WEAK LIMITS OF FRACTIONAL SOBOLEV
HOMEOMORPHISMS ARE ALMOST INJECTIVE

ARMIN SCHIKORRA AND JAMES M. SCOTT

ABSTRACT. Let  C R™ be an open set and fr, € WP(Q;R™) be a
sequence of homeomorphisms weakly converging to f € W*P(Q; R™). It
is known that if s = 1 and p > n—1 then f is injective almost everywhere
in the domain and the target. In this note we extend such results to the
case s € (0,1) and sp > n — 1. This in particular applies to C*-Holder
maps.

1. INTRODUCTION AND MAIN RESULT

The goal of this note is to prove the following theorem:

Theorem 1.1. Let Q C R"*, n > 2, be open and let f : 2 — R™ be a weak
WeP-limit of Sobolev homeomorphisms f; € W*P(Q; R"™) with sp > n — 1.
Then there is a representative fand a set ' C R"™ of Hausdorff dimension at
most =% such that (J?)_l(y) consists of only one point for everyy € J?(Q)\F

For definitions we refer to the next section. An immediate corollary of
Theorem 1.1 and the embedding C* < W;’ “* for any ¢ > 0 is the following
statement for Holder maps.

Corollary 1.2. Let Q@ C R™, n > 2 be open and let f € C*(2;R"™) be
the pointwise limit of a sequence of equibounded homeomorphisms f; €
C*(;R™). If s > 2=, then there is a set I' C R" of Hausdorff dimension
"T_l such that (f)~'(y) consists of only one point for every y € f()\T.

Observe that for s < "T’l the above statements hold trivially.
This note is inspired by the recent work by Bouchala, Hencl, and Molchanova
[4] who proved a corresponding result for s = 1.

Theorem 1.3 (Bouchala, Hencl, Molchanova). Let f : Q@ — R™ be a weak
limit of Sobolev homeomorphisms f; € WHP(Q;R™) with p > n — 1. Then
there is a representative f and a set I' C R™ of Hausdorff dimension n — 1

o~ ~

such that ()1 (y) consists of only one point for everyy € () \T.
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While Theorem 1.3 (and in turn our Theorem 1.1) follows an adaptation
of the arguments in the seminal work by Miiller and Spector [11], Bouchala,
Hencl, and Molchanova [4] also provide an example of the limit case p =
n — 1, where a theorem such as Theorem 1.3 completely fails. Namely they
showed

Theorem 1.4 (Bouchala, Hencl, Molchanova). For n > 3 there exists f :
[—1,1]" — [=1,1]" and a strong limit of Sobolev homeomorphisms fi €
Whr=1([-1,1]",R") with fy(x) = x on the boundary O[—1,1]" and such
that there exists a set T' C [—1,1]" of positive Lebesque measure and f~(y)
1s a nontrivial continuum for every y € T'.

As the authors of [4] mention, it may seem surprising that the Hausdorff
dimension of the critical set I" seems to suddenly jump from n — 1 to n as
p changes from p > n — 1 to p = n — 1. This question served as one mo-
tivation to study the situation for fractional Sobolev spaces. With respect
to Theorem 1.1 we see that indeed the consideration of fractional Sobolev
space makes the “jump” in dimension of the singular set continuous: As
s ”T’l the size of the dimension of the singular set I varies continuously
from n — 1 to n. It would be interesting to investigate the optimal frac-
tional Sobolev-regularity in the limiting examples by Bouchala, Hencl, and
Molchanova [4].

Let us stress that Theorem 1.1 follows a very similar argument as the
s = 1 proof of Theorem 1.3 in [4], which in turn is a streamlined argument
of known results and techniques from earlier works, see [3,11,12]. Indeed,
a crucial fact that is used for s = 1 is that on “good slices” 0B, the f;
converge in W?(9B,), and so using Sobolev-Morrey embedding on these
n — 1-dimensional slices the fi in fact converge uniformly if p > n — 1. If
p = n — 1 this uniform convergence may fail.

The same is true if the f; converge in W*P(9B,.) for good slices 0B, and
s € (0,1): if sp > n — 1 then the convergence is uniform on 9dB,, and if
sp =n — 1 it may not.

But somewhat surprisingly, a result such as Theorem 1.1 and in partic-
ular Corollary 1.2 seems to be unknown to some experts, and the authors
thought it important to be available in the literature.

We try to keep this note as self-contained as possible. In Section 2 we
gather the main results on Sobolev spaces that we work with. In Section 3 we
discuss the needed notions of degree, and show monotonicity of the degree

for limits of homeomorphisms. In Section 4, we collect the corollaries for
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the topological image from the previous section. In Section 5 we prove our
main theorem.

As a last statement of this introduction, let us state an immediate corol-
lary of Theorem 1.1 in the realm of Besov- and Triebel-Lizorkin spaces
(which we will not pursue further here).

Corollary 1.5. Let Q C R™, n > 2, be open and let f : 2 — R"™ either

e be a weak F;P-limit of Sobolev homeomorphisms f; € F7P(Q;R")
with sp >n—1 and q € [1,00].
e [:Q — R" be a weak ByP-limit of Sobolev homeomorphisms f; €
E2P(S;R™) with sp >n —1 and q € [1,p].
Then there is a representative ]?cmd a setT' C R™ of Hausdorff dimension at
most ”7_1 such that (f)’l(y) consists of only one point for everyy € f(Q)\F

These statements follow from the embedding F;? < )P = W*"? for any
0<t<sandqé€[l,o0], and By? — By? = [P = W*P for any ¢ < p.
Cf. [14].

2. PRELIMINARIES ON SOBOLEV SPACES, CAPACITIES ETC.

In this section we establish notation. For s € (0,1) and p € (1,00)
we denote the classes of functions uw : 2 — R” for which the Gagliardo
seminorm

_ p
( ) []W’(Q) oJa |x_y|n+sp

is finite as the fractional Sobolev spaces W*P(2; R"), with norm ]\u\\ﬁvw(m =
”uHiP(Q) + [u]evsyp(ﬂ)'

We denote the n-dimensional Lebesgue measure of a set A C R™ by
L"(A), and for § > 0 we denote the S-dimensional Hausdorff measure by
P (A). We use the convention A X B whenever there exists a constant C
such that A < CB.

For a function f continuous on a compact set A, we define the oscillation

oscaf = sup (f(z)— f(y)) = diam f(A).
zy€eA
We denote uniform convergence by =. So “fx = f” means “f; converges
uniformly to f.”
Define the precise representative of a measurable function f by

1iI(I)1+ s, W) dy, when the limit exists,

(22)  flo)= {H

0, otherwise.
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Many properties of the precise representative for functions in the Bessel
potential spaces are accessible in the literature. The corresponding state-
ments can then be obtained for fractional Sobolev functions via embedding
theorems for the Triebel-Lizorkin spaces F} ; see [14]. For completeness, we
gather here a summary of the statements we will need.

We denote the Bessel potential spaces H*P by
(2.3)

H*P(R™R") = {f : R" = R" : |[F (1 + €)Y 2(FHE)|r@n < 00}

where F and F ! denote the Fourier transform and its inverse respectively.
The following is a corollary of a classical embedding theorem for the spaces
Fy . [14, Section 2.2.3], [15, Theorem 2.14, Remark 2.4], which we will use
multiple times throughout the work for various parameters of integrability,

differentiability, and dimension. We are additionally using the identifications
Fjy=H% and F;, = W?*P.

Theorem 2.1. Let N > 1. Let p € (1,00) and s € (0,1), and suppose that
t€(0,1) and p; € (1,00) satisfy
S—E<t<8, pt::L.
p N—(s—t)p
Then

(2.4) WP (RY) — HP*(RY),  or  [flun@y) 3 [flweoy) -

Note that if we write the definition of p; as
p
Dt (

then it becomes clear that if sp > N then tp, > N for any t € (0, s).

(2.5) sp— N =—(tp, — N),

With this embedding we can prove some useful properties of the precise

representative:

Proposition 2.2. Suppose f € WP(R";R") with sp € [1,n). Let p* =
" Define

n—sp

(2.6) Ap:={x € R" : z is not a Lebesgue point of f} .

Then the following hold:
(1) dimy(Af) < n — sp.
(i1) For any v € R™\ Ay,
(2.7) lim [f(y) = [ (@)]"dy =0,
r—0t Br(z)

for every q € [1,p*).
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(111) If pe is the family of standard mollifiers then

e x [(2) = [*(z)
for each x € Q\ Ay.

Proof. Let € > 0 be arbitrary; we will show that
(2.8) (A =0,

which will imply (i). We use Theorem 2.1 with N = n; choose t € (0, s) so
that

n—1tpg=n-—sp+e,
this is possible since by definition n — tp; > n — sp for sp € [1,n) and for
any t € (0,s). Then f € H"P*(R";R™) and so [1, Proposition 6.1.2, Theorem
5.1.13] implies J#P(A;) = 0 for all B3 > n —tp, =n — sp + ¢, and so (2.8)
is established.

To see (ii), use Theorem 2.1 with N = n again; note that any q € (p, p«)
can be written ¢ = p; for some t € (0,s). Then f € H"*(R™;R") for every
t € (0,s), and so [l, Theorem 6.2.1] applies, which is precisely (ii). We
obtain (2.7) for the range ¢ € [1, p] using Holder’s inequality.

For a proof of (iii) see [6, Theorem 4.1, (iv)]. O

Lemma 2.3. Suppose f € WP(R";R") with sp € [1,n), and suppose
f*(z) € E for every v € R"\ M, where L*"(M) = 0 and E C R" is a
closed set. Then f*(x) € E for every x € R™ \ Ay.

