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Abstract. Registration-based encryption (RBE) [GHMR18] is a primi-
tive that aims to offer what identity-based encryption (IBE) [BF01] offers
without the so-called key-escrow problem. In RBE parties who wish to
join the system will generate their own secret and public keys and regis-
ter their public keys to a transparent party called key curator (KC) who
does not have any secret state.
The initial constructions of RBE made non-black-box use of building
block primitives, due to their use of either indistinguishability obfusca-
tion [GHMR18] or some garbling scheme [GHM+19]. More recently, it
was shown [GKMR22,HLWW23] how to achieve black-box constructions
of (variants of) RBE and even stronger primitives based on bilinear maps
in which the RBE is relaxed to have a CRS whose length can grow with
the number of registered identities. Making cryptographic constructions
in general, and RBE in particular, black-box is an important step as
it can play a significant role in its efficiency and potential deployment.
Hence, in this work we ask: what are the minimal assumptions for black-
box constructions of RBE? Particularly, can we black-box construct RBE
schemes from the same assumptions used for public-key encryption or
simpler algebraic assumptions that hold in the generic group model?
In this work, we prove the first black-box separation results for RBE be-
yond the separations that follow from the observation that RBE black-
box implies public-key encryption. In particular, we answer both of the
questions above negatively and prove that neither trapdoor permutations
nor (even Shoup’s) generic group model can be used as the sole source
of hardness for building RBE schemes. More generally, we prove that a
relaxation of RBE in which all the keys are registered and compressed
at the same time is already too complex to be built from either of the
above-mentioned primitives in a black-box way. At a technical level, using
compression techniques, we prove lemmas in the TDP and GGM oracle
settings that prove the following intuitive yet useful fact: that compact
strings cannot signal too many trapdoors, even if their generation algo-
rithm takes exponential time. Due to their generality, our lemmas could
be of independent interest and find more applications.

Keywords: Registration-based encryption · Black-box separations · Trapdoor
permutations · Generic group model.
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1 Introduction

Registration-based encryption (RBE) [GHMR18] is a primitive that aims to offer
what identity-based encryption (IBE) [BF01] offers while avoiding the key-escrow
problem. Indeed, IBE suffers from the fact that the third party, (i.e., the private-
key generator,) has a universal trapdoor, (i.e., the master secret key,) allowing it
to decrypt all messages encrypted using the public parameter. However, in RBE,
identities generate their own secret and public keys and then simply register their
public keys to a transparent (public-state) entity, called the key curator (KC).
All KC does is accumulating and compressing the registered public keys in an
online fashion as more and more identities register in the system. Several works
were proposed to add even more desirable properties to RBE. [GHM+19] showed
how to base RBE on standard assumptions. [GV20] constructed verifiable RBE,
where the KC can give succinct proof for the existence/non-existence of users in
the system. In [WLW+23], blockchain was used to construct transparent RBE,
making the system even more decentralized by letting the individual participants
instead of the KC manage the keys. Inspired by RBE, more advanced primitives
were defined and constructed, including registered attribute based encryption
(ABE) [HLWW23] and registered functional encryption (FE) [DP23,FFM+23].

The initial constructions of RBE were all non-black-box, in the sense that
implementing them required knowing the implementation details of at least one
of the primitives that were used in those constructions. This was due to use of
code obfuscation [GHMR18] and/or garbled circuits [GHM+19] in such construc-
tions. This was an undesired state of affair, as non-black-box constructions are
more likely to be inefficient for practical use, and indeed RBE is yet to become



practical enough for real world deployment. This is in contrast with the closely-
related primitive of IBE for which black-box constructions from pairing-based
assumptions on bilinear maps exist [BF01,BB04].

More recently, the works of [GKMR22, HLWW23] showed how to achieve
black-box constructions of RBE, provided that it is relaxed so that the common
reference string (CRS) can grow as a function of the total number of registered
identities.3 These works suggest that perhaps even standard RBE could at some
point be realized based on well-founded assumptions in a black-box manner. In
the meantime, in this work, we focus on a tightly related question: if we could
base RBE on black-box assumptions, how simple those assumptions need to
be? In particular, what are the black-box minimal assumptions for constructing
RBE? To answer this question, we also need to understand the black-box barriers
that arise against building RBE from the more desirable type assumptions. In
particular, prior to our work, it was not known whether RBE can be solely based
on the assumption that public-key encryption (PKE) exists.4 Moreover, it was
not known whether simpler algebraic assumptions than those on bilinear maps
(e.g., assumptions that hold in the generic group model) may suffice for RBE
in a black-box way. We emphasize that although it is known how to bootstrap
RBE to IBE [BLSV18,DG17], black-box separations known for IBE [BPR+08]
do not automatically carry over to RBE, as the bootstrapping is non-black-box.

1.1 Our Results

One approach to study the black-box complexity of RBE is to study the pos-
sibility of constructing it in idealized models that provide PKE or simple al-
gebraic assumptions for free. In particular, the random trapdoor permutation
(TDP) oracle model provides (CCA-secure) PKE (among other primitives such
as collision-resistant hashing) as a black-box. Moreover, the generic group model
(GGM) [Sho97,Mau05] is an idealized model in which assumptions such as hard-
ness of discrete logarithm, CDH (computational Diffie-Hellman assumption), and
even DDH (decisional Diffie-Hellman assumption) hold. Hence, it is a very nat-
ural model for studying the possibility of realizing RBE from those assumptions,
which is the approach that we pursue as well.

In this work, we prove the first non-trivial black-box separations about the
complexity of RBE. In particular, we prove the following theorem.

Theorem 1 (Main results – informal). There is no black-box construc-
tion of RBEs in either of the idealized models of random trapdoor permutations
(TDPs) or Shoup’s generic group model. Our impossibility results hold even if the
CRS in RBE can grow (polynomially) with the number of registered identities.

3 The work of [HLWW23] further generalizes the primitive to attribute-based encryp-
tion and constructs registered ABE, while further relaxing the primitive and allowing
interactive registration.

4 Note that PKE is indeed necessary for RBE in a black-box way.
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In particular, what we prove is that there is no construction of RBEs whose
security is solely based on the idealized models stated in Theorem 1. We do so by
proving that such schemes can be broken by a polynomial-query attacker. This
is sufficient for ruling out a fully black-box construction [RTV04]. Ruling out
constructions of RBE in the idealized model of TDPs would also rule out using
any primitive P (or rather sets of primitives) that can be constructed from TDP
oracles in a black-box way (e.g., collision-resistant hash functions and public-
key encryption). Ruling out RBE in the GGM would also prove a black-box
separation from concrete assumptions that hold in this model (e.g., DDH).

In Section 2, we give an in-depth technical overview of the proof of Theorem 1.
However, here we present some high level discussions about Theorem 1 and why
it does not follow from previous separations known for IBE.

Public-key compression. We prove Theorem 1 by demonstrating a more general
result about a primitive that is weaker than RBE and yet is black-box implied
by RBE; we refer to that primitive as public-key compression (or PKCom, for
short). PKCom can be thought of as a static variant of RBE. In PKCom a
polynomial number of identities who have generated their own public and secret
keys all arrive at the same time. Then, they send their public-keys pk1, . . . , pkn
to be compressed by the key curator (KC) in “one shot”. Then, the compressed
public parameter pp is broadcast by the KC to the registered identities and can
be used similarly to the public parameter of IBE to privately encrypt messages to
registered identities. When it comes to decryption, all parties will have access to
each other’s public keys as well as their own secret key, but of course they do not
have access to each others’ secret keys. A very closely related primitive to PKCom
(called slotted registered ABE, as a generalization of IBE) is also introduced
in [HLWW23] and is shown to be black-box equivalent to RBE. However, our
primitive is still weaker, as it works with the fixed identities set {1, 2, . . . } rather
than arbitrary strings. These limitations make our impossibility result stronger.

Main challenge for proving separations for RBE. By now, multiple black-box
separations are known for assumptions behind IBE. Boneh et al. [BPR+08]
proved that IBE cannot be black-box constructed from random trapdoor per-
mutations, and the works of [PRV12,Zha22] showed that IBE cannot be built in
what is known as Shoup’s generic group model [Sho97].5 However, we emphasize
that, none of these works imply a separation for registration based encryption
(and its relaxation PKCom). Below, we first describe the similarities between
the two settings, and then we describe the major difference between them.

The core reason underlying both impossibilities for IBE and ours for RBE
is that a compact public parameter (pp) cannot encode enough information for
securely encrypting to more than an a priori bounded number of identities. How-
ever, when it comes to RBE, there is a big difference that makes the previous IBE

5 More specifically, [PRV12] claimed the result in a model that is a mixture of Mau-
rer’s [Mau05] and Shoup’s [Sho97] models. Then, [SGS21] proved (a tight) separation
in Murer’s model, and finally, [Zha22] proved the separation of IBE in Shoup’s model.
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separation techniques come short. The IBE separation proofs [BPR+08,Zha22]
proceed by crucially relying on the bounded running time of the setup algo-
rithm: in an IBE scheme, the setup algorithm, which generates (pp,msk), makes
a fixed polynomial q number of (pk, sk) (trapdoor) queries to its oracle. So, if
one corrupts a sufficiently larger-than-q number of random identities and ex-
tracts their dedicated trapdoors (say by repeated decryptions), the attacker will
then recover all the needed trapdoors and can decrypt the challenge ciphertext
of a non-corrupted identity as well. This “combinatorial” argument, however,
completely breaks down when we move to RBE. Indeed the running time of
generating a public parameter of an n-user RBE grows with the parameter n
itself, because this public parameter is generated through n registration steps.
Therefore, the “setup" procedure (as analogous to IBE) that generates the public
parameter might be asking n or more trapdoor queries.

Compression techniques. To get around the above challenge, we introduce new
compression techniques to prove exactly that a short pp still cannot encode
enough information for all n users, regardless of how much time it takes to gen-
erate it (see more on this in the technical overview). In fact, our new compression
tool, stated in Lemma 2, (i.e., a bounded-size message/pp cannot compress too
many trapdoors no matter how long it takes to generate it) proves a basic and
intuitive fact that could potentially find other applications beyond RBE. For
starters, it already allows us to rule out black-box construction of “leveled” IBE,
where the number of users n is known during setup and the setup time is allowed
to grow with n while the pp is compact, from the GGM. None of the previous
IBE separation techniques allows for proving such an impossibility.

Shoup’s GGM vs. Maurer’s GGM. In Shoup’s GGM [Sho97] group elements do
have (random-looking) representations. Therefore, impossibility results in this
model imply further black-box separations (e.g., from public-key encryption).
However, these corollaries do not automatically follow from results that the
primitive is impossible in Maurer’s model [Mau05], in which group operations
are outsourced to a black-box oracle. In fact, proving the impossibility of a prim-
itive X in Maurer’s model does not even imply that X is black-box impossible
from PKE. In particular, some impossibility results in Maurer’s GGM cannot be
extended to Shoup’s model; e.g., [RSS20] ruled out sequential (delay) functions
in Maurer’s generic group, while such functions can be obtained from random
oracles, which in turn can be obtained in Shoup’s model. As another example,
there exists natural DDH-based constructions of primitives such as rate-1 OT
and private-information retrieval (PIR) in Shoup’s model [DGI+19], yet these
primitives can be proved impossible in Maurer’s group. Thus, proving an impos-
sibility in Shoup’s model gives the stronger and more meaningful impossibility.
See [Zha22] for more discussion on this topic.

Limits of RBE in Maurer’s GGM. For the reasons above, in this work we aim
for proving impossibility of RBE (and PKCom) in Shoup’s GGM. Having said
that, we first show that a separation of RBE/PKCom in Maurer’s GGM can
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indeed be proved as well. Our starting point for showing this barrier is the work
of [SGS21] that ruled out identity based encryption in Maurer’s GGM. Despite
focusing on IBE, their proof does not care about the exact running time that it
takes to generate the public parameter, and it only relies on the number of group
elements that are explicitly planted in the public parameter. This makes their
result general enough to be basically applicable to our PKCom as well, if one
opens up their proof to adapt it to RBE. One limitation of this result, however,
is that it does not allow CRS to be present, and we particularly would like to
even allow our PKCom (and RBE) schemes to have CRS that can grow with
the number of identities. Such extensions would make our impossibility result
complement the recent positive (black-box) results of [GKMR22,HLWW23] in
which hardness assumptions in pairing-based groups are used to construct RBEs
with polynomially long CRS. The follow-up works of [DHH+21,CFGG23] further
generalized the initial impossibility of [SGS21] to the point that we could use
their results to formally obtain an impossibility of RBE from Maurer’s GGM as
corollary, even with polynomially long CRS. The reason is that RBEs, just like
IBEs, can be used to obtain signature schemes using the so-called Naor’s trick,6
and the works of [DHH+21,CFGG23] do indeed rule out the existence of digital
signatures for a polynomially large message space in Maurer’s GGM, even if the
scheme has a polynomially long CRS.

2 Technical Overview

We prove that public-key compression schemes cannot be built in a black-box
way from TDPs or in the Shoup generic group. Since RBE and PKCom are
black-box equivalent, our impossibility results will also apply to RBE.7

We prove our two impossibility results by showing that relative to a ran-
dom TDP oracle or a GGM oracle with explicit random labels (i.e., Shoup’s
model [Sho97]), PKCom cannot exist so long as its security is solely based on
the oracle model. More specifically, we show that any purported PKCom con-
struction relative to either a random TDP oracle a GGM oracle can be broken
by an adversary who makes a polynomial number of queries, while the adversary
can do unbounded amount of computation independent of the oracle.

Outline. We follow the approach of Zhandry [Zha22] for proving our impossibility
results. Zhandry proved that a special type of signature schemes, simply called
restricted signatures, defined in an oracle model, cannot be realized relative to
any oracles. Thus, to prove an impossibility of a primitive X relative to an oracle
O, it suffices to show how to black-box transform any purported construction of
X relative to O into a restricted signature relative to O without losing correctness
and security.8 The rest follows by the impossibility of restricted signatures.
6 This is done by interpreting the decryption keys as signatures over the identity’s

names interpreted as messages.
7 The fact that RBE black-box implies PKCom is straightforward, due to PKCom

being a special case. The converse is also true and is proved in [HLWW23].
8 By security, here we refer to security against unbounded poly-query adversaries.
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A restricted signature scheme relative to an oracle O has the normal algo-
rithms (GenO, SigO,VerO) of a signature scheme, but the verification algorithm
VerO is restricted in the following way: VerO(vrk,m, σ) = Ver1(Ver0O(vrk,m), σ),
where Ver1 makes no oracle calls and vrk,m, σ denote the verification key, mes-
sage and signature, respectively. That is, the verification algorithm is restricted
in that all oracle queries may be made prior to seeing the signature σ, and upon
seeing σ no further queries are permitted. Zhandry proved that no restricted
signatures exist relative to any oracle O by showing that any such construction
can be broken by an adversary that makes a polynomial number of queries to O.
As an example of a non-restricted scheme, consider Lamport’s signatures from
OWFs f . In that construction, σ corresponds to OWF pre-images, while vrk cor-
respond to OWF image values. To verify a signature σ, one will check a number
of image values against their corresponding pre-images by calling f , making the
construction inherently non-restricted, as expected.

Zhandry proved that certain impossibility results, such as the impossibility of
IBE from GGM [SGS21,PRV12,BPR+08], may be proved more naturally using
the restricted signatures methodology. In particular, Zhandry showed that one
can black-box transform any IBE construction IBEGGM relative to a GGM oracle
into a restricted signature EGGM, while preserving its correctness and security.

Target restricted signatures. For our impossibility results, we would need to
further modify the notion of restricted signatures and work with a primitive
which we call target-restricted signatures. A target restricted signature is defined
over a message space [n] = {1, . . . , n} (think of n as the number of PKCom users),
where the verification algorithm is restricted as it is in restricted signatures, but
correctness and security only hold with respect to a random target message
chosen as h ← [n], where the verification and signing keys in turn may depend
on h. That is, GenO(1n, h ∈ [n]) outputs a pair of keys (vrk, sgk), and we require
that the following holds. (a) δ-target correctness: for a signature σ derived for the
target message h as σ ← SigO(sgk, h) we have VerO(vrk, h, σ) ≥ δ, where VerO

is restricted as above. (b) Zero-time unforgeability: given vrk (derived based on
a random h ← [n]) and h, no poly-query adversary can forge a signature on h
(Definition 4). We show that Zhandry’s proof with almost no modifications also
shows that target restricted signatures for non-negligible δ’s are impossible.

Transformation. After establishing the notion of target-restricted signatures, the
bulk of our technical work is as follows. For a TDP/GGM oracle O, we show how
to black-box transform a purported PKCom construction CMPO into a δ-correct
target restricted signatures, where δ is non-negligible. This is where our new
compression techniques come into play. Below, we first go over more details of
our techniques for the case of TDP oracle, as it captures most of the challenges.

Warm-up: restricted oracle calls. As a warm-up, first let us consider the case
where the TDP oracles (g, e,d) are used by the PKCom scheme PKComg,e,d, in a
special was as PKComg,e,d := (Keyg,Comg,Ence,Decd), where Key is the (public
and secret) key generation algorithm, Com is the key compression algorithm,
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Enc is the encryption algorithm, and Dec is the decryption algorithm. Moreover,
assume we do not have a CRS. This setting is already non-trivial, and helps
us get our main insights across. The TDP oracles are defined randomly while
inducing a permutation over the message space {0, 1}κ (Definition 4). Our goal is
to black-box transform such PKComg,e,d constructions into a restricted signature
relative to (g, e,d) with comparable correctness and security.

Non-restricted signatures from PKCom. A PKCom scheme over identities [n]
naturally induces a signature scheme using Naor’s trick (that applies to IBE
schemes but can be adapted to RBE as well). In that transformation, the se-
cret keys of an identity are kept as the signature for that identity’s string. The
verification then proceeds by testing the quality of the decryption key (as the
signature) through repeated encryption and decryptions. This scheme is clearly
not restricted. Below, we first describe construction that is a modification of
Naor’s trick construction which is still not restricted. However, our scheme
has the benefit that we can make it restricted with more modifications which
we will explain below. Let (Keyg,Comg,Ence,Decd) be the purported PKCom
scheme relative to a TDP oracle (g, e,d). A verification/signature key pair
(vrk, sgk) ← GenO(1n, h ∈ [n]) on a target message h ∈ [n] is obtained as follows:
generate n public/secret key pairs {(pki, ski)}i∈[n] by running Keyg(1κ), and let
QGeni denote the set of query-answer (Q-A for short) pairs obtained for generat-
ing (pki, ski). Let pp := Comg(pk1, . . . , pkn). Output vrk := (pp, {QGeni}i�=h) and
sgk := (skh,QGenh).9 A signature on h is (skh,QGenh). Define VerO(vrk, h, σ) =
Ver1O(Ver0O(vrk, h), σ) as follows: Ver0O(vrk, h) generates a random ciphertext
c for a random message m relative to identity h as c ← Ence(pp, h,m), lets
QEnc contain the Q-A pairs (which are only of e-type), and outputs (m, c).10
Then, Ver1O, given σ := (skh,QGenh) and (m, c), simply decrypts Decd(skh, c)
and outputs 1 iff the decryption outputs m. The signature correct, and is also
secure: if an adversary can forge a signature on a target message h, it can also
decrypt ciphertexts for that target index h under the PKCom scheme. (Under
the PKCom scheme, the adversary can have the secret keys for all but the target
index, since the public keys for all non-target indices are submitted by the ad-
versary itself. Thus, a PKCom adversary can sample vrk itself.) The signature,
however, is not restricted because Ver1O makes queries in order to decrypt.

Making the signature restricted. A first (naive) idea in making Ver1 oracle-
free is to have Ver0O pass QEnc, in addition to (vrk,m, c), onto Ver1, and let
Ver1((vrk,m, c,QEnc), σ), where σ := (skh,QGenh), decrypt Decd(skh, c) while
using QEnc and {QGeni} as hints, and respond to queries whose answers cannot
be determined based on these hints with random values. In more detail, for

9 The Q-A sets QGeni’s will not be used in this simple construction, but later one
they will be used when we make the signature restricted.

10 Again, the set QEnc will not be used in this (flawed) construction, but will be used
later when we discuss the fixes.
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an emerged query (which can only be of d-type) qu := ((tk, y) −→
d

?) during

Decd(skh, c) if both of the following hold then respond to qu with x:

(a) There exists a Q-A pair (tk −→
g

ik) ∈ ∪iQGeni for some ik; and

(b) there exists ((ik, x) −→
e

y) ∈ QEnc for some x.

Otherwise (i.e., if at least one of the above does not hold), pick a random answer.
We claim we have correctness. This is because (pki, ski) pairs are all generated
honestly by running Keyg, with {QGeni} being their underlying Q-A pairs, and
that all of d queries during Dec are responded to consistently with those of
{QGeni} and QEnc.

However, we cannot reduce the security of the signature to that of the original
PKCom (so to argue security). For example, suppose the PKCom’s user public-
secret key pairs (pki, ski) are simply random index/trapdoor key pairs (iki, tki)
generated by calling g (i.e., pki = iki). An adversary A may then forge a signature
as σ′ := (t̃kh, (t̃kh −→

g
ikh)), where t̃kh is just a ‘junk’ value. By Conditions (A)

and (b) above, Ver1((vrk,m, c,QEnc), σ′) will always decrypt c to m, outputting
1. But the forger A has not done anything clever, so we cannot use it in a
reduction to break the security of PKComg,e,d. The reason we cannot prove a
security reduction (for arguing the signature is as secure as the base PKCom)
is that the verification provides ‘free lunch’ to a forger: inverting images with
respect to an ikh whose trapdoor key may not be known to the forger.

Compression to the rescue. So far, we have not used the fact that pp is compact
(of size � n), so it is not a surprise we cannot establish a security reduction from
the signature to the PKCom. In other words, by plugging in a trivial PKCom
scheme whose pp contains all public keys, we get a restricted signature against
which there exists a generic attack, but the base PKCom is secure! We should use
the fact that |pp| is compact in order to avoid giving free lunch to a forger in the
above sense. Call an ik valid if ik ∈ g(∗). Assume g is sufficiently length increas-
ing so the only way to produce a valid ik is to call g on a preimage. Our main idea
is as follows: letting QGeni be as above (all formed honestly), there must exist
an index h ∈ [n] such that the set of all valid ik’s that emerge as ((ik, ∗) −→

e
?)

queries during a random PKCom encryption Ence(pp, h, ∗) to index h are a sub-
set of those ik’s for which we have (∗ −→

g
ik) ∈ ∪i�=hQGeni. Call this Condition

cover. We will show in a moment why this condition holds, but let us sketch how
to modify VerO(vrk, h, σ) = Ver1(Ver0O(vrk, h), σ) in light of this fact. First,
Ver0O(vrk, h) outputs (m, c,QEnc), as before. Now Ver1((vrk,m, c,QEnc), σ),
where σ := (skh,QGenh), proceeds exactly as before, except in response to a
query qu := ((tk, y) −→

d
?), Condition (a) above will change to

(A) there exists a Q-A pair (tk −→
g

ik) ∈ ∪i�=hQGeni for some ik.

Now correctness still holds, thanks to Condition cover. (Any ((ik, x) −→
e

y) for a
valid ik has a matching trapdoor key (tk −→

g
ik) ∈ ∪i�=hQGeni. All other decryp-
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tion queries may be responded to randomly, without creating inconsistencies.)
We should now have security (at least intuitively), because we do not provide
free lunch to a forger anymore: Ver1 inverts images only for ik’s already covered
in (tk −→

g
ik) ∈ ∪i�=hQGeni, but this information is already available to the adver-

sary itself (as part of vrk). Making this intuition formal, however, requires some
delicate reasoning, which we skip here.

Proving condition cover via a compression technique. Recall that Ence(pp, ∗, ∗)
only calls e, and the only information it gets regarding g is via pp which in turn
has size � n. It is not hard to see if Condition cover does not hold, then by
performing random encryptions for all indices Ence(pp, 1, ∗), . . . , Ence(pp, n, ∗),
we will end up calling e(ik, ∗) upon at least n different valid ik’s. To see this let Qi

contain any ik such that (∗ −→
g

ik) ∈ QGeni. If cover holds, during Ence(pp, u, ∗),
for any u ∈ [n], we will make a query ((iku, ∗) −→

e
?) for a valid iku where

iku /∈ ∪i�=uQGeni. We claim all iki are distinct, so we will have n distinct valid
idi’s. Assume the contrary and that ik1 = ik2. We know both ik1, ik2 ∈ ∪iQi,
because a valid ik cannot come out of thin air. We also know ik1 /∈ ∪i�=1Qi, and
so ik1 ∈ Q1 \∪i�=1Qi. So, if ik1 = ik2, then ik2 ∈ Q1 \∪i�=1Qi, but this contradicts
the fact that ik2 /∈ ∪i�=2Qi.

Theorem 2 (Compression, informal). Let pp be any advice string of size
� n generated based on (g, e,d). For any poly-query adversary Ag,e,d(pp), the
probability that A can output a list L of ik’s satisfying the following two conditions
is negligible: (a) L has at least n distinct valid ik’s, and (b) no ik in L was
generated as a result of a g query by A itself.

We show if there exists an adversary in the sense of the above theorem, then
one can compress the oracle g. We prove this via Gennaro-Trevisan style com-
pression techniques [GT00], later generalized by Haitner et al. [HHRS07]. In our
theorem description, the adversary A does not need to know which of the n ik’s
are valid: as long as at least n of them are valid we will prove a compression. Our
theorem description holds even if the adversary makes an exponential number of
queries (for a carefully selected exponential). We believe this technique employed
within black-box separations might find other applications.

Allowing a CRS. We will now sketch how things will be different, still in the
limited-access setting (Keyg,Comg,Ence,Decd), by allowing in a CRS. Sup-
pose the CRS is generated as crs ← CRS(1κ, 1n), and is used in key gen-
eration (pk, sk) ← Keyg(crs). Let us first explain what will go wrong if we
leave the above approach unmodified. Recall that Ver1((m, c,QEnc), σ), where
σ := (skh,QGenh), decrypts Decd(skh, c) and handles a query qu : ((tk, c) −→

d
?)

via Conditions (A) and (b) above. We were able to argue correctness because
for some index h with all but negligible probability, all valid ik’s upon which we
have a query ((ik, ∗) −→

e
?) must have been collected in ∪iQGeni�=h. However, this

fact breaks down in the CRS case, because Ence(pp, h, ∗) might call e upon an ik
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that comes from crs, and whose trapdoor key is not collected in any of ∪iQGeni.
Thus, responding to inversion queries relative to e(ik, ∗) with random values dur-
ing decryption will create an inconsistency, destroying correctness. Since we aim
to argue correctness, suppose (skh,QGenh) were generated honestly. Our solution
is based on the following intuition: If a query ((tk, ∗) −→

d
?), where g(tk) = ik,

emerges during decryption of a random encryption relative to Ence(pp, h, ∗) with
good probability, then by choosing many (skh,QGenh) and forming random en-
cryptions as Ence(pp, h, ∗) and decrypting them back (all using the real oracles)
we should collect these tk values. This encrypt-decrypt process will be performed
by GenO(1n, h ∈ [n]) (the key generation algorithm of the signature scheme) and
all the Q-A pairs are appended to a list T, put in the final vrk. Back to the above
discussion, Ver1((m, c,QEnc), σ) will decrypt Decd(skh, c) as per QEnc if (I) and
(b) holds, where (b) is as above and (I) is as follows.

(I) There exists a Q-A pair (tk −→
g

ik) ∈ T ∪i�=h QGeni for some ik.

The proof of security is similar to the previous case, based on the intuition
illustrated before.

Finally, for the general case in which oracle access is unrestricted (e.g.,
Keyg,e,d) we define the notion of ‘free lunch’ (which might make room for forg-
eries) as inversions e−1(ik, ∗), where (∗ −→

g
ik) never appears in QGeni�=h, nor

in any safe lists (e.g., T as explained above, or any ik such that (∗ −→
g

ik) is

generated during Encg,e,d(pp, h, ∗)). The chief challenge is to strike a delicate
balance during the decryption performed by Ver1((m, c,QEnc), σ) in between
not overtly answering all d(tk, y) queries as per QEnc (which will violate secu-
rity) and not answering any queries at all (which will destroy correctness). The
main techniques for establishing such a balance were sketched above, but the
whole analysis for the general case requires more involved reasoning.

Impossibility in Shoup’s GGM. We now describe how to derive a restricted sig-
nature scheme EGRR from a PKCom construction PKComGRR , where the oracle
GRR := (label, add) comes with a labeling oracle label producing labels for
exponents in Zp (where p is the order of the group) and add adds two labels.
We assume label produces labels of sufficiently large length, so that produc-
ing a label without calling label or add is effectively impossible. The general
methodology is as follows, but we need some additional ideas to deal with the
algebraic structure imposed bu groups. To illustrate our core ideas suppose we
have no crs and that Com makes no GRR queries, so the PKCom construction
is as (KeyGRR,Com,EncGRR,Dec

G

RR). Assume wlog all algorithms only have access
to add (access to label can be simulated by including the generator as part of
every input). The algorithms GenGRR and SigGRR and Ver0GRR(vrk, h) are defined
exactly as before. A naive idea for Ver1(vrk,m, σ), where σ := ((skh,QGenh)), is
to answer to an add query ((�1, �2) −−→

add
?) according to what can be inferred

from the collective set of Q-A pairs in ∪iQGeni ∪QEnc. Namely, consider a ma-
trix M with columns labeled according to labels present in output responses to
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queries in ∪iQGeni∪QEnc. A given Q-A pair ((�, �′) −−→
add

�′′) in ∪iQGeni∪QEnc

is embedded into the matrix M by adding a row, which has a 1 on the �-labelled
column, a 1 on the �′ labeled column and a −1 on the �′′-labeled column. For
brevity, we denote such a row with x� + x�′ − x�′′ . Having formed this matrix
M , suppose Ver1 given a query ((�1, �2) −−→

add
?) checks if an answer is present in

M : namely, if there exists a label �∗ such that x�1 +x�2 −x�∗ ∈ Span(M), where
Span denotes row span; if so, respond with �∗, otherwise with a random label.
This restricted signature scheme is correct (similarly to how we argued before),
but is not secure in the sense of having a security reduction from the signature to
the base PKCom. We will now establish a balancing act (in the sense of before)
as follows. Call a label Known if label−1(�) (its discrete log) is recoverable given
∪i�=hQGeni ∪ QEnc. For GGMs, we will prove a compression theorem (stated
later), which as a consequence implies the following covering condition: with all
but negligible probability, there exists an index h such that during a random
encryption Encadd(pp, h, ∗), if there exists a Q-A pair ((�1, �2) −−→

add
�∗) such

that �∗ 	= ⊥, then �1, �2 ∈ Known. That is, for b ∈ {0, 1}, �b is either already a
label in ∪i�=hQGeni, or is obtained via a sequence of add operations on labels
with known discrete logs. With this intuition mind, Ver1 simulates the response
to an add query ((�1, �2) −−→

add
?) as follows: if there exists a Known label �∗ such

that such that x�1 + x�2 − x�∗ ∈ Span(M), where Span denotes row span; if so,
respond with �∗, else with a random label. This relaxation enables us to prove
that no security is lost in the process. Finally, we derive the covering condition
above from a compression lemma that we develop and prove in GGMs, which
states given a short advice string pp, one can extract a bounded number of valid
� labels (those in the output of label).

Theorem 3 (Informal). Let pp be any advice string of size � n generated
based on (label,add). For any poly-query adversary Alabel,add, the probability
that A can output a list L of �’s satisfying the following two conditions is negli-
gible: (a) L has at least n distinct valid �’s, and (b) no � in the list was generated
as a result of a label or a add query.

All the statements mentioned after Theorem 2 also hold for Theorem 3. The
proof of this is based on a generalization of the Gennaro-Trevisan compression
techniques [GT00] to the GGM setting. The GGM setting, due to its algebraic
nature, makes the compression argument more delicate and challenging. Our
techniques may be of independent interest.

Why going through restricted signature instead of a direct proof. Even though
we could write a direct proof that avoids going through the notion of restricted
signatures, by using this approach we also get the benefits of the proof of [Zha22]
for free. In particular, a direct proof would involve the high-level approach of
(1) learning useful information about the oracle, (2) doing a reverse sampling of
the keys and faking a partial oracle to be used for decrypting the challenge, and
(3) analyzing the attack through careful hybrids. However, using the restricted
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signature approach allows us to have a more modular proof. In particular, with
this approach Step (2) above would not be needed; all we do is a black-box
reduction between RBE and restricted signatures, and the attack on RBE follows
from the poly-query attack on the signatures that is transformed into an attack
on RBE through the black-box reduction between them. In addition to simplicity
and modularity, as a bonus we could also better explain (in the next paragraph)
the new challenges that arise for our separation proof for RBE, in comparison
with IBE, and how we resolve them.

3 Preliminaries

Notation. We use κ for the security parameter. We write negl(x) for a negligible
function of x. For an integer n, [n] := {1, . . . , n}. We write x ← S (resp.,
x ← D) to denote picking an element uniformly at random from a set S (resp., a
distribution D). By Pr[E;D] we denote the probability of E where D is random
space/process over which E is defined. In general, we use ∗ as a placeholder for
an arbitrary value. For example, (x, ∗, ∗) is a 3-tuple where the first value is x
and the second and third values are two arbitrary values. For function f , then
f(∗) could denote the range of f (we let the context clarify whether f(∗) refers
to a set or a single unspecified value). For an oracle O = (q1, . . . ,qn) consisting
of n different types of queries, we use (x −→

qi

y) to denote one query of type qi

where the input is x and the output is y. Note that both x and y can be tuples.
Also note that we do not use ∗ as a placeholder for y or any term of y since y is
not arbitrary but depends on x and qi. Finally, we explain how we use ⊂ in this
paper. (Note that ⊆ is used in a similar way.) Since a function is formally defined
as a relation, which is a set, when we write f ⊂ g for two functions f, g, we mean
f (viewed as a relation) is a subset of g (also viewed as a relation), which means
that the domain of f is a subset of the domain of g and it is defined similarly
on those points. For two n-tuples x = (x1, · · · , xn) and y = (y1, · · · , yn), x ⊂ y
if and only xi ⊂ yi for every i ∈ [n]. Since an oracle can be viewed as an n-tuple
of functions, the notation O′ ⊂ O is well defined for two oracles O,O′.

3.1 Public Key Compression

Here we define Public Key Compression (PKCom). This primitive allows n iden-
tities id1, . . . , idn to independently sample their public/secret key pairs
(pk1, sk1), . . . , (pkn, skn) and then broadcast (id1, pk1), . . . , (idn, pkn). There is
then a compression algorithm Com that compresses all these public keys into
a short public parameter pp. This pp together with idi can be used to encrypt
to idi. Finally, user idi can use her secret key ski and the set of all public keys
pk1, . . . , pkn to decrypt any message encrypted to her. In the actual definition
of RBE [GHMR18], of which PKCom is a special case [HLWW23], a user needs
only a short public “decryption-update” string (which in turn is deterministically
derived from pk1, . . . , pkn) to be able to perform decryption. But since we aim
to prove a lowerbound, by allowing the decryption algorithm to take in all of
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pk1, . . . , pkn, our impossibility results will become only stronger. Also, we as-
sume the n identities are {id1 = 1, . . . , idn = n} for simplicity, and state the
scheme for a key encapsulation variant; again, both of these will only make our
impossibility results stronger.

Definition 1. A public key compression scheme consists of PPT algorithms
(CRS,Key,Com,Enc,Dec):

– CRS generation. CRS(1κ, 1n) → crs is a randomized algorithm that takes
in a security parameter κ and an integer n (the number of parties), and
outputs a CRS crs of length poly(κ, n). We allow crs to grow polynomially
with the number of users.

– Key generation. Key(1κ, crs) → (pk, sk) takes in 1κ and crs and outputs a
pair of public and secret keys (pk, sk).

– Key compression. Com(crs, {pki}i∈[n]) → pp takes in the security param-
eter, the crs, a list of public keys {pki}i∈[n], and deterministically outputs pp
as the compressed public key.

– Encryption. Enc(pp, id) → (m, ct) takes in pp, a recipient identity id ∈ [n],
and outputs a random m ← {0, 1}κ and a corresponding ciphertext ct.

– Decryption. Dec(crs, id, sk, {pki}i∈[n], ct) → m takes in crs, an identity id ∈
[n], a secret key sk, public keys {pki}i∈[n], a ciphertext ct, and outputs a
plaintext m or a special symbol ⊥.

We require completeness, compactness and security, as defined next.

– Completeness: The decryption algorithm recovers the plaintext with all
but negligible probability. For every n ∈ N, any i ∈ [n], crs ← CRS(1κ, n),
(pki, ski) ← Key(1κ, crs), (m, ct) ← Enc(pp, id), it holds that
Pr[Dec(crs, id, ski, {pki}i∈[n], ct) = m] ≥ 1− negl(κ).

– Compactness: There exists a fixed polynomial poly such that for all n and
pp formed as above, |pp| = o(n)poly(κ). We require sub-linear compactness,
making our impossibility results stronger.

– Security: Any PPT adversary A has a negligible advantage in the following
game. A is given n and a CRS crs ← CRS(1κ, n), and A outputs a challenge
index h and n − 1 public keys {pki}i�=h. The challenger samples (pkh, ∗) ←
Key(1κ, crs), forms pp := Com(crs, {pki}i∈[n]), and (m, ct) ← Enc(pp, id). A
is given ct, and outputs m′ and wins if m′ = m.

Note that we are making the security notion weaker (the adversary’s job is
more difficult); our impossibility results separates this weak notion of security,
hence making our results stronger.

4 Impossibility of PKCom from TDPs

In this section, we show that there exists an oracle O relative to which TDPs
exists but PKCom does not. We define a distribution on TDP oracles as follows.
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Definition 2. We define an oracle distribution Ψ whose samples are oracles
of the form O = (g, e,d). The distribution is parameterized over a security
parameter κ, but we keep it implicit for better readability.

– g : {0, 1}κ 
→ {0, 1}3κ is a random injective length-tripling function, mapping
a trapdoor key to an index key.

– e : {0, 1}3κ × {0, 1}κ 
→ {0, 1}κ is a random function under the following
condition: for all ik ∈ {0, 1}3κ, the function e(ik, ·) is a permutation.

– d : {0, 1}κ×{0, 1}κ 
→ {0, 1}κ is the inversion oracle, where d(tk, y) outputs
x ∈ {0, 1}κ iff e(g(tk), x) = y.

Definition 3 (Validity of partial oracles). We say a partial oracle O′ (de-
fined only on a subset of all points) is Ψ -valid if for some O ∈ Supp(Ψ) : O′ ⊆ O,
where Supp denotes the support of a distribution. We say an oracle (g, e,d) is
TDP-valid if it satisfies TDP’s perfect completeness. A partial TDP-valid oracle
is one which is a subset of a TDP-valid oracle (i.e., a triple (g, e, d) that satisfies
TDP correctness, but which may not be in the support of Ψ). Note that any Ψ -
valid oracle is TDP-valid as well. We say a partial oracle O′ is TDP-consistent
with a set of Query/Answer (Q-A in short) pairs S if O′ ∪ S is TDP-valid.

4.1 Oracle-Based Target-Restricted Signatures

Toward proving our impossibility results, inspired by [Zha22], we define the
notion of oracle-aided target-restricted signatures. The signature’s message space
is [n], and we require correctness and security to hold with respect to a single,
random target point, based on which signing and verification keys are generated.
We first present the definition and then compare it to that of [Zha22].

Definition 4 (Target-restricted signatures [Zha22]). Let n = poly(κ).
An n-target restricted signature scheme (GenO, SigO,VerO) relative to an oracle
O is defined as follows. GenO(1κ,m) → (sgk, vrk): takes in a security parameter
and a target message m ∈ [n], and outputs a signing key sgk and a verification
key vrk. The other algorithms are defined as in standard signature schemes. We
require the following properties.

– δ-target correctness:

Pr[VerO(vrk,m, SigO(sgk,m)) = 1;m ← [n], (sgk, vrk) ← GenO(1κ,m)] ≥ δ,

where the probability is taken over m ← [n], (sgk, vrk) ← GenO(1κ,m) and
the random coins used by SigO and VerO.

– Restricted structure: We have VerO(vrk,m, σ) = Ver1(Ver0O(vrk,m), σ),
where Ver1 makes no oracle calls.

– Zero-time unforgeability: For any PPT adversary A,

Pr[VerO(vrk,m, σ) = 1;m ← [n], (sgk, vrk) ← GenO(1κ,m), σ ← AO(vrk,m)] ≤ negl(κ).
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Zhandry [Zha22] defined oracle-based restricted signatures, where signing and
verification keys should work for all messages, and proved such signatures are im-
possible relative to any oracle. Namely, there exists an adversary that can forge
a signature by making at most a polynomial number of queries to the oracle, and
by performing possibly exponential-time computations independent of the ora-
cle. In the setting of [Zha22] the message space is of exponential size, but in our
setting the message space is [n] and the verification key is allowed to grow with
[n]. These differences are useful for our setting as we will derive the existence of
target-restricted signatures during our impossibility proofs. Despite these differ-
ences, the following lemma shows that Zhandry’s proof, that restricted signatures
do not exist, extends almost immediately to our target-restricted setting.

Lemma 1 (Adapted from Lemma 7.4 in [Zha22]). Let 1 ≥ δ > 0 and O
be an oracle. For any target-restricted signature Λ relative to O that has δ target
correctness according to Definition 4, there exists a computationally unbounded
adversary which makes only polynomially many queries to O that breaks Λ with
advantage at least δ3/100.

The proof of the above lemma is basically the same as the proof of Lemma 7.4
in [Zha22]. At a high level, the proof crucially relies on the restricted structure of
the verification algorithm. The key idea of the proof is that since VerO(vrk,m, σ) =
Ver1(Ver0O(vrk,m), σ), a computationally unbounded adversary can first com-
pute an intermediate value v = Ver0O(vrk,m) by itself and then brute force
search over the circuit Ver1(v, ·) for a valid signature σ satisfying Ver1(v, σ) = 1.
Since target-restricted signatures also have the same restricted structure of verifi-
cation algorithm, the same proof works. For sake of completeness, in Appendix A
we include a full of Lemma 1, which is heavily based on that of [Zha22] and is
simply adapted to our setting.

Equipped with Lemma 1, we show any TDP-oracle-based PKCom may be
transformed into an oracle-based target-restricted signatures, hence obtaining
an impossibility result. As a warm-up and to show our core techniques, we first
present this transformation for the CRS-free case in Section 4.2 and then present
the transformation for schemes with CRS in Section B.1.

4.2 Impossibility of CRS-free PKCom from TDP

We first present the transformation to target-restricted signatures for the case
in which the PKCom does not have a CRS. Recall the notions of correctness and
security of PKCom given in Definition 1. These notions are defined analogously
relative to any fixed oracle O = (g, e,d).

Theorem 4. For ε := 1
poly(κ) let Eg,e,d := (Keyg,e,d,Comg,e,d,Encg,e,d,Decg,e,d)

be a (1 − ε)-correct PKCom scheme with respect to a random TDP oracle O =

(g, e,d). Suppose a public parameter pp under Eg,e,d satisfies |pp| ≤ (n−2)|ik|
2 ,

where n is the number of users and ik is a base index key (recall |ik| = 3κ, Defin-
tion 2). Then, there exists a (1 − ε) (1−2−κ/3)

n -correct target-restricted signature
scheme relative to O = (g, e,d).
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Note 1. For all oracle algorithms Ag,e,d considered throughout, we assume when-
ever a Q-A ((tk, y) −→

d
x) is made by Ag,e,d, two dummy queries (tk −→

g
?)

and ((ik, x) −→
e

?) are subsequently made, where ik = g(tk). Thus, whenever
((tk, y) −→

d
x) is in A’s Q-A list, so are (tk −→

g
ik) and ((ik, x) −→

e
y). Moreover, for

any A as above, we assume whenever two Q-A pairs (tk −→
g

∗) and ((ik, x) −→
e

y)

are made first, then no subsequent query ((tk, y) −→
d

?) is ever made.

Bluebird view of the proof of Theorem 4. We show how to transform PKComs
into target restricted signatures. This is given in Construction 5. The construc-
tion is similar to Lamport’s signatures from OWFs, adapted to the PKE setting.
That is, we generate n public keys {pki}, put all public keys and all secret keys
except the target (hth) one in the verification key. The signature σ on h ∈ [n] is
a secret key for pkh. The verification function will encrypt a random message m
relative to h (performed inside Ver0), and decrypts the ciphertext c inside Ver1
using a signature σ := skh to see if it gets m back. First, it is clear that Ver0
can be performed before seeing σ. The most major step is to make sure Ver1
can decrypt c without making queries. To this end, we equip the verification key
with Q-A pairs underlying {pki}i�=h (called QGeni in the construction), and we
also let Ver0 pass on all Q-A pairs QEnc underlying c to Ver1. The algorithm
Ver1 simulates responses to its queries using these sets. The main difficulty is
to define the simulated decryption in such a way that we can establish both
correctness and security. (For example, letting Ver1 invert any d(tk, y) that is
“captured” by QEnc and skh will make the scheme forgeable, as a forger can cook
up some fake skh that might pass the test.)

4.2.1 Target-Restricted Signