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Abstract. Let N ¢ RM be a smooth simply connected compact manifold without
boundary. A rational homotopy subgroup of πN (N ) is represented by a homomorphism

deg : πN (N ) → R.

For maps f : SN → N we give a quantitative estimate of its rational homotopy group
element deg([f ]) ∈ R in terms of its fractional Sobolev-norm. That is, we show that for
all β ∈ (β0(deg), 1],

|deg([f ])| f C(deg) [f ]
N+L(deg)

β

W
β,N

β (SN )
.

Here C(deg) > 0, L(deg) ∈ N, β0(deg) ∈ (0, 1) are computable from the rational homotopy
group represented by deg. This extends earlier work by Van Schaftingen and the second
author on the Hopf degree to the Novikov’s integral representation for rational homotopy
groups as developed by Sullivan, Novikov, Hardt and Rivière.
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1. Introduction

Let N ¢ RM be a smooth, simply connected compact manifold without boundary and
N ∈ N. We denote ÃN(N ) the N -th homotopy group of N .

1
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In [6], Gromov discussed the notion of quantitative homotopy theory, which very roughly
could be described like this: given a continuous map φ : SN → N can we find a formula
which estimates the element in ÃN(N ) it represents by using only analytic estimates of the
map φ?

But even for a simple manifold Sn, its homotopy groups are nontrivial and very difficult to
predict in higher degree. In this generality this question is very difficult, so we are going to
restrict our attention here to rational homotopy groups and estimates in fractional Sobolev
spaces.

A rational homotopy group of N is ÃN(N )¹Q. There is a natural isomorphism between
ÃN(N )¹Q and Hom(ÃN(N ),Q), so in what follows we will identify any element in ÃN(N )¹
Q with the map deg : ÃN(N ) → Q. In practice, we are going to identify any such map deg
with its induced map acting on the continuous maps SN → N ,

deg : C0(SN ,N ) → R, deg(φ) := deg ([φ]) ,

where [φ] ∈ ÃN(N ) is the class of maps homotopic to φ. We stress that in particular
deg(φ) = 0 for any map φ ∈ C0(SN ,N ) which is constant or homotopic to a constant. See
Sullivan [24].

One profound result is by Serre [22] : The only nontrivial rational homotopy groups of SN

are ÃN(S
N)¹Q or Ã4N−1(S

2N)¹Q. And these correspond to the classical degree between
spheres

degSN : ÃN(S
N) → Z,

and the Hopf degree [11], see also [1, §18],

degH : Ã4N−1(S
2N) → Z.

Let us remark that the name “Hopf degree” is not universally agreed upon, and it is
often referred to as “Hopf invariant”. Emphasizing the analytical similarities degree of a
map wrapping around the target, we will continue to refer to this quantitiy as “degree”,
following [10].

For ´ ∈ (0, 1) and p ∈ [1,∞) the fractional Sobolev space W ´,p(SN ,RM) consists of all
φ ∈ Lp(SN ,RM) such that

[φ]Wβ,p(SN ) :=

(∫

SN

∫

SN

|φ(x)− φ(y)|p

|x− y|N+´p
dx dy

) 1
p

<∞.

While we will focus on estimates in fractional Sobolev spaces, notice that any ³-Hölder
continuous map φ ∈ C³(SN ,N ) belongs to W ´,p for any ´ ∈ (0, ³) and p ∈ [1,∞), so our
considerations include the Hölder-continuous case.

A natural question related quantitative homotopy theory is: Given a rational homotopy
group deg : ÃN(N ) → R, can we prove

(1.1) deg(φ) f [φ]q
Wβ,p(SN )
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for some q ∈ [0,∞)? The answer is no if p < N
´

and deg is nontrivial. Indeed, for any

p < N
´
by scaling arguments one can construct a map φ with small norm [φ]Wβ,p(SN ) but

with deg(φ) ̸= 0. Consequently, we focus on the borderline case p = N
´
. This is the

case where any map φ ∈ W
´,N

β (SN ,RM) belongs to BMO (even VMO), cf (3.1), and
qualitatively BMO controls homotopy, as was obtained in the celebrated works [21, 4, 5],
see also Lemma 3.1.

The question at hand is motivated by a question posed by Van Schaftingen in [25]. He
showed that the number of homotopy classes to which a map φ : SN → N can belong can
be estimated by its W ´,N/´(SN)-seminorm for any given ´ > 0, however without obtaining
a power estimate for some finite q as in (1.1), rather he obtained an double exponential-type
estimate. As a particular example, he mentioned the question if it was possible to extend
the seminal work by Bourgain-Brezis-Mironescu, [2], to the Hopf degree. Bourgain-Brezis-
Mironescu’s work shows that in the case of ÃN(S

N) an estimate of the form (1.1) is true
for any ´ ∈ (0, 1] and p = N

´
, and they obtained a sharp exponent q. It is unknown if the

same is true for the Hopf degree – however, in [20] Van Schaftingen and the second author
were able to obtain an estimate for the Hopf degree as in (1.1) for any ´ g ´0 and p = N

´

with sharp exponent q, where ´0 is a computable threshold (which for large N is close to
1). Let us mention that in the realm of Lipschitz and Hölder continuous maps, estimates
for Lipschitz maps imply corresponding estimates for Hölder maps by approximation, cf.
Lemma A.1. This is quite different in the category of Sobolev maps.