Proof. Suppose to the contrary, that f*(z) € R"\ E for some z € R™ \ Ay.
Then there exists € > 0 such that B(f*(x),e) C R"\ E. By assumption
that f*(y) € E fory e R"\ M
fouw-rara=f - rerdze
B(z,r) B(z,r)\M
uniformly as 7 — 0, which is a contradiction since f* satisfies (2.7) for every

.TER”\AJC. O

We will need information on the Hausdorff dimension of images of spheres
embedded in R™. The following is a special case of such a result in [9] for
Bessel potential functions, which will then apply to functions in W*? via
Theorem 2.1:

Proposition 2.4 ( [9], Theorem 1.1). Let N, K € N, t € (0,1) and q €
(1,00) with t¢ > N and o« € (0,N]. Define 5 = tqf]‘\‘era. Suppose g €
HY"(RN;RE) is a continuous representative and A C RY is a set with

dim s (A) < a. Then dim(g(A)) < 5.
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We then have as a corollary

Theorem 2.5. Letn > 2, s € (0,1), and p > 1 withn — 1 < sp < n. Let
r >0, a € R" with 0B = 0B(a,r) and g € W*P(0B;R") be a continuous
representative. Then dim - (g(0B)) < %=L,

Proof. 1t suffices to show that

n—1

% S

"(9(0B)) =

for arbitrary € > 0 small. Cover B by sets S; diffeomorphic to Rt (2"
hemispheres will do), and let ¢; : R*™! — S; be the corresponding diffeo-
morphisms. So 0B C Uf\il S;, and the functions

gi ==gov;
belong to W*P(R"1;R"), and hence belong to H"P*(R""!;R™) by Theo-
rem 2.1 for any ¢t € (s — ”le,s) and for p; = %.

Applying Proposition 2.4 to each g; with ¢ = p; and N = o = n—1 gives

—1
A (gi(R*1)) =0, for every v > n yi={1,...,M}.

Choose t < s close enough to s so that *— L <« n=l 4 ¢ Then
A (g( fo (9:(R"1)) =0,
as desired. O

Throughout this note we additionally require control of fractional Sobolev
functions on spheres in R™. In the case s = 1, this control is obtained
straightforwardly; for example, using Fubini’s theorem for a smooth func-
tion f on B(a,r)

| /aB<a,p) VP wap< [ 9,

B(a,r)

where V [ denotes the tangential derivative of f|sp(a,p). The following Besov-
type inequality serves as a fractional analogue:

Lemma 2.6. Let B(a,r) C R", with p € [1,00) and s € (0,1). Then there
exists a constant C' = C(n, s,p) such that for every f € W?(B(a,r); R")

1f(@) = F@IP s pnes »
29 //2/8Bap/8Bap |ZE— |n 1+sp () () p
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These types of estimates are well-known to experts (see for example
[5]), but for the sake of completeness we have included the proof in the
appendix, see Appendix A. The following corollary to the lemma reveals

finer properties of Sobolev functions:

Corollary 2.7. Let 1 < sp < n, let xy € @ C R", and suppose f €
WeP(Q;R™). Then there exists a set N, C (0, dist(zg, 0Q)) with L1 (N,,) =
0 such that for every r € (0,dist(zo,00)) \ Ny, the function f*|op(wer
belongs to WP(OB(xo,7); R™), where f* is the precise representative defined
in (2.2). If in addition sp > n — 1 then f*|op(aor) s continuous. In general

the singular set depends on xg.

Proof. For ¢ > 0 let ¢° be the standard mollifier, and let f¢ := ¢° *x f*.
Then f¢ converges to f* in W*?(B(xq,r)) for any r € (0, dist(xq, 002)), and
by Lemma 2.6

//2 [fz-: i f*]{;vs,p(aB(wO,P)) dp < C’[fs - f*]gvst(B(xo,T)) —0Qase—0.

Thus for #!-almost every r € (0, dist(zg,9Q)) we have that the smooth
functions f*[sp(,r) converge to a function g, € W*P(9B(xo,7)). On the
other hand, Proposition 2.2 applies to f since we can find a Sobolev exten-
sion domain K satisfying B(zg,7) C K C Q. Thus since sp > 1 we have
from Proposition 2.2(iii) that for every r € (0, dist(zo, 02))

fe(x) = f*(x) on B(xg,r)\ Af, where %””_I(Af) =0.

Therefore for £'-almost every r € (0, dist(zg, 92)) the functions f€|op ()
converge to f*(x) for " !-almost every x € dB(xg,r). So for Z'-almost
every r € (0, dist(zo, 052)) the function f*|9p(z,,r) agrees with g, up to a set
of " '-measure zero, hence f*|gp(z, ) belongs to WP(9B(z,1)).

Now if sp > n — 1, then f¢ — g, locally uniformly on 0B(xg,r) by the
Sobolev compact embedding theorem (see for example [14, Theorem 2, pg.
82], [16, Lemma 41.4]), and additionally #*(A;) = 0. Therefore for .£'-
almost every r € (0, dist(zo, 052)) the sequence f(z) converges to f*(z) for
every x € 0B(xg,7), and so f*(z) agrees with the continuous function g, (z)
for every x € OB(xo, ).

O

The following is an adaptation of [10, Proposition 3.1], which in turn is

an extension of an argument in [17].

