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Abstract. Let Ω ⊂ Rn be an open set and fk ∈ W s,p(Ω;Rn) be a
sequence of homeomorphisms weakly converging to f ∈ W s,p(Ω;Rn). It
is known that if s = 1 and p > n−1 then f is injective almost everywhere
in the domain and the target. In this note we extend such results to the
case s ∈ (0, 1) and sp > n − 1. This in particular applies to Cs-Hölder
maps.

1. Introduction and main result

The goal of this note is to prove the following theorem:

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 2, be open and let f : Ω → Rn be a weak

W s,p-limit of Sobolev homeomorphisms fj ∈ W s,p(Ω;Rn) with sp > n − 1.

Then there is a representative f̂ and a set Γ ⊂ Rn of Hausdorff dimension at

most n−1
s

such that (f̂)−1(y) consists of only one point for every y ∈ f̂(Ω)\Γ.

For definitions we refer to the next section. An immediate corollary of

Theorem 1.1 and the embedding Cs ↪→ W s−ε,p
loc for any ε > 0 is the following

statement for Hölder maps.

Corollary 1.2. Let Ω ⊂ Rn, n ≥ 2 be open and let f ∈ Cs(Ω;Rn) be

the pointwise limit of a sequence of equibounded homeomorphisms fj ∈
Cs(Ω;Rn). If s > n

n−1
, then there is a set Γ ⊂ Rn of Hausdorff dimension

n−1
s

such that (f)−1(y) consists of only one point for every y ∈ f(Ω) \ Γ.

Observe that for s ≤ n−1
n

the above statements hold trivially.

This note is inspired by the recent work by Bouchala, Hencl, and Molchanova

[4] who proved a corresponding result for s = 1.

Theorem 1.3 (Bouchala, Hencl, Molchanova). Let f : Ω → Rn be a weak

limit of Sobolev homeomorphisms fj ∈ W 1,p(Ω;Rn) with p > n − 1. Then

there is a representative f̂ and a set Γ ⊂ Rn of Hausdorff dimension n− 1

such that (f̂)−1(y) consists of only one point for every y ∈ f̂(Ω) \ Γ.
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While Theorem 1.3 (and in turn our Theorem 1.1) follows an adaptation

of the arguments in the seminal work by Müller and Spector [11], Bouchala,

Hencl, and Molchanova [4] also provide an example of the limit case p =

n− 1, where a theorem such as Theorem 1.3 completely fails. Namely they

showed

Theorem 1.4 (Bouchala, Hencl, Molchanova). For n ≥ 3 there exists f :

[−1, 1]n → [−1, 1]n and a strong limit of Sobolev homeomorphisms fk ∈
W 1,n−1([−1, 1]n,Rn) with fk(x) = x on the boundary ∂[−1, 1]n and such

that there exists a set Γ ⊂ [−1, 1]n of positive Lebesgue measure and f−1(y)

is a nontrivial continuum for every y ∈ Γ.

As the authors of [4] mention, it may seem surprising that the Hausdorff

dimension of the critical set Γ seems to suddenly jump from n − 1 to n as

p changes from p > n − 1 to p = n − 1. This question served as one mo-

tivation to study the situation for fractional Sobolev spaces. With respect

to Theorem 1.1 we see that indeed the consideration of fractional Sobolev

space makes the “jump” in dimension of the singular set continuous: As

s ↓ n−1
n

the size of the dimension of the singular set Γ varies continuously

from n − 1 to n. It would be interesting to investigate the optimal frac-

tional Sobolev-regularity in the limiting examples by Bouchala, Hencl, and

Molchanova [4].

Let us stress that Theorem 1.1 follows a very similar argument as the

s = 1 proof of Theorem 1.3 in [4], which in turn is a streamlined argument

of known results and techniques from earlier works, see [3, 11, 12]. Indeed,

a crucial fact that is used for s = 1 is that on “good slices” ∂Br the fk

converge in W 1,p(∂Br), and so using Sobolev-Morrey embedding on these

n − 1-dimensional slices the fk in fact converge uniformly if p > n − 1. If

p = n− 1 this uniform convergence may fail.

The same is true if the fk converge in W
s,p(∂Br) for good slices ∂Br and

s ∈ (0, 1): if sp > n − 1 then the convergence is uniform on ∂Br, and if

sp = n− 1 it may not.

But somewhat surprisingly, a result such as Theorem 1.1 and in partic-

ular Corollary 1.2 seems to be unknown to some experts, and the authors

thought it important to be available in the literature.

We try to keep this note as self-contained as possible. In Section 2 we

gather the main results on Sobolev spaces that we work with. In Section 3 we

discuss the needed notions of degree, and show monotonicity of the degree

for limits of homeomorphisms. In Section 4, we collect the corollaries for
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the topological image from the previous section. In Section 5 we prove our

main theorem.

As a last statement of this introduction, let us state an immediate corol-

lary of Theorem 1.1 in the realm of Besov- and Triebel-Lizorkin spaces

(which we will not pursue further here).

Corollary 1.5. Let Ω ⊂ Rn, n ≥ 2, be open and let f : Ω → Rn either

• be a weak F s,p
q -limit of Sobolev homeomorphisms fj ∈ F s,p

q (Ω;Rn)

with sp > n− 1 and q ∈ [1,∞].

• f : Ω → Rn be a weak Bs,p
q -limit of Sobolev homeomorphisms fj ∈

F s,p
q (Ω;Rn) with sp > n− 1 and q ∈ [1, p].

Then there is a representative f̂ and a set Γ ⊂ Rn of Hausdorff dimension at

most n−1
s

such that (f̂)−1(y) consists of only one point for every y ∈ f̂(Ω)\Γ.

These statements follow from the embedding F s,p
q ↪→ F t,p

p = W t,p for any

0 < t < s and q ∈ [1,∞], and Bs,p
q ↪→ Bs,p

p = F s,p
p = W s,p for any q ≤ p.

Cf. [14].

2. Preliminaries on Sobolev spaces, capacities etc.

In this section we establish notation. For s ∈ (0, 1) and p ∈ (1,∞)

we denote the classes of functions u : Ω → Rn for which the Gagliardo

seminorm

(2.1) [u]pW s,p(Ω) :=

�
Ω

�
Ω

|u(x)− u(y)|p
|x− y|n+sp dy dx

is finite as the fractional Sobolev spacesW s,p(Ω;Rn), with norm ‖u‖pW s,p(Ω) :=

‖u‖pLp(Ω) + [u]pW s,p(Ω).

