) — u@)|> > (w(x) — u(y)) <( A) p(x) — (= A) qo(y))
/ / - dxdy
B(p—36) J B(p-36) [x — y|"+t?
_,)
Ju(x) — u)]s > ((x) — u(y)) <( A) p(x) = (= A) qo(y)>
= - dxdy
L/ e
1, (s0-D% (o-D%
[u(x) — u)l>~“(ulx) —u@)) | (-4)" 2 -0 e(y)
- // - dx dy.
RM\(B(-38)) x =y
(3.34)

TWhile this follows from the statement of [104, Theorem 1.1], it might be more instructive at first to look into [104, Proof
of Theorem 1.1], where the same notation is used as we use here.
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34 | MAZOWIECKA and SCHIKORRA

We will estimate now the last term in the above inequality. We observe

(so— t); (sp—0%
u(x) — u@)|s ~2(u(x) — uy)) (( ATz cp(x)—(—A)qu(y))
// n dx dy
(RM)2\(B(p—38)° 2 Ix — y|" e
(so t)? (so— [),
lu(x) — u(y)| s ~2(u(x) u(y))( P(x) = (=A)" 2 <o(y)>
S/ / n dx dy
R" JR"\B(p—36) |x — y|n+t§
and

R™ X R" \ (B(p — 38)° X B(p — 38)°)
C (B(p—40) x R"\ B(p —33)) U (R" \ B(p —43) x R" \ B(p — 49)).

Thus, choosing s, so close to s so that (s, — t)% < sforallt € [s,s,], we have

|u(x) — u()|* "2(u(x) — u(y)) <( A) fp(y))

//nz 2syey2 n+t= dxdy
(R")2\(B(p—38)°) [x — |5

_[),

G0 — u()] w0 — u() (( 85 o) — (—8) qp(y))
3 r
// |x — y|(50_s)§ Ix — y|n+s(§—1)+(s—(so—t)f)

[x=y|>8

dx dy

() — ()= @lx) — u(y)) <( ) = p(x) = (=8) T qo(y)>

+ / / - dxdy.
R"\B(o—43) J R"\B(p—45) |x — y|"*5

(3.35)

As for the first term on the right-hand side of (3.35), we first use that |x — y| > & and then apply
Holder’s inequality to get

)f (so ,),

() — )] 2 x) — u(y) o) — (=) qo(y))

1
dxd
/ |x — y|(so—5)§ n+s(%—1>+(5—(so—f)%) i

|x—y|>8 [x —yl

(so— f)* (so [)7

(8 2 p)—(=8)"2 ()

<5 (592 / / lu(x) — u(y)|§_1 dx dy
Rn JRP _ s ;—1) |x — yls—(so—f)g |[x — y|"
n n_q (S()*I)g
< 5—(50—5); uls —A 0o
- [ ]W&?(W)[( ) Plys-om0.% )
< 5-(50—5)% B [u]g_l

n ujl . sn >
d WS>§(B(R))[ ]W" 5 (B(R))
(3.36)
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where in the last estimate, we used (3.24).
To estimate the second term on the right-hand side of (3.35), we again apply Holder’s inequality

n 0%
|“(x)—“(y)l?_z(u(X)—u(y))< — ; qo(y))

/ / 7 dx dy

"\B(p—43) J R"\B(p—49) |x_y|n+t;

A (Sg—t) _)%

< / ju(x) — u(y)* ! | 2 <°(y)’ dxdy

r\B(p—48) Jrn X = Y|"7 Ix — y[E9s x—y|"

A (so—D)2 -l u ES
<[l / =875 o0 g,
WS RD| J r\B(p—48) Jmr y|n+((t—s)§+s)§

|x —
<& ORI L [l
ws H (R1) W*5s (B(R))

(3.37)
in the last estimate, we applied (3.26) with y = (¢t — s)% + 5 < 1 (the latter condition can be
satisfied by a good choice of s;).

‘We observe that

R e an L —1—(s—5)2 371
5(Sos)x—+5s(sos)sRs>us . ul i SO TR o ful s
( 5 B o 2 oy L

(3.38)

Thus, combining (3.35) with (3.36)—(3.38), we obtain

(so t)f

n (so—t
|u(x) = u)] 2 Wx) — u()) ((—A) > p(x) = (=8) 2 co(y)>
// m dxdy
(R)2\(B(p—38)°)? |x — y|"*s

-1

<6 ORM L u ul on
W@ WS BR)

(3.39)

Bringing together the estimates (3.30), (3.32), (3.33), (3.34), and (3.39), we have shown

n
s

WS (B(r))

n n_q
< Isp = sl ]’ +6 ORI, [ul
’ WS (B(p) whE @y WSS (BR)
T e - [
8/ WS Bw)

(sp— t)— (so t)f

JuCx) — u@)]s > (wx) — u) <( —A) 2 p(x) - (=) qo(y)>

+// — dxdy.
an Jrn |x_y|n+t§

(3.40)
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36 | MAZOWIECKA and SCHIKORRA

Let us now estimate the last term of the inequality above. Take 77 € C°(B(p — 36)) and 7 = 1 in
B(p — 46), with |V#j| < 671, then

|u(x) — u)] = "2(ux) — u(y)) (( A) = p(x) = (= A) <p(y)>

- dxdy
L. e

) — w2 (ux) - u(y)) <n(X)( 85 0(x) = A=) %o(y))

= - dxdy
L. p——

() — ()] >~ (wlx) - u(y) <(1 —AON=8) T ¢(X) (1= AN=8) " qo(y))

+ dxdy.

|x_y|n+tf

R" R"

(3.41)

As for the second term of (3.41), we use, similarly as in (3.37), Holder’s inequality

luCx) — u@)IE 2w — u()) ((1—n(x»( 8" 000 — (1= A1) T ()

- dxdy
a0, |x_y|l’l+[§

//\

[( ) —a) ]

(R“) W(t—?)%+s,%(Rn)

(s —s)——s s N
SECTR ML (]
(3.42)

in the last inequality, we used (3.27) with y = (t — s)% +sand§ = (sy — t)%.

(so-D %o

As for the first term of (3.41), we use the PDE (3.22) with test function n(—A)™ 2  and arrive
at

(sp t)— (so r)f

lu(x) — u(y)l“z(u(x) u(y)) (n(x)( A2 p(x) —7()(=A) 2 e(y)

n+tl
N

dxdy

R IR lx =yl

<. /.
/B(p) /B(p)
/B(p —d) /R"\B(p)

So ”* lu(x) — u(y)l
Ix —y|™*
lu(x) — u(y)l
lx —y|™*
lu(x) — u(y)l
Ix —y|™*

p(x)|——=—dydx

7(x)(—4)

(sp— f)*

7(x)(=4) P —————

(so— t)—
7)(=8)"2 X)) —————

dy dx.

(3.43)
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We estimate the first term of the last inequality. We will use ¢, < 5; < s, (here

we choose s; so that

s+ (s — s)ﬁ <spands; <s+(sy—s)(1— %). Using Holder’s inequality twice, we get

lu(x) —u()|*

—_— x

x — y|™

(so-D)2
7(x)(=A) "=

/B(p) -/B(p)

o} u(x) —u®)|* 7" fux) —u@y)l dydx
= —A
/B(p) FE=8) T p(x) /B(p) T o T P
) — u(y)| B
<[ e ow d
/B<p> * ¥ /B<p> x =y ((55)5)8 g </B<p>
< ‘( 8 P e gy S

25—s50+(t—s) ﬁ es

s —_—r " B
n 2s—so+(t—s) —= (” o)
dy dx .

/ / [u(x) —u@y)l
Be) \/B(p) |x — y|" 555

|u(x) — u()|*

|x — y|2n

dy) dx

(3.44)

In the last inequality, we applied (generalized) Holder’s inequality with exponents

n n s n
n s n s ot
(so—s)(g—l)—(t—s)§ 2s—s0+(t—s)ﬂ n—s’ s

By Sobolev embedding, Theorem B.1, (B.5) (applied for s :=t———s5—, p ==, p* =
n . .
Tt =9 = t :=s,), we obtain
gl =)
JuCx) —u(y)|s [ z
/ / e dx Slulyt iy G4
B(p) \/B(®) |x — y| )

Moreover, also by Sobolev embedding, Theorem B.1, (B.3) (applied for s

n _n o ._
m,p— S’t .—SO),WehaVe

(sp— t)*

I(=4) oll

n
I3 (so-9)(2-1)-(-9% ®")
R1=S0ts

< n
Syt gyt 73

S1eL 0t

we used (3.23) in the last estimate.

Thus, collecting the estimates (3.44)—-(3.46) and recalling that by assumption [u]

we have

FOROIIN

+t
lx — y|"

(50 —t)f
7(x)(=A) "2 p(x)

/B(p) /B(p)

Slulon g, [

R1=Sots
. ul o +—
s (B(p) Wsovs(B(p))<[ ]W’O’S(B(P)) o)

ul .n ,
W5 (B(R))

= (SO - t)%’ p*

(3.46)

El

o <
W= (B(p))

wes <B<R>)>
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wl3

w0

ng R1=So+s
+elul®
WS (B) O

u n
W* (B(R))

L[ ]ﬂ <R1—So+s[ ] >;
+en—slul® , + | ——(ul] » ,
(B(p)) W0 (B(p)) ) W5 (B(R))

we used Young’s inequality in the last estimate.
It remains to treat the second term of the right-hand side of (3.43).

~ w0t Ju(o) - u@)|s
[ e e MO ayax
B(p—8) JR"\B(p) |x — y|"*s
(so—0% _ %
< // B N C) [u(x) — u@)| _ dydx
Ix-yI28 |x _yl(so—s); Ix _y|n+(s+t—s0)§
s n S+[—SO ﬂ
n (so—0)% _ % n S5 nos
55—(so—s); -0~z | . / / [u(x) —u()| _ dy dx ’
LSO‘—_[(RH) R1 R" |x _y|n+(s+t—s0))§
(3.47)
in the last estimate, we have used Holder’s inequality with exponents —— and S+ts —.
0~ 0
Again applying the Sobolev embedding, Theorem B.1, we obtain,
s n s+t—sq
— 5 7 s+=so !
/ / ) — w0 T
R R |x _y|n+(s+t—s0))§ W™'s (R")
and
‘( y 9] Ry
—A 2@ s 5@ s,ﬂ,nff—u 5,2 ’
L @) WhS@®n "~ § WS (BR)
were in the second inequality we used (3.24).
Thus,
) w0t u) — u@)ls
[ fieaeay ™ poo) M2 ayax
B(p—8) JR™\B(p) lx — y|"*s
<5 @ Ry (3.49)
§° WUSBR) T WS wey
—su-9)" (R\ 5 £
<6~ S)s<—) ul n ul® .
~ 5) Pyt ey | ]st%(w)
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Finally, combining (3.40) with (3.41), (3.42), (3.43), (3.44), and (3.48), we obtain

BB

21
N

. Slso—slul® + 6 0 ITR [u] [u]

[u] o
(B(r) W*0s (B(p))

_— W @my WSS (BR)

T e - [T
8/ “whs BR)

n n_1
+&TCTISTERS [ [u] on
whs(wrn)y WS (BR)

n
S

wls

[u] il (RH‘J”[ ] )
+elu n +enslul® + ul n
WS (B(p)) W (B(p)) o) W™’ (B(R))

(si—)" R\ s )
+4d (0 S)S<—> ul .n ul®
o) [ ]WS’S(B(R))[ ]WS’E(RVI)

Is

3 (Iso = sl +e+em )ul®
W05 (B(p))

n
N

) (R 5 -1 ,
+6 S)s<—> ul® ., +[ul* , ul .n .
o) [ ]WSvE(Rn) [ ]WS'E(RH) [ ]Ws‘f(B(R))

For |s, — s| and € small enough, we thus have shown (3.21).
This concludes the proof of Theorem 3.10. O

3.4 | Proof of Theorem 3.1

Proof of Theorem 3.1. Lets, := min{#, %ﬁ}, where « is taken from Theorem 3.5 (without loss
of generality, we may assume that a/p < 1) and § is taken from Theorem 3.10. Take s; and € from
Theorem 3.10. .

Assuming that u is a W'’ -minimizer in B(R), we get from Theorem 3.5 that u € C{';C(B(R)).
Since u is a minimizer, it satisfies the Euler-Lagrange equations, cf. (3.22). So, we can apply

Theorem 3.7 and obtain that u € Wls;ﬁ’g(B(R), RM) for any B < s+ %. In particular, u €

WISS;; (B(R), RM). From Theorem 3.10, we obtain for all ¢ € [s, s, ],

1-5
Sn—S n NS 5=So n n h .
[ulco-s@w/2) + [u]WSO’?(B(R/Z)) SCR [u]WS‘S(B(R))<[u]WS’Vsl(Z) * [u]WS’S(Z)>

In particular, we have

N

1-5
s n < §—581 n n n X
[len-s@as2) + [u]wsl’E(B(R/z)) SCR [u]WS‘S(B(R))<[u]WS‘rsl(Z) * MW*MZ))

So, Theorem 3.1 is proven taking s, in the statement of the theorem to be s;. O
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40 | MAZOWIECKA and SCHIKORRA

3.5 | Consequences
We will need the following generalization of [96, Lemma 4.3].

Corollary 3.12. Let = and N be as above. There exists € > 0 and s, € (s,1) such that the
following holds.

Let {u,};-¢ be a sequence of Wt’%(Z, N)-harmonic maps minimizing in a fixed homotopy class.
Let us assume that u, — u, converges weakly in W*(E, N).If

E, 1y Bxg, ) < ¢

for some ball B(x,, p), then u; — ug strongly in Wso’g (B(xy,0/2), N)). The number s, > s is taken
from Proposition 3.1.

Proof. Let s, be the “s,” from Theorem 3.1 and set s, := XL,
From Theorem 3.1, we obtain
sup [ut] WL z <o
te(s.s] 5 (B(xg,0/2))

Thus, u, converges weakly to ug in WS (B(xy,p/2)). By Rellich-Kondrachov theorem, we obtain
strong convergence in W*'s (B(x,, p/2)). O

The following theorem combines Corollary 3.12 with a covering argument, and is a generaliza-
tion of [96, Proposition 4.3 & Theorem 4.4].