In this work, we extend the arguments of [20] from the Hopf degree to general rational
homotopy groups deg : ÃN(N ) → R. The following is our main result.

Theorem 1.1. Let deg : ÃN(N ) → R represent a rational homotopy group. Then there
exist two numbers L = L(deg) ∈ {0, 1, . . . , N − 2} and ´0 > 0 and a constant C = C(deg)
such that the following holds for any ´ > ´0:

Let f ∈ Lip (SN ,N ) then

(1.2) |deg([f ])| f C [f ]
N+L

β

W
β,N

β (SN )
.

L is the number obtained from the corresponding tree-graph of deg, cf. Proposition 3.2;
but let us mention that L = 0 in the case of usual degree SN → SN and L = 1 in the case
of the Hopf degree S4N−1 → S2N .

As previously discussed, Theorem 1.1 extends the estimates for the Hopf degree in [20] –
it was shown there that the exponent N+L

´
is sharp in that case. See also Section 4. What

is unclear, however, is whether the lower bound ´0 is sharp – and there are substantial
indications it is not: for the degree degSN : ÃN(S

N) → Z, the already mentioned seminal
work by Bourgain-Brezis-Mironescu [2] shows that ´0 can be taken zero in that case.
Slightly extending the question from [25, 20] we could then ask
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Figure 1. An example of tree-graph T
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Figure 2. An example of signed sum of tree-graphs T1 − T2 + T3

Question 1.2. Can we choose ´0 = 0 in Theorem 1.1?

One of the main ingredients for the proof of Theorem 1.1 is an integral representation
formula due to Hardt and Rivière [10], which we will describe in Proposition 3.2, combined
with Harmonic Analysis estimates that we describe in the proposition below.

1.1. Tree-graphs. A tree-graph T is a connected, simply connected and oriented planar
graph. T is oriented in the sense that, all edges have direction and at each vertex A, except
one, there is only one segment leaving. The vertex without leaving segment is at the top
of the graph T where all attached segments are arriving. For each vertex A of T we can
form a sub tree-graph TA such that its top vertex is A and its other vertices and segments
are those of T that can arrive A. And at each vertex A of T we assign a closed form
ÉA ∈ Lip (

∧∗ N ).

Given a degree deg : ÃN(N ) → R and f : SN → N , we assign a signed sum of tree-graphs
T =

∑

(−1)niTi, where Ti are tree graphs. Here ni is an integer determined by the degree.
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Then

(1.3) deg([f ]) =

∫

SN
f ∗(T )

where the tree form f ∗(T ) is obtained inductively as follows. First, if T is a single vertex

A, then f ∗(T ) = f ∗ÉA. For a smooth ℓ-form ¸ ∈ Lip (
∧ℓ

SN), ℓ ∈ {1, . . . , N − 1} we set

d−1¸ = d∗∆−1¸

where ∆ denotes the Laplace-DeRham operator for ℓ-forms (which is invertible since the
ℓ-th and (N−ℓ)-th De Rham cohomology group of SN is trivial) and d∗ is the co-differential.

Then f ∗(T ) is defined by

f ∗(T ) =
∑

(−1)nif ∗(Ti),

f ∗(Ti) = f ∗ÉAi
'
∧

j

d−1f ∗(Tij)

where Ai is the top vertex of Ti, Aij are vertices directly arriving Ai and Tij are sub
tree-graphs of Ti having Aij as the top vertices, and f ∗(Tij) are defined inductively.

For example, in the Figure 1, denoting Ti as the sub tree-graph with top vertex Ai,

f ∗(T ) = f ∗(ÉA0) ' d
−1f ∗(T1)

f ∗(T1) = f ∗(ÉA1) ' d
−1f ∗(T2) ' d

−1f ∗(ÉA3) ' d
−1f ∗(T4)

f ∗(T2) = f ∗(ÉA2) ' d
−1f ∗(ÉA5) ' d

−1f ∗(ÉA6)

f ∗(T4) = f ∗(ÉA4) ' d
−1f ∗(ÉA7) ' d

−1f ∗(ÉA8).

Note that the order of wedge product is left-to-right according to the tree-graph.

Proposition 1.3. Assume that T is a tree-graph as above, e.g. in Figure 1, with L vertical
arrows. Also assume on each vertex of T , the assigned form is at most Mmax form. Then
there exists a ´0 > 0 such that for any ´ > ´0 the following estimate holds.

For a constant C = C(´, T ), we have for any f ∈ Lip (SN ,RM),
∣

∣

∣

∣

∫

SN
f ∗(T )

∣

∣

∣

∣

f C

(

[f ]
N+L

β

W
β,N

β (SN )
+ 1

)

.

Let us remark on one possible application that will be the subject of future research.
As in [9], see also [19, 25, 7], one can use the integral formulas for degree, Hopf degree,
or more generally rational homotopy groups to define a “homotopy invariant” for maps
f : SN → RM with a rank restriction rankDf f K. Since our analysis is based mostly
on harmonic analysis, it applies also to this case – as was discussed in [25, Proposition
4.3.]. In [9] this was used to obtain nontrivial Lipschitz topology results for the Heisenberg
group, in [7] this will be used to do the same for Hölder-topology results. One of the main
motivations of this work is to provide via the framework of rational homotopy group a large
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number of topological invariants which possibly could be applied in Heisenberg groups or
more generally Carnot groups, cf. [8].