We denote the n-dimensional Lebesgue measure of a set A ⊂ Rn by

Ln(A), and for β > 0 we denote the β-dimensional Hausdorff measure by

H β(A). We use the convention A - B whenever there exists a constant C

such that A ≤ CB.

For a function f continuous on a compact set A, we define the oscillation

oscAf := sup
x,y∈A

(
f(x)− f(y)

)
= diam f(A) .

We denote uniform convergence by ⇒. So “fk ⇒ f” means “fk converges

uniformly to f .”

Define the precise representative of a measurable function f by

(2.2) f ∗(x) :=

{
lim
r→0+

�
Br(x)

f(y) dy , when the limit exists,

0 , otherwise.
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Many properties of the precise representative for functions in the Bessel

potential spaces are accessible in the literature. The corresponding state-

ments can then be obtained for fractional Sobolev functions via embedding

theorems for the Triebel-Lizorkin spaces F s
p,q; see [14]. For completeness, we

gather here a summary of the statements we will need.

We denote the Bessel potential spaces Hs,p by

(2.3)

Hs,p(Rn;Rn) :=
{
f : Rn → Rn : ‖F−1((1 + |ξ|2)s/2(Ff)(ξ))‖Lp(Rn) <∞

}
,

where F and F−1 denote the Fourier transform and its inverse respectively.

The following is a corollary of a classical embedding theorem for the spaces

F s
p,q [14, Section 2.2.3], [15, Theorem 2.14, Remark 2.4], which we will use

multiple times throughout the work for various parameters of integrability,

differentiability, and dimension. We are additionally using the identifications

F s
p,2 = Hs,p and F s

p,p = W s,p.

Theorem 2.1. Let N ≥ 1. Let p ∈ (1,∞) and s ∈ (0, 1), and suppose that

t ∈ (0, 1) and pt ∈ (1,∞) satisfy

s− N

p
< t < s , pt :=

Np

N − (s− t)p
.

Then

(2.4) W s,p(RN) ↪→ H t,pt(RN) , or [f ]Ht,pt (RN ) - [f ]W s,p(RN ) .

Note that if we write the definition of pt as

sp−N =
p

pt
(tpt −N) ,(2.5)

then it becomes clear that if sp > N then tpt > N for any t ∈ (0, s).

With this embedding we can prove some useful properties of the precise

representative:

Proposition 2.2. Suppose f ∈ W s,p(Rn;Rn) with sp ∈ [1, n). Let p∗ =
np
n−sp . Define

(2.6) Af := {x ∈ Rn : x is not a Lebesgue point of f} .

Then the following hold:

(i) dimH (Af ) ≤ n− sp.

(ii) For any x ∈ Rn \ Af ,

(2.7) lim
r→0+

 
Br(x)

|f(y)− f ∗(x)|q dy = 0 ,

for every q ∈ [1, p∗).



WEAK LIMITS OF FRACTIONAL SOBOLEV HOMEOMORPHISMS 5

(iii) If ϕε is the family of standard mollifiers then

ϕε ∗ f(x) → f ∗(x)

for each x ∈ Ω \ Af .

Proof. Let ε > 0 be arbitrary; we will show that

(2.8) H
n−sp+ε(Af ) = 0 ,

which will imply (i). We use Theorem 2.1 with N = n; choose t ∈ (0, s) so

that

n− tpt = n− sp+ ε ;

this is possible since by definition n − tpt > n − sp for sp ∈ [1, n) and for

any t ∈ (0, s). Then f ∈ H t,pt(Rn;Rn) and so [1, Proposition 6.1.2, Theorem

5.1.13] implies H β(Af ) = 0 for all β ≥ n − tpt = n − sp + ε, and so (2.8)

is established.

To see (ii), use Theorem 2.1 with N = n again; note that any q ∈ (p, p∗)

can be written q = pt for some t ∈ (0, s). Then f ∈ H t,pt(Rn;Rn) for every

t ∈ (0, s), and so [1, Theorem 6.2.1] applies, which is precisely (ii). We

obtain (2.7) for the range q ∈ [1, p] using Hölder’s inequality.

For a proof of (iii) see [6, Theorem 4.1, (iv)]. �

Lemma 2.3. Suppose f ∈ W s,p(Rn;Rn) with sp ∈ [1, n), and suppose

f ∗(x) ∈ E for every x ∈ Rn \ M , where Ln(M) = 0 and E ⊂ Rn is a

closed set. Then f ∗(x) ∈ E for every x ∈ Rn \ Af .

Proof. Suppose to the contrary, that f ∗(x) ∈ Rn \ E for some x ∈ Rn \Af .
Then there exists ε > 0 such that B(f ∗(x), ε) ⊂ Rn \ E. By assumption

that f ∗(y) ∈ E for y ∈ Rn \M 
B(x,r)

|f(y)− f ∗(x)|p dy =

 
B(x,r)\M

|f(y)− f ∗(x)|p dy ≥ εp

uniformly as r → 0, which is a contradiction since f ∗ satisfies (2.7) for every

x ∈ Rn \ Af . �

We will need information on the Hausdorff dimension of images of spheres

embedded in Rn. The following is a special case of such a result in [9] for

Bessel potential functions, which will then apply to functions in W s,p via

Theorem 2.1:

Proposition 2.4 ( [9], Theorem 1.1). Let N , K ∈ N, t ∈ (0, 1) and q ∈
(1,∞) with tq > N and α ∈ (0, N ]. Define β := αq

tq−N+α
. Suppose g ∈

H t,q(RN ;RK) is a continuous representative and A ⊂ RN is a set with

dimH (A) ≤ α. Then dimH (g(A)) ≤ β.
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We then have as a corollary

Theorem 2.5. Let n ≥ 2, s ∈ (0, 1), and p > 1 with n − 1 < sp < n. Let

r > 0, a ∈ Rn with ∂B ≡ ∂B(a, r) and g ∈ W s,p(∂B;Rn) be a continuous

representative. Then dimH (g(∂B)) ≤ n−1
s
.

