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QUANTITATIVE ESTIMATES FOR FRACTIONAL SOBOLEV
MAPPINGS IN RATIONAL HOMOTOPY GROUPS

WOONGBAE PARK AND ARMIN SCHIKORRA

ABSTRACT. Let NV € RM be a smooth simply connected compact manifold without
boundary. A rational homotopy subgroup of 7y (/N) is represented by a homomorphism

deg : ty(N) = R.

For maps f : S¥ — N we give a quantitative estimate of its rational homotopy group
element deg([f]) € R in terms of its fractional Sobolev-norm. That is, we show that for

all 5 € (Bo(deg), 1],

N+ L(deg)

deg(I/D] < Cleg) [l L5y -

Here C(deg) > 0, L(deg) € N, So(deg) € (0, 1) are computable from the rational homotopy
group represented by deg. This extends earlier work by Van Schaftingen and the second
author on the Hopf degree to the Novikov’s integral representation for rational homotopy
groups as developed by Sullivan, Novikov, Hardt and Riviere.
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Let N C RM be a smooth, simply connected compact manifold without boundary and
N € N. We denote 7x(N) the N-th homotopy group of N.
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In [6], Gromov discussed the notion of quantitative homotopy theory, which very roughly
could be described like this: given a continuous map ¢ : SV — A can we find a formula
which estimates the element in 7y (N) it represents by using only analytic estimates of the
map @7

But even for a simple manifold S”, its homotopy groups are nontrivial and very difficult to
predict in higher degree. In this generality this question is very difficult, so we are going to
restrict our attention here to rational homotopy groups and estimates in fractional Sobolev
spaces.

A rational homotopy group of NV is mx(N) ® Q. There is a natural isomorphism between
7 (N)®Q and Hom(7n (N), Q), so in what follows we will identify any element in 7x (N)®
Q with the map deg : 7x(N) — Q. In practice, we are going to identify any such map deg
with its induced map acting on the continuous maps SV — N,

deg : C°(SV,N) = R, deg(p) :=deg ([¢]),

where [p] € mn(N) is the class of maps homotopic to ¢. We stress that in particular
deg(p) = 0 for any map ¢ € C°(S™, N) which is constant or homotopic to a constant. See
Sullivan [24].

One profound result is by Serre [22] : The only nontrivial rational homotopy groups of S¥
are Ty (SM) ® Q or myn_1(S*Y) ® Q. And these correspond to the classical degree between
spheres
deggN : WN(SN) — 7,
and the Hopf degree [11], see also [1, §18],
degH : 7T4N_1(SQN) — 7.

Let us remark that the name “Hopf degree” is not universally agreed upon, and it is
often referred to as “Hopf invariant”. Emphasizing the analytical similarities degree of a
map wrapping around the target, we will continue to refer to this quantitiy as “degree”,
following [10].

For 8 € (0,1) and p € [1,00) the fractional Sobolev space WAP(SN RM) consists of all
¢ € LP(SN,RM) such that

[ Ny = y)lpdxd ;<oo
SOW/BPS) v |l'— |N+ﬁ Y .

While we will focus on estimates in fractlonal Sobolev spaces, notice that any a-Hoélder
continuous map ¢ € C*(SY, ') belongs to W#? for any 3 € (0,«) and p € [1,00), so our
considerations include the Holder-continuous case.

A natural question related quantitative homotopy theory is: Given a rational homotopy
group deg : mx(N) — R, can we prove

(1.1) deg () < [Pl
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for some ¢ € [0,00)? The answer is no if p < % and deg is nontrivial. Indeed, for any

p < by scaling arguments one can construct a map ¢ with small norm [p]y s~y but
with deg( ) # 0. Consequently, we focus on the borderline case p = % This is the

case where any map ¢ € W?5(SY,RM) belongs to BMO (even VMO), cf (3.1), and
qualitatively BMO controls homotopy, as was obtained in the celebrated works [21, 4, 5],
see also Lemma 3.1.