Theorem 3.13. For any s € (0,1), there exists s, > s such that the following holds. For t € (s, 5],
let u,: £ — N be a sequence of minimizing WS -harmonic maps in a fixed homotopy class of

. . Jj—oo .
CO(Z, N). Then, there is a decreasing sequence (t i)jen C (8,80] such that t; —— s and a finite
number of points A := {xq, ..., Xg}, such that

U, ==, ug,  locally strongly in WS (2 A).

Moreover, ug is an E, »n-minimizer within its homotopy class in T \ A, that s,

s

E n(u;,Z) <Egn(v,Z) ifu =vinaneighborhood of Aand u ~ v.

Proof. We can assume Es’g(ut, Y) < Aforallt € [s,s,].
Indeed, since X is compact and by minimality of u,,

—S
N

sup E n (ut)— sup dx dy

te(s,so] te[s,50]

T
©

/ Iu[(X)—ut(y)Is |x — yI<
2JZ

|x —y|2n

“ |

Ix—yl<

< sup E, n(u,)
te(s,so] '

< supEn(u)

~

tels,so)

=< ESOv%(uSO) < o0.
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Thus, E » (u,) is uniformly bounded.
Let o € N, we define

B[Z = {B(xi’a, Z_a) . xi’a (S Z},

where the centers x;, are chosen so that B, covers X such that each point x € X is cov-
ered at most h-times, and for which, the balls with twice smaller radius still cover X, that is,
2 c U; B(x; 4, 27%1). Then,

u,(x)—u 3
Z/ [u,(x) tZ(J’)| dxdy < Ah.
~ I 20 Js X =yt

Let ¢ > 0 be taken from Corollary 3.12, then for each t € [s, 5,], there exists at most ATh ballsin 13,
on which

u,(x)—u s
/ M dxdy > e. (3.49)
B(x; 0,20 Jx |x — y|*"

Now, we claim that there exists a decreasing sequence {tx ,} C {t} C (s, o], tx ,, — s, for which

tg =S 0
Utk a — u, strongly in WSO’S(B(xi,a’Z—a—l)’ N)

hA

except for K balls from 53, where K < - +1.
Indeed, suppose that we have already shown that we have a subsequence {t; ,} C {t} for which

L oS n
U, - u;  strongly in W*'s (B(x; o, 27%1), N)
for i=1,..,k and that there are more than hTA balls remaining in 7B, \
{B(x1,4,27%), .., B(Xg 4, 27%)}. Then, by (3.49), there is at least one Xjo for j & {1,...,k} for

which on the ball B(x; ,,27%) € B, we have

|utka(x) - utka(y)ﬁ
/ / . > dxdy < e.
B(xjq27%) Jx |x — y|*"

By Corollary 3.12, we know that there is a subsequence {t; ., .} C {f .} such that on the smaller
ball, we have

Ik 1,a7S . n ——
Uy, e, u,  strongly in W*s (B(xj 4,27 B, M.
We repeat this construction until there are K < hTA + 1 balls left.
Thus, we have shown that for some {y; 4, ..., Y o}, we have

tg =S n
Uy, SN ug  strongly in W*o's (Z \ U(B(ym, 277y, N'>

i<K
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42 | MAZOWIECKA and SCHIKORRA

Moreover, we have {ty .} C {tx ,_1} C {t}. Finally, we choose a diagonal subsequence  of the

n
sequences {ty .}, then u; — ug in W*'s on

U (z\ U B(yi,wz—“—l)> =2\ ( UBGiw2 ™ =2\ fxp, 0, X}
aeN i<K aeN igK D

4 | REMOVABILITY OF SINGULARITIES

In this section, we show that in the case when limits of minimizing W -harmonic maps have
isolated singularities, then those singularities can be removed.

Theorem 4.1. Let =, N' be manifolds as above. Let B = B(x,, R) C X be a geodesic ball centered at
a point x, € Z, then the following holds.

Letu € Ws’g(Z, N') be a minimizing map in B(x,, R) in homotopy away from the point x,,. That
is, assume for any ¢ > 0 and any w € W5 (2, N) satisfying

* u = w on B(xy,¢) U (Z\B(xy,R)) and
CuU~wWw,

we have

Es’g(u, 2)LE ,g(w,Z). (4.1)

Then, u is minimizing in all of B(x,, R), that is, forany v € Ws’g (2) such that
* u =vonZ\B(x,,R)and

* UuU~U,

we have

E;n(u,2) < Egn(v,Z).

In particular, we obtain regularity theory for maps as in Theorem 4.1, see Theorem 4.6.

To prove Theorem 4.1, we will construct a comparison map, the construction will be very similar
to the one in the paper by Monteil-Van Schaftingen [84, Proof of Theorem 3.1]. We will be using
the following lemmata from [84]. The first lemma is called the opening of maps in the sense of
Brezis-Li [19], and the purpose of it is to connect a given map continuously to a constant within
the Sobolev space.

Lemma 4.2 [84, Lemma 2.1]. Let 0 < s <1, p > 1,4 > 1, and n € (0, ). Then, there is a constant
C > Osuch that forany p > 0, any measurableu : B(Ap) — N, and every Lipschitz continuous map
¢ : B((1 +1n)p) — B((A —n)p), there exists a point a € B(np) such that

E, ,(uo($(- — @) + @), B(0)) < CLip ($)PE, ,(u, B(20)).

The next lemma allows to glue two maps along a “buffering zone.”
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Lemma 4.3 [84, Lemma 2.2]. Let 0 < s < 1, p > 1. There exists a constant C > 0 such that for every
n € (0,1), A C Z open, every measurableu : B(1p) — N, andeveryp > Osuch thatB, \ B(np) C A
we have

cn"

>Es’p(u,A N B(p)) + <1 + 1

C _:;>E“m@A\BMP»

Es’p(u,A) < <1 + W

where the constant C = C(n, s, p) does not depend on the set A nor on the radii p, 7.

The next lemma says that a Sobolev map on a ball taking values in a manifold can be extended
to a larger ball. This can, for example, be proven by an inversion, setting v(x) := u(p?x/|x|?) for
x| > p.

Lemma 4.4 [84, Lemma 2.4]. Let s € (0,1], p > 1, 1 > 1. There exists a constant C > 0 such that if
o> 0,u: B(p) — N is measurable, then there exists v : B(Ap) — N such thatv = u on B(p) and

llolly

p
LP(B(/lp)) < C”u” Es,p(v’B(/lp)) < CES,p(u’B(p))

LP(B(p))’

Finally, the last lemma is also well known and is often used to remove singularities in critical
Sobolev spaces (not necessarily of fractional order). The lemma basically says that a point in the
critical Sobolev space has zero capacity. For the proof we refer, for example, to [1, Theorem 5.1.9],
compare also with [84, Lemma 3.2]. The proof is based on the existence of unbounded functions
in the critical Sobolev space and truncation.

Lemma 4.5. Foranys € (0,1), n > 1, there exist {{;},cn C Ce(E, [0,1]) such that forall ¢ € N,
¢, =1 onB(p,), ¢, =0 outside B(R,)
forsome0 < p, <R, > 0as¢ — o and
lim E  »({,,Z) = 0.
f—oo s

‘We are ready to prove our Theorem.

Proof of Theorem 4.1. We will construct a comparison map, and we begin with a modification of
u. We will simply write here B(r) for B(x,, r).

Step 1. Let us take B(p,) from Lemma 4.5 and extend u|p,,): B(p,) — N with the help of
Lemma 4.4. We know that there exists u, : B(3p,) — N such that u; = u on B(p,) and

Egn(uy, BGpp)) S Eq n(u, Blp,))- (4.2)

Step 2. Next, we again modify the map u,, in such a way that we obtain a map that is constant
outside the ball B(4p,). Take ¢, : B(6p,) = B(2p,) Lipschitz continuous such that

$1(x) =x if|x| <20,

$:1(x) =0 if x| > 3p,.

a ‘0 "0SLL69YT
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44 | MAZOWIECKA and SCHIKORRA

Then, by Lemma 4.2, there exists an a; € B(p,) such that
Es’g(u1°(¢1(‘ —a;) + a,),B(5p,)) < CLip (¢1)nEs’§(ul,B(3pf)) SE ,g(ul,BGPt’)), (4.3)

and we have

() if |x| < py, then |x —ay| < 2p,,
| > >

(2) if |x| > 4p,, then |x — a| = 3p,.
Thus,
x if x| < pg,
$1(x—a))+a; = . ‘
a; if x| >4p,,
and
uy(x) = ulx) if[x] < pp,
u0(p;(- — ay) + a)(x) =
10y (- — @) + a)(x) {bl il o o
where b, :=u,(a;) € N'. We define
) upo(¢(x —a)+a; if|x| <4p,
uy(x) = .
b, if [x| > 4p,

Combining Lemma 4.3 (applied with A = %, p = 504, and 9 = %) with (4.3) and (4.2), we get

Es,i(uz, 3 Es,ﬁ(”1°(¢1(' —a;) + a;),B(5p0,))
' ' (4.4)
= Es,g(U,B(Pf))-

Step 3. Now we modify the map u, in such a way that it connects on an annulus the constant
b, € N with another constant b, € N. The newly obtained map is again constant outside a bigger
ball B(R,).

Since N is connected, we know that there is a Lipschitz continuous map such thaty : [0,1] —
N, 7(0) = b,, where b, € N is point that will be chosen later, y(1) = by, and the Lipschitz
constant satisfies Lip (y) < 2d »+(b;, b,). Then,

yol, 1 T > N,
where ¢, is taken from Lemma 4.5 (we just replaced p, by 6p,). For this function, we have
yoS, = by onB(6p,), yol,(x)=b,onX\B(Ry),
and
E,2(ro¢ %) SLp ()Y Ey (6, D) < 240 (b1, b)) Eg 0 (G D) S E 1D, (45)

where the last constant depends only on the manifold V.
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We note that for sufficiently large #, we have B(6p,) C B(R,). We define u; : £ — N by

u,(x) if x € B(50,)
uz(x) = .
yoS,(x) ifx € Z\ B(50,).

Then, by Lemma 4.3 (applied with A =X, p = 6p,, 7 = %),
Es,%(u:;’ 2) /S E ’%(uZ’ B(6pf)) + ES,% (yogfy E)
Which, combined with (4.5) and (4.4), gives

E, 1(u3, 2) 3 Ey (. B(p,)) + Ey 1(¢. 5. (46)

B u

@ connection from u to by
O by

"buffer zone* for us
”buffer zone* for us

0O connection from by to by
b ] b2

The domain of the map wus

Step 4. Letv € Ws’g(Z, N') be any map such that v ~ u. We will modify v in such a way that
we will be able to compare the energy of the modified v with u.

Let¢, : B(9R,) — B(9R,) be a Lipschitz continuous function, such that ¢,(x) = x if |[x| > 5R,,
¢,(x) =0if |[x| < 3R,. Then by Lemma 4.2 with p = 8R,, 1 = %, n= %, we obtain an existence
of a point a, € By, such that

ES,%(UO(¢2(' - az) + a2)’ BSRK) < CES,%(U7B10R/)’
We also have

x if|x

$(x—ay) ta, = {

VAN

I
a, if|x|
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46 | MAZOWIECKA and SCHIKORRA

Now we choose the point b, from Step 3 to be b, := v(a,). Thus,

v(x) if |x| > 6R,,
v(g(x —ay) +ay) = < ‘

b, if x| < 2Ry,.
Finally, we define
v(x) |x| >8Ry,
Up(x) = quo(¢y(- —ay) +a,) 2R, < [x| <8Ry,
uz(x) [x| < 2R,.
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N\
N
N\
N\
N\
N\
N\
AN
N
N\
N\
N\
AN

S S S S
SIS L
L7/l

SIS S S S
SIS S S

N\
N\
AN
N
AN NNNNNNNN
N
N\
N\
N\

LSS L

NNNNNNNN

LSS S S S S S

SSSSSSSSSSSS S SSSSSSSSSSSSSS

SSSSSSS S S S S S S SSSSSSSSSSS
SIS S S S S S S SSSSSSSSSSSS

We apply Lemma 4.3 with A = £, p = \/R,, and 1 = 64/R, (for sufficiently large #, we know
that B(6R,) C B(4/R,)) in order to obtain

E,(@,%) < B, 25, BG/R)

+ <
(1—64/R,)+!

1+ C1(6y/R,)"
N

4.7

We note that 0, = v for x € 2\ B(6R,), s0 E( n(Uz,Z \ B(6R,)) = E n(v,Z\ B(6R,)).
Next, we apply twice again Lemma 4.3 to deal with the term E » (Uz, B(1/R,)). For the first

application, we take A = B(1/R,), p =8R,, ) = % and for the second application, we take A =
B(8R,), p =2R,,n = % This way we obtain
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Eq 10, B(\/R,)) 3 E; n(0;, BGR,) + E n(0;, B(V/R,) \ B(6R,))

S E, n(07, BQR,)) + By (0, B8R,) \ B(R,)) + E ,g(af,B(\/E) \ B(6R,)).
(4.8)

"buffer zones* for vy

N
N\
N
N
N
N
N
N\
N
N

pPe

Domain of the map v,

Now, we note that 0, = v on B(4/R,) \ B(6R;,), U, = vo(¢,(- — a,) + a,) on B(8R,) \ B(R,),
and U, = u; on B(R,). Thus,

Es,g (Uy,B(2R,)) = Es,g (u3, B(2R,)),
Es,g(ﬁfaB(SRf) \ B(Ry)) = Es,g(vo(¢2(- —ay) + a,), B8R,) \ B(Ry)),

Eq 1 (0, B(\/R) \ B(6R,)) = E, n (v, B(+/R,) \ B(6R,)).
Recall that from Step 3, inequality (4.6), we know that
E; n(us, B2R,)) < Eq n(u3, 2) S Eg n(u, B(p,) + Egn($r, 2). (4.9)
We also have

Es,g(UO(sz(' —a)+a) 3 ES,%(U’B(loRf))‘ (4.10)
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48 | MAZOWIECKA and SCHIKORRA

Combining (4.7), (4.8), (4.9), and (4.10), we get

- C1(6y/R,)"
1-6v/R,

+C, <ES,§(u,Bpf) +Ey 2, ) + Ey 1(0,BAOR)) + By 2 (0, B - \ B(6Rf))>
411

E, 2(5,%) < ( )Es,g<v,z\3<6Rf>)

for a constant C, independent of v, u, £.