Proof. It suffices to show that

H
n−1
s

+ε(g(∂B)) = 0

for arbitrary ε > 0 small. Cover ∂B by sets Si diffeomorphic to Rn−1 (2n

hemispheres will do), and let ψi : R
n−1 → Si be the corresponding diffeo-

morphisms. So ∂B ⊂ ⋃M
i=1 Si, and the functions

gi := g ◦ ψi

belong to W s,p(Rn−1;Rn), and hence belong to H t,pt(Rn−1;Rn) by Theo-

rem 2.1 for any t ∈ (s− n−1
p
, s) and for pt =

(n−1)p
(n−1)−(s−t)p .

Applying Proposition 2.4 to each gi with q = pt and N = α = n−1 gives

H
γ(gi(R

n−1)) = 0 , for every γ >
n− 1

t
, i = {1, . . . ,M} .

Choose t < s close enough to s so that n−1
t
< n−1

s
+ ε. Then

H
n−1
s

+ε(g(∂B)) ≤
M∑

i=1

H
n−1
s

+ε(g(Si)) =
M∑

i=1

H
n−1
s

+ε(gi(R
n−1)) = 0 ,

as desired. �

Throughout this note we additionally require control of fractional Sobolev

functions on spheres in Rn. In the case s = 1, this control is obtained

straightforwardly; for example, using Fubini’s theorem for a smooth func-

tion f on B(a, r)� r

0

�
∂B(a,ρ)

|∇̃f(ρω)|p dH
n−1(w) dρ ≤

�
B(a,r)

|∇f(x)|p dx ,

where ∇̃f denotes the tangential derivative of f |∂B(a,ρ). The following Besov-

type inequality serves as a fractional analogue:

Lemma 2.6. Let B(a, r) ⊂ Rn, with p ∈ [1,∞) and s ∈ (0, 1). Then there

exists a constant C = C(n, s, p) such that for every f ∈ W s,p(B(a, r);Rn)

(2.9)

� r

r/2

�
∂B(a,ρ)

�
∂B(a,ρ)

|f(x)− f(y)|p
|x− y|n−1+sp

dH
n−1(y) dH

n−1(x) dρ

≤ C[f ]pW s,p(B(a,r)) .
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These types of estimates are well-known to experts (see for example

[5]), but for the sake of completeness we have included the proof in the

appendix, see Appendix A. The following corollary to the lemma reveals

finer properties of Sobolev functions:

Corollary 2.7. Let 1 < sp < n, let x0 ∈ Ω ⊂ Rn, and suppose f ∈
W s,p(Ω;Rn). Then there exists a set Nx0 ⊂ (0, dist(x0, ∂Ω)) with L 1(Nx0) =

0 such that for every r ∈ (0, dist(x0, ∂Ω)) \ Nx0 the function f ∗|∂B(x0,r)

belongs toW s,p(∂B(x0, r);R
n), where f ∗ is the precise representative defined

in (2.2). If in addition sp > n− 1 then f ∗|∂B(x0,r) is continuous. In general

the singular set depends on x0.

Proof. For ε > 0 let ϕε be the standard mollifier, and let f ε := ϕε ∗ f ∗.

Then f ε converges to f ∗ in W s,p(B(x0, r)) for any r ∈ (0, dist(x0, ∂Ω)), and

by Lemma 2.6� r

r/2

[f ε − f ∗]pW s,p(∂B(x0,ρ))
dρ ≤ C[f ε − f ∗]pW s,p(B(x0,r))

→ 0 as ε→ 0 .

Thus for L 1-almost every r ∈ (0, dist(x0, ∂Ω)) we have that the smooth

functions f ε|∂B(x0,r) converge to a function gr ∈ W s,p(∂B(x0, r)). On the

other hand, Proposition 2.2 applies to f since we can find a Sobolev exten-

sion domain K satisfying B(x0, r) ⊂ K ⊂ Ω. Thus since sp > 1 we have

from Proposition 2.2(iii) that for every r ∈ (0, dist(x0, ∂Ω))

f ε(x) → f ∗(x) on B(x0, r) \ Af , where H
n−1(Af ) = 0 .

Therefore for L 1-almost every r ∈ (0, dist(x0, ∂Ω)) the functions f
ε|∂B(x0,r)(x)

converge to f ∗(x) for H n−1-almost every x ∈ ∂B(x0, r). So for L 1-almost

every r ∈ (0, dist(x0, ∂Ω)) the function f
∗|∂B(x0,r) agrees with gr up to a set

of H n−1-measure zero, hence f ∗|∂B(x0,r) belongs to W
s,p(∂B(x0, r)).

Now if sp > n − 1, then f ε → gr locally uniformly on ∂B(x0, r) by the

Sobolev compact embedding theorem (see for example [14, Theorem 2, pg.

82], [16, Lemma 41.4]), and additionally H 1(Af ) = 0. Therefore for L 1-

almost every r ∈ (0, dist(x0, ∂Ω)) the sequence f
ε(x) converges to f ∗(x) for

every x ∈ ∂B(x0, r), and so f ∗(x) agrees with the continuous function gr(x)

for every x ∈ ∂B(x0, r).

�

The following is an adaptation of [10, Proposition 3.1], which in turn is

an extension of an argument in [17].

Proposition 2.8. Let Ω ⊂ Rn, s ∈ (0, 1) and p ∈ (1,∞) with n− 1 < sp <

n. Assume that f ∈ W s,p(Ω;Rn) satisfies the following: for any x0 ∈ Ω
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there exists a set Nx0 satisfying L 1(Nx0) = 0 such that for all radii r, ρ ∈
(0, dist(x0, ∂Ω))\Nx0 with r < ρ, there holds for some Λ ≥ 1 independent of

r, ρ and x0

osc∂B(x0,r)f
∗ ≤ Λosc∂B(x0,ρ)f

∗ ,

where f ∗ is the continuous representative of f defined in (2.2). Then there

exists a singular set Σ ⊂ Ω with H (n−sp)+(Σ) = 0 such that f ∗ : Ω\Σ → Rn

is continuous.

Proof. Without loss of generality assume sp < n. The case n = sp can be

found in [10, Proposition 4.1.], and n < sp is obvious by Morrey-Sobolev

embedding; see [13].