The remainder of this paper is structured as follows. In Section 2 we prove the crucial
estimate Proposition 1.3. Using the Hardt–Rivière representation formula for rational
homotopy groups, Proposition 3.2, we discuss in Section 3 how to conclude the proof of
Theorem 1.1 from Proposition 1.3. Lastly, in Section 4 we show in the concrete examples
developed in [10] how our estimates extend theirs.

Acknowledgment. A.S. is funded by Simons foundation, grant no 579261, and NSF
Career DMS-2044898. The authors gratefully acknowledge the numerous suggestions by
the anonymous referee that helped improve the presentation of this work.

2. Harmonic Analysis Estimates: Proof of Proposition 1.3

In order to prove Proposition 1.3 we first extend the result in [20, Proposition 3.2.].

Lemma 2.1. Let ³0 ∈ (0, M0

M0+1
], 1 f M0 < N and f ∈ Lip (RN ,RM) with compact

support. For any smooth M0-form É, ´ > 1− ³0

M0
, and ³ ∈ [³0,M0), we have

∥I³f ∗(É)∥
L

N
M0−α (RN )

f C

(

[f ]
M0
β

W
β,N

β

+ 1

)

where the constant C > 0 depends on ∥f∥L∞, É, ³, ´, and the support of f .

Here for ³ ∈ (0, N) and functions G : RN → R

I³G(x) :=

∫

RN

|x− y|³−NG(y) dy

denotes the Riesz potential. It acts on forms component-wise.

Proof. By Sobolev embedding, for ³ g ³0,

(2.1) ∥I³f ∗(É)∥
L

N
M0−α (RN )

≾ ∥I³0f ∗(É)∥
L

N
M0−α0 (RN )

,

so we may assume ³ = ³0.

First we may assume that É = h̃¹1 ' . . . ' ¹M0 , where ¹i = dpji are closed 1-forms and

h := h̃ ◦ f ∈ Lip (RN).

Take (for now) any µ ∈ (0, ³0], and denote pµ := N
M0−µ

and p0 := N
M0−³0

. Observe pµ ∈

(1, p0] and

Npµ

N + µpµ
=

N

M0

∈ (1,∞).
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By duality, there exists a test-form φ ∈ C∞
c (
∧N−M0 RN) with ∥φ∥

Lp′γ (RN )
≡

∥φ∥
L

N
N−M0+γ (RN )

f 1, such that, using Sobolev embedding in the first inequality,

∥I³0f ∗(É)∥Lp0 (RN ) ≾ ∥Iµf ∗(É)∥Lpγ (RN ) ≾

∫

RN

h̃ ◦ f f ∗(¹1) ' . . . f
∗(¹M0) ' I

µφ

=

∫

RN

h f ∗(¹1) ' . . . f
∗(¹M0) ' È

where we set È := Iµφ. Observe that by Sobolev embedding,

∥È∥
L

N
N−M0 (RN )

= ∥Iµφ∥
L

Np′γ

N−γp′γ (RN )

≾ ∥φ∥
Lp′γ (RN )

f 1.

Denote H, F , Ψ the harmonic extensions to RN+1
+ of h, f , È. We find from Stokes’ theorem

(using that d¹i = 0)

∥Iµf ∗(É)∥Lpγ (RN )

≾

∣

∣

∣

∣

∣

∫

R
N+1
+

d (H F ∗(¹1) ' . . . F
∗(¹M0) 'Ψ)

∣

∣

∣

∣

∣

≾

∣

∣

∣

∣

∣

∫

R
N+1
+

dH ' F ∗(¹1) ' . . . F
∗(¹M0) 'Ψ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

R
N+1
+

H F ∗(¹1) ' . . . F
∗(¹M0) ' dΨ

∣

∣

∣

∣

∣

≾

∫

R
N+1
+

|DH| |DF |M0 |Ψ|+ ∥H∥L∞

∫

R
N+1
+

|DF |M0 |DΨ|.

(2.2)

We estimate the first term on the right-hand side of (2.2).

By the representation formula for harmonic functions

|Ψ(x, t)| ≾ MÈ(x), x ∈ RN , t ∈ R+

where M is the Hardy-Littlewood maximal function.

Moreover, see e.g. [13, Proposition 10.2], since 1− µ
M0

∈ (0, 1),

(

∫

R
N+1
+

(

t
µ− 1

pγ |DF |M0

)pγ

) 1
pγ

≈ [f ]M0

W
1−

γ
M0

,M0pγ
.

From [13, Theorem 10.8], since µ ∈ (0, 1),




∫

RN

(∫

R+

(

t
−µ+ 1

pγ |DH|
) N

N−M0+γ

dt

)

N−M0+γ

γ

dx





γ
N

≈ ∥h∥Ḟ γ
N
γ , N

N−M0+γ

where Ḟ µ
N
γ
, N
N−M0+γ

is the Triebel-Lizorkin space; see also the presentation in [12].
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Then we have (here we use M0 > µ which is true since M0 > ³ g µ)
∫

R
N+1
+

|DH| |DF |M0 |Ψ|

≾[f ]M0

W
1−

γ
M0

,M0pγ

(∫

RN

|MÈ(x)|
N

N−M0+γ

∫

R+

(

t
−µ+ 1

pγ |DH|
) N

N−M0+γ

dt dx

)

N−M0+γ

N

≾[f ]M0

W
1−

γ
M0

,M0pγ
∥È∥

L
N

N−M0 (RN )





∫

RN

(∫

R+

(

t
−µ+ 1

pγ |DH|
) N

N−M0+γ

dt

)

N−M0+γ

γ

dx





γ
N

≾[f ]M0

W
1−

γ
M0

,M0pγ
∥h∥F γ

N
γ , N

N−M0+γ

.