Step 5. The only thing left to prove is that the map 0, is a good comparison map. We immediately
verify that 0, = u on B(p,). Finally, to show that 0, ~ u, we recall that v ~ u, and thus, it is
enough to show that 0, ~ v. We have

_ )0 |
(”_m(x)’{w—m(x) i x|

Thus, by Lemma 4.3, we get
E,n(v—0,,%) S E, 1 (0 — 0, B(8R,)) % E, 1(0, B(8R,)) + E, 1(T,, B(8R,).

By taking ¢ large enough we can ensure, by the absolute continuity of the integral that the latter
one is smaller than €, where ¢ is taken from Lemma 2.9. Similarly, since v and U differ only on
a small set, we verify that ||[v — Uy ||1(x) < € for sufficiently large #. Thus, from Lemma 2.9, we
deduce that v, ~ v.

Combining the minimality outside of a point of u with (4.11), we get

Es’ﬂ(uy Z) < Es’ﬂ(ﬁ‘f, Z)
1+ C1(64/R,)"
h 1-6v/R,

+ By 2, B(0p) + By 264 D) + By 2 (0, BAOR,) + B 2 (0, B(YR) \ B(éRf»).
(4.12)

)ES,E(U’ Z\ B(6R,))

C(6\/R,)"
1-oyR,
integral, since B(p,), B(10R,), B(1/R,) \ B(6R,) shrink to {0}, we getas ¢ — o

We observe that as £ — oo, we get (1 + ) = 1 and by the absolute continuity of the

Eq 1 (. B(0,)) + E, (v, BOR,)) + B (v, B(\/R,) \ B(6R,)) — 0.
Finally, by Lemma 4.5, we have
E 1. %) 0.
Thus, passing with £ — oo in (4.12), we get

E;n(u,2) < Egn(v,Z).
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Thus, we can conclude that u is minimizing in all of £ among all maps in the same homotopy
class. Ol

As a corollary of Theorem 3.13, Theorem 4.1, and Theorem 3.1, we obtain the following.

Theorem 4.6. There exists s, > s such that the following holds.
Assume that u, € WS (Z, N') is a sequence of minimizers in a homotopy class X that converges
weakly to ug € W (2, N') in the W™ -topology. Then ug, € W*'s (, N).

We finish this section with a remark. We can remove discrete points in the equation, that is,
once we know that a map satisfies the equation of W*5 -harmonic maps in X \ A, where A is a
set consisting of finitely many points, we know that the equation is satisfied in X. Unfortunately,
the lack of regularity theory in general does not allow us to conclude that the map is regular
everywhere. But in view of [76, 101, 104] if we have W5 -harmonic maps in X \ A that maps into

1
a sphere or a compact Lie group, or in view of [26] if we have W 2*-harmonic maps on a line, we
have regularity in all of Z.

Proposition 4.7. Let A be a finite set in T, and letu € W™ be a W*s -harmonic map outside of A,
that is,

[ [/ MO (@) — u) AP = TEOEDD 44— o o e ez )
X JZ ¢ ,

|x —y[2"

(4.13)

where TI(u) is the orthogonal projection onto the tangent space of T, N foru € N, see Lemma 2.6.
Then u is a W*'s -harmonic map in all of %, that is,

[ [ eo=uo ) ~ u) (P = TEONEON 4 1 o o e ooy
ZJZ ¢ ‘

|x —y|2n

Proof. For simplicity, assume that A = {x,}. Let ¢ € C°(X) and let {, € CSO(BRK) be as in
Lemma 4.5, that is,

{,=1onB, (x) and [{] —0as? — oo,

5 (@)

for a sequence 0 < p, <R, - 0as? — 0.
Thus, ¢, = (1 —¢{,) € CP(Z \ {x,}) is an admissible test function and from (4.13), we get

JUEEE MO (@00) = w0 (MEN$0) = IO o
zJZ

[x — y|*"

/ / Ju(x) — u@)|s H(ulx) — u)) (TIPS (x) = TSNS ()
= dx dy.
zJz

[x — y|?"
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50 | MAZOWIECKA and SCHIKORRA

The latter one can be estimated in the following way.

/ / JuCx) — u@)]s (@) - u) (H(u(X))cﬁ(x){f(X)—H(u(y))¢(y)§f(y))

|x — y|2n

. / / lu(x) — u(y)l"z((u(X)—u(y))H(u(X))cﬁ(X)(Cf(x)—Cf(y))

|x — y|2"

/ / lu(x) — u(y)l"z((u(X)—u(y))(H(u(X))¢(X)—H(u(y))qb(Y)){f(y)

[x — y|*"

As for the first term, we have by Hélder’s inequality

/ /Iu(X) ()| () - u(y))H(u(X))¢(X)(§f(x)—Q(y)) dxdy

|x — y|2n

n—s

||n||Loo||¢||Lm< [ [ ;‘l(j}' dx dy> (D)

As for the second term, we have

/ / Ju(x) — u@)]5 () - u()) (H(u(X))¢(x)—H(u(y))¢(y))§f(y)

|x — y|2n

Iu(X)—u(y)I"IIH(u(X))cﬁ(X) H(u(y))¢(y)| oo
S | =y,

|x —y|2n

by the absolute continuity of the integral.
Hence, u is a W*s -harmonic map, as

/ / JuCx) = u@)|s () - u@) AE)NSC) — TGN 4 40 o

|x — y|>

for any ¢ € CX(Z). ]

5 | BALANCED ENERGY ESTIMATE FOR THE NONSCALING
INVARIANT NORMS

In this section, we show the main advantage of approximating WS’%-minimizers by whs-
minimizers. It does not avoid energy concentration in a single point, but energy cannot
concentrate only in one point and vanish everywhere else. In a sense, the energy needs to
be balanced.

We will use Theorem 5.1 in place of [96, Lemma 5.3] in our argument.

Theorem 5.1. Let 0 <5 < s, < 1and p, € (0, \/g). There exists a constant C = C(s, Sy, pg) Such
that the following holds.
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Foranyt € (s, sy, letu, € Wt’g(S”, N) be a minimizing map in its own homotopy class. Then
foranyy, € S"

/ /lut(x) uz(y)| dxdy < - -—1/ /|uz(x) ut()’)| dxdy. (51)
D(yp.p) / S" |x y| S"\D(yg.p) J/ S" [x y|

Here, D(a,r) := B(a,r) N S" is the intersection of a ball centered at a € S" of radius r intersected
with the sphere.

Before we give the proof of Theorem 5.1 in Section 5.1, let us digress a little bit by stating some
extensions and consequences.

First, we remark that the arguments for Theorem 5.1 carry over to the WLP_case, and for future
reference, we record the following theorem (the changes in the proof are sketched in Section 5.2).

Theorem 5.2. Let p, € (n,o0)and p, € (0, \/g). There exists a constant C = C(n, py, p,) Such that

the following holds.
For any p € (n, py], let u, € WLP(S", N) bea fsn | Vu|P-minimizing map in its own homotopy
group. Then, for any y, € S",

/ |Vu,|Pdx < Cp~ P~ / |V, |P dx. (5.2)
D(yy.p) S"\D(y9,p)

Here, D(a,r) := B(a,r) N S" is the intersection of a ball centered at a € S" of radius r intersected
with the sphere.

Remark 5.3. We are not aware of results similar to Theorem 5.2 or Theorem 5.1 in the literature.
However, it seems that a somewhat similar effect is underlying the arguments in the recent work
by Lamm-Malchiodi-Micallef [63].

Also — though we make no direct use of it — we state that as a consequence, the lim-
its of sequence of minimizers u, “distribute” their energy in the domain. More precisely, from
Theorem 5.1 and Theorem 5.2, respectively, we have the following.

Corollary 5.4. Let N beasabove,n > 1, s € (0,1) and s, € (s, 1). There exists T = t(n, N, s, s,) €
(0,1) such that the following holds.

n i—0o L : .
Let u, € whes (S",N), t; > s, t; —— s, be a sequence of E, »-minimizers with respect to their
15 s
own homotopy class.
n n
Assume that u;, converges weakly in W>s(S", N) to u € W>s (S", N'). Moreover assume that

there exists y, € S" such that U, e u weakly in Wso’g(S” \ DYy, \/g), N') for some s, > s.

Then
u(x) - u(y)la Ju() —u)|s
dxd 53
/D@o,\/?)/gn =yl L\/S Ty O G
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52 | MAZOWIECKA and SCHIKORRA

and

JuCx) —u)I' [u(x) = )|+
Ty dxdy. (54
/S"\D@o,\/?)/sn |x — y|n )/gn /S Ty X G4

Corollary 5.5. Let N be as above, n > 2. There exists T = t(n, N') € (0,1) such that the
following holds.

i—»o0
Letu, € WLPi(S", N'), p; > n, p, —— n, be a sequence of /§n | Vu|Pi-minimizers with respect
to their own homotopy class.
Assume that u, , converges weakly in Whn(s®, N') to u € WH(S", N'). Moreover, assume that

there exists y, € S" such that u, Y strongly in WHPo(S™\D(y,, \/g), N) for some p, > n.
Then

|Vul"dx <t [Vul" dx (5.5)

~/D(YO,\/§) NG

and

[Vu|"dx > (1—-1) [Vu|" dx. (5.6)
SVL

/§"\D<yo,\/_ H

Sketch of the proof of Corollary 5.4 and Corollary 5.5. In (5.2), take the limit using lower semiconti-
nuity of the functional on the left-hand side and strong convergence on the right-hand side. Then
apply the hole-filling trick. This implies (5.5). Inequality (5.6) is a direct consequence of (5.5). The
details are left to the reader. O

5.1 | Proofof Theorem 5.1

In order to prove Theorem 5.1, we will use the minimizing property of the mapping u; and compare
its energy with a “rescaled” version of u,. In order to do so, we will first change the coordinates
into the spherical coordinates, then we will use the stereographic projection of the sphere and map
the n-sphere to the hyperplane. Finally, on the hyperplane, we define the rescaling, which in the
polar coordinates (r, ), for r > 0, @ € S"~!, on R" is given simply by r — Ar, with a parameter
A>1

As a quick motivation for using as the comparison map the rescaling we note that in the simple
case, when we consider a minimizing map v € Wt’%(R”, N), we get immediately by comparing
with the rescaled map v; := v(4-) the following:

/Rn /Rn lo(x) — v(y)I /Rn /Rn lva(x) — U/l(.[);)l dxdy

Ix —y|™* lx — y|"

_ —// ORI
rRn JRn ?

lx —y|"
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which is possible only if v = const. Here, we emphasize that the last equality is true, because the
energy is not scaling invariant, and thus, if we would replace Et n by Egn 1, there would not be an
extra A term in front of the integral.

Similarly in the case, when the domain of the minimizing map is ", since the E, »-energy is
not conformally invariant, we already get an “extra” term using the stereographic pI‘O_]eCthI’I Then
again, an additional term appears after rescaling. Those extra terms can be estimated, accordingly
to one of the three cases: integration over two balls D(p) X D(p), integration over the complements
of the balls S$" \ D(p) X S" \ D(p), and the mixed term D(p) X S" \ D(p). Which after a careful
comparison of the energies gives the desired conclusion.

The rescaling is performed in the following proposition that might be of independent interest.

Proposition 5.6. Letv: S" - RM, n>1and 1 > 0.
Ifn =1, thenwelet 7 : R — S! to be the inverse stereographic projection, namely,

o) = 2r r2—1
CA\r2+1r2+1

and setv; := v(r(At71(x))).

Ifn > 2, then we write v = v(r,w), r > 0, w € S"~! in terms of the usual stereographic projection
(see below) of the punctured sphere S" \ {N}, where N := (1,0, ...,0) € R" is the north pole. In this
case, we set v; = V(Ar, ).

. 4
In both cases, forr; := o we have
[02() = (MI5 t_
sn Jsn |x y| D(S,ry) J s |x y|
(5.7)
-—1 _
/ s ORI
SIN\DS.r) IS | x — "t
where S = (—1,0,...,0) € S" is the south pole.
Remark 5.7. The analog of (5.7) for WP is
2\p1
/ IV, [P dH" < (2/1)P—"/ VolPdx + (3) / IVolPdx,  (58)
sn D(S.ry) A ST\D(S.77)

We will sketch the proof of this in Section 5.2.

The proofs of Proposition 5.6 are only slightly different for n = 1 and n > 2. However, since they
are very technical, we give both of them in full detail.

Proof of Proposition 5.6 for n = 1. Recall that for 4 > 0, we have set

v, (%) 1= v(r(ArH(x))).

a ‘0 "0SLL69YT
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54 | MAZOWIECKA and SCHIKORRA

Here 7 : R — S! is the inverse stereographic projection, namely,

o) = or r2-1
C\r2+1'r24+1/)

Observe that

2 2

_ 2 _ 2
[7() = TR = R =)= =

from which one obtains

2

/
') = =—.
70 = 5

Then, changing the variables, we compute

1
1 - s
[v]° =/ [v(x) U/l(.):)l dx dy
(shH st Jst

1
W e —yI's

[ [l bR
wle ) - @

— / / |U(T(f)) B U(T(E))lg IT/(/'L—llé)I |T/(/‘l—lr~)|/1—2 dR“ dr
R JR

t

lT(A-17) — t(A-1R)|'*s

[’(R)||7'(r)| dR dr

[7/ Rl (PIK,(F, R)dR dF,

t

) / () — vER)
e ) - @)1

where

Y BN 1o k5T I 0 0 1L (0]
K;(7,R) := 2 <|T(/1—1;7)_T(,1—1R~)|> @I

L
s

_ i @GTREA D@D T
B (R2+1)(72 +1)

-1

t t
£ -1

[ P+2? TR\ 7
S \A(P+1) A(R2+1) '

Observe that for || < A4, we have

M < 21
A(F2+1)

and for |7| > 4,

2, 92
7+ A <2

AP +1) A
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Thus,
t ~
(22)s™ 7l <A, IRl <2
t %—1 _ _
KRR <30T +1(2) T Iz A IRI<Aor Il <4, IRI> A
2\l <
(3) 71 > 2, IR] > 2.