Proposition 2.8. Let Q CR™, s € (0,1) and p € (1,00) withn—1 < sp <
n. Assume that f € W*P(Q;R"™) satisfies the following: for any xq € €
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there exists a set Ny, satisfying L (Ny,) = 0 such that for all radii r, p €
(0, dist(xg, 0Q2))\ Ny, with r < p, there holds for some A > 1 independent of
r, p and xg

05CoB(z0,r) S < N0SCoB(agp) [

where f* is the continuous representative of f defined in (2.2). Then there
exists a singular set ¥ C Q with S "=P)+(X) = 0 such that f*: Q\Y — R”

18 continuous.

Proof. Without loss of generality assume sp < n. The case n = sp can be
found in [10, Proposition 4.1.], and n < sp is obvious by Morrey-Sobolev
embedding; see [13].

By Corollary 2.7 for any o and R > 0 with B(y, R) C © and .Z'-almost
any p such that r < p < R, the function f*|gp(y,,p) belongs to W*P(B(yo, p)).
As in [10, Proposition 3.1], by Morrey-Sobolev embedding

(0scoBor f*)" < A (0sconyep )"

* P
< Cpsp (n 1 / / (nfl)(+s)| d:L‘dy
9B (yo,p) Y 9B (yo,p) |x - | b

1)

Multiplying by p~*P*(»~1) and integrating in p we obtain using Lemma 2.6

c(s,p) (R"™ = 1" (0sconyon [*)" < L TverBor)

In particular we have

(2.10) (0scanon f*)" < B [f RveoByo.m)
for any yo € Q, R € (0,dist(yo, 092)) and for every r € (0, R/2) \ N,
Let

210 X o€ s R Yy > 0]
—0t

By Frostman’s Lemma (see [18, Corollary 3.2.3]) we have that 2" =*P)+ (X)) =
0.

Now we may assume without loss of generality that for any z, y €
there exists yo € Q"N and r € (0, dist(yo, 0£2)) such that =,y € IB(yo,r).

Now set
U U 0B (y07 T)

yo€Qn TeNyo

As a countable union of £™-measure zero sets, Y is an L£"-measure zero set.
Define

(2.12) Ni=A;UX
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where Ay is the set of non-Lebesgue points of f as defined in Proposition 2.2.
We have
HO= P+ (8) =0,
Let g € Q\X and fix € > 0. Since zg ¢ X there must be some R =
R(zg,e) > 0 such that

Rspfn[f*]gvsvp(B(:co,R)) <&

Consequently, for any yo € B(zo, R/2),

(3/2)Sp_”[f*]ivs,p(g(yoﬂ/g)) < Cspne.
Thus, from (2.10)
(2.13) sup  08CaB(y) ST < Cspne  Vyo € B(xo, R/2).
re(0,R/2)\Ny,
Now let z, y € B(xg, R/8) \ Y. Then there exist yo € Q" N B(xg, R/2)
and r € (0, R/2)\ Ny, such that z,y € 9B(yo, 7). From (2.13) we then have

|f*(ZL') - f*(y)| < OscaB(yo,T)f* < 618,117,716 Vx,y € B(:L'(), R/S)\Y
that is,
sup [ () = " ()] < Cspae.

z,y€B(z0,R/8)\Y
Therefore f* is continuous in 2\(X U Y). However ¥ U Y is too large.
To remedy this, we use the definition of f* in Q\Ay. For every z,y €
B(zo, R/8)\X C B(zo, R/8)\ Ay there exists a r,, 1, € (0, £) such that

fmﬂ >dz—f(w)f< w) duw

<€+][ ][ 1f*(2) — ff(w)| dwdz
B(z,re)\Y J B(y, ry \Y

<e+  sup (2) = f*(w)]
z,w€B(x0,R/8)\Y

<(Cspn + 1)e.

[f*(z) = [ (y)| <e +

3. DEGREE AND MONOTONICITY ESTIMATES

Let B = B(xg,r) C R™ and let f : B — R™ be continuous. For y ¢
f(OB) define the degree

deg(f7 6B7 y) = degS"_l (@/1)

where
f(x xo) —y
|f(55%2) — v

and degg.-1 computes the homotopy group of ¢ in 7, _1(S"1) = Z.

LSt et

1/)_
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The main topological ingredient is the following lemma (which is well-
known). Items (i) and (iii) are essentially a rewritten version of [4, Lemma
5.1], and (ii) is a consequence of (i) motivated by [7,10,17].

Lemma 3.1. Let Q2 C R™ be an open set.

Assume that By := B(xy1,7r1) and By := B(xg,r2) CC Q are two open
balls and f, fr, : 0B1 U 0By — R™ be continuous maps, k € N such that fj
uniformly converges to f on 0B U 0B,.