Let now ´ > µ. We use the Gagliardo-Nirenberg estimate for Triebel-Lizorkin spaces [3,
Proposition 5.6] and obtain for any µ̃ < µ < ´, taking ¹ ∈ (0, 1) such that µ = ¹´+(1−¹)µ̃,

∥h∥Ḟ γ
N
γ , N

N−M0+γ

≾∥h∥¹
Ḟβ

N
β

,N
β

∥h∥1−¹

Ḟ γ̃
N
γ̃

,N
γ̃

≈[h]¹
W

β,N
β
[h]1−¹

W
γ̃, N

γ̃

≾[h]¹
W

β,N
β
∥h∥

(1−¹) γ̃
N
(N
γ̃
−N

β
)

L∞ [h]
(1−¹) γ̃

β

W
β,N

β

=[h]
γ
β

W
β,N

β

∥h∥
1− γ

β

L∞ .

If we additionally we assume ´ > 1− µ
M0

, then by (2.1), the above estimates lead to
∫

R
N+1
+

|DH| |DF |M0 |Ψ| ≾[f ]M0

W
1−

γ
M0

,M0pγ
[f ]

γ
β

W
β,N

β

≾[f ]
M0

1−
γ

M0
β

W
β,N

β

[f ]
γ
β

W
β,N

β

=[f ]
M0
β

W
β,N

β

.

Here the constants depend on ∥f∥L∞ . In a similar fashion we estimate the
second term on the right-hand side of (2.2).

By the maximum principle,

∥H∥L∞ ≾ ∥h∥L∞ .

Moreover, for any ´ ∈ (0, 1), again by [13, Proposition 10.2],

(

∫

R
N+1
+

(

tM0−
M0β
N

−M0´|DF |M0

) N
M0β

)M0
β
N

≈ [f ]M0

W
β,N

β

.
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Also, whenever ´ ∈ (0, 1) satisfies (1− ´)M0 < µ,
(

∫

R
N+1
+

(

t1−
N−M0β

N
−M0(1−´)|DΨ|

) N
N−M0β

)

N−M0β
N

≈[È]
W

M0(1−β), N
N−M0β

=[Iµφ]
W

M0(1−β), N
N−M0β

≈[Iµφ]
Ḟ

M0(1−β)
N

N−M0β
, N
N−M0β

=[I−M0(1−´)+µφ]Ḟ 0
N

N−M0β
, N
N−M0β

≾[φ]Ḟ 0
p
γ′

,2
≈ [φ]Lp

γ′

≾1.

With these observations,
∫

R
N+1
+

|DF |M0 |DΨ| =

∫

R
N+1
+

tM0−
M0β
N

−M0´|DF |M0 t1−
N−M0β

N
−M0(1−´)|DΨ|

≾

(

∫

R
N+1
+

(

tM0−
M0β
N

−M0´|DF |M0

) N
M0β

)M0
β
N

·

(

∫

R
N+1
+

(

t1−
N−M0β

N
−M0(1−´)|DΨ|

) N
N−M0β

)

N−M0β
N

≾[f ]M0

W
β,N

β

.

In conclusion, we have shown

∥I³0f ∗(É)∥
L

N
M0−α0 (RN )

≾ [f ]
M0
β

W
β,N

β

+ [f ]M0

W
β,N

β

≾ [f ]
M0
β

W
β,N

β

+ 1.

The above holds whenever the following conditions are met by µ ∈ (0, 1) and ´ ∈ (0, 1):

• 0 < µ f ³0

• (1− ´)M0 < µ

• ´ > µ.

That is

´ > max{
M0 − µ

M0

, µ}.

We can make this argument work whenever

´ > inf
µ∈(0,³0]

max{
M0 − µ

M0

, µ} =

{

M0

M0+1
if ³0 g

M0

M0+1

1− ³0

M0
if ³0 <

M0

M0+1

□
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É0

T1 T2 T3 T4
. . .

TL

Figure 3. Configuration in Lemma 2.2

To extend Lemma 2.1 from an estimate for f ∗(É) to an estimate of f ∗(T ), we observe the
following iterative estimate which essentially follows from the fractional Leibniz rule.

Lemma 2.2. Assume that T is a tree as in Figure 3, where T1, . . . , TL are themselves again
trees, assume that

f ∗(T ) ≡ f ∗(É0) ' d
−1f ∗(T1) ' . . . ' d

−1f ∗(TL)

is an M-form, É0 is an M0-form, f ∗(Tℓ) is an Mℓ form.

Assume ³ ∈ (0, 1], then for any Ã ∈ [0, ³],

∥I³f ∗(T )∥
L

N
M−α (

∧M RN )
≾∥IÃf ∗(É0)∥

L
N

M−σ (
∧M0 RN )

∥I1−Ãf ∗(T1)∥
L

N
M1−(1−σ) (

∧M1 RN )

. . . ∥I1−Ãf ∗(TL)∥
L

N
ML−(1−σ) (

∧ML RN )
.