In the case where |#| > 1 and |R| < 4, we have used the inequality 2ab < a® + b?.

N

NVl

Observe that 7((—4,4)) = D(S,r;) forr; := 4/ ;’fl
(0, —1) is the south pole of S!.
We thus conclude

[0 (X) = v NI Ua()’)| L o) = v+
dxdy A)s — - dxd
-/Sl ~/§1 < @b ./D(S,m)/ _ |+t Y

IR\ (=4,4)) = D(S,r;), where S =

lx —yI'* |x =yl
£,_1 —_ N
N <g> 5 / lo(x) v(y)l dx dy.
/1 SI\D(S,VA) S Ix yl
That is, (5.7) is established and the proof of Proposition 5.6 for n = 1 is finished. O

Proof of Proposition 5.6 for n > 2. We begin with introducing spherical coordinates. Since we
are dealing with a double integral, we will need separate coordinates to represent a point x =
(x1,%5 ..., X,41) € S" and to represent a point y = (¥;, ¥, ... ¥p41) € S". For x, we will use the
coordinates

(p,w), wheregp € (0,7), e S" ! or
(p,wy,...,), Wwhere g, w,, ..., w,_; € (0,7), w, € (0,27),
whereas for y, we will use
(®,8), wherey € (0,7), 86 €S" ! or

®,6,,...,6,) wherey, 6,,...,6,_; €(0,7), 6, €(0,27).
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The spherical coordinates are given by

X, = COSQ, Y1 = cosy,

X, = sin¢gcosw,, Yy, = sinycosbH,,

X; = singsinw, cosws, y;3 = sinysin6, cosbs,

X, = singsinw,..sinw,_,cosw,, y,= sinysinb,..sinb,_;cosb,,
Xp41 = singsinw,..sinw,_;sinw,, y,,; = sinysinb,..sind,_;sind,.

We recall that the volume element is given by

dx = sin" " (¢) sin"*(w,) ... sin(w,_;) dp dw, ... dw, = sin" " (p) dp dw
dy = sin""!(3) sin""%(6,) ... sin(@,,_;) dp db, ... d8,, = sin""'(xh) dp d6.

Now let us compute the squared distance |x — y|? in spherical coordinates

n+1
lx —yl* = Z(x -
= (cos ¢ — cos p)* + (sin ¢ cos w, — sin ¢ cos 6,)* +
.+ (singsinw, ...sinw,_; sinw, —sinysin, ...sinf,_, sin6,)?
=2 —2(cospcosy + singsiny f(w,)),
where f(w,8) does not depend on ¢ and 3, and is the sum of the remaining elements. We recall

that the stereographic projection of the punctured sphere S$" \ {N}, where N := (1,0,...,0) € R"
is the north pole onto R", is given by

(p,w) = <2 arctan %cu) ®,0) = (2 arctan %6)

where (r,w) and (R, 0) are polar coordinates on R” with r, R > 0, and w, 8 € $"~!. We also recall
that

sing = 2r o ___2 osgo—rz_1
r2+1  or r2+1° r2+1°

5 ) (5.9
siny = 2R _z,b_ 2 osz/):R_1

“R2+1 OR R2+1 RZ+1

Letv € W"s(S"), we will compute its energy

[ [ =t O [/ |vfx) v(ﬁ|)) dxdy

Ix —y|"*
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in polar coordinates. By a change of variable and using (5.9), we get

/ / |v(x)—v(y)| dx dy
snfsn (1+¢ ))

=/ // / (g, ®) = V@, O+
sn=1Jo Jsn-1Jo

(2 —2(cospcosy +sinpsiny f(w, 9)))§< [>

x sin 1 (p) sin" () dg dew dyp d6

//// lu(r, ) — v(R, B)| 5
- ot

)(r2 + R2 4 2rR f(w, 6))>%<1+§)

r2+1 R2+1

n—1 n—1
2r 2R 2 2 4rdwdRde
r2+1 R2+1 rP+1R?2+1

//// Jo(r, @) = v(R, )]+
o Jo Jonn

)(r2 +R2+ 2er(co,6))>§<1+§)

r2+1 R2+1

2 \'7 2 Y\
" 1R 1 drdw dR dO
rr+1 R?+1

=/ /w/ /°° lv(r, ) — v(R, 0|5
si1Jo Jsn1 o

(P + R + 2R f(,8)) ()

nlp_t 5(1-%
< 2 >2< s>< 2 >2( S)rn—an—ldrdcodee.

rr+1 R?+1

In the latter, we denote the integrand by

r2+1 R2+1

n 2(1-1 2015
|v(r,R’a),@)|[’ﬂ - |v(r,co)—U(R,@)|s< [>( 2 >2< s)( 2 )( >r

(P2 + R + 2R f(e,0)) 2 "

Thus, with this notation

Iv(X)—v(y)I
dxd
/Sn/w )

:/ / / / |[v(r, R, w,0)|, » dr dw dR d6.
sn-1 Jo sn-1 Jo s

n—an—l

(5.10)
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58 | MAZOWIECKA and SCHIKORRA

We consider the rescaling v,;(r, w) = v(Ar, w) and compute

/ lva(x) — v (WIs dx dy
sn Jsn

0]

=/ /°°/ /°° lo(Ar, ) = VAR, O)|
st Jo  Jsn-1Jo

r2 + R2 + 2rR f(w,0)) > 3(1+1)

it 1-{
< 2 >2( s)< 2 >( s)rn—an—ldrdcodee

rr+1 R>+1

L ten

(P + B + 2R f(,8))
2 g(l_é) 2 %(l_é) F\n-1/R n—1 1 . .
<r2+1> <R2+1> (I) (I) 7z 47 dedRds

N e

(7 + R? + 27R f(w,6)

n(y_t 5%
< 2 >2(1 S)< 2 >2(1 S)fn—lﬁn—l/lr‘(é_l)dfdwdﬁde.

rr+1 R2+1

(N1

v~
~—

(5.11)

We compute

2 VD g N e \EE) ey VB
_<f2+1> <1€2+1> </1(f2+1)> </1(1€2+1)) '
Combining (5.11) with (5.12), we get

// Iva(x)—va(y)l dxdy
stsn 1+

(5.12)
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/ / / / [v(F, w) — V(R, 6)|
sn-1 sn-1 z

R? +27R f(®,0)) ( )

y <~22 >§(1‘§)< 2 >g<1_§>fn—lR'n—l
2 +1 R?+1
x < P4 22 >§(§‘1>< R+ 22

2t )
> d#dw dR d6

A2 +1) AR?+1)
= / / / / lv(7, R, w,0)|, » K;(F,R)dF dw dR d6, (5.13)
sn-1 Jo sn-1 Jo s
where
KGR P+ 22 3(¢1) R* 4+ 22 3(¢1)
PR =l —— —_— .
4 A2 +1) AR +1)
As in the one-dimensional case, we have:
If 7 < A, then
2 2
T2 o
A2+ 1)
If 7 > A, then
Pt 2
AP +1) A
Thus,
(2/1)( ) F<A R<A
5 ()12”(3_1)~ 5 = 5
K, (7R <{te) +§(I> Fel, R<AorF<A, R>1
f
(%) (i) F>A R>1

This leads to

|vﬂ<x) - vﬂ(y)|
/sn /g I T Rt

/ 1/ / 1/ [v(7, R, @, 0)|, n K;(7,R)dF dw dR d6
st Jo sn=1.Jo s
(2/1) / / / / lv(7, R, w, 9)|[ » d7 dw dR d
sn—1 sn—-1
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60 MAZOWIECKA and SCHIKORRA

+<(2/1)”(§—1>+<%>"<§‘1>>/§n_1 /()A/Sn_l//loo|v(f,1€,co,6)|t,% d7 dw dR d8

-—1
% / / / / [v(7 R, w, 6)|t n dF dw dR d6
/1 sh— 1 sh— 1
t 1 ©
n(E_l)/ / / / [v(7, R, w,6)|, » dF dw dR d&
sn-1 Jo sn-1 Jo TS
n(t-1 ® o
(5 >/ / / / |0(F, R, @,6)], » dF dw dR d6.
sn-1 J) sn=1 Jo 'S

2
Forr; =4/ /142’11, this inequality can be rephrased as’

// |v,1(X)—U,1(y)| xdy<(2/1)”(§_1)/ /dedy
sn Jsn m - D(S,rp) Jsn

Ix —y|™* lx —y|"

(1) / [ to=won ZOILPI
Sn\D(S V&) sn |x yl

(5.14)

where S = (—1,0,...,0) € S" is the south pole. O
Having Proposition 5.6 we are ready to proceed with the main theorem of this section.

Proof of Theorem 5.1. Without loss of generality, we may assume that y, =S, where S =

n
(-1,0,...,0) is the south pole. Let u; € W5 (S") be the minimizing map from the assumptions of
this Theorem. For 4 > 0, take (u;), from Proposition 5.6. Observe that A — (u;);, is a homotopy.
Since u, is a minimizer, we can compare the energies of u;, and (u;);.

/gn /S,, |u, () — u,(y)l /Sn /gn [(u)(x) — (ut)/l(y)| &, 6515)

x = yI"™* x = yI"™*
Combining (5.15) and (5.7), we obtain
u,(x u
0 <2l 1)/ / l,C) - ‘(fn)' dx dy
D(S,ry) J st |x — y|
n({-1 u(x)—u
+<(%)( )_1>/ JRECE OF 44,
§n\D(S,V/1) sn |x — yl
T The circle centered at the origin of radius A in polar coordinates corresponds to the circle of radius r; = /12+ n with

center at S in Euclidean coordinates. Indeed, one can compute it from the law of cosines: rﬁ =2 —2cos(m — ¢;), where

= 1
¢, = 2arctan 5.
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For A < 2, the expression

Cop 1= ———7—
1)

is positive for any t € (s, Sy]. Thus, for any 4 < 2,
/ / lu,(x) — u[(yn)l / / lu (x) — u[(yn)l dx dy.
DS ISt |x — y|tt SN\DSr) IS |x — |t
We need to study the asymptotics of C; ,. Let 4 € [0, 4,] for some 4, < 2. We have
—n(t-1) 2"(§‘1) — /1"<§‘1>

C/l,[ = ﬂ.
1—@uli)

<

where we set

C_'/l s = max
0-°0 te(s,s0],4€[0,40]

- [ . . .
We need to show that C; < . Since (£,4) "G DCM is continuous in [s, 55] X [0, 4,], We

t
only need to estimate "G V¢ 2. at the asymptotic boundary of [s, s, ] X [0, 4].
First, we observe

2n<§—1> _/,Ln<é—1> B log <%)

1 = 0,1].
les[%go] o 1 (2/1)” i_l) les[lggo] log(22) €l0.1]
Also,
n(t-1 L 0 04
- (5-1) _ (51 - (3-1) () .
aelody) 7% (s 1) aelody) )" ST0—1>
Next,
t I s
sup hm 2"( >_/1”( ) = sup 2 <;_ ) :Zn(_o_l),
t€ls, so] 1_(2/1)11 §_1> tels,sy]

and it is easy to see that
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62 | MAZOWIECKA and SCHIKORRA

In conclusion, we have shown that for any 4, < 2, s, € (5,1) forany 4 € [0,4,], t € (s, 5]

/ /lut(x) ur()’)| dx dy CAs —n( < 1/ /|“t(x) ut(yn)| dx dy.
D(srp) ISt |x y| sN\D(Sr) ISt |x y|

Soforany p, < \/g ,letd, < 2besuchthatp, = .Forany p € (0, p,), thereexists 4 € (0, 4,)

21,

such that p = 24 We then have 1 = p—”’f“ and 0 < < ’122 < \/g . This gives

Vazer
u,(x)—u —n(t- u,(x)—u
/ / | t( )— t(y)| dxdy < C/l WP 1 / / u, (x) — [(y,?l dx dy.
D(S.p) lx — y|™* SN\DESP) IS |x — |t
This finishes the proof of Theorem 5.1. O

5.2 | Proofof Theorem 5.2

The proof of Theorem 5.2 is very similar to the proof of Theorem 5.1, and a consequence of (5.8).
For the convenience of the reader, we state the proof of the latter below.

Proof of (5.8). Let (¢, 0) be the spherical coordinates on S", where ¢ € (0,7) and 6 € $"* 1.
Let (R, ®) be the polar coordinates on R"?, where R > 0,0 € S" 1.

The stereographic projection @ : S" \ {N} — R" from the point N and the inverse stereographic
projection @' : R" — S" \ {N} are given by:

®(¢,6) = (R, 0) = (cot f,e),
2
-1 _ _ 1
D7 (R,0) = (p,0) = (2 arctan R,G)).
We define the rescaled energy
(9, 0) = v(@;,0),
where ¢; =2 arctan(ﬁ), and R = cot(¢/2). Note that

sinp=_2R % __ 2 _ ®+D - _,
(R2+1) 8R R2+1 % 2 R TeTTer

Let v € WHP(S™) be any map. Its energy in polar coordinates is given by the formula:
T P
/ |[Vul|P dH" = / / (Jvy|* +sin™? p|uvg|®) 2 sin" " @ dp d6
sn sn-1.Jo

p
/ / |vR|2+R 2106 |)2<R “) R dRde.
sh— 1
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Now the energy of the rescaled v is

© P 2 p—n
|VvA|PdH"=/ / (|<UA)R|2+R-2|<UA>@|2)2(R2“) R"1dR dO
sn n—1 0

P
0 dv 2 1 |dv NZ(R2+1\'"
= 1—(AR,0)| + =|==(1R,0 R"'dRde
‘/Sn—l'/o <’ aR( )‘ R2 6(9( ) 2
p
o 2 2\ 2 52 2 p—n s 52 p—n
=/ / dul”, 1|dv K+ R+1) g1drde.
§n—1 0 aR R2 6@ (R2 + 1)/1 2
(5.16)
Now we separate this into two parts: R < 1,R > 1.
For R < A, we have
R*+22
AR +1) 77
andforR > 4
R?+ 22 <2
AR +1) A
This gives us (5.8), namely,
P AN YAl A 502 1 602 % ﬁ2+1 p—n~n 1dR~d
Vu H" < (2A)F™ —| t+ === R™ (C]
/;nl ;Ll ( ) Ln—lA < aR R2 a@ > < 2 )
D
p—n oo 2 2\ 2 / B2 p_"l‘~ B
+<3> / / L) e U} R+1 g1dRde 17
/1 sn=1 J) 6R R2 5@ 2
_ 2\P7
= (2P "/ IVolP dx + (—) / |VolP dx,
D(S,72) A SN\D(S.1,)
_ . _[ax
where S = (—1,0,...,0) € S" is the south pole and r; = FEE O

6 | EXISTENCE OF W55(Z, \)
The following theorem is a generalization of [96, Theorem 5.1].