If for any k € N, the map fr can be extended to a homeomorphism
Fy - Q — R" then the following hold:

(i) If By C By then
f(OB)U{y € R"\ f(0B:) : deg(f,0By,y) # 0}
C f(0B2) U{y € R"\ f(0B2) : deg(f,0Bs,y) # 0}
(i) If By C By then we have monotonicity of oscillation,

oscop, | < 8oscop, f

and

diam{y € R"\ f(0By) : deg(f,0B1,y) # 0} < 8oscyp, [

(111) If By N By = 0 then {y € R™\ f(0B) : deg(f,dB1,y) # 0}
and {y € R"\ f(0Bs) : deg(f,0Bs,y) # 0} have empty intersection.

Proof. To prove (i), assume B; C By and let

y € f(0B1)U{y € R"\ f(0B,) : deg(f,0B1,y) # 0}.

If y € f(0B2) there is nothing to show, so we may assume that y & f(0Bs).
By uniform convergence y & fr(0Bz) for all large k.

We use a contradiction argument; assume that deg(f, B2, y) = 0. By the
uniform convergence and since y € fr(0B2) we have that deg( fx, 9B, y) =0
for large k.

Let F} : 2 — R"™ be a homeomorphism such that f, = Fj _ Then
Bo

deg(fi, 0Bs,y) = 0 implies that y ¢ Fj(B,). Since B; C B, this implies
that y € Fj,(B;) and thus

deg(fx, 0B1,y) =0 for large k.

This leads to a contradiction as k — oo unless y € f(9B;). However since
F}, : By — R™is a homeomorphism, it is an open map so if y € (9B;)\ Fx(By)
there must be ¢, € 0By such that

dist(y,Fk(E)) = |y — frlaw)|-



WEAK LIMITS OF FRACTIONAL SOBOLEV HOMEOMORPHISMS 11
Since y & f(0Bs), we conclude via uniform convergence that
lim inf dist(y, F(Bs)) > 0
and thus
dist(y, f(0B1)) = lim inf dist(y, fr(9B1)) > lim inf dist(y, Fy.(Bs)) > 0,

consequently y & f(0B).
To prove (ii), we have that
f(0B1) C f(0B2) U{y € R"\ f(0B2) : deg(f,0B2,y) # 0}.

Let D := diam(f(0B2)) and pick any xy € 0Bsy. Then f(0B,) C B(f(xo),3D).

Moreover, let 7 : R™ — B(f(xg),4D) be Lipschitz such that 7 =
B(f(0),3D)

1d. Since the degree depends only on the boundary values, for any y

f(0By),
deg(f,0Bs,y) = deg(m o f,0Bs,y).

Since a necessary condition for the degree to be nonzero in a point y is that

y belongs to the image, we conclude that

{y € R\ f(9By) : deg(f,0Bs,y) # 0} C B(f(x0),4D).
In conclusion, we have shown
F(@By) € B(f(z0),4D)
and thus
diam(f(0B)) < 8D = 8diam(f(9By)).
For (iii), assume that y € R™\ (f(0B1) U f(0Bs)) and

deg(f,0B1,y) # 0, deg(f,0Bs,y) # 0.

By uniform convergence, y € R™\ (fx(0B1) U fr(0Bsy)) for eventually all
k € N, and

deg(fkaaBlay) 7é 07 deg(fk)8B27y) 3& 0.
This means that y € Fj,(By) N Fj(By) which is a contradiction to Fj being

a homeomorphism.

g

4. COROLLARIES FOR LIMITS OF HOMEOMORPHISMS

We need the following result, which is a fractional analogue of [11,

Lemma 2.9]:
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Lemma 4.1. Let n > 2, and let p € (1,00) and s € (0,1). Suppose that
Q C R"™ is a bounded domain, and let

(4.1) fo = fin WoP(Q;R").

Let xg € Q, and define r,, := dist(xg, Q). Then there exists a set N, C
R with LY (N,,) = 0 such that for any r € (0,74,) \ Ny, there ezists a
subsequence fy such that

(4.2) fr— f"in W*P(0B(xg,r); R").
If sp>n—1 then
(4.3) fr= " on 0B(xo, 7).

In general the subsequence depends on r.

Proof. First, by compact embedding there is a subsequence f, — f in
LP(B(xo,74,); R™) and so Fubini’s theorem implies

(4.4)

f&— f*in LP(0B(xg,7); R™) for every r € (0,7,,) \ Ny with Z'(N;) =0.

Next, define

(4.5)  Pp(r / / i 1(+ Ol A" (y) d#" 1 (x),
0B(xo,r) J 0B(xo,r) |(L’ - y|n P

with

(4.6) O (r) := liminf @4 (r).

k—ro0
Then by Fatou’s Lemma and by Lemma 2.6
< . . < . . *1D
/T/2 O(r)dr < hgg}lf /T/2 Oy (r)dr < llgéglf[fk]wsyp(mmr)) < 0
for every r € (0,r,,). Define Ny := {r € (0,7,,) : ®(r) = oo}, and define
N,, := Ny U Ny; note Z*(N,,) = 0. Then let 7 € (0,7,,) \ Na,, and choose
a subsequence (not relabeled) satisfying

O(r) = lim Pg(r).