By Corollary 2.7 for any y0 and R > 0 with B(y0, R) ⊂ Ω and L 1-almost

any ρ such that r < ρ < R, the function f ∗|∂B(y0,ρ) belongs toW
s,p(B(y0, ρ)).

As in [10, Proposition 3.1], by Morrey-Sobolev embedding
(
osc∂B(y0,r)f

∗)p ≤ Λ
(
osc∂B(y0,ρ)f

∗)p

≤ Cρsp−(n−1)

�
∂B(y0,ρ)

�
∂B(y0,ρ)

|f ∗(x)− f ∗(y)|p
|x− y|(n−1)+sp

dx dy .

Multiplying by ρ−sp+(n−1) and integrating in ρ we obtain using Lemma 2.6

c(s, p)
(
Rn−sp − rn−sp

) (
osc∂B(y0,r)f

∗)p ≤ [f ∗]pW s,p(B(y0,R)) .

In particular we have

(2.10)
(
osc∂B(y0,r)f

∗)p ≤ Rsp−n[f ∗]pW s,p(B(y0,R))

for any y0 ∈ Ω, R ∈ (0, dist(y0, ∂Ω)) and for every r ∈ (0, R/2) \Ny0 .

Let

(2.11) X :=

{
x ∈ Ω : lim sup

R→0+
Rsp−n[f ∗]pW s,p(B(x,R)) > 0

}
.

By Frostman’s Lemma (see [18, Corollary 3.2.3]) we have that H (n−sp)+(X) =

0.

Now we may assume without loss of generality that for any x, y ∈ Ω

there exists y0 ∈ Qn∩Ω and r ∈ (0, dist(y0, ∂Ω)) such that x, y ∈ ∂B(y0, r).

Now set

Y :=
⋃

y0∈Qn

⋃

r∈Ny0

∂B(y0, r).

As a countable union of Ln-measure zero sets, Y is an Ln-measure zero set.

Define

(2.12) Σ := Af ∪X
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where Af is the set of non-Lebesgue points of f as defined in Proposition 2.2.

We have

H(n−sp)+(Σ) = 0 .

Let x0 ∈ Ω\Σ and fix ε > 0. Since x0 6∈ X there must be some R =

R(x0, ε) > 0 such that

Rsp−n[f ∗]pW s,p(B(x0,R)) < ε.

Consequently, for any y0 ∈ B(x0, R/2),

(R/2)sp−n[f ∗]pW s,p(B(y0,R/2))
< Cs,p,nε.

Thus, from (2.10)

(2.13) sup
r∈(0,R/2)\Ny0

osc∂B(y0,r)f
∗ < Cs,p,nε ∀y0 ∈ B(x0, R/2) .

Now let x, y ∈ B(x0, R/8) \ Y . Then there exist y0 ∈ Qn ∩ B(x0, R/2)

and r ∈ (0, R/2) \Ny0 such that x, y ∈ ∂B(y0, r). From (2.13) we then have

|f ∗(x)− f ∗(y)| ≤ osc∂B(y0,r)f
∗ < Cs,p,nε ∀x, y ∈ B(x0, R/8)\Y ,

that is,

sup
x,y∈B(x0,R/8)\Y

|f ∗(x)− f ∗(y)| ≤ Cs,p,nε.

Therefore f ∗ is continuous in Ω\(Σ ∪ Y ). However Σ ∪ Y is too large.

To remedy this, we use the definition of f ∗ in Ω\Af . For every x,y ∈
B(x0, R/8)\Σ ⊂ B(x0, R/8)\Af there exists a rx, ry ∈ (0, R

8
) such that

|f ∗(x)− f ∗(y)| ≤ε+
∣∣∣∣∣

 
B(X,rx)

f(z) dz −
 
B(y,ry)

f(w) dw

∣∣∣∣∣

≤ε+
 
B(x,rx)\Y

 
B(y,ry)\Y

|f ∗(z)− f ∗(w)| dw dz

≤ε+ sup
z,w∈B(x0,R/8)\Y

|f ∗(z)− f ∗(w)|

≤(Cs,p,n + 1)ε .

�

3. Degree and Monotonicity estimates

Let B = B(x0, r) ⊂ Rn and let f : ∂B → Rn be continuous. For y 6∈
f(∂B) define the degree

deg(f, ∂B, y) := degSn−1(ψ)

where

ψ :=
f
(
x−x0
r

)
− y∣∣f

(
x−x0
r

)
− y

∣∣ : S
n−1 → Sn−1

and degSn−1 computes the homotopy group of ψ in πn−1(S
n−1) = Z.
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The main topological ingredient is the following lemma (which is well-

known). Items (i) and (iii) are essentially a rewritten version of [4, Lemma

5.1], and (ii) is a consequence of (i) motivated by [7, 10, 17].

Lemma 3.1. Let Ω ⊂ Rn be an open set.

Assume that B1 := B(x1, r1) and B2 := B(x2, r2) ⊂⊂ Ω are two open

balls and f, fk : ∂B1 ∪ ∂B2 → Rn be continuous maps, k ∈ N such that fk

uniformly converges to f on ∂B1 ∪ ∂B2.

If for any k ∈ N, the map fk can be extended to a homeomorphism

Fk : Ω → Rn then the following hold:

(i) If B1 ⊂ B2 then

f(∂B1) ∪ {y ∈ Rn \ f(∂B1) : deg(f, ∂B1, y) 6= 0}
⊂ f(∂B2) ∪ {y ∈ Rn \ f(∂B2) : deg(f, ∂B2, y) 6= 0}

(ii) If B1 ⊂ B2 then we have monotonicity of oscillation,

osc∂B1f ≤ 8 osc∂B2f

and

diam {y ∈ Rn \ f(∂B1) : deg(f, ∂B1, y) 6= 0} ≤ 8 osc∂B2f.

(iii) If B1 ∩ B2 = ∅ then {y ∈ Rn\f(∂B1) : deg(f, ∂B1, y) 6= 0}
and {y ∈ Rn\f(∂B2) : deg(f, ∂B2, y) 6= 0} have empty intersection.

Proof. To prove (i), assume B1 ⊂ B2 and let

y ∈ f(∂B1) ∪ {y ∈ Rn \ f(∂B1) : deg(f, ∂B1, y) 6= 0} .

If y ∈ f(∂B2) there is nothing to show, so we may assume that y 6∈ f(∂B2).