The question at hand is motivated by a question posed by Van Schaftingen in [25]. He
showed that the number of homotopy classes to which a map ¢ : S¥ — A can belong can
be estimated by its W5/#(SNV)-seminorm for any given 8 > 0, however without obtaining
a power estimate for some finite ¢ as in (1.1), rather he obtained an double exponential-type
estimate. As a particular example, he mentioned the question if it was possible to extend
the seminal work by Bourgain-Brezis-Mironescu, [2], to the Hopf degree. Bourgain-Brezis-
Mironescu’s work shows that in the case of my(SY) an estimate of the form (1.1) is true
for any 5 € (0,1] and p = =, and they obtained a sharp exponent ¢. It is unknown if the
same is true for the Hopf degree — however, in [20] Van Schaftingen and the second author
were able to obtain an estimate for the Hopf degree as in (1.1) for any 8 > 5y and p = %
with sharp exponent ¢, where 3, is a computable threshold (which for large N is close to
1). Let us mention that in the realm of Lipschitz and Holder continuous maps, estimates
for Lipschitz maps imply corresponding estimates for Holder maps by approximation, cf.
Lemma A.1. This is quite different in the category of Sobolev maps.

In this work, we extend the arguments of [20] from the Hopf degree to general rational
homotopy groups deg : mx(N) — R. The following is our main result.

Theorem 1.1. Let deg : mn(N) — R represent a rational homotopy group. Then there
exist two numbers L = L(deg) € {0,1,...,N —2} and 5y > 0 and a constant C' = C(deg)
such that the following holds for any B > By:

Let f € Lip (SY,N) then

(12 deg(D <O Ty

L is the number obtained from the corresponding tree-graph of deg, cf. Proposition 3.2;
but let us mention that L = 0 in the case of usual degree S — S¥ and L = 1 in the case
of the Hopf degree S*V-1 — SV,

As previously discussed, Theorem 1.1 extends the estimates for the Hopf degree in [20] —
it was shown there that the exponent % is sharp in that case. See also Section 4. What
is unclear, however, is whether the lower bound g is sharp — and there are substantial
indications it is not: for the degree deggn : Tn(SY) — Z, the already mentioned seminal
work by Bourgain-Brezis-Mironescu [2] shows that fy can be taken zero in that case.
Slightly extending the question from [25, 20] we could then ask
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FIGURE 1. An example of tree-graph T’
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T1 T2 T3
FIGURE 2. An example of signed sum of tree-graphs T} — Ty + T3

Question 1.2. Can we choose By = 0 in Theorem 1.17

One of the main ingredients for the proof of Theorem 1.1 is an integral representation
formula due to Hardt and Riviere [10], which we will describe in Proposition 3.2, combined
with Harmonic Analysis estimates that we describe in the proposition below.

1.1. Tree-graphs. A tree-graph T is a connected, simply connected and oriented planar
graph. T is oriented in the sense that, all edges have direction and at each vertex A, except
one, there is only one segment leaving. The vertex without leaving segment is at the top
of the graph T where all attached segments are arriving. For each vertex A of T we can
form a sub tree-graph T4 such that its top vertex is A and its other vertices and segments
are those of T' that can arrive A. And at each vertex A of T we assign a closed form

wy € Lip (A" N).

Given a degree deg : my(N) — R and f: SV — A, we assign a signed sum of tree-graphs
T = > (—1)™T;, where T; are tree graphs. Here n; is an integer determined by the degree.
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Then
(1.3) deg([f]) = / £4(T)

SN
where the tree form f*(T') is obtained inductively as follows. First, if T is a single vertex
A, then f*(T) = f*w,4. For a smooth (-form n € Lip (A"SY), ¢ € {1,..., N — 1} we set

d_ln — d*A_ln

where A denotes the Laplace-DeRham operator for ¢-forms (which is invertible since the
(-th and (N —¢)-th De Rham cohomology group of SV is trivial) and d* is the co-differential.