k—00
Then f; — f* strongly in LP(0B(xo,7); R™) and limy_,oo[flwsr@Bor) <
oo, and so (4.2) follows.
In the event that sp > n — 1 the uniform convergence follows from the

compact Sobolev embedding theorem. U

The following is a corollary of the Sobolev compact embedding theorem,

Lemma 3.1 and Proposition 2.8:
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Corollary 4.2. Let f, € W*P(Q;R") be a sequence of homeomorphisms
weakly converging in W*P(Q;R™) to f. If sp > n — 1 there exists a set
¥ C Q with 7" °P(X) = 0 such that

(i) f*: Q\X — R" is continuous, and

(ii) The set {f*(x)} coincides with the topological image (f*)*(z) for

every x € Q\X, where (f*)7(z) is defined as

(f) () =

(1 f(0Bx,r)U{y e R"\ f*(0B(x,r)) : deg(f*, B(x,r),y) # 0},
r€(0,r2)\ Nz

and r, and N, have been defined in Lemma /.1.

Proof. By Lemma 4.1 and Corollary 2.7, the assumptions of Lemma 3.1 are
satisfied for every x; and x5 € Q and for almost every r; € (0,7,,)\ N,, and
ro € (0,72,) \ Ng,. It follows that the assumptions of Proposition 2.8 are
satisfied, and so f* is continuous on a " *P-null set 3; see (2.6), (2.11)
and (2.12) for the definition. Thus (i) is proven.

To prove (ii) it suffices to show that

(a) f*(x) € (f)"(z) for every z € Q\ 2,
(b)  The diameter of the set (f*)”(z) is zero for every z € Q\ .

To see (a) we start by proving the following stronger statement:

(a)

For every zp € Q and r € (0,74,) \ NV,

0

f*(.lf) € f*(aB(ﬂfo,T)) U {y € R" \ f*(aB(:BOa ’l")) : deg(f*v B(:EOaT)v y) 7& O}
for every x € B(zg,7) \ 2.

Then (a) follows easily from (a’) by choosing zy € 2\ X. By definition of ¥

and by Lemma 2.3 it in turn suffices to show that

(a”)

There exists a a set M with Z"(M) = 0 such that
for every zg € Q and r € (0,74,) \ Ny,

[ (z) € f*(0B(xg,r)) U{y € R"\ f*(OB(zo,7)) : deg(f*, B(xo,7),y) # 0}
for every x € B(xg,r) \ M.
Let 0 > 0 be arbitrary. Then by the Sobolev compact embedding theo-
rem and by Egorov’s theorem there exists a subsequence (not relabeled)
fr converging uniformly to f* on B(xzo,7) \ My with £"(M;) < §. Now
let © € Q\ M;. It suffices to show that if f*(z) ¢ f*(0B(zo,r)) then
des(f*, B(xo,r), f*(x)) £ 0. Since fi = f* on 9B(x0,r), [*(x) & fu(@B(x,r))
for all k& sufficiently large. So there exists € > 0 such that B(f*(z),¢e) does
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not intersect f*(0B(xg,7)) or fr(0B(xg,7)) for k sufficiently large. Then
since the fj are homeomorphisms, it must be that deg(fx, B (zo,7),p) is a
nonzero constant for all k sufficiently large and for all p € B(f*(z),¢). In
addition, fr = f* on B(xzg,7) \ M;s so fr(x) € B(f*(x),¢) for k sufficiently
large, uniformly in z. Thus the continuity of the degree yields

deg(f*v B(.To, T’), f*(il,’)) = 1}130]0 deg(fkv B(x(]?T)v fk<x>> .

Since deg( fx, B(xo, 1), fr(x)) is a nonzero constant for all k sufficiently large,
we have proved that
For every o € Q and r € (0,74,) \ Na »
f (x) € ff(0B(xg, 7)) U{y € R\ f*(OB(xo,7)) : deg(f*, B(xo,7),y) # 0}
for every @ € B(xg,r) \ Ms with Z"(M;s) < 0.

Since 0 > 0 is arbitrary (a”) is proved.

To see (b), let xy € @\ X, and let £ > 0. Then by definition of the set X
there exists R = R(x¢,¢) € (0,ry,) such that

R [ wor(Bao.r) < €-
So by Lemma 3.1(ii) and (2.10)
diam(f*)" (z¢) < diam (f*(E)B(xo, r))U{y : deg(f*, B(zo,7),y) # O})
<Ce

for every r € (0, R/4)\ N,,. Therefore by definition diam(f*)(zy) < . The
proof is complete.

Remark 4.3. We can define a representative J?of f as

@n )= {f*(m)’ TR,

any element of f7(x), otherwise,

Then fagrees with f* everywhere outside X, and fhas the added property

-~

that f(z) € (/)T(x) for every = € Q.
U

5. PROOF OF THEOREM 1.1

Proof of Theorem 1.1. We proceed identically to [4]. Assume that f = f
We argue by contradiction; suppose that there is a 6 > 0 such that the set

(5.1) I':={yeR": diam(f"({y})) > 0}
satisfies #7"5 T9(I') > 0. Then there exists K € N such that the set

(5.2) Ik = {y € R" : diam(f*({y})) > %}
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satisfies "5 P(Tx) > 0, since F = Uken Tk For each z there exists

r < gk such that flope,) € W*(B(z,r);R") N CO(B(x,r);R") by

Lemma 4.1. Then choosing a covering of 2 with such a collection B :=
(B(w;,13))32y, by Theorem 2.5 we have dimy(f(0B(z;,7;))) < =, so
+H(f(0B(z4,75))) = 0. Therefore, the set

n—1

% s

(5.3) E =] f(0B(xi 1))

i=1

satisfies %%+5(E) = 0. We will show that I'x, C F, which contradicts the
statement 225 H9(g) > 0.