Theorem 6.1. Letn>2ands € (0,1) orn=1and s < % Let N be compact, 7r,(N') = 0, and

let T be as before. Then there exists a minimizing W5 -harmonic map in every homotopy class of
Coz, N) foranyt € [s,1).

The assumption 77,,(N°) = 0 cannot be dropped as shown in an example by Eells and Wood [35]:

Theorem 6.2. There exists no harmonic map of degree one from T to S?.
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64 | MAZOWIECKA and SCHIKORRA

For a proof, that the infimum in Theorem 6.2 may not be attained in every homotopy class, see
also [67, (9.2) Proposition].

Proof of Theorem 6.1. Fix a homotopy class X c C(Z, N).

The statement for ¢ > s is clear.

Let u, be the minimizing harmonic maps within X for t € (s, sy). Here, s, > s is taken from
Theorem 3.1. .

We use Theorem 3.13 to infer that there is a map u; € W™ (2, N') for which on a subsequence
(denoted the same),

t— n
u, = ug  strongly in W5 (2 \ {x;, ..., xg}).

Moreover, by Theorem 4.6, isolated singularities can be removed and we deduce that u, €
W5 (2, N). In order to conclude, we will show that

t—s n
u, — u,  strongly in W' (Z).

We denote A = {x;, ..., Xg}. Consider ¢ close to s. Let x; € A and take p small enough, so that
B(x;,2Ap) N A = {x;},

where A > 1is the number taken from Lemma A.1so that the smallness of E, » (v, B(x;, 2Ap)) < %
implies

U(X)—D %
/ v, (x) t(.);)l dxdy < €
Bei20) J2 |x — y|™*S 2

1
with 2Ap = A(2p)2 and 1 = A(WN, n, 5,€).
We construct a comparison map v, such that

2 in B(x;, p)
‘ u, outside of B(x;, 2p).

In order to define v, we let 9y, ) € C°(B(x;, 2p)) be a standard cut-off function, such that
NB(x,0) = 110 B(x;, p). We claim that for all x € X and ¢ sufficiently close to s, we have

dist ((1 - 77B(xi,,o))1'l[(x) + UB(xi,p)us(x)’ N) <L (61)

This is true, because for x outside of B(x;,2p) and for x € B(x;, p), the distance is zero. On the

remaining annulus B(x;, 2p) \ B(x;, o), we have W5 and uniform convergence of u; to ug, and
thus taking ¢ sufficiently close to s, we have (6.1). Therefore, the map

uy (x) for x € B(x;,p)
v, = 71'N<(1 — nB(xl_’p))ut + nB(xi,p)us> for x € B(x;,2p) \ B(x;, p) (6.2)
u,(x) for x € Z \ B(x;,2p)
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is well defined for ¢ sufficiently close to s. We observe that v, € WSO’% N C°(Z N B(x;,2Ap), N).
We also have

tlig}' E[,g(vta B(xi’ 2AP)) = Es,g(u'sa B(xia 2Ap)) (63)

We observe that as u; € Wso’g, we have

E, 1 (uy, Bx;, 2Ap)) < CA"5 "5 By n(uy, B, 2A0)) = O™ % Jasp —» 0. (6.4)
Moreover, since 7, (N') = {0}, we find that u, and v, must be homotopic. Indeed, since they
coincide outside of B(x;,2p), we can glue two copies of B(x;,2p) to an S" with u; on the upper
hemisphere S” and v, on the lower hemisphere S" to construct a continuous map u : S" — N.

Since 7r,,(N') is trivial, there exists a continuous extension U : B"*! — A/, which readily leads to
a homotopy of u, and v, on all of 2.

As u, is a minimizer in its homotopy class, we can compare the energies
EI’%(L{[,E) < Et’%(v[,E). (6.5)

Decomposing the integrals into integration over X\ B(x;,20) X X\ B(x;,2p), X\ B(x;,2p),
B(x;,2p) X B(x;,2p), we obtain

/ / |“z(x) ut()’)| dx dy +// lu,(x) — ut(J;)| dxdy
E\B(x;,20) JE\B(x;,20) B(x;,2p)

Ix —yI"* Ix —yI"*
i (6.6)
</ lut(X)_ut(}n)z)ls dxdy
T x—y"tY
and
o,(x) — v, I+
/2 z—t| |”t+— dxdy
x—y|" "
(6.7)

/ / [v;(x) — Ut(ym)l dxdy + 2// |v;(x) — Ut(ym)| s dxdy.
I\B(x;20) JINB(x;,20) | x — y| T JB(x20)  |x _y|”+?
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Thus, combining (6.5)-(6.7), and u; and v, coincide outside B(x;, 2p), we get

// M@)m?l // M@)W?'w@. (68)
B(xi20)  |x — y|™ B(xi20)  |x —y|™*

From (6.3) and (6.4), we know that for ¢ sufficiently close to s, we have

U (X v So—s
/ / i lz(y)| dxdy < O(" % )asp = 0
B(x;,2p) J B(x;,2p) |x yl "

and thus, choosing p sufficiently small, we get from Lemma A.1

// [, (x) — Utz(y)| dxdySE.
B(x;,2p) |x — y["

The latter inequality combined with (6.8) gives for small p and ¢ close to s

// lu,(x) — utz(y)l dxdy <c. (6.9)
B(x;,2p) |X yl "

Therefore, applying the regularity result Corollary 3.12, we get on a smaller disk u, — u, strongly
in WS (B(x;, p)).
That is, we have found that u, converges on all of = to u; uniformly, and in W*'s . This readily

\)

implies that ug isa W5 * -minimizer in X. [

7 | EXISTENCE OF W55 (s, N

In this section, we assume that £ =S§", 7,(N) # {0}, and look for minimizers in the free
homotopy classes of C°(S", N'), which we denote 7,C°(S", N'). We prove the following theorem.

Theorem 7.1. Lets € (0,1), n >2ors < % and n = 1. There exists a set of free homotopy classes
X C 7,CO(S", N') with the following properties:

(1) EachT; € X contains a minimizing w® -harmonlc map.
(2) ElementsT; € X form a generating set for 7t,,(N') acted on by 7t,(N").

We state three corollaries of Theorem 7.1, or rather Lemma 7.7 — Theorem 7.1 main’s ingredient.
Corollary 7.2. Let 7r,,(N') # {0}. Then there exists a nontrivial W*s (S", N')-harmonic map.

Proof. From Theorem 7.1, we deduce that if all homotopy classes I € 7,C°(S", N') that have a
WS’%-minimizing harmonic map would be trivial, then we would obtain that the set generated
by them would be trivial, thus 7,,(N') = {0}, a contradiction. Thus, there must be a nontrivial
homotopy class in which there is a minimizer. O

In particular, we have the following.
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Corollary 7.3. There exists a number k € Z, k # 0 such that
inf { E,2(u,$"): ueC®nW"i(s","), degu =k |
is attained.

Corollary 7.4. Lets € (0,1), n > 1 and N as above. There exists an ¢ = £(s,n, N') such that the
Sfollowing holds:
Let

S :=inf {Esyg(u) : u€eC®(S",N), uisnothomotopictoa constant}.

Then § > ¢ and moreover if T € 7,C°(S", N) satisfies

innf E; n(u, S <6 +e,
uernw®s(sn,N) - °

n
then T contains an E* -harmonic map.

Observe there is no a priori reason that a minimizing nontrivial homotopy class I, exists, that
is, I'y such that

inf E n(u,S") = inf {Es’g(u) s u € C®(S", N), uis not homotopic to a constant}.
uelynW™s (sh,N)  ° §

See [120, Proposition 2.4 & Theorem 1.2].

Before we begin the proof of Theorem 7.1, let us recall a few facts about free homotopies and
free homotopy decomposition in terms of homotopy groups. For definitions, we refer the reader
to the book [52] and for an explanation for an analyst, we refer to [12, III §17] or [120, Section 2.1].
Here, we will adopt the notation of Sacks-Uhlenbeck [96, Section 5].

Eachy € 7,,(N) determines a free homotopy class of maps from S" into . As free homotopy
does not depend on the choice of the base point, two elements y,y’ € 7, (S") determine the same
free homotopy class if and only if they belong to the same orbit

m (Ny = m (V)Y

under the usual action of 7;(N') on 7,(N'). We denote by T € 7,C°(S", N) the free homo-
topy class that corresponds to 7z, (N)y. For T € 7,C°(S", N'), we will denote by y € 7,,(N') any
element for which 7z, (N)y corresponds to T', we will write y € T.

For any a € 7r;(N') and y,, ¥, € 7,(N'), we have

a(y; +v2) = ayy + ay,.
Moreover, for a given T; = 7,(N)y,, fori = 1,2,3,
N+ra=vs = mN)ys Ca(Ny, + 7 (N)y,, (7.1)

because for any a € 7,(N'), we have ay; + ay, = ay;.
We also note that if 77, (N') was trivial, then we could drop the action of 7z, (N') on 7,,(N').

a ‘0 "0SLL69YT

woiy

sdny) suonIpuOD) pue sud L, 3 33§ [€20Z/S0/6T] U0 AIeaqrT SUIUQ K3[1 A ‘BUnqIamIZ -PIRJAIIE A1) £Q 69LT1SWII/Z I [ 1°01/10p /w0 Kafim

Konm-Areaquouy

25URDIT SUOWWIOD) AATIEAI) AqENIdE A1 £q PAUIAAGS A1 SOOI VO SN JO Sa[M J0] ATEIqIT AUIUQ KA[IAY UO (STOT



68 | MAZOWIECKA and SCHIKORRA

For a free homotopy class T € 7,C%(S", N), we write

#T := inf Eg n(u,S").
uernw®s (sh,N)  °

The following characterization will be needed in the proof.

Lemma 7.5.

#T = lirr}r inf E, n(u,S").
=87 yerawts(snN) - °

Proof. Letu, € I be a minimizer in I for E, »(-,S"). Then,

n

#T < By 2 (u, S") < diam (8" V5, 1 (u,, "),
which readily leads to

#I' < lim i£1f innf E, n(u, s™M.
(=57 yernwhs (sn ) S

On the other hand, by smooth approximation, Lemma 2.7, we can approximate u smoothly in its
homotopy class, and thus, combining it with the definition, we get

#I = 2nf E; n (v, s™M.
velnW*s nce(sn N) - °

For such a smooth v € T N W5 n C®(s", N,

inf E n(u,S") =E, n(u;,S") <E, n(v,S").
uernwhs (st,N)  ° s s

Since lim,_ E, »(v,S") = E, n(v,S"), we conclude that for any smooth v € N W5 n
- g

C®(s", N,

lim sup innf E;n (u,s") < En (v, S").
=5t yernwhs (snN) 0 ° s

Taking the infimum over allv € T'n w0 C®(s", N),

lim sup inf E; n(u,S") < #T.
t=st yernws st N) (|

Before we proceed to the proof of Theorem 7.1, we would like to note, as mentioned in the
Introduction, that in the case of harmonic maps, the theorem cannot be improved in general.
Futaki constructed in [39] a manifold with the following property.

Theorem 7.6. There is a manifold N with the following property: there exists a homotopy
component of C®(S?, N') in which there is no minimizer of the Dirichlet energy.

Theorem 7.1 follows Lemma 7.7 below as in [96, Proof of Theorem 5.5].
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Lemma 7.7. Let s, n, N' be as in Theorem 7.1. There exists a 6 = 0(s,n, N') such that the
following holds.
Let T, € m,C%(S", N). Then at least one of the following cases holds:
(1) There exists a minimizer of Eg n (-, S") in T,
(2) Forevery & > 0, there exist nontrivial free homotopy classes Ty = 7w;(N)y; and T, = 7,(N)y,,
such that

Ty = m(N)yy C Ny + (N,

and
#I') + #I, < #I, + 6, (7.2)

6<#F1<#F0—g,
8
6<#F2<#F0—§.

Proof of Lemma 7.7. Let {u,;} be a sequence of Wt’%-maps, which minimize E, »(-,S") in I, N
whs (S", N). Similar to the proof of Theorem 6.1, using Theorem 3.13, we find that the sequence
{u;} is uniformly bounded and using Theorem 3.13, we get that on a subsequence u, converges to
u, strongly in W*0's (S" \ A, N), weakly in W5 (S", N'), and locally uniformly in S" \ A, where
A = {x;, ..., Xg} is a set consisting of finite number of points. Moreover, by Theorem 4.6, we obtain

that for an s, > s, we have u, € W*'s (£, ). Then, we have two possibilities.
Case 1: There are no blowup points. For every point x; € A and ¢ sufficiently close to s, there is
a p such that

Ey 2 (uy, BCx, p) < €

t—
where € > 0 in taken from Corollary 3.12. Then, Corollary 3.12 implies that u, = u, in

n — n
woos (B(x;, 5 £), M) and we obtain u, = u, strongly in W*0's (", ). This implies that u, € T,
and u, mmlmlzes the energy E n( s™).
Case 2: There is a blowup pomt We assume that there is a point x; € A such that

lim limsup/ / |ut(x) u,(y)l dxdy > e. (7.3)
B(x;.27@) Jsn

R |x — y|2”
Similarly as in the proof of Theorem 6.1, we take a small enough radius p € (0, 1), so that
B(x1,20P) N A = {x,}, (7.4)

where 1 = (N, n,s) and 8 > 0 will be chosen later (in the application of the smallness condition
Lemma A.1 and Lemma A.2).