By uniform convergence y 6∈ fk(∂B2) for all large k.

We use a contradiction argument; assume that deg(f, ∂B2, y) = 0. By the

uniform convergence and since y 6∈ fk(∂B2) we have that deg(fk, ∂B2, y) = 0

for large k.

Let Fk : Ω → Rn be a homeomorphism such that fk = Fk

∣∣∣
∂B2

. Then

deg(fk, ∂B2, y) = 0 implies that y 6∈ Fk(B2). Since B1 ⊂ B2 this implies

that y 6∈ Fk(B1) and thus

deg(fk, ∂B1, y) = 0 for large k .

This leads to a contradiction as k → ∞ unless y ∈ f(∂B1). However since

Fk : B2 → Rn is a homeomorphism, it is an open map so if y ∈ (∂B1)\Fk(B2)

there must be qk ∈ ∂B2 such that

dist(y, Fk(B2)) = |y − fk(qk)|.
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Since y 6∈ f(∂B2), we conclude via uniform convergence that

lim inf
k→∞

dist(y, Fk(B2)) > 0

and thus

dist(y, f(∂B1)) = lim inf
k→∞

dist(y, fk(∂B1)) ≥ lim inf
k→∞

dist(y, Fk(B2)) > 0,

consequently y 6∈ f(∂B1).

To prove (ii), we have that

f(∂B1) ⊂ f(∂B2) ∪ {y ∈ Rn \ f(∂B2) : deg(f, ∂B2, y) 6= 0} .

LetD := diam(f(∂B2)) and pick any x0 ∈ ∂B2. Then f(∂B2) ⊂ B(f(x0), 3D).

Moreover, let π : Rn → B(f(x0), 4D) be Lipschitz such that π
∣∣∣
B(f(x0),3D)

=

id. Since the degree depends only on the boundary values, for any y 6∈
f(∂B2),

deg(f, ∂B2, y) = deg(π ◦ f, ∂B2, y).

Since a necessary condition for the degree to be nonzero in a point y is that

y belongs to the image, we conclude that

{y ∈ Rn \ f(∂B2) : deg(f, ∂B2, y) 6= 0} ⊂ B(f(x0), 4D).

In conclusion, we have shown

f(∂B1) ⊂ B(f(x0), 4D)

and thus

diam(f(∂B1)) ≤ 8D = 8diam(f(∂B2)).

For (iii), assume that y ∈ Rn\ (f(∂B1) ∪ f(∂B2)) and

deg(f, ∂B1, y) 6= 0, deg(f, ∂B2, y) 6= 0.

By uniform convergence, y ∈ Rn\ (fk(∂B1) ∪ fk(∂B2)) for eventually all

k ∈ N, and

deg(fk, ∂B1, y) 6= 0, deg(fk, ∂B2, y) 6= 0.

This means that y ∈ Fk(B1) ∩ Fk(B2) which is a contradiction to Fk being

a homeomorphism.

�

4. Corollaries for Limits of Homeomorphisms

We need the following result, which is a fractional analogue of [11,

Lemma 2.9]:
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Lemma 4.1. Let n ≥ 2, and let p ∈ (1,∞) and s ∈ (0, 1). Suppose that

Ω ⊂ Rn is a bounded domain, and let

(4.1) fk ⇀ f in W s,p(Ω;Rn) .

Let x0 ∈ Ω, and define rx0 := dist(x0, ∂Ω). Then there exists a set Nx0 ⊂
R with L 1(Nx0) = 0 such that for any r ∈ (0, rx0) \ Nx0 there exists a

subsequence fk such that

(4.2) f ∗
k ⇀ f ∗ in W s,p(∂B(x0, r);R

n) .

If sp > n− 1 then

(4.3) f ∗
k ⇒ f ∗ on ∂B(x0, r) .

In general the subsequence depends on r.

Proof. First, by compact embedding there is a subsequence fk → f in

Lp(B(x0, rx0);R
n) and so Fubini’s theorem implies

(4.4)

f ∗
k → f ∗ in Lp(∂B(x0, r);R

n) for every r ∈ (0, rx0) \N1 with L
1(N1) = 0 .

Next, define

(4.5) Φk(r) :=

�
∂B(x0,r)

�
∂B(x0,r)

|f ∗
k (x)− f ∗

k (y)|p
|x− y|n−1+sp

dH
n−1(y) dH

n−1(x) ,

with

(4.6) Φ(r) := lim inf
k→∞

Φk(r) .

Then by Fatou’s Lemma and by Lemma 2.6� r

r/2

Φ(r) dr ≤ lim inf
k→∞

� r

r/2

Φk(r) dr ≤ lim inf
j→∞

[f ∗
k ]
p
W s,p(B(x0,r))

<∞

for every r ∈ (0, rx0). Define N2 := {r ∈ (0, rx0) : Φ(r) = ∞}, and define

Nx0 := N1 ∪N2; note L 1(Nx0) = 0. Then let r ∈ (0, rx0) \Nx0 , and choose

a subsequence (not relabeled) satisfying

Φ(r) = lim
k→∞

Φk(r) .

Then f ∗
k → f ∗ strongly in Lp(∂B(x0, r);R

n) and limk→∞[f ∗
k ]W s,p(∂B(x0,r)) <

∞, and so (4.2) follows.

In the event that sp > n − 1 the uniform convergence follows from the

compact Sobolev embedding theorem. �

The following is a corollary of the Sobolev compact embedding theorem,

Lemma 3.1 and Proposition 2.8:
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Corollary 4.2. Let fk ∈ W s,p(Ω;Rn) be a sequence of homeomorphisms

weakly converging in W s,p(Ω;Rn) to f . If sp > n − 1 there exists a set

Σ ⊂ Ω with H n−sp(Σ) = 0 such that

(i) f ∗ : Ω\Σ → Rn is continuous, and

(ii) The set {f ∗(x)} coincides with the topological image (f ∗)T (x) for

every x ∈ Ω\Σ, where (f ∗)T (x) is defined as

(f ∗)T (x) :=
⋂

r∈(0,rx)\Nx

f ∗(∂B(x, r)) ∪ {y ∈ Rn \ f ∗(∂B(x, r)) : deg(f ∗, B(x, r), y) 6= 0} ,

and rx and Nx have been defined in Lemma 4.1.