Proof. By duality, for some φ ∈ C∞
c (
∧M−N

RN), ∥φ∥
L

N
N+α−M (

∧M−N RN )
f 1,

∥I³f ∗(T )∥
L

N
M−α (

∧M RN )
≾

∫

RN

f ∗(T ) ' I³φ

=

∫

RN

f ∗(É0) ' d
−1f ∗(T1) ' . . .'d

−1f ∗(TL) ' I
³φ

=

∫

RN

IÃf ∗(É0) ' (−∆)
σ
2

(

d−1f ∗(T1) ' . . .'d
−1f ∗(TL) ' I

³φ
)

.

Observe that

M =M0 +
L
∑

k=1

(Mk − 1).
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Then, using the fractional Leibniz rule, see e.g. [13], we find

∥I³f ∗(T )∥
L

N
M−α

≾∥IÃf ∗(É0)∥
L

N
M0−σ

∥I³φ∥
L

N
N−M

·
(

∥(−∆)
σ
2 d−1f ∗(T1)∥

L
N

M1−(1−σ)
∥d−1f ∗(T2)∥

L
N

M2−1
. . . ∥d−1f ∗(TL)∥

L
N

ML−1

+ ∥d−1f ∗(T1)∥
L

N
M1−1

∥(−∆)
σ
2 d−1f ∗(T2)∥

L
N

M2−(1−σ)
. . . ∥d−1f ∗(TL)∥

L
N

ML−1

+ . . .+ ∥d−1f ∗(T1)∥
L

N
M1−1

∥d−1f ∗(T2)∥
L

N
M2−1

. . . ∥(−∆)
σ
2 d−1f ∗(TL)∥

L
N

ML−(1−σ)

)

+ ∥IÃf ∗(É0)∥
L

N
M0−σ

∥I³−Ãφ∥
L

N
N+σ−M

·
(

∥d−1f ∗(T1)∥
L

N
M1−1

∥d−1f ∗(T2)∥
L

N
M2−1

. . . ∥d−1f ∗(TL)∥
L

N
ML−1

)

.

By Sobolev embedding, and using that we can write d−1 = d∗∆−1 = I1R where R is
a zero-multiplier (a combination of Riesz transforms) and thus bounded on Lq for any
q ∈ (1,∞),

≾∥IÃf ∗(É0)∥
L

N
M0−σ

∥φ∥
L

N
N+α−M

·
(

∥I1−Ãf ∗(T1)∥
L

N
M1−(1−σ)

∥I1−Ãf ∗(T2)∥
L

N
M2−(1−σ)

. . . ∥I1−Ãf ∗(TL)∥
L

N
ML−(1−σ)

)

This proves the claim. □

Now we can obtain a version of Lemma 2.1, only for trees T . Observe that the best choice
of ´0 is computable by combinatorial observations. But here we give an easy choice of ´0.

Lemma 2.3. Let 1 fM < N and f ∈ Lip (RN ,RM) with compact support.

Let T be a tree, such that f ∗(T ) is an M-form and on each vertex of T , the assigned form
is at most Mmax form. Assume ³0 ∈ (0, M

M+1
]. Then for any ³ ∈ [³0,M) there exists

´0 = ´(³, T ) > 0 such that for any ´ ∈ (´0, 1]:

∥I³f ∗(T )∥
L

N
M−α (RN )

f C(T, ³) [f ]
M+L

β

W
β,N

β

+ 1.

Here L is the number of vertical lines in T (or equivalently the number of d−1 in the formula
of f ∗(T )) and C(T, ³) is a constant depending on T and ³.
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Proof. Since by Sobolev embedding, for ³ g ³0,

∥I³f ∗(T )∥
L

N
M−α (RN )

≾ ∥I³0f ∗(T )∥
L

N
M−α0 (RN )

so we may assume that ³ = ³0.

If T consists of exactly one M -form É0, then the claim follows directly from Lemma 2.1.

Case 1

Consider the case when f ∗(T ) = f ∗(É0) ' d−1f ∗(É1) ' . . . ' d−1f ∗(ÉL) where É0 is an
M0 form and Éi is an Mi form. Similar as in Lemma 2.2, for ³0 ∈ (0, M

M+1
] and for any

³1 ∈ [0, ³0],

∥I³0f ∗(T )∥
L

N
M−α0 (RN )

≾∥I³1f ∗(É)∥
L

N
M0−α0

∥I1−³1f ∗(É1)∥
L

N
M1−(1−α1)

. . . ∥I1−³1f ∗(ÉL)∥
L

N
ML−(1−α1)

≾

(

[f ]
M0
β

W
β,N

β

+ 1

) (

[f ]
M1
β

W
β,N

β

+ 1

)

. . .

(

[f ]
ML
β

W
β,N

β

+ 1

)

whenever ´ ∈ (0, 1) is large enough.

Case 2

Next we assume T has the structure as in Figure 3.

Here É0 is anM0-form (M0 < M) and T1, . . . , TL createM1, . . . ,ML-forms via the pullback
f ∗, respectively.