Then f*(7") is defined by
FAT) =) (1" (T,
FAT) = froa A N\ d 7 F(Ty)
J
where A; is the top vertex of T;, A;; are vertices directly arriving A; and 7;; are sub
tree-graphs of T; having A;; as the top vertices, and f*(7};) are defined inductively.

For example, in the Figure 1, denoting T} as the sub tree-graph with top vertex A;,

fAT) = fH(wa,) AdH (T

() = f(wa) AT (To) AdT fH(wa,) AdTHH(TY)
(Do) = [ (wa,) A7 f*(wag) Ad™ f(wa)

FATy) = f*(wa) N7 (wa) AdTH*(wa)-

Note that the order of wedge product is left-to-right according to the tree-graph.

Proposition 1.3. Assume that T is a tree-graph as above, e.g. in Figure 1, with L vertical
arrows. Also assume on each vertex of T, the assigned form is at most M., form. Then
there exists a By > 0 such that for any [ > Py the following estimate holds.

For a constant C = C(B,T), we have for any f € Lip (SV,RM),

/SN f*(T)‘ <C ([f]wg,g(SN) + 1) |

Let us remark on one possible application that will be the subject of future research.
As in [9], see also [19, 25, 7], one can use the integral formulas for degree, Hopf degree,
or more generally rational homotopy groups to define a “homotopy invariant” for maps
f: SV - RM with a rank restriction rank Df < K. Since our analysis is based mostly
on harmonic analysis, it applies also to this case — as was discussed in [25, Proposition
4.3.]. In [9] this was used to obtain nontrivial Lipschitz topology results for the Heisenberg
group, in [7] this will be used to do the same for Holder-topology results. One of the main
motivations of this work is to provide via the framework of rational homotopy group a large
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number of topological invariants which possibly could be applied in Heisenberg groups or
more generally Carnot groups, cf. [8].

The remainder of this paper is structured as follows. In Section 2 we prove the crucial
estimate Proposition 1.3. Using the Hardt—Riviere representation formula for rational
homotopy groups, Proposition 3.2, we discuss in Section 3 how to conclude the proof of
Theorem 1.1 from Proposition 1.3. Lastly, in Section 4 we show in the concrete examples
developed in [10] how our estimates extend theirs.

Acknowledgment. A.S. is funded by Simons foundation, grant no 579261, and NSF
Career DMS-2044898. The authors gratefully acknowledge the numerous suggestions by
the anonymous referee that helped improve the presentation of this work.

2. HARMONIC ANALYSIS ESTIMATES: PROOF OF PROPOSITION 1.3

In order to prove Proposition 1.3 we first extend the result in [20, Proposition 3.2.].

Lemma 2.1. Let ag € (0, %], 1 < My < N and f € Lip (RN, RM) with compact

support. For any smooth My-form w, g > 1 —

@Q

i, and a € [ag, My), we have

I @l iy <€ (11,55 1)

LMo~ (RN) w
where the constant C > 0 depends on || f||r=, w, a, B, and the support of f.
Here for a € (0, N) and functions G : RY — R

1'Gla) = [ ko=l Gl dy

denotes the Riesz potential. It acts on forms component-wise.

Proof. By Sobolev embedding, for a > «,

1) 177 )] o, g, 3 5 @)

N 5
LMo—ag (RN)

SO We may assume & = «y.

First ‘we may assume that w = 591 A ... A By, where 0; = dp’ are closed 1-forms and
h:=ho f € Lip (RY).

Take (for now) any v € (0, ap|, and denote p, := % and pg 1=

o Observe p, €
(LpO] and

_N
Mo—apq *
Np,

———— = — € (1,00).
N+qpy Mo (1)
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By duality, there exists a test-form ¢ € C®(AY Y RN) with || L7 (N
lell .~ < 1, such that, using Sobolev embedding in the first inequality,

LN=MgF (RN)

% @l 3 178 @l 3 [
R

)

N hoff*(0) A ... f5(0h,) NIV

:/ hf (01) N ... f (Or) N
RN
where we set 1 := 7. Observe that by Sobolev embedding,

Wl o =100 S0l < 1.