Proof. By Lemma 4.1 and Corollary 2.7, the assumptions of Lemma 3.1 are

satisfied for every x1 and x2 ∈ Ω and for almost every r1 ∈ (0, rx1)\Nx1 and

r2 ∈ (0, rx2) \ Nx2 . It follows that the assumptions of Proposition 2.8 are

satisfied, and so f ∗ is continuous on a H n−sp-null set Σ; see (2.6), (2.11)

and (2.12) for the definition. Thus (i) is proven.

To prove (ii) it suffices to show that

f ∗(x) ∈ (f ∗)T (x) for every x ∈ Ω \ Σ ,(a)

The diameter of the set (f ∗)T (x) is zero for every x ∈ Ω \ Σ .(b)

To see (a) we start by proving the following stronger statement:

For every x0 ∈ Ω and r ∈ (0, rx0) \Nx0 ,

f ∗(x) ∈ f ∗(∂B(x0, r)) ∪ {y ∈ Rn \ f ∗(∂B(x0, r)) : deg(f ∗, B(x0, r), y) 6= 0}
for every x ∈ B(x0, r) \ Σ .

(a’)

Then (a) follows easily from (a’) by choosing x0 ∈ Ω \Σ. By definition of Σ

and by Lemma 2.3 it in turn suffices to show that

(a”)
There exists a a set M with L

n(M) = 0 such that

for every x0 ∈ Ω and r ∈ (0, rx0) \Nx0 ,

f ∗(x) ∈ f ∗(∂B(x0, r)) ∪ {y ∈ Rn \ f ∗(∂B(x0, r)) : deg(f
∗, B(x0, r), y) 6= 0}

for every x ∈ B(x0, r) \M .

Let δ > 0 be arbitrary. Then by the Sobolev compact embedding theo-

rem and by Egorov’s theorem there exists a subsequence (not relabeled)

fk converging uniformly to f ∗ on B(x0, r) \ Mδ with L n(Mδ) < δ. Now

let x ∈ Ω \ Mδ. It suffices to show that if f ∗(x) /∈ f ∗(∂B(x0, r)) then

deg(f ∗, B(x0, r), f
∗(x)) 6= 0. Since fk ⇒ f ∗ on ∂B(x0, r), f

∗(x) /∈ fk(∂B(x, r))

for all k sufficiently large. So there exists ε > 0 such that B(f ∗(x), ε) does



14 ARMIN SCHIKORRA AND JAMES M. SCOTT

not intersect f ∗(∂B(x0, r)) or fk(∂B(x0, r)) for k sufficiently large. Then

since the fk are homeomorphisms, it must be that deg(fk, ∂B(x0, r), p) is a

nonzero constant for all k sufficiently large and for all p ∈ B(f ∗(x), ε). In

addition, fk ⇒ f ∗ on B(x0, r) \Mδ so fk(x) ∈ B(f ∗(x), ε) for k sufficiently

large, uniformly in x. Thus the continuity of the degree yields

deg(f ∗, B(x0, r), f
∗(x)) = lim

k→∞
deg(fk, B(x0, r), fk(x)) .

Since deg(fk, B(x0, r), fk(x)) is a nonzero constant for all k sufficiently large,

we have proved that

For every x0 ∈ Ω and r ∈ (0, rx0) \Nx0 ,

f ∗(x) ∈ f ∗(∂B(x0, r)) ∪ {y ∈ Rn \ f ∗(∂B(x0, r)) : deg(f ∗, B(x0, r), y) 6= 0}
for every x ∈ B(x0, r) \Mδ with L

n(Mδ) < δ .

Since δ > 0 is arbitrary (a”) is proved.

To see (b), let x0 ∈ Ω \Σ, and let ε > 0. Then by definition of the set X

there exists R = R(x0, ε) ∈ (0, rx0) such that

Rsp−n[f ∗]W s,p(B(x0,R)) < ε .

So by Lemma 3.1(ii) and (2.10)

diam(f ∗)T (x0) ≤ diam
(
f ∗(∂B(x0, r)) ∪ {y : deg(f ∗, B(x0, r), y) 6= 0}

)

<Cε

for every r ∈ (0, R/4)\Nx0 . Therefore by definition diam(f ∗)T (x0) < ε. The

proof is complete.

Remark 4.3. We can define a representative f̂ of f as

(4.7) f̂(x) :=

{
f ∗(x) , x ∈ Ω \ Σ ,
any element of fT (x) , otherwise,

Then f̂ agrees with f ∗ everywhere outside Σ, and f̂ has the added property

that f̂(x) ∈ (f̂)T (x) for every x ∈ Ω.

�

5. Proof of Theorem 1.1

Proof of Theorem 1.1. We proceed identically to [4]. Assume that f = f̂ .

We argue by contradiction; suppose that there is a δ > 0 such that the set

(5.1) Γ :=
{
y ∈ Rn : diam(f−1({y})) > 0

}

satisfies H
n−1
s

+δ(Γ) > 0. Then there exists K ∈ N such that the set

(5.2) ΓK :=

{
y ∈ Rn : diam(f−1({y})) > 1

K

}
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satisfies H
n−1
s

+δ(ΓK) > 0, since F =
⋃
k∈N Γk. For each x there exists

r < 1
2K

such that f |∂B(x,r) ∈ W s,p(∂B(x, r);Rn) ∩ C0(∂B(x, r);Rn) by

Lemma 4.1. Then choosing a covering of Ω with such a collection B :=

(B(xi, ri))
∞
i=1, by Theorem 2.5 we have dimH (f(∂B(xi, ri))) < n−1

s
, so

H
n−1
s

+δ(f(∂B(xi, ri))) = 0. Therefore, the set

(5.3) E :=
∞⋃

i=1

f(∂B(xi, ri))

satisfies H
n−1
s

+δ(E) = 0. We will show that ΓK ⊂ E, which contradicts the

statement H
n−1
s

+δ(ΓK) > 0.