We repeat the construction in (6.2). Let g, o) € CZ°(B(x1,20)),0 < Np(x, ) < L and npy, ) =
1in B(x;, p). For x € B(x;,2p), we define

as;t = ”N((l - UB(xl,p))ut + nB(xl,p)us)'
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From (6.1), we know that the projection is well defined for ¢ sufficiently close to s. Let

U, 0T

u
o t
Ur i= 3 .
i
and
w, 1=
U

where 7 : §" \ B(xy,2p) — B(xy,2p) is a diffeomorphism, such that |Vz| ~

Uy

B(wﬂp)x\

S\ B(z1,2p)

Ut

Domain of the map u;

Domain of the map v,

S5t

in " \ B(xy,2p)
in B(xls ZP)

in " \ B(xla 2‘0)
in B(x;,2p),

1
o

|
SM\B(z1.0)

Domain of the map wu,

Uy

B(x1,2p) /\

or —

B(x1,p)

Domain of the map w;

Let Ty, I', be the free homotopy classes determined respectively by v, and w,. Then, we have as

in (7.1)

T (Nyy € 1 (N)yy + (N,

Step 1. We will prove that

sp—S

lim |E, £ (0, S") + E, 0 (w,, $") — E, 1 (4, ") = Op" %) as p 0.
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Indeed, to see this, we first decompose S” x S" into the compliment of the balls S” \ B(x;,2p) X
S" \ B(x;, 2p), the product of the balls B(x;, 2p) X B(x;, 2p), and the two mixed terms B(x;, 20) X
S"\ B(x;,2p), S" \ B(x;,2p) X B(x;,2p). We recall that

v, =u, onS"\B(x},2p),

w; =u; onB(x,2p).
Applying those observations, we get

E,1(0,S") + B, 1(w, ") = B, 2 (u, S")

(X (V]
= B,2(0,BOxy 200 +2 | / M dxdy + E, 5w, "\ B(x,.20))
§ S"\B(xy,2p) J B(x1,2p) |x _ yl
w,(x)—w g u.(x)—u %
+2/ / | t( ) t(z)l dxdy—Z/ / | t( ) t()n}t)l dx dy.
S"\B(x120) JB(x1.20)  |x — p|™t S"\B(x1.20) JB(x1.20)  |x — y|" S
Thus,

|Et,§(vt, s") + Et,%(wt, S Et,g(u,, s")|

<2// |Ut(x) Ut(y)| dx dy+2// lw,(x) — wt(i)l dxdy
st JJB(x1.2p)  |x — y| s JS"\B(x1,2p) |x Uairy

Ulx)—u g
) / / M dx dy. (7.5)
SM\B(x1,2p) JB(x1,20) | x — y|n+?

We begin with the estimate of the last term in (7.5). To do so, we observe that we can decompose

/ / luy(x) — u[()’)l dx dy
S"\B(x1,2p) J B(x;,2p) |x — y|

Ju,(0) = u, @I
S E; n(uy, B(x1,3p) \ B(xq,0)) + / / % dx dy
s S"\B(x1,3p) J B(x1,2p) |x — y|"+T

u,(x)—u 5
B(x1,30)\B(x1,20) J B(x1,p) |x — y|"+T
The estimate of I,: We will first estimate the term I,. We start with noting that for x € B(x;, 2p),
we have u,(x) = w,(x) and for y € S$" \ B(x;, 3p), we have u,(y) = v,(y), thus
lu,(x) —u, )5 = [w,(x) — v, W5 3w, (x) —w,(2)]5 + [w,(2) —v,(2)]5 | + [v,(2) —v,(Y)I5.
(7.7)
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Applying this to I, and integrating the inequality over 7CB(x1 30\B(x,.20) with respect to dz and over

7LB(x1 200\BGxy, 2 w1th respect to dZ gives us

W, (X)— w2z g
L3 ][ / / M dxdydz
B(x1,3p)\B(x1,20) J S"\B(x1,3p) J B(x;,2p) |x_y|n+?
VAN Z U
+7[ / / [v,(2) — t(J:”)l dx dy dz
B(x1,2p)\B(x1,37p) S"\B(x1,3p) J B(x;,2p) |x _y|"+T

w(Z v
+7[ 7[ / / —| (2) v @) dxdydzdz
B(x1,2p)\B(x1,3?p) B(x1,3p)\B(x1,2p) J S"\B(x;,3p) J B(xy,2p) [x — yl

= 12’1 +12’2 + 12,3.

Now we estimate I, ; and note that |x — y| > p, thus integrating over the y variable

We(X) — w2 g
B(x1,30)\B(x1,20) J "\B(x1,3) J/ B(x;,2p) ot
_nt e :
se o ][ / |wt(x) - wt(z)l Ty dxdz (7.8)
B(x1,30)\B(x1,2p) J B(x1,2p) |x _ Z|n+?

w.,(xX)—w,(zZ %
< / / |w, (x) z(m)l dx dz,
B(x1,30)\B(x1,2p) J B(x1,20) [x — z|n+?

in the last inequality we used |x — z| < p.
As for the term I, ,, we observe that |x — y| > 20 — |y — x4|

v(2)—v
I, =][ / / lv,(2) — z(y)| dx dy dz
B(x1,20\B(x1, %) JS"\B(x1,30) JB(x1.20)  |x — y|"*

v(Z)—v 5
Sp”][ / |v(2) — v, gz,
BO1.20\BG 3 JSM\BGw30) (20 — [y — 3y |5

Fory € $" \ B(x;,3p) and Z € B(xy,2p) \ B(x;, %p), we have

ly — 2| < dist (y, B(xy,2p)) + 4p < 5dist (y, B(xy,20)) < 5120 — |y — x4 |-

Thus,

v(Z)—v §
L)% / / 1042 = v O)I* ’(yn t)l dydz. (7.9)
B(x1.2p)\B(x1. %) JS"\B(x1.30) |z — y|"t
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Next, we estimate I, ;. We begin with the observation that |x — y| > p, from which we deduce

w,(z) —v,(2 5
L= ][ 7[ / / M dxdydzdz
B(x1,2p)\B(x1,37p) B(x1,30)\B(x;,2p) J S*\B(x1,3p) J B(x1,2p) |x _ y|"+?

nt

< 2n— n—-=

$p w,(2) — v, (D) dz dz

ﬁ(xl,zp)\s(xl,%)ﬁ(xlsp)\z%(xl,zm

nt n
T / 1y07(2) — i (2)|* dz 2
B 200\BGe1, 22) JBGey 3p0\B G 20) ’ (7.10)

w e n|z—z"" = s
Spos / 3 / |5, (2) — g, (2)] 5 —nt dz dz
B(x1,2p)\B(x1,5) J B(x},2p) |z — Z|n+?

|, (2) — fi,, (2)] 5
< Pn/ / S5t stm dzdz,
B 20\B(. %) B 20) |z — 2"

we have used the estimate |V7| ~ /% and |Z - Z| S p.

The estimate of I5: Similarly, we can estimate the term I; by noting that for x € B(x;, p), we
also have u,(x) = w;(x) and for y € B(x;,3p) \ B(x1,2p), we have u;(y) = v;(y). We use again

the inequality (7.7) and integrate over fB( *13p\B(x, 2p) With espect to dz and over 7LB(x1,2p)\B(x1, )

with respect to dz to get

w:(XxX) —w;(Z g
I, % / / M dx dz
B(x1,3p)\B(x1,2p) J B(x1,0) |x — z|n+?

+/ / (2) = v+
Bx 200\B(r, ) By 30\BG20) |7 — |t

i1, (2) — i (D))
+p" / / il M dzdz.
B(x1.2p\B(x1.3) JB(x1.20) |z — 2"t

The estimate of I: As for the term I;, we note that on B(x;,3p) \ B(x;, p), we have strong
convergence of u; and thus as in (6.4)

dydz (7.11)

11121 EL%(u[!B(xl’ 3;0) \ B(xluo)) = Es,%(usyB(xl’ 3P) \ B(xluo))
s (7.12)
< Cp" 5 Ey n(uy, B(xy,20)) = A" Yasp — 0.

Finally, combining (7.5) with (7.6), (7.8), (7.9), and (7.10), we obtain

|Et,§(v[, s + Et’%(w[, s") — Et,g(u[, s")|

/ / |Ut(x) Ur()’)| dx dy+// lwt(x)_wt(i)lgdxdy
st JB(x20)  |x — "t s" JS"\B(x4,20) — "ty
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i () — Ly DI 5
+p" / . / - = dxdy + E, »(u;, B(x1,3p) \ B(xy,p))
B(x1,2p)\B(x; zp) B(x1,2p) S §

The last term 11, is just I; and was estimated in (7.12).

h

[v (X)—v, (V)] s
2 nt
o) |x_y|n+ 5

Lemma A.1. Let us assume that ¢ < 2s and let «, 3, and A be from Lemma A.1. We have assumed
in (7.4) that B(x;,40f) N A = {x,}, and thus v, converges to u, strongly in W*5 on this ball and
we have

The estimate of I1;: In order to estimate the term [, /B(x1 dx dy, we will use

tllg:‘l*' E[,%(UtﬁB(xlalpﬁ)) = Es,g(ussB(xlalpﬁ))

SO —S

~ (467)" 7 By 21, BCx, 267

=0(p*)asp = 0,
where a = ﬁn%s—_s, recall from Lemma A.1 that we also have § = %(1 — %), thus we take

So—S Sot+s—n(sy—s
0 and ﬁ:l 0 (o —9) ’
So+s 2 So+s

ax=n

here we can assume without loss of generality that s, < Sn—+1 and thus 8 > 0. Therefore, we obtain

lim E, (v[,B(xl,/lpﬁ)) = (9(,0 50“) asp — 0.

t—st

This implies, by Lemma A.1,

v,(x)—v n=
/ / | t( ) — t(y)l dxdy = O(P %0+5) as p — 0. (7.14)
st JB(x120)  |x — y|*t

The estimate of 11,: Similarly, in order to estimate the second term on the right-hand side of
(7.13), we will use Lemma A.2 for t < 2s witho = n*2= and 6 = 2 + SO 2 > 1. We note that p can
be taken sufficiently small to ensure that B(x;, A" : %) € B(x4,2p) (here A = A(N,n,s) is taken
from Lemma A.2). We recall that B(x;,2p) C B(xl,)tpﬁ ) and by (7.4), we know that B(x;,2p) \
B(x;,A710%) N A = @, and thus u, converges strongly to u, in B(x;,2p) \ B(x;,4710%). We have

lim E, (wt,S"\B(x A76%)

t—st

= lim E, 1 (1,07, S™ \ B(x;,20)) + lim E, n (uy, B(x,,20) \ B(x,, A™'0%))

t—st

< lim |Vt |2* dx dy

T iost B(x1,2p

/[ 13 (%) = By )
B2 [r4(E) - T )

+Es’§(usy B(xl’ 2;0) \ B(x19 /T'_lpe))
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., (%) — t,., (F
< lim/ / |, (%) stgty)l - n( )dxdy
=5t SR 20) JBOn20) g — |t
+Es,g(us’B(x]’ 2Io) \ B(xl’ Z"_lpe))
~ Egn (uS,B(xl, 2p)) = O(p 5 )as o — 0. (7.15)
By Lemma A.2, this implies the smallness of
w,(x)—w
lim / / | ’( )- t(y)l dxdy = (9(p s )asp - 0. (7.16)
t—st sn Jsn\B(x;,2p) |x yl
The estimate of I1;: We immediately obtain
i1, (x) = 15, (V)] s
lim p”/ / I s’tmy | dxdy = O(pn< s +1)) = O(p”OT) asp — 0.
t—st B(x1,2p)\B(x1,37p) B(x1,2p) |x _ y|n+T
(7.17)

nSo=s

Finally, we note that O(p
and using (7.14), (7.16), (7.17), and (7.12), we obtain

oS

l1m |E,. n(v[,S") +E, n _(w[,S”) E, n(u[,S")| =0O(p" ) as p — 0.

Step 2. Here, we verify the inequality (7.2).
From Step 1, we obtain

li?_l)sipf (Et’g(vt, s") + Et,g(wt, S”)) = litrgsigf E[’g(ut, S$")+o(1)asp — 0.

In particular, we have by Lemma 7.5,
#T', + #1, < liF_l)Si}’rlf E[,g(vt, s + ligsigf Etyg(wt, s™)
< litrgsigf Et,%(ut, §$")+0(1) = #I'y + o(1) as p — 0.
Choosing p <« §, we obtain

#T, + #T, < #T, + 0(1) < #T + 6.

s ) = (9(p %+ ) as p — 0. Thus, passing with ¢ to the limit in (7.13)

(7.18)

Step 3. T, is nontrivial. Indeed, if I", was trivial, then w, would be homotopic to a constant, and
by definition of w,, this would imply that there is a homotopy between u;, and ., in B(x;, 2p). But
u, and g, coincide outside on dB(x;, 2p), so we would obtain that u, ~ v,. Since u, is a minimizer

in its homotopy class, we would get

Et’$(u[, SOES Et’? (v;, S™).
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a0 ‘0SLL69YT

Similarly as in (6.9), in the proof of Theorem 6.1, for small enough p, this would lead to the
estimate

woiy

hm / M dx dy < g,
(x1.20)

st [x — y|?"

which is a contradiction to (7.3).

Step 4. T'; is nontrivial: Assume that I'; is trivial, then v, is homotopic to a constant. That gives
us a homotopy between then u, on S" \ B(x,,2p) and i, on B(x;,2p). Thus, we obtain that u,
is homotopically equivalent to @ ,o7 in S" \ B(x;, 2p). Thus, u, is homotopic to w, and from the
minimality of u,, we get

Et’g(ut,S”) < Et’g(wt,Sn). (7.19)
Noting again, that
S" x S" = (B(xy,2p) X B(x1,20)) U (S" \ B(x1,2p) X B(x1,20)) U (S" x S" \ B(x1,2p)).