N=My (RN
L 0 (RY) L N=ph (RN)

Denote H, F', ¥ the harmonic extensions to RY ™ of &, f, ¢». We find from Stokes’ theorem
(using that df; = 0)

||[’yf*(w)||LP“/(RN)

A

/M A(H F*(0,) A .. F*(0ar,) A )

(2.2)

A

HF*(01) N\ ... F*(0p,) A dY

N+1
Ry

/ AH A F*(01) A .. F*(6a) AT +
R

~Y

5[ . IDHIIDF (| + | #H~ [ D |DY]
i\f+1 Rf-’—l

We estimate the first term on the right-hand side of (2.2).

By the representation formula for harmonic functions
W(z,t)] 3 Mp(z), eRY1ER,
where M is the Hardy-Littlewood maximal function.

Moreover, see e.g. [13, Proposition 10.2], since 1 — Mio € (0,1),

1

’Yii MO Py E M()
/Rf“ (t » |DF| ) N[f]Wl,A%O,MW.

From [13, Theorem 10.8], since v € (0, 1),

N N—My+~ %
1 N~ Y
/ (/ (t—7+m|DH|>NM°”dt) dz |~ A
RN \JR4 ToN=tigr

where %~ s the Triebel-Lizorkin space; see also the presentation in [12].
¥ N—=Mgy+~
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Then we have (here we use My > 7 which is true since My > a > 7)

[ .. \pH|DFM Y
RN+1

+
N—My+vy
N

j[f]M(i_f Mopy (/ ’M¢($)|$W / <t_7+%|DH‘> N=Moty MO+7 dt dx )
RN R,

w Mo’

Z|2

N—Mg+vy

__ N ¥
N[f]wlff MOP"/Hw“LN Mo (RN) /IRN (A+ ’ | )

M,
j[f]w(i—MiO,Mon HhHFé N71{X0+'y

Let now 8 > 7. We use the Gagliardo-Nirenberg estimate for Triebel-Lizorkin spaces [3,
Proposition 5.6] and obtain for any 4 < v < 3, taking 6 € (0,1) such that v = 08+ (1—0)7,

1]l SlaliGs MBIl
5 Nt 55 &, %

110 1-0

Sy 0
) -0 X-N) (1-6)3

1 P (LT S (L My
3

=" 5w "
W

If we additionally we assume 5 > 1 — Mio, then by (2.1), the above estimates lead to

s
u o
[ IDHIDFPO A, UV
+
.
Mo—5= 1 3
STINT IR TI
My
_[f]?
[f]WB’%
Here the constants depend on || f|lz~. In a similar fashion we estimate the

second term on the right-hand side of (2.2).

By the maximum principle,
[H || zee Z ([A]] Lo
Moreover, for any 5 € (0, 1), again by [13, Proposition 10.2],

N MO%
/N (tMO_i_MOﬁ|DF|MO) MyB ~ [f]MOBYE
R++1 W™ B
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Also, whenever § € (0, 1) satisfies (1 — )My < 7,

N—MyB
N

N
_N—Afoﬂ_ _ N—MyB
= =x =~ Mo(1-B) D\If> 0 ~
(/ﬂ%ﬁ*‘l < | | [w]WMO(lfB)vN%W

[I”Y(,O]WMO(lfﬁ),N%MOB

7] pmo i)
N N
N=MyB' N=MyB
— [~ Mo(1=B)+7 ] .
[ Plio
N=MyB N=MyP

[90] oo~ [<,0] e

p,y/,2
1.

Q

IE RN

With these observations,

N-MpB _

/ |DF|M0’D\I/| :/ tMo—%—MOﬁ|DF|M0 tl_ N Mo(l_ﬁ)‘D\If|
N+1 Rf-«—l

+
Mo 2
e Mos_ s R AN
(t 0o~ — 0ﬁ|DF| 0)
RN+

N
N
N—MqypB
1-N=MoB o (1-) NP o
-/Mﬂ(t ¥ Dw))
A s

In conclusion, we have shown

My My
Qg fx < B Mo < B
H[ f (W)‘|L%+%(RN) ~ [f]Wﬁ7% + [f]Wﬁ'% ~ [f]WB’% + L.