Assume y ∈ ΓK \ E. Then there must exist z1 and z2 in Ω with f(z1) =

f(z2) = y, with dist(z1, z2) >
1
K
. Fix an element B(xi, ri) from the collection

B with z1 ∈ B(xi, ri) and z2 /∈ B(xi, ri). Combining Lemma 3.1(i) with the

fact that

f(x)∈ fT (x) ⊂ f(∂B(x, r))∪{q ∈ Rn\f(∂B(x, r)) : deg(f, ∂B(x, r), q) 6= 0}

for all x ∈ Ω and for r ∈ (0, dist(x, ∂Ω)) \Nx, we get

y = f(z1) ∈ f(∂B(xi, ri))∪{q ∈ Rn\f(∂B(xi, ri)) : deg(f, B(xi, ri), q) 6= 0}.

However y /∈ E so y /∈ f(∂B(xi, ri)), and thus

y = f(z1) ∈ {q ∈ Rn \ f(∂B(xi, ri)) : deg(f, B(xi, ri), q) 6= 0} .

At the same time, a similar argument using Lemma 3.1(iii) gives

y = f(z2) ∈ fT (z2) ⊂ Rn \{q ∈ Rn \f(∂B(xi, ri)) : deg(f, B(xi, ri), q) 6= 0},

which is a contradiction. �

Appendix A. Proof of Lemma 2.6

Proof. It suffices to prove (2.9) for a = 0 and r = 1. In the case of general

a and r we can apply (2.9) for a = 0, r = 1 to the function

g(x) := f(a+ rx) ∈ W s,p(B(0, 1))

and obtain (2.9) for general a and r by change of variables.

Since the function f(x)−
�
B(0,1)

f(y) dy also belongs to W s,p(B(0, 1)) we

can assume without loss of generality that 
B(0,1)

f(y) dy = 0 .



16 ARMIN SCHIKORRA AND JAMES M. SCOTT

Thus by the Poincaré inequality it suffices to show that there exists a con-

stant C = C(n, s, p) > 0 such that

� 1

1/2

�
Sn−1

�
Sn−1

ρn−1−sp |f(ρx)− f(ρy)|p
|x− y|n−1+sp

dH
n−1(y) dH

n−1(x) dρ

≤ C ‖f‖pW s,p(B(0,1)) ;

(A.1)

note that we used polar coordinates to rewrite the integral.

We prove (A.1) by splitting the domain of the left-hand side integral and

estimating each piece. Each domain of integration is locally homeomorphic

to a Euclidean ball in Rn−1, which allows us to apply translation arguments

in the spirit of [2, Lemma 7.44]. Any local diffeomorphism between Sn−1 and

Rn−1 will do, but we make this argument explicit by using stereographic

projection.

Step 1: To this end, define for each µ ∈ [0, 1) the spherical cap Hµ :=

{x ∈ Sn−1 : xn < µ}. We will show that for every µ ∈ [0, 1) there exists a

constant C = C(n, s, p) such that

� 1

1/2

�
Hµ

�
Hµ

ρn−1−sp |f(ρx)− f(ρy)|p
|x− y|n−1+sp

dH
n−1(y) dH

n−1(x) dρ

≤ C

(
1 + µ

1− µ

)1+sp

‖f‖pW s,p(B(0,1)) .

(A.2)

Throughout the proof we write Bn−1(0, λ) for any λ > 0 as the ball in

Rn−1 centered at 0 of radius λ. We next establish notation for the stere-

ographic projection ψ : Rn−1 → Sn−1 \ {(0, . . . , 0, 1)} to prove (A.2). De-

tails on the stereographic projection can be found in several places, for

instance [8, Appendix D.6]. We use the definition

ψ(x1, . . . , xn−1) :=

(
2x1

1 + |x|2 , . . . ,
2xn−1

1 + |x|2 ,
|x|2 − 1

1 + |x|2
)

so that we have the correspondence of domains

ψ(Bn−1(0, λ)) = Hµ , where λ =

√
1 + µ

1− µ
.

The formula for the Jacobian Jψ(x) :=
(

2
1+|x|2

)n−1

will be used throughout

in order to ensure that quantities such as Jψ(x − y) and |Jψ(x) − Jψ(y)|
remain bounded above and below uniformly for x and y in Bn−1(0, λ), with

bounds depending only on n and λ.
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To prove (A.2) we need to show that for every λ ∈ [1,∞) and for every

ball Bn−1(0, λ) ⊂ Rn−1

� 1

1/2

�
Bn−1(0,λ)

�
Bn−1(0,λ)

ρn−1−sp |f(ρψ(x))− f(ρψ(y))|p
|ψ(x)− ψ(y)|n−1+sp

× Jψ(x)Jψ(y) dy dx dρ -n,s,p λ
2+2sp ‖f‖pW s,p(B(0,1)) .

(A.3)

We proceed using a technique found in [2, Lemma 7.44]. Let σ ∈ [1/2, 1],

and integrate the inequality

|f(ρψ(x))− f(ρψ(y))|p -p |f(ρψ(x))− f(σψ(x+y
2
))|p

+ |f(σψ(x+y
2
))− f(ρψ(y))|p

with respect to σ over the ball B(r, |ψ(x)−ψ(y)|
2

) ∩ [1
2
, 1] ⊂ R to get

|f(ρψ(x))− f(ρψ(y))|p

-p
1

|ψ(x)− ψ(y)|

�
{|σ−ρ|≤ |ψ(x)−ψ(y)|

2
}∩[1/2,1]

|f(ρψ(x))− f(σψ(x+y
2
))|p dσ

+
1

|ψ(x)− ψ(y)|

�
{|σ−ρ|≤ |ψ(x)−ψ(y)|

2
}∩[1/2,1]

|f(σψ(x+y
2
))− f(ρψ(y))|p dσ .

Set for η ∈ Rn−1

Υ(η) :=

�
{|σ−ρ|≤ |ψ(x)−ψ(y)|

2
}∩[1/2,1]

|f(ρψ(η))− f(σψ(x+y
2
))|p dσ ;

therefore

� 1

1/2

ρn−1−sp
�
Bn−1(0,λ)

�
Bn−1(0,λ)

|f(ρψ(x))− f(ρψ(y))|p
|ψ(x)− ψ(y)|n−1+sp

Jψ(x)Jψ(y) dy dx dρ

-p

� 1

1/2

ρn−1−sp
�
Bn−1(0,λ)

�
Bn−1(0,λ)

Υ(x) + Υ(y)

|ψ(x)− ψ(y)|n+spJψ(x)Jψ(y) dy dx dρ

:= I + II .