We get from Lemma 2.1 and Lemma 2.2

∥I³0f ∗(T )∥
L

N
M−α0 (RN )

≾∥I³1f ∗(É)∥
L

N
M0−α1

∥I1−³1f ∗(T1)∥
L

N
M1−(1−α1) (

∧M1 RN )
. . . ∥I1−³1f ∗(TL)∥

L
N

ML−(1−α1) (
∧ML RN )

≾

(

[f ]
M0
β

W
β,N

β

+ 1

)

∥I1−³1f ∗(T1)∥
L

N
M1−(1−α1) (

∧M1 RN )
. . . ∥I1−³1f ∗(TL)∥

L
N

ML−(1−α1) (
∧ML RN )

,

whenever ³1 ∈ [0, ³0] and ´ > 1− ³1

M0
.

Suppose for each i,

f ∗(Ti) = f ∗(Éi) ' d
−1f ∗(Éi,1) ' . . . ' d

−1f ∗(Éi,Ki
)

where f ∗(Éi) is an Mi,0 form and f ∗(Éi,j) is an Mi,j form. Then as above,

∥I1−³1f ∗(Ti)∥
L

N
Mi−(1−α1) (

∧Mi RN )

≾∥I³if ∗(É)∥
L

N
Mi,0−αi

∥I1−³if ∗(Éi,1)∥
L

N
Mi,1−(1−αi)

. . . ∥I1−³if ∗(Éi,Ki
)∥

L

N
Mi,Ki

−(1−αi)

≾[f ]
Mi+Ki

β

W
β,N

β

+ 1
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for ³i f 1− ³1 and ´ > 1− ³i

Mi,0
, 1− 1−³i

Mi,j
for all j.

In conclusion, we get

∥I³0f ∗(T )∥
L

N
M−α0 (RN )

≾

(

[f ]
M0
β

W
β,N

β

+ 1

) (

[f ]
M1+K1

β

W
β,N

β

+ 1

)

. . .

(

[f ]
ML+KL

β

W
β,N

β

+ 1

)

≾[f ]
M+L+K1+...+KL

β

W
β,N

β

+ 1

since M = M0 + (M1 − 1) + (M2 − 1) + . . . + (ML − 1). Note that L +K1 + . . . +KL is
the number of vertical arrows in T .

General Case

Arguing by induction over the depth of the tree, denoting by Ki the number of vertical
arrows in Ti we find

∥I³0f ∗(T )∥
L

N
M−α0 (RN )

≾∥I³1f ∗(É)∥
L

N
M0−α1

∥I1−³1f ∗(É1)∥
L

N
M1−(1−α1) (

∧M1 RN )
. . . ∥I1−³1f ∗(ÉK)∥

L
N

MK−(1−α1) (
∧MK RN )

≾

(

[f ]
M0
β

W
β,N

β

+ 1

) (

[f ]
M1+K1

β

W
β,N

β

+ 1

)

. . .

(

[f ]
ML+KL

β

W
β,N

β

+ 1

)

≾[f ]
M+L+K1+...+KL

β

W
β,N

β

+ 1.

□

Combining Lemma 2.1 and Lemma 2.2 and Lemma 2.3, we obtain

Proof of Proposition 1.3. The case where T is a tree of depth 0 can be found in [20]. So
from now on we assume that M < N and T has the structure as in Figure 3 such that
f ∗(T ) is an M form, f ∗(É0) is an M0 form and f ∗(Ti) is an Mi form. Let

p0 =
N

M − ³0

.

By localization we need to find an estimate in RN

∫

RN

f ∗(É0) ' d
−1f ∗(T1) ' . . . ' d

−1f ∗(TL)

=

∫

RN

I³0f ∗(É0) ' |D|³0
(

d−1f ∗(T1) ' . . . ' d
−1f ∗(TL)

)

≾∥I³0f ∗(É0)∥Lp0 (RN ) ∥|D|³0
(

d−1f ∗(T1) ' . . . ' d
−1f ∗(TL)

)

∥
Lp′0 (RN )
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In the second equality we used an integration by parts. As in the proof of Lemma 2.2, by
fractional Leibniz Rule, see e.g. [13], and observe

M1 − (1− ³0)

N
+
M2 − 1

N
+ . . .+

ML − 1

N
=
N −M + ³0

N
=

1

p′0
,

∥|D|³0
(

d−1f ∗(T1) ' . . . ' d
−1f ∗(TL)

)

∥
Lp′0 (RN )

≾∥I1−³0f ∗(T1)∥
L

N
M1−(1−α0) (RN )

· . . . · ∥I1f ∗(TL)∥
L

N
ML−1 (RN )

+ ∥I1f ∗(T1)∥
L

N
M1−1 (RN )

· ∥I1−³0f ∗(T2)∥
L

N
M2−(1−α0) (RN )

· . . . · ∥I1f ∗(TL)∥
L

N
ML−1 (RN )

+ . . .+ ∥I1f ∗(T1)∥
L

N
M1−1 (RN )

· . . . · ∥I1−³0f ∗(TL)∥
L

N
ML−(1−α0) (RN )

.

Above we used again repeatedly the definition d−1f ∗(É) = d∗∆−1f ∗(É). The claim now
readily follows from Lemma 2.1 and Lemma 2.3. □

Let us mention that it seems to us that extending Lemma 2.1 to Triebel-Lizorkin spaces one
can obtain the limit case ´ = ´0 from the above argument. We do not pursue this aspect
further, though. Also, let us remark again that for any specific tree T simple combinatorics
allows to explicitly compute the best ´0 that our method allows. This was done for the
Hopf degree in [20].