From (7.19) and u; = w, on B(xy, 2p), we have

/ / lu,(x) — ur(J’)|Sd dy+// [u,(x) — ut()’?| dxdy
SM\B(x1.20) JB(x120)  |x — y|"t s JSMNB(x1.20)  |x — y|"+_

w:(X w w.(X w
</ / | t( )— t(}’)| dx dy+/ / lwy(x) — z(i)| dxdy,
S"™\B(x1,2p) JB(x1,20) | x — y| st JSMB(x1,20) | x — anry

puoD) puv sud L, ay) 328 “[£202/S0/6T] U0 A1eaqr] AuuQ A3[1AN ‘BUnqIOMIZ -PIRJAIRIE A1) AQ 69LT1SWII/ZT 1 1°01/10p /w0 Kafim

we also have

/ / [, (x) — ”t(J:t)| dx dy
sn Sn\B(Xl 2p) |x yl

<'/ / |ut(x) ut(y)| dx dy+/ / Iut(X)_ut(i}t)l dx dy
S"\B(x1,2p) J B(x;,2p) |x — yl st J SM\B(x,2p) |x — yln"’_

Konm-Areaquouy

and by the symmetry of the integral

/ / lw(x) — wt(.V)| dx dy+// lw[(X)_w[(y}:)Fdxdy
S™\B(x1,20) J B(x1,2p) sm JS"\B(x4,20) —y|"ty

D1IE () £aSN JO SI[NI 10] AIRIGI] duI[uQ) AS[IAN UO (SUOT

Ix —y|"* lx =yl
/ / lw(x) — w[(nyt)| dxdy.
sn Sn\B(Xl 2p) |x yl

Thus,

u(x)—u g w:(x)—w g
/ / |, (x) t()n’[)| dxdy < 2/ / lw,(x) t(z)l dx dy.
S"\B(x;,2p) J S" |[x — y|n+? S"\B(x;,2p) J S" — "
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In order to estimate the latter one, we will again use Lemma A.2. We recall from Step 1, (7.15) that
foral = A(N,n,s) > 1, we have

lim E, x (w,, S" \ B(x;, 11075 ) = 00" )as p - 0. (7.20)
t—s ’s
Now from Lemma A.2, the latter implies

|w,(x) = w )

lim / dxdy = (9(p s )asp—>0
t—st Sn\B(XI,Zp) sn |x_y|n+?

Thus, passing with ¢ to s in (7.20), we obtain

lim /Md dy = 0" ) as p — 0.
1=5* Jsn\B(x;,20) |x—y|

That is, if I'; was trivial, then for all ¢ sufficiently close to s, we would have

lut, () — 1, ()| 5 s
/ / 7 dxdy < Cps (7.21)
S"\B(x1,2p) [x — y|n+T

Then combining this with Theorem 5.1, we obtain for all ¢ sufficiently close to s

/ / e u‘(ff)l axdy <cp (i) / / WD ZUONT ey
B(x;,2p) JS" |x yl T S"\B(x;,2p) J " |x_y|}’l+?

S Xe.

This contradicts (7.3), so I'; has to be also nontrivial.

Step 5. Estimate of #I'; and #I',. Now since both I'; and I', are nontrivial, we must have #I';,
#I', > 0 for some 6 > 0, since by Lemma 2.10, we know that very small energy implies trivial
homotopy class.

Moreover, choosing § < %, we also get from (7.18) that

#rlg#r0+5—#r2<#ro+5—e<#r0—%

and similarly #T', < #T, — %. Ol

The proof of Theorem 7.1 follows now exactly as in [96, Theorem 5.5], but for reader’s
convenience, we repeat it here.

Proof of Theorem 7.1. Let 6 > 0 be the number from Lemma 2.10 such that E » (u, S") < 6 implies

trivial homotopy class. Without loss of generality, we may assume that 0 is also the number from
Lemma 7.7. Let P be the subgroup generated by the elementsI'; € X. Assume on the contrary that
P does not generate the whole 7,,(N') acted on by 7;(N'). Then, we would be able to find a class
I' & P, such that for any IV with #I" < #I' — %, we have I’ € P.
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Since there are no minimizing W*5 -harmomc maps in T, applying Lemma 7.7 to T, we obtain
that there exists two other nontrivial homotopy classes I'; and I, such that

[0

T (N7 C i (N7, + T (NP,  #I, + #0, < #T + > and #I,, #T, > 6.

This implies that #I';, #I', < #[ — %, so both sets 77, (N)7,, 7;(N)7, € P. Thus, we also have

(N7 € w1y (N7 + (N7, C P 0

APPENDIX A: OBSERVATIONS ON THE SMALLNESS CONDITION

Let us remark that smallness conditions (that will be needed throughout the paper)

p
/ / |u(x) —u@)I? dxdy <
B() J B Clx—yrtse

and

- p
/ |uCx) —u@IP o dy <¢
B(r) | — [P

are essentially equivalent. This is due to the following lemma.

Lemma A.l. Letu € WS’%(E, N), where s € (0,1), t > s then there existsa A = A(N', n,s,€) > 1
such that

zf/ / lu(X)_u(yn)zl dxdy<£, then/ lu(x) — u(y)l dxdy <.
BGr?) JBGrT) Ix — y|™* 2 B(r) J= |x—y|"+T

where 0 < r < 1. In particular if t < 2s, then it suffices to take on the left-hand side of the inequality
1

the integration over the ball B(Ar2).
Moreover, there existsa A = A(N', n, s) such that ifa > 0and 0 < B := f(l - %) <1

/ / Md xdy = OF*) asr - 0,
B(Arf) J B(ArB) Ix_yl

then

/ /lu(x) u(y)| dxdy = 0@*)asr — 0.
BOJE | — |t

In particular, when t < 2s, then it suffices to take § = %(1 - %).

a ‘0 "0SLL69YT
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Proof. We begin with the decomposition

u(x) —u()|* lu(x) — u(y)l
— = dxd ————dxd
/B(r) T x— y|”+? Y= /B(r) /B(Ar) Y

|x —y"*
(A1)
o [ “(yn)l' dxdy.
B(r) JE\B(A)  |x — |t
We begin with the estimate of the second term. We have
|u(x) —u@)s u(y)l Cpnt
/ / axdy 3 ul " 217" dz
B(r) JI\B(AY)  |x — p|"* |z|>r(A=1)
_nt (A.2)
~ ||u”L°°(Z) n(r(A_ 1)) s
ot n p.Li

Thus, taking A = AriVin (A.2), we get

lu(x) — u( )I _nt AN
[ EOZEE qeay s o (1
B(r) J Z\B(Ar)

Ix —y|"™*

Sl g " 0,

where the estimate does not depend on ¢.
As for the first term of (A.1), with this choice of A, we observe that B(Ar) = B(Art) and since
r < 1and s < t, we also have

B(r) C B(Ari)

and thus,

[ e lux) — ul© we [ [ o )~ e
B(r) JB(Ar) |X yl B(/lrt) B(Art) |X yl 2

This finishes the proof of the first part of the lemma.
Similarly to get the second part, we set A = Ari "7 m% in (A.2) and obtain

1) —uI u(y)| m A3
/ / dxdy 3 ”””Lw(m s

}'l

YRRV ELES
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80 | MAZOWIECKA and SCHIKORRA

N a
Now, it suffices to estimate the first term of (A.1). With this choice of A, we have Ar = Art—w)
and we observe that for @ > 0, we have § := f(l - %) < 1, thus since 0 < r < 1, we have

B(r) c B(ArP),

which gives by assumptions
/ / ()~ u)® / / ) =4O 4~ oy asr o
B(r) JB(Ar) |x — yl B(ArB) J B(ArB) |x — yl 0
Similarly, we also have the following smallness condition.

LemmaA.2. Letu € WS’?(Z, N), s €(0,1), and t > s, then thereexistsa 1 = A(N', n,s) > 1 such
thatifforac > 0and 9 := g + % > 1, we have

/ / Iu(x) u(y)l dxdy =0@°)asr - 0
S\B(A-1rf) JE\B(A~1rf) |x — y|

then

/ —lu(x) Ul dxdy = 0O@°)asr — 0.
Z\B(r) [x — ,V|n+_

In particular, if t < 2s, it suffices to take 6 = 2 + %

Proof. We begin with the decomposition

lu(x) — u@)|s lu(x) — u()’)l
dxd ———dxd
-/Z\B(r) / ”H’_ Y= </2\B(r) /B(A—lr) Y

lx =yl x —yI"*
(A3)
P s ) = uI*
S\B() JE\BAT) |y — |t

We begin with the estimate of the first term. We have

) — uy)l ] e
[ ] —ydxdy<||u||Lw@)<A o 2% dz
S\B() JBAIY)  (x — pt* lzl>r(1-A"1)

_n
<l g (A7) (1 = A7)

n nt

nt —_—=
= lll ey ™ AT (1= A7)
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t
Thus taking A = ﬂ.rl_E_%, we have

t, o -
[u(x) —u)Ils u@)|s rita ) °
/ / dxdy<||u||Loo(Z) "rol 1- 7
S\B() JB(A1r) |x — y|"+—

n.,o
Sl g, 7

where the estimate does not depend on ¢.

t o
As for the first term of (A.3), for this choice of A, we have A~!r = A~ 1rs"# and since t > s, we
have 0 := § + % > 1, thus for sufficiently small ,

B(A™'r) ¢ B(r), thusZ\B(r) c Z\B(A7'r).
This implies

/ / [ux) —uIs u(y)l / / [u(x) —u)Is u(y)l dx dy
DB SENBAT) | — )™t S\BA) SEBAT)  |x — |

=0O@?), asr = 0. U

APPENDIX B: A SOBOLEV-TYPE ESTIMATE FOR GAGLIARDO-TYPE SPACES

Here we record the Sobolev estimates we are using throughout the paper. All of them essen-
tially follow the theory of Triebel-Lizorkin and Besov spaces, cf. [45, 95, 119] and their Sobolev
embedding theory.

Theorem B.1. Assume thats € (0,1),t € (s,1), and p, p* € (1, c0) with

S — i =t — E
p* p
Then
(1) If f € WhP(R™)
[f]WS,p* . 5 [f]WI,p(Rn) (B.l)
and
PO =JOL 4 %MF<m (B2)
RN e |x —y|ntsp y ~ WtD(R1)-: .
Moreover,
”(_A)%f”Lp*(Rn) 3 [f]Wt,p(Rn). (B.3)

(2) If f € WhP(B) for some ball B C R", we have (with a constant independent of the specific
ball)

L lwse ) 3 [flwencs)s (B.4)
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and

P*

lf () = fO)IP v
/B <.[3 W dy> S [ flwera): (B.5)

Proof. The statements are consequences of the theory of Besov spaces B; q and Triebel-Lizorkin

|-

spaces FS

The flI‘St estimate (B.1) follows from Sobolev embedding for Triebel-Lizorkin spaces
F[t)’ p(lR") < F; *,p*(IR"), see [54] or [119, Theorem 2.71]. We then have by the characterization of
WP in terms of Triebel-Lizorkin spaces F;)p, see [95, §2.6, Proposition 3, p.95] and [95, §2.1.2,
Proposition, p.14],

[f]Ws,p*(Rn) ~ ”f”FA (Rn) ~ “f”Ft PR [f]Wl’P([R{”)-

For the second estimate (B.2), we first recall the following well-known integral inequality (which
follows from Riesz duality and Fubini’s theorem) for any r > 1

</R </R G h)'dh>rdx>% < /R . ( /R ) |G(X,h)|rdx>%dh.

Applying this to G(x, h) := = V- JCHDIZ apng p = %* > 1, we have

|h|l’l+$p

@-soNr  \F

/|R;n </IR;" |x _y|n+sp dy> dx

= |f() = f(x + h)|P £

- </R” <</Rn |h|ntsp dh) dx
P 7

<(/ |h|w</ 1£G0) = fGx+ B dx) d,,)

~ ”f”B;*,p(R")‘

=)

1
F

1

In the last step, we used the integral identification of the Besov space B; . pr S€€ again [95, §2.6,
Proposition 3, p.95] and [95, §2.1.2, Proposition, p.14].
By Sobolev embedding for Besov spaces, [54], we have B;,p(R”) S B; *’p([R{"), and moreover,
’ (R") = FIS), p(IR”), see [95, §2.1, Remark 6., p.10]. Again by the characterization of WP in terms
of Triebel-Lizorkin spaces F;, o See [95, §2.6, Proposition 3, p.95] and [95, §2.1.2, Proposition, p.14],
we arrive at

p*

FE— o .\
/[R{” (/[R{” W dy> dx 3 “f”F;,p(R") ~ [f]Wl,p(Rn).

This establishes (B.2).
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As for (B.3), by [95, §2.6, Proposition 3, p.95] and [95, §2.1.2, Proposition, p.14], we have
183 Ul gy & Wl oy

Sobolev embedding for Triebel-Lizorkin spaces also implies F; 2(IR{") < F; P*(R”) since t > s,
see [54], so we have

N80 F oy % Wl oy 3 Wl oy = Doy

As for (B.4) and (B.5), by rescaling, we may assume without loss of generality that B = B(0, 1).
Let f € WHP(B(0,1)). We may assume that (f )B(0,1) = 0 otherwise we consider f — (f)p( 1)
instead. B(0, 1) is an extension domain, so there exists f € W%P(R"), and

[f]WtP(R") ”f“LP(B(o 1)) + [f]WIP(B(o 1) ~ [f]WtP(B(o 1))*

In the last step, we used Poincaré lemma. Applying (B.1) to f, we obtain (B.4), and applying (B.2)
to f, we obtain (B.5). O

APPENDIX C: A LUCKHAUS-TYPE LEMMA

The Luckhaus’ lemma [73, Lemma 1] or [110, Section 2.6, Lemma 1] provides a way to glue together
two maps in different regions with a precise estimate on the Sobolev norms. This is an important
tool in the theory of harmonic maps — in particular in the supercritical space. In [10], there is a
one-dimensional fractional version of this lemma. We extend this here to any dimension, which
might be a useful result in its own right. Observe that the estimate is somewhat suboptimal for
WP-spaces with sp < n — 1 (where Luckhaus’ original lemma develops its full force). We also
make no effort to obtain an optimal estimate with respect to § as § — 0, since this is not what we
need. So, one might argue that the following is only reminiscent of the Luckhaus’ lemma.
Lemma C.1. Letn>1s5s€(0,1), pe(l,:), r>0, u,v: R" > RM such that u, U|aB(r) are
continuous and’

p p
/ / [u(®) — u(+y)| d6+/ / [u(®) — u(fv)l 40dw < oo
oB(r) Jrn |0 — y|msP 3B(r) JaB(r) |6 — w|t—1tsp

p
/ / [v(€) —v(IP dy dé < oo
aB(r) Jmn 16—yl

aswell as

Forany § € (0, i), we set

u(x) x| >r
w(x) =@ =7(xD)u®) +n(lxPu®) 6 =ri7, x| € (@ —)r,r)
v(x/(1—8)) x| < —8)r,

i - [u@®)—u(@)|? :
"Forn = 1, the term [;5 [3p09 M% df dw is not needed.
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wheren : R, — [0,1] is smooth with n(t) =0 fort > (1 — g)r andn=1on[0,(1— %5)}’], 7’| <
100

or
Then
* ForanyR > r, where K := u(B(R)) U v(B(R)),

sup dist(w(x),K) < sup |u(8)—v(9)|. (Cy
x€B(R) 6€dB(r)

* We have for o := max{p — 1,sp}

[wI},, P(B(2r))

p p
< [ulyspamer) t P lwseme)

P _ p
+5spr< / / (@) —uIP 4 4o / / 0(6) — v(Y)| dyd6>
55 Jree) 16 —YIMHP 38t JB(ry 168 — ISP

[u(®) — u(w)|? onsp
+5r/83(r) / s5(r) 16 — w|n=1+sp d0de + 57 = u”L""(@B(r))
(C.2)

Proof. Estimate (C.1) is almost obvious, indeed, for |x| > r or |x| < (1 — §)r, we have w(x) = u(x)
or w(x) = v(x/(1 — 6)) so dist (w(x),K) = 0 unless |x| € (1 —d)r,r).
If |x| € (1 — &)r,r), then

dist (w(x), K) < [w(x) — uCrx/[x] < lu@rx/|x|) — v(rx/lx])] < 98;115 )Iu(e)— v(®)I.
S r

This establishes (C.1).