(A.4)

Now by change of variables and using the formula for Jψ as well as the

formula

|ψ(x)− ψ(y)| = 2|x− y|
(1 + |x|2)1/2(1 + |y|2)1/2
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which is valid for all x, y ∈ Rn−1, we have

I =

� 1

1/2

�
Bn−1(0,λ)

�
Bn−1(0,λ)

�
{|σ−ρ|≤ |ψ(x)−ψ(y)|

2
}∩[1/2,1]

ρn−1−sp

× |f(ρψ(x))− f(σψ(x+y
2
))|p

|ψ(x)− ψ(y)|n+sp Jψ(x)Jψ(y) dσ dy dx dρ

=

� 1

1/2

� 1

1/2

�
Bn−1(0,λ)

�
{|2z−x|≤λ}∩{|ψ(x)−ψ(2z−x)|≥2|σ−ρ|}

ρn−1−sp

× |f(ρψ(x))− f(σψ(z))|p
|ψ(x)− ψ(2z − x)|n+sp Jψ(x)Jψ(2z − x) dz dx dσ dρ

=
1

2(n+sp)/2

� 1

1/2

� 1

1/2

�
Bn−1(0,λ)

�
{|2z−x|≤λ}∩{|ψ(x)−ψ(z)|≥G(x,z)|σ−ρ|}

ρn−1−sp

× |f(ρψ(x))− f(σψ(z))|p
|ψ(x)− ψ(z)|n+sp Jψ(x)Jψ(z)G(x, z)

2+sp−n dz dx dσ dρ ,

where

G(x, z) :=

(
1 + |2z − x|2

1 + |x|2
)1/2

.

Now, since |x| ≤ λ and |2z − x| ≤ λ the uniform bound 1√
1+λ2

≤ G(x, z) ≤√
1 + λ2 holds, and so I can be majorized by

C(n, s, p)λ2+sp−n
� 1

1/2

� 1

1/2

�
Bn−1(0,λ)

�
{|2z−x|≤λ}∩

{

|ψ(x)−ψ(z)|≥ |σ−ρ|√
1+λ2

} ρn−1−sp

× |f(ρψ(x))− f(σψ(z))|p
|ψ(x)− ψ(z)|n+sp Jψ(x)Jψ(z) dz dx dσ dρ .

(A.5)

Finally, on the domain of integration in (A.5) the estimate

|ρψ(x)− σψ(z)| ≤ ρ|ψ(x)− ψ(z)|+ |ψ(z)||ρ− σ|
≤ |ψ(x)− ψ(z)|+

√
1 + λ2|ψ(x)− ψ(z)|

≤ 2λ|ψ(x)− ψ(z)|
holds, and since ρ and σ are bounded away from zero

I ≤ Cλ2+2sp

� 1

1/2

� 1

1/2

�
Bn−1(0,λ)

�
{|2z−x|≤λ}∩

{

|ψ(x)−ψ(z)|≥ |σ−ρ|√
1+λ2

} ρn−1σn−1

× |f(ρψ(x))− f(σψ(z))|p
|ρψ(x)− σψ(z)|n+sp Jψ(x)Jψ(z) dz dx dσ dρ

≤ Cλ2+2sp

� 1

0

� 1

0

�
Rn−1

�
Rn−1

ρn−1σn−1 |f(ρψ(x))− f(σψ(z))|p
|ρψ(x)− σψ(z)|n+sp

× Jψ(x)Jψ(z) dz dx dσ dρ

= C(n, s, p)λ2+2sp

�
B(0,1)

�
B(0,1)

|f(x)− f(y)|p
|x− y|n+sp dy dx .
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A similar estimate holds for the quantity II in (A.4). Therefore (A.3), and

thus (A.2), is proved.

Step 2: We conclude the proof. Split the integral on the left-hand side of

(A.1) via change of variables and symmetry as

� 1

1/2

�
Sn−1

�
Sn−1

ρn−1−sp |f(ρx)− f(ρy)|p
|x− y|n−1+sp

dH
n−1(y) dH

n−1(x) dρ

=

� 1

1/2

�
H0

�
H0

· · ·+
� 1

1/2

�
Sn−1\H0

�
Sn−1\H0

· · ·+ 2

� 1

1/2

�
Sn−1\H0

�
H0

· · ·

:= I + II + III .

(A.6)

Clearly by (A.2) with µ = 0

(A.7) I -n,s,p [f ]
p
W s,p(B(0,1)) .

Now, let Q : Rn−1 → Rn−1 be the matrix diag(1, 1, . . . , 1,−1). Setting

h(x) = f(Qx) for any x ∈ B1(0), a change of variables gives

II =

� 1

1/2

�
H0

�
H0

ρn−1−sp |h(ρx)− h(ρy)|p
|x− y|n−1+sp

dH
n−1(y) dH

n−1(x) dρ .

Thus by (A.2) with µ = 0 and by another change of variables

II ≤C
�
B(0,1)

�
B(0,1)

|h(x)− h(y)|p
|x− y|n+sp dy dx

=C

�
B(0,1)

�
B(0,1)

|f(x)− f(y)|p
|x− y|n+sp dy dx .

(A.8)

For the last integral, we have

III = 2

� 1

1/2

�
H1/2\H0

�
H0

· · ·+ 2

� 1

1/2

�
Sn−1\H1/2

�
H0

· · ·

:= III1 + III2 .

Using that H0 ⊂ H1/2 along with (A.2) for µ = 1/2,

III1 ≤
� 1

1/2

�
H1/2

�
H1/2

ρn−1−sp |f(ρx)− f(ρy)|p
|x− y|n−1+sp

dH
n−1(y) dH

n−1(x) dρ

≤ [f ]pW s,p(B(0,1)) .

(A.9)

Since dist(Sn−1 \H1/2, H0) = C(n) > 0, we have that |x − y| ≥ C(n) > 0

for all x ∈ Sn−1 \ H1/2 and for all y ∈ H0, and so the integral III2 can be

estimated by

(A.10) III2 -n,s,p

� 1

1/2

�
Sn−1

|f(ρx)|p dH
n−1(x) dρ -n,s,p ‖f‖Lp(B(0,1)) .
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Combining (A.6) with estimates (A.7), (A.8), (A.9) and (A.10) gives (A.1).
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