3. Proof of Theorem 1.1

Let us begin with recalling a very easy statement: small BMO-norm means a function is
contractible to a point (and thus topologically trivial). Here we recall the definition

[f ]BMO(SN ) := sup
r>0,x∈SN

∫

B(x,r)∩SN
|f − (f)B(x,r)∩SN )|

≈ sup
r>0,x∈SN

∫

B(x,r)∩SN

∫

B(x,r)∩SN
|f(¹)− f(Ã)|dÃd¹.

(3.1)

The following is the the precise statement

Lemma 3.1. Let N be a smooth compact manifold without boundary embedded into RM

and deg : ÃN(N ) → R be a rational homotopy group. Then there exists ε = ε(deg) such
that whenever f ∈ Lip (SN ,N ) satisfies one of the following

• If [f ]BMO < ε, or
• if [f ]

W
β,N

β
< ε for some ´ > 0, or

• if [f ]Cβ < ε for ´ > 0

then deg([f ]) = 0.
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Proof. The proof is standard, but we repeat it for the convenience of the reader.

It is easy to check that the second and third condition imply the small BMO-norm, so we
focus on the first one. Let

F ∈ Lip (BN+1,RM)

be the harmonic extension of f , namely via the Poisson extension

F (x) = c(N)

∫

SN
f(¹)

1− |x|2

|x− ¹|N+1
d¹, |x| < 1.

The BMO-condition shows that F stays close to the manifold N . To see this observe that
for any Ã ∈ SN ,

dist (F (x),N ) f |F (x)− f(Ã)|.

Multiplying this with the Poisson kernel and integrating in Ã we see that

dist (F (x),N ) ≾

∫

SN
|F (x)− f(Ã)|

1− |x|2

|x− Ã|N+1
dÃ

≾

∫

SN

∫

SN
|f(¹)− f(Ã)|

1− |x|2

|x− ¹|N+1

1− |x|2

|x− Ã|N+1
d¹ dÃ.

Set r = 1 − |x|, X := x
|x|
, and set A(X, r, k) := B(X, 2k+1r) \ B(X, 2kr) if k > 0 and

A(X, r, 0) = B(X, r). Then we have

dist (F (x),N ) ≾
∑

k∈N∪{0}

∑

ℓ∈N∪{0}

∫

SN∩A(X,r,k)

∫

SN∩A(X,r,ℓ)

|f(¹)− f(Ã)|
r

(2kr)N+1

r

(2ℓr)N+1
d¹ dÃ

≈
∑

k∈N∪{0}

∑

ℓ∈N∪{0}

2−ℓ2−k

∫

SN∩A(X,r,k)

∫

SN∩A(X,r,ℓ)

|f(¹)− f(Ã)| d¹ dÃ

≾
∑

k∈N∪{0}

∑

ℓ∈N∪{0}

2−ℓ2−k[f ]BMO ≈ [f ]BMO.

That is, we have shown
dist (F (x),N ) ≾ [f ]BMO < ε.

Since N is compact without boundary, there exists a ¶ > 0 and the nearest point projection
from a tubular neighborhood of N into N , ÃN : B¶(N ) → N , see e.g. [23]. So if ε is small
enough we have that F (x) : BN+1 → B¶(N ), and thus G(x) := ÃN ◦ F is well defined and
as smooth as F . Now

H(¹, t) := G(t¹) : SN−1 × [0, 1] → N

is a smooth homotopy. That is f = ÃN ◦ f = H(·, 1) is homotopic to the constant map
G(0) = H(·, 0). So f : SN → N is topologically trivial and thus deg([f ]) = 0. □

From Lemma 3.1 we conclude that when proving Theorem 1.1 we only need to consider

maps φ with relatively large W ´,N
β (SN)-norm, since for small W ´,N

β (SN) norm the rational
homotopy group vanishes. We want to apply Proposition 1.3. The connection to the ratio-
nal homotopy group comes from the following representation formula for simply connected



16 WOONGBAE PARK AND ARMIN SCHIKORRA

smooth manifolds N which are compact and without boundary. It is due to Sullivan [24],
Novikov [14, 15, 16], but in this form it was developed by Hardt and Rivière [10]. We refer
to [10] for the proof. See also [18].

Proposition 3.2. Let deg : ÃN(N ) → R be a rational homotopy group, then

deg([f ]) =
K
∑

k=1

∫

SN
f ∗(Tk)

where Tk is a tree-graph with Lk vertical arrows.

Proof of Theorem 1.1. In view of Lemma 3.1 the claimed estimate (1.2) is trivially satisfied
if [f ]

W
β,N

β
< ε if ε = ε(deg) is chosen small enough. On the other hand, combining

Proposition 3.2 and Proposition 1.3 with L = maxLk we obtain

|deg([f ])| ≾ [f ]
N+L

β

W
β,N

β (SN )
+ 1 ≾ε [f ]

N+L
β

W
β,N

β (SN )

whenever [f ]
N+L

β

W
β,N

β (SN )
g ε. This proves (1.2). □

4. Examples and comparison with previous estimates

Hardt–Rivière provided several examples of the generalized degree maps [10]. We compute
here the corresponding degree estimates from Theorem 1.1. Note that each ´i is easily
computed from Theorem 1.1 which may not be the best constant.

Example 4.1. Let N = CP 2. There are two generalized degree maps, deg³ : Lip (S2,CP 2)
and degµ : Lip (S5,CP 2) given by

deg³(f) =

∫

S2
f ∗É and degµ(f) =

∫

S5
f ∗É2 ' d−1f ∗É

where É is the Kähler form on CP 2. Then the estimate is, for ´1 g
3
4
and ´2 g

7
8
,

|deg³(f)| ≾ [f ]
2
β1

W
β1,

2
β1 (S2)

and
∣

∣degµ(f)
∣

∣ ≾ [f ]
6
β2

W
β2,

5
β2 (S5)

.

Example 4.2. Let N = S2 × S2. There are four generalized degree maps, deg³i
:

Lip (S2, S2 × S2) and degµi : Lip (S
3, S2 × S2) for i = 1, 2 given by

deg³i
(f) =

∫

S2
f ∗Éi and degµi(f) =

∫

S3
f ∗Éi ' d

−1f ∗Éi

where Éi is a pull-back of the generator of H2(S2) under the coordinate projections Ãi :
S2 × S2 → S2. Then the estimate is, for ´1 g

3
4
and ´2 g

3
4
,

∣

∣deg³i
(f)
∣

∣ ≾ [f ]
2
β1

W
β1,

2
β1 (S2)

and
∣

∣degµi(f)
∣

∣ ≾ [f ]
4
β2

W
β2,

3
β2 (S3)

.
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Example 4.3. Let N = (S2×S2)#CP 2. There are many generalized degree maps, but here
we only consider maps from S4. There are five of them, namely, degµi , deg¶k : Lip (S4, (S2×
S2)#CP 2) for i = 1, 2, 3 and k = 1, 2 given by

degµi(f) =

∫

S4
f ∗É1i ' d

−1f ∗É2i ' d
−1f ∗É3i

deg¶k(f) =

∫

S4
f ∗¸ ' d−1f ∗É0k +

3
∑

i=1

∫

S4
f ∗É1k,i ' d

−1f ∗É2k,i ' d
−1f ∗É3k,i

where Éi, i = 1, 2, 3 is a generator of H2(N ) and ¸ is a 3-form on N obtained from Éi.
Then the estimate is, for ´ g 3

4
,

∣

∣degµi(f)
∣

∣ ≾ [f ]
6
β

W
β, 4

β (S4)
and

∣

∣deg¶k(f)
∣

∣ ≾ [f ]
6
β

W
β, 4

β (S4)
.

Example 4.4. In [20] they obtained for maps f : S4n−1 → S2n,

|degH(f)| ≾ [f ]
4n
β

W
β,

4n−1
β (S4n−1)

for ´ g 4n−1
4n

. See also [17] where Rivière proved the case ´ = 1. Note that

degH(f) =

∫

S4n−1

¸ ' d¸ =

∫

S4n−1

f ∗É ' d−1f ∗É

where d¸ = f ∗É, ¸ is a smooth 2n − 1 form on S4n−1, É is the volume form of S2n. So,
our estimate gives the same result because

|degH(f)| ≾ [f ]
N+L

β

W
β,N

β (SN )
= [f ]

4n
β

W
β,

4n−1
β (S4n−1)

for ´ g ´0 = 1− 1
2(2n)

= 4n−1
4n

.

Appendix A. From Lipschitz to Hölder

For maps between manifolds, a Lipschitz estimate on a homotopy invariant readily implies
a Hölder estimate using a mollification argument. We recall this well-known fact here.

Lemma A.1. Let M ¢ RM , N ¢ RN be two smooth compact manifolds without boundary
and assume that there exist a map

deg : C0(M,N ) → R

such that

• deg(f) = deg(g) if f, g ∈ C0(M,N ) are homotopic to each other, and
• there are Λ, q > 0 for which we have

|deg(f)| f Λ[f ]qLip ∀f ∈ Lip (M,N ).
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Then for any ³ ∈ (0, 1) there exists C = C(Λ, q,M,N ) such that

|deg(f)| f C[f ]
q
α

Cα ∀f ∈ C³(M,N ).

Proof. Since N ¢ RN is smooth and compact, there exists some Ã = Ã(N ) > 0 and a
smooth nearest point projection from a tubular neighborhood of N into N ,

ÃN : BÃ(N ) → N .

Combining a partition of unity on M with the usual mollification and the projection ÃN
we find that for any ε > 0 and any f ∈ C³(M,N ) there exists a map fε such that

∥fε − f∥L∞(M) f ε³[f ]Cα .

and with some uniform constant C1(M,N ) > 0

[fε]Lip f C1(M,N ) ε³−1[f ]Cα .

Set for ¶ > 0

ε := ¶[f ]
− 1

α

Cα .

then we have
∥fε − f∥L∞(M) f ¶³.

and

[fε]Lip f C1(M,N ) ¶³−1[f ]
1
α

Cα .

Take ¶ := 1
2
Ã

1
α . Then

F (t, ·) := ÃN ((1− t)fε + tf) : M → N

is well defined for all t ∈ [0, 1], and thus fε and f are homotopic to each other.

We conclude

|deg(f)| = |deg(fε)| f Λ[fε]
q
Lip = ΛC1(M,N )q ¶(³−1)q [f ]

q
α

Cα .

Setting C := ΛC1(M,N )q ¶(³−1)q we can conclude.

□
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