We now provide the estimate (C.2). We assume from now on n > 2, and refer to the (very
similar) case n = 1 to [10].

‘We have

<[ul? + 1+ 11+ 2I11+2IV +2V,

p
[w]WSxP(B(Zr)) WsP(B2r)\B(r)

where
= [U(/(l 5))]Wsp(3((1 8)r))

Il = / / lwx) —wIP
BO\B(1=8)r) JBIO\B(—8)r)  |X — y|"*5P

_ p
IIT _/ / |w(x) L:l)g)l dxdy
BQH\B() JB(1=8)r) X —y|"*P
p
. / / lw(x) ~ L:SN dx dy
BQI\B() JBON\B(1=8)r) 1% — Y|P

p
/ / lw(x) — ng)l dx dy.
B((1=6)r) JBG\B((1=6)r)  |X — y|"*5P

dxdy
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First, we observe

_ _ S\n—=spr,,1P
I = (1 5) [ ]WSP(B(I‘)) ~ [U]WSP(B(V))

Next for II we observe that for x, y € B(r) \ B((1 — §)r), we have
w(x) — w(y)
=@ =n(xDulrx/lx]) + n(IxPDolrx/|x]) = (@ = nyDulry/1yD) + n(yDory/1yD)

= (1 = n(xD)u@rx/|x]) —ulry/lyD) + n(|xDrx/|x]) = v@ry/|y])
+ (UxD) = n(yNy/1y]) —ulry/IyD).

Thus,

— p
115/ / lu(rx/|x|) u(+ry/lyl)l dx dy
B(\B((1-8)r) J Br)\B((1-8)r) |x — y|"tsp

v(rx/|x|) — v(r p
+/ / lu(rx/|xl|) n(+sy/|y|)| dx dy ©3)
B\B((1=8)r) J BU)\B(1=8)r) |x — y|"tsp

+ ”U_u”P / / |77(|x|)_77(|y|)|p
L=OBO) Jpena-oyr) JBeNB=8)) 1 = YI"FP

dxdy.

Firstly, we deal with the last term of (C.3) and observe

— p
/ / [n(]x]) 77n(+lfl)l dx dy
B(r)\B((1-8)r) J B(r)\B((1-6)r) |x - )’| p

_ 1
S(@6r)? / / —— dxdy
BO\B(1—8)r) J BONB(—8)r) |X — y[n+G=Dp (C4

3 (8r)Pr="VPIB(r) \ B((1 - 8)r)|

< 8Py,

Next, we estimate the first term of (C.3). We have with the help of Lemma C.2

[u(rx/x]) — uCry/lyDIP
n+s dxdy
B(r)\B((1-=6)r) J B(r)\B((1-3)r) |x — y|r+sp

= |u(ré) — u(rw)|? / "“1dp, dp, dwdd
/sn—l /gn 1 -6y Ja-syr 1,16 — /-'>2f0|"+5ppl 0 ey dps

(C.5)
p
51"/ / |u(re) M(VCO)l n—l dw rn—l do
sn-1Js

n-1 |r@ — rw|"= 16 — roo|=1+sp

p
sr / / 1u®) —u@I? 4 e,
3B(r) JaB(r) 16 — |~ 16 — w|r-1+sp

A

Q
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Moreover, for the second term of (C.3), we observe that if x,y € B(r) \ B((1 — 6)r), then for

zZ, = x;ry we have |z, ), — x| & |x — Y| & |z, — y], 50

x’y
v(rx/|x|) — v(r p
/ / Jotrx/IxD) = oy /DI 4 o,
B(r)\B((1-8)r) J B(r)\B((1-9)r) |x_y| p

lo(rx/]x]) — v(zy )IP
32 / / ——2dxdy
B(n\B((1-0)r) J B()\B((1-5)r) |x = y|r*sp
v(rx/|x|) —uv(z p
z/ / /D Y o
B(M\B((1-8)r) J BI)\B((1-8)r) |x =z, |"+sP

v(rx/|x|) — v(2)|P
</ [ el ovn
BI-O\B((1-8)r) J B(r) |x — z|"+sp

p
< or / / () = v@I 444,
3B(") JB() |6 —z|rp

In the second to last step, we used the transformation y - z
Plugging (C.4), (C.5), and (C.6) into (C.3), we have shown

p
II56r/ |u(@) — u(iO)I dewdo
3B(r) JaB(r) |6 — w|t—1tsp

(2] P
+ 5r/ / 10O = YD g4, 4 g1-prnsey — P,
a8(r) JB(r) 10 — 2|"*P (0B(®)

X,y

Next, we estimate II1. For any 6 € dB(r), we have

I = / / [o(x/(1 = 8)) — u(y)|” dxdy
B2r\B(r) J B(1-6)r) |x — y|ntsp

< / / oG/ =) —v @ ”
~ Jeemae) Je-s)r |x — y|n+sp

0) — p ) — v(@)|P
O A== P S G T .
Be\B(r) JB(—0)) X = Y|P BB JB(—s)y) |x = Y|P

5@ [ o - v@) ax
B(r)

+ (6r)~P / |u(@) — u(y)|p dy + r"(8r)~*P|u(6) — v(6)|p.
(2r)\B(r)

Multiplying this inequality by [0B(r)|~! ~ r'~" and integrating in 6 on dB(r), we find

v(x) — v©)|P u u(®)|?
IIT < 5-°Pr / / [oG) — v©OF dd6+/ / [ —u® 4 4
0B JB(r) 1x —O|"+sP 8B(r) JBC2r) /B |y — O|"HSP

+ 8PP P = UlI7 g -
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Now we estimate IV

— _ p
IV:/ / | = nlxDulrx/1xD) + n(xPolrx/1x1) —u)|”
BEr\B(r) J BI)\B(1-5)r)

=y

p
urx/{x|)—u
5/ / lu(rx/| |)n+s(y)| dxdy
BQr\B(r) JBOI\B(1-8)r) |x — y|tsp

+/ / |17(IXI)IPIu(VX/IxI)—v(VX/IXI)I”d q
BQr\B(r) J B(\B(1-8)r) |x — y|ntsp

Observe that for y € B(2r) \ B(r) and x € B(r) \ B((1 — 8)r), we have |x — y| = |rx/|x| —

[uGrx/1x]) — u)|?
— y|n+sp dx dy
BQI\B() J BIO\B(1=8)r) [x =yl
u(®) — u()|?
o o B 0
1-8)r JB\B() JoBr) 16 —y["SP A r

Nar/ / [u® —u®)|” u(y)|” 46 dy.
BB JoB(r) 16 — y["TEP

Also, we know that for y € B(2r) \ B(r), we have 7(]y|) = 0, and thus, we estimate

/ / In(lxDIP|uCrx/|x]) = v(rx/|x]|” dd
B2r)\B(r) J BI\B((1—8)r) |x — y|tsp

:/ / In(lx]) = n(lyDIP Ju(rx/1x]) — v(rx/|xD|? ded
BEA\B(r) J BIO\B(A-5)r) |x — y[+sp

< Jlu = v||? In(xD) —n(yDI?
~ L*®(38B(r)) |x — |n+sp
B@r\B(r) J B(r)\B((1-8)r) y

S 8IS Py — v

dxdy

I? :
L= @B()

In the last step, we argued similar to (C.4).
So, we have shown

u(8) — u()|?
IV<5r/ / 9 ~ n(+y)| dody + 8" PriPllu—vl|f, . .
B \B() JaBr) 16 — y|"HsP (6B(r)

With essentially the same argument, we get the estimate of V'

v(6) — v(P|P
V<5r/ / [°®) (+y)| dedy + 8" Pr T Pllu = vllT g
B Jopery 10 — y|tsP (6B(r)

Combining the estimates on I, IT, III, IV, and V, we obtain inequality (C.2). This concludes the
proof of Lemma C.1. O
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88 | MAZOWIECKA and SCHIKORRA

Above we used the following.

Lemma C.2. Forany a > 1, there exists a constant C(a) such that forany R > 0, A € (0, 1) and any
0,we S

R /R
/ / 178 — pow|™* drdp < C(a)(1 — A" R|RO — Rw|'~“.
iR JaR

Proof. Observe that

R R 1,1
/ / [r6 — po| = drdp = Rz_“/ / [r — po|~* drdp,
iR JIR 1 Ja

so it suffices to prove the claim for R = 1, which we will assume from now on.
Furthermore, we observe

178 — pw|? = r* + p? — 2rp(6, w)

=1’ 4+ 0% —2rp +2rp(1 — (6, w))

=@ —p)P+rpl6—w
Now observe that forr,p > 4,
[r6 — paw| Z max{|r — pl, 416 — wl},
and thus for any a > 0,
r6 — peo| ™ 3 min{|r — p| ™%, 17|06 — w| '},

Then we split

1,1
/ / [r — pw|~* drdp
1 Ja

1 1 1 1
=A /A ?({lr—p|</1|e—m|}|r6—;Ocal‘cfclrd,o+//1 //1 X{Ir—p|>/1|e—w|}|V9—pwl_“drdp

1 1 1 1
5/1_0(/4 //1 )({|r—p|</1|e—w|}|9—C¢)|_°‘<flrd,0+//1 //1 Xilr—pi> 16—y (r = p)~* dr dp.

Observe that

1 1
/1_0‘//1 //1 Xir—pl<ijo-w||6 — | ™" drdp

1
</1_0‘|9—CU|_°‘/A Lip : Ir—pl <216 -wlh

=2(1 - )A%6 — w|'7e.
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Moreover, since o > 1,

1 1
/ / X|r—p|>l|9—cu|(r_/-7)_a drdp
A A
/ / (r—p)“drdp
[r—p|>216—w|

:A 1_0611 ale a)ll Otdp

_a-ae
C (Q-a

‘We now conclude. O

16 — |4,

Remark C.3. While the formulation of Lemma C.1 suffices for our purposes, let us remark that in
the assumptions and in the inequality (C.2), the term

r/ [u(6) —u(a)|? 46 do
0B(r) Ja

B(r) 16— o|n=1Hsp

p
/ / [u(0) — u(+y)| dy do.
9B Jrm\B(r) |6 — y|"+sP

Indeed, the only modification that has to be made is in the estimate of (C.5). This can be done
in the following way:

—_ p
/ / lu(rx/|x|) ugry/lyl)l dxdy
B(N\B((1-8)r) J BI)\B(1-8)r) |x — y|ntsp

</ / o /i) —uy/iypie
~ Jrens-8)) IBenB-or) " ¥V Tw" |x — y|n+sp

T / / u(rx/|x]) — (@) P dx dy.
B(r)\B((1-6)r) J B(r)\B((1-8)r)

For the second term, we have

pon=sp / / JuGrx/|x]) = () 40 |? dx dy
B(r)\B((1-8)r) J B(r)\B((1-9)r)

< r"P[B(r) \ B((1 — &)r)| / lu(rx/|x|) — (H)A(y)|p dx
B(r\B((1-8)r)

r
~ §rSP / / 1U(8) — ()40 P d6
(1-6r) JAB(r)

<52 1- spr—n/ / |u(®) — u(z)|P| —Z|n+8pd9dz
oB(r) JBr\B(r) 16 —Z|"FP

P
< &% / / 1u©) ~ U@ 4o 4o,
4B(r) JB@r\B(r) 10 — z|"1HsP

can be replaced by

dxdy
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90 | MAZOWIECKA and SCHIKORRA

For the first term, we observe

/ / ¥ ) lu(rx/|x]) —uCry/|lyDI?
BNB(-8)r) JBeN\B(-0y) X< |x — y|mes

|u(rx/|x|) - u(zx,y)lp

5/ / X{|X—Y|<Lr} |x — y|n+sp
B(r)\B((1-8)r) J B(r)\B((1-6)r) 100 y

_ p
5/ / [u(rx/1x|) — u(z)| doe dz
BO\B((1-8)r) JB@r\B(r)  |rX/]x| — z|"*5P

p
<or / / [w®) — WD 42 ap,
3B(r) JB\B() Cle—z|rre

where we have chosen an intermediate point z, , with the following properties: z, , € B(2r) \
B(r), [rx/1x| = zy )| & [ry/Iy] = 2oy | % |Xx = I, Z,, = rx/|x], and z,, = ry/|y|. This can be

dxdy

xdy

done by using a diffeomorphism 7: Cn{|x —y| < ﬁr} — K that transforms a cone C centered
at the origin that contains the ball {|x — y| < ﬁr} intersected with the annulus B(2r) \ B(r), into
a convex set K. Then we can take as the intermediate point z, , the preimage 7! of the convex
combination of the image (under the diffeomorphism 7) of the points rx/|x| and ry/|y|. This is
quite technical, so for convenience of the authors, we leave the details to the reader.
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