The above holds whenever the following conditions are met by v € (0,1) and 8 € (0,1):

e 0 <y <

o (1—-pB)My <~

o 5> 1.
That is M

B > max{—2 _7,7}.

We can make this argument work whenever

MO 3 MO
My —~ }_{M0+1 1f0402M0+1
)

> inf max{

v€(0,a0] M 1— & if ap <

Moy+1
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Wo

T1 T2 T3 T4 o TL

FiGure 3. Configuration in Lemma 2.2

To extend Lemma 2.1 from an estimate for f*(w) to an estimate of f*(7"), we observe the
following iterative estimate which essentially follows from the fractional Leibniz rule.

Lemma 2.2. Assume that T is a tree as in Figure 3, where T, ..., T, are themselves again
trees, assume that

fAT) = ffwo) Ad (T Ao NdH (T
is an M-form, wq is an My-form, f*(1y) is an M, form.

Assume « € (0, 1], then for any o € [0, a],

1 (Il

172 (Tl

< o
||] f (WO) /\MO RN Lﬁ(/\]wl RN)

T "f( )||

/\]\I RN

<1 ) (ANML RN).

Proof. By duality, for some ¢ € C(AY ™V RN), |l¢|

LN+a M(/\M N]RN)

1D,

5 (AMRN) ~ / fr(TYyNI%
-/, Frwo) NdHfH (T AL AT (TL) AN T

= [ ) A=A (@) A A (T A T).
Observe that

L
M =M+ (M —1).
k=1
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Then, using the fractional Leibniz rule, see e.g. [13], we find

IIIC“f*(T>HLMN
NI (wo) x (%l o
I-a)fa @)l | U I e olC T
i)l <— >zd L >|| o A T
L+l f(Tl) ()| ?...n(—m%d—lf*(TanW
I o)l e HI“*"sollLM%M
N (GO I e ST Y Vo YO ] [ )

By Sobolev embedding, and using that we can write d~! = d*A~! = I'R where R is
a zero-multiplier (a combination of Riesz transforms) and thus bounded on L9 for any
€ (1,00),

SN F wo)ll o ol iy
1—0 px* l1—0o l1—0o
(LA N ) o RN S o [
This proves the claim. U

Now we can obtain a version of Lemma 2.1, only for trees T. Observe that the best choice
of By is computable by combinatorial observations. But here we give an easy choice of fy.

Lemma 2.3. Let 1 < M < N and f € Lip (RN, RM) with compact support.

Let T be a tree, such that f*(T) is an M-form and on each vertex of T, the assigned form

is at most Myq. form. Assume oy € (0, M]\f_l} Then for any o € |ag, M) there exists
Bo = B, T) > 0 such that for any € (Bo, 1]:
1P, s g, < CT )] g 1

Here L is the number of vertical lines in T (or equivalently the number of d=* in the formula
of f*(T)) and C(T,«) is a constant depending on T and «.
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Proof. Since by Sobolev embedding, for o > ay,
17 (D), s g, 3 08D

so we may assume that a = ay.

N
[ M—ag (RN)

If T consists of exactly one M-form wy, then the claim follows directly from Lemma 2.1.
Case 1

Consider the case when f*(T) = f*(wo) Ad7'f*(w1) A ... Ad™f*(wy) where wy is an
My form and w; is an M; form. Similar as in Lemma 2.2, for o € (0, M]‘il] and for any
a1 € [0,0éo],

[ f (1)l

LM aqp RN)
el Wl e T )

3 ([f]vjl,g + 1) (m;},g + 1) (mWi,g + 1)

whenever § € (0,1) is large enough.

N
L Mp—(0-ay)

Case 2
Next we assume 7' has the structure as in Figure 3.

Here wy is an My-form (Mo < M) and T3, ..., Ty, create My, ..., M -forms via the pullback
f*, respectively.

We get from Lemma 2.1 and Lemma 2.2
1% f~(T)]|

L]M aqp )
S (W) III1 [ A €4 D[ - T

LM —(1=a1) (A\M1RN) LML=(=a1) (A\ML RN)

(T

JVI

< (mi,N n 1) (1= ()|

N .. N
wee LM == (A\MLRN) LML=(0=a1) (AML RN)’

whenever a; € [0, 0] and § > 1 — 3L

Suppose for each 1,
AT = fw) Ad P wi) A AdT P (wik)

where f*(w;) is an M; o form and f*(w; ;) is an M; ; form. Then as above,

1—an
|- (1, >||LM o
017; 17042' * i
M, +K;
r'—j[f] Bﬂﬂ + 1

W™ B
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l1—a; :
for a; < ST for all j.

In conclusion, we get

112 f(T)

LJ\[ ag (]RN)

N ([f]vj;gf + 1) ([f]wlgzgl + 1) ([f]W;,ﬂlgL I 1>

MA+L+K +..+K

~ o 1
N[f:IWﬁ’]g +

since M = My + (My; — 1)+ (My — 1)+ ...+ (M, —1). Note that L + Ky + ...+ K is
the number of vertical arrows in 7.

General Case

Arguing by induction over the depth of the tree, denoting by K; the number of vertical
arrows in 7; we find

ap
10 (1 >||LM o
=< (o %1 1—aq l—ay £*
Mq My +K,y Mp+Kp,
B B B
2 (mwﬁ’? + 1> ([f]wﬁ’g + 1) ([f]wa,fg + 1)
M+L+Kq+..+Kp,
ﬁ[f] 8, ? + L.
w™ B

Combining Lemma 2.1 and Lemma 2.2 and Lemma 2.3, we obtain

Proof of Proposition 1.3. The case where T is a tree of depth 0 can be found in [20]. So
from now on we assume that M < N and T has the structure as in Figure 3 such that
f*(T) is an M form, f*(wp) is an My form and f*(7T;) is an M; form. Let

N
M — Qp .

Po =
By localization we need to find an estimate in RY
. fwo) NdH (T Ao NdTH (T
_ /R IO () A DI (@ T A Ad S (T)

ST £ (@o) o @y NP1 (71 f*(T1) Ao AT FH(TL)) | o vy
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In the second equality we used an integration by parts. As in the proof of Lemma 2.2, by
fractional Leibniz Rule, see e.g. [13], and observe
M, — (1 -« My —1 Mp,—1 N-M+a« 1
1= ( 0) 4 Lo o 0

N N N N A

D[ (d=" (@) Ao AT (T0)) g ey

< 1—ag
I P I ity ey - T i
. 1—ap . g
R A T LA A ool FE S
1 px 1—ag
T I T iy gy - I T iy oy

Above we used again repeatedly the definition d~! f*(w) = d*A~!f*(w). The claim now
readily follows from Lemma 2.1 and Lemma 2.3. U

Let us mention that it seems to us that extending Lemma 2.1 to Triebel-Lizorkin spaces one
can obtain the limit case 8 = By from the above argument. We do not pursue this aspect
further, though. Also, let us remark again that for any specific tree T' simple combinatorics
allows to explicitly compute the best 5y that our method allows. This was done for the
Hopf degree in [20].

3. PROOF OF THEOREM 1.1

Let us begin with recalling a very easy statement: small BMO-norm means a function is
contractible to a point (and thus topologically trivial). Here we recall the definition

[flemony == sup ][ \f = (f)B@r)nsmy]
B(z,r)NSN

r>0,0eSN

owp f - f 1£(6) — f(0)|dodo.
r>0,2eSNJ B(z,r)NSN J B(x,r)nSN

The following is the the precise statement

(3.1)

Q

Lemma 3.1. Let N be a smooth compact manifold without boundary embedded into RM
and deg : mn(N) — R be a rational homotopy group. Then there exists ¢ = £(deg) such
that whenever f € Lip (SV,N) satisfies one of the following

e If [flpmo <&, or
o if mw"‘% < ¢ for some >0, or

o if [flos <& for >0
then deg([f]) = 0.
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Proof. The proof is standard, but we repeat it for the convenience of the reader.

It is easy to check that the second and third condition imply the small BMO-norm, so we
focus on the first one. Let
F ¢ Lip (BV*, RM)
be the harmonic extension of f, namely via the Poisson extension
- |af?
F(x) =¢(N 0

@) =) [ 10—
The BMO-condition shows that F stays close to the manifold N'. To see this observe that
for any o € SV,

do, |z|<1.

dist (F(2),N) < [F(z) = f(o)].
Multiplying this with the Poisson kernel and integrating in ¢ we see that

, 1—|z|?
dlst(F(:U),/\/')</ |F(z) — f(o )]ﬁda
1— |z 1—lzf
2 L0 = 1O g e 0

Set r = 1 —|zf, X = 3, and set A(X,n,k) := B(X,2""'r) \ B(X,2") if & > 0 and
A(X,7,0) = B(X,r). Then we have

r

dist (@), N) 3 Z Z /stA(X,r,k) /SNmA(X,r,z) 176) - f<0)’(2k7’)N+1 (2ZT)N+1 A0 do

keNU{0} £eNU{0}

> Y oewrf 7(6) ~ F(o)|d6 do
SNNA(X,r,k)J SNNA(X,r,0)

keNU{0} ¢eNU{0}

Z Z 2_62_k[f]BMO ~ [f]BMO.

keNU{0} ¢eNU{0}

That is, we have shown
dist (F(x),./\f) ,'5 [f]BMO < €.
Since N is compact without boundary, there exists a § > 0 and the nearest point projection
from a tubular neighborhood of N into N, my : Bs(N) — N, see e.g. [23]. So if € is small
enough we have that F(z) : BN™! — Bs(N), and thus G(x) := my o F is well defined and
as smooth as F. Now
H0,t) :=Gt) : SV 1 x[0,1] = N

is a smooth homotopy. That is f = my o f = H(-,1) is homotopic to the constant map
G(0) = H(-,0). So f:S¥ — N is topologically trivial and thus deg([f]) = 0. O

From Lemma 3.1 we conclude that when proving Theorem 1.1 we only need to consider
maps ¢ with relatively large Wh s # (SM)-norm, since for small Wh s 7 (S™) norm the rational
homotopy group vanishes. We want to apply Proposition 1.3. The connection to the ratio-
nal homotopy group comes from the following representation formula for simply connected
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smooth manifolds N which are compact and without boundary. It is due to Sullivan [24],
Novikov [14, 15, 16], but in this form it was developed by Hardt and Riviere [10]. We refer
to [10] for the proof. See also [18].

Proposition 3.2. Let deg : mx(N) — R be a rational homotopy group, then

K
deg((f) =Y [ 1@
k=15
where Ty, is a tree-graph with Ly vertical arrows.

Proof of Theorem 1.1. In view of Lemma 3.1 the claimed estimate (1.2) is trivially satisfied
if | f]wﬁ’% < ¢ if ¢ = ¢(deg) is chosen small enough. On the other hand, combining

Proposition 3.2 and Proposition 1.3 with L = max L; we obtain

N;L N;L
de N +13
RS EAT
NiL
whenever [f] ” v >e. This proves (1.2). O
WP B (sN)

4. EXAMPLES AND COMPARISON WITH PREVIOUS ESTIMATES

Hardt—Riviere provided several examples of the generalized degree maps [10]. We compute
here the corresponding degree estimates from Theorem 1.1. Note that each ; is easily
computed from Theorem 1.1 which may not be the best constant.

Example 4.1. Let N' = CP?. There are two generalized degree maps, deg,, : Lip (S?, CP?)
and deg., : Lip (S*, CP?) given by

deg,(f)= [ ff'w and deg,(f) =/ PO Ad frw
S2 S5
where w is the Kdhler form on CP%. Then the estimate is, for 5, > % and By > %,

deg, (/)] 2 /1™

2
WPl (s2)

6

and |deg,(f)| 3 [f]™

5 .
W% B2 (s7)

Example 4.2. Let N = S? x S%.  There are four generalized degree maps, deg,,. :
Lip (S, x §%) and deg,, : Lip (S*,S* x §%) fori = 1,2 given by

dego (P)= [ 1o and den, () = [ frnd

where w; s a pull-back of the generator of H?(S?) under the coordinate projections m; :
S? x S — S?. Then the estimate is, for f; > 2 and B, > 3,

2 4
|degai(f)\i[f]$ﬁh%(82) and \deg%(f)\i[f]jjﬁZ,%
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Example 4.3. Let N = (S x S)#CP?. There are many generalized degree maps, but here
we only consider maps from S*. There are five of them, namely, deg,, degs, : Lip (S*, (S? x
S?2)#CP?) fori=1,2,3 and k = 1,2 given by

deg% (f) = . f*wli A d_lf*w%' A d_lf*w?)i
S

3
degék (f) = / f*77 A d_lf*wok + Z/ f*wlk,i A d_lf*w%,i A d_lf*wgk,i
s = st

where w;, i = 1,2,3 is a generator of H*(N') and n is a 3-form on N obtained from w;.
Then the estimate is, for 3 > 3,

(=]

‘deg'yi(f)} j [f]ﬁ and ‘degék(f” ,j [f]%

4 4 .
W B (s1) w5 (s4)

Example 4.4. In [20] they obtained for maps f : S"~1 — S,

4n

’degH<f)‘ 3 [f]?; 4n—1
W T (sin-1)

for B> 4=L " See also [17] where Riviére proved the case 3 = 1. Note that

n degy (f) = /

S4n—1

77/\d77:/ fFondfuw
§4n—1

where dn = f*w, n is a smooth 2n — 1 form on S~ 1, w is the volume form of S**. So,
our estimate gives the same result because

N;;L %ﬂ
de N = n—
’ gH( )‘ ~ [f]WB’%(SN) Wﬁ»%(smhl)

fO?"B > BO =1- 2(;71) = 42;1-

APPENDIX A. FrROM LIPSCcHITZ TO HOLDER

For maps between manifolds, a Lipschitz estimate on a homotopy invariant readily implies
a Holder estimate using a mollification argument. We recall this well-known fact here.

Lemma A.1. Let M C RM N C R be two smooth compact manifolds without boundary
and assume that there exist a map

deg : CO(M,N) —» R
such that
o deg(f) =deg(g) if f,g € CO(M,N) are homotopic to each other, and
e there are A,q > 0 for which we have
|deg(f)] < A[f]f;, V/f € Lip(M,N).

Lip
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Then for any a € (0,1) there exists C = C(A, q, M, N') such that
|deg(f)] < C[flga Ve CHM,N).

Proof. Since N' C RY is smooth and compact, there exists some o = o(N) > 0 and a
smooth nearest point projection from a tubular neighborhood of N into N/,

WN:BU(N)—%/\/’.

Combining a partition of unity on M with the usual mollification and the projection 7
we find that for any € > 0 and any f € C*(M,N) there exists a map f. such that

1fe = fllzeomy < €[f]ce.
and with some uniform constant C; (M, N) > 0
[fa]Lip < Cl(M,N) €a_1[f]ca.
Set for 6 > 0

then we have
1fe = fllzoomy < 0%
and )
[feluip < CLMLN) 8% f] .
Take ¢ := %aé. Then
F(t,)=an((l-t)fe+tf): M—=N
is well defined for all ¢ € [0,1], and thus f. and f are homotopic to each other.

We conclude
[deg(f)] = |deg(fo)| < Alfe]ly, = ACHM,N)? 67 [fe.
Setting C := ACy (M, )26V we can conclude.
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