Assume y € ' \ E. Then there must exist z; and z5 in Q with f(z1) =
f(z2) =y, with dist(z1, 22) > . Fix an element B(z;,r;) from the collection
B with z; € B(x;,7;) and 23 ¢ B(x;,7;). Combining Lemma 3.1(i) with the
fact that

fx)e f1(z) C f(0B(x,r))U{q € R"\f(0B(x,r)) : deg(f,0B(x,r),q) # 0}
for all z € Q and for r € (0, dist(z, 9Q)) \ N, we get
y = f(=1) € f(0B(xi,1:))U{q € R"\ f(0B(w;,1;)) : deg(f, B(wi, i), q) # 0}.
However y ¢ E so y ¢ f(0B(x;,r;)), and thus

y=f(z) € {g € R"\ f(0B(i,4)) : deg(f, B(xi,1:),q) # 0}
At the same time, a similar argument using Lemma 3.1(iii) gives
y = f(z) € fT(2) CR"\{q € R"\ f(0B(x;,7)) : deg(f, B(x, 1), q) # 0},

which is a contradiction. O

APPENDIX A. PROOF OF LEMMA 2.6

Proof. 1t suffices to prove (2.9) for a = 0 and r = 1. In the case of general

a and r we can apply (2.9) for a = 0, r = 1 to the function
g9(x) == fla+rz) e WP(B(0,1))

and obtain (2.9) for general a and r by change of variables.
Since the function f(z) — fB(O D f(y) dy also belongs to W*?(B(0,1)) we
can assume without loss of generality that

f Fly)dy =0.
B(0,1)
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Thus by the Poincaré inequality it suffices to show that there exists a con-
stant C' = C'(n, s,p) > 0 such that

n—1-— 5p|f pl‘) (py)|p dpn 1 d%nfl ) d
(A.1) //2/§n1/sn1 |z — y|n—itsp (¥) (z)dp
< CHfHWéP B(0,1)) ;

note that we used polar coordinates to rewrite the integral.

We prove (A.1) by splitting the domain of the left-hand side integral and
estimating each piece. Each domain of integration is locally homeomorphic
to a Buclidean ball in R, which allows us to apply translation arguments
in the spirit of [2, Lemma 7.44]. Any local diffeomorphism between S*~! and
R*! will do, but we make this argument explicit by using stereographic
projection.

Step 1: To this end, define for each p € [0,1) the spherical cap H, :=
{z € S"! : z, < u}. We will show that for every p € [0,1) there exists a
constant C' = C(n, s, p) such that

1 nls|fpx> FEDP L i 2 e
/1/2/11/11 ’ Y1+ A" (y) A" (z) dp

1_{_“ 1+sp
<o( M) T

Throughout the proof we write B, _1(0, A) for any A > 0 as the ball in
R™! centered at 0 of radius A\. We next establish notation for the stere-
ographic projection ¢ : R*™1 — S§"1\ {(0,...,0,1)} to prove (A.2). De-
tails on the stereographic projection can be found in several places, for

instance [8, Appendix D.6]. We use the definition

211 2r, 1 |r]*—1
T+ z|2 714 |22 1+ |z]?

D@1, ) = (

so that we have the correspondence of domains

T
O(But(0,) = H,, where = 1+—“
—u

n—1
The formula for the Jacobian Jy(x) := (ﬁ) will be used throughout
in order to ensure that quantities such as Jy(z — y) and [Jy(z) — Jyu(y)]

remain bounded above and below uniformly for x and y in B,,_;(0, \), with

bounds depending only on n and \.



WEAK LIMITS OF FRACTIONAL SOBOLEV HOMEOMORPHISMS 17

To prove (A.2) we need to show that for every A € [1,00) and for every
ball B, (0, \) € R™!

1= |f(p¥(x)) — flpv(y)IP
(A.3) //Q/n 1(0,\)/n 1 ( [(x) —P(y)|ntrep
X Jw )Jw( )dydxdp ~OT,S,D )‘2+25prstp B(0,1)) -

We proceed using a technique found in [2, Lemma 7.44]. Let o € [1/2,1],
and integrate the inequality

(o) = Fob I Zp |f (po(2)) = flov(552))I7
+1f(ov(55)) = f(

with respect to o over the ball B(r, LLB=2WIy A [2,1] C R to get

[f (o () = flp(w)I”
1

e T AT — LA AN
P @) = P Jo—pietttaizst gy g V) T HOVEIP A

* [F(op(*54) = fpvo(y))IP do.

[(x) — P (y)| /{|a—p|gW}m[1/z,1]

Set for n € R*~!

T(n) = /{ » Fp(m) — Flow(EE)p do

z)—
— _Iw( )2 (y)l}ﬁ[1/271]

therefore

(A.4)
//2 " 5”/ (0,7) / (0.)) ’f|( x()x)—)iﬂ(y)(’” 1<+23|pr(1')=]¢(9) dydzdp

- T(x) +T(y)
=< n—1 sp/ / J ; d d d
h g X y)dydzrdp
p/1/2 B 1(0) B 10 [0() = U (y)|"FeP w(@) ()
=1+1I.

Now by change of variables and using the formula for J, as well as the

formula

_ 2|z —y|
(14 2 ) V2 (1 + [yl?)1/?




18 ARMIN SCHIKORRA AND JAMES M. SCOTT

which is valid for all z, y € R""!, we have

S S
1/2J Bu_1(0,0) J Bn-1(0,0) J{|o—p| <22 Wy A1 /2 1]

« ot - fouCp

O

¢ () -
Soddod
212 /B, 1< A {2zl 00l (e) 2z —2) 2210~}
(z)) =

pg T flo ¢>(|n)+)s|p Jy(2)Jy(22 — x) dzdz dodp

n—1—sp
n-—-rs p
~ 202 p)/2 //2 //2 /Bn L0,)) /{|2z 2| <IN [0 (@) = (2) [ > C(,2) |0 —p|}

@) — Fov)P
CoEo

2y 12
Gz, 2) = (M)

1+ |z?
Now, since |z| < A and |2z — z| < A the uniform bound
V1 + A2 holds, and so I can be majorized by
(A.5)

oo [ [ [ s
12 J1/2 By 2o m|<x}m e <>\>ﬁ}

o () = flop(2)))”
() = (2)[+eP

Finally, on the domain of integration in (A.5) the estimate
() — o (2)] < plp(x) = P (2)] + [(2)]lp — o]
< () = ()| + VI + X[ (z) = v (2)]
< 2\|¢(x) = (2)|

holds, and since p and ¢ are bounded away from zero

[ < OAZH2P / / / / gt
121728, 100 J {j2:— x|<)\}ﬂ W(z ()\>\\;7p\}

|[f (o (x)) — flop(z ))|
X p0(z) — 0w () Jy(x)Jy(z) dzdr dodp

2425p il U f(pY(x)) = flov(2))]P
= / / | / G (@) — o[
X Jy(x)Jyp(2) dzdedodp

— p
= C’(n7s,p))\2+25P/ / [#@) = F@)I” J<r ) dydx.
B(0,1) 4 B(0,1) |z — y|ep

Jy(x)Jy(y)do dy dzdp

Jy(2)Jy(2)G (2, 2)*T*P " dz dz do dp,

where

1'1i‘>\2 S G(.’I),Z) S

Jy(x)Jy(2)dzdzdodp.
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A similar estimate holds for the quantity II in (A.4). Therefore (A.3), and
thus (A.2), is proved.

Step 2: We conclude the proof. Split the integral on the left-hand side of
(A.l) via change of variables and symmetry as

n—1—s f X Y p - .
//2/Sn 1/§n 1 - p| |£_) |n (lf-s;3| dz 1( )d% l(l’)dp

1
:/ /(/.“+/’/ / .H+2/ / /.“
1/2 J Hy J Hy 1/2 Jsn=1\H, Js»—1\H, 1/2 Jsn—1\H, J Hy

=14+ 1T+ III.
Clearly by (A.2) with =0

(A.7) [ Znsp [f]lv)vsm(B(o,l)) :

Now, let Q : R"! — R"! be the matrix diag(1,1,...,1,—1). Setting
h(z) = Qx ) for any = € B1(0), a change of Varlables gives

h x p

Thus by (A 2) with =0 and by another Change of variables

P
I<C’/ / )| dy dx
B(0,1) J B(0, 1) |I - |n+8p

P
—C'/ / )‘ dydx.
B(0,1) J B(0,1) |x - |n+5p

For the last integral, we have

1 1
qug/ / (/.”+2/ / !/'”
1/2 J Hy s3\Ho J Ho 1/2 Jsn=1\H, ), J Ho

= III; + III, .
Using that Hy C Hy /o along with (A.2) for p=1/2,
(A

I, < / / / -0 = O g yn1) 4 s () dp
1/2 J Hy o H1/2 [z — |

< Ulwerso) -

Since dist(S"~1\ Hy /2, Hy) = C(n) > 0, we have that |z —y| > C(n) > 0
for all z € S*! \ Hy/y and for all y € Hy, and so the integral III, can be
estimated by

(A.8)

1
(A.IO) I, jn,s,p // /S L ’f(px)’p d%n_l(x) dp jn,S,p ”fHLp(B(O,l)) )
1/2 JSn—
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Combining (A.6) with estimates (A.7), (A.8), (A.9) and (A.10) gives (A.1).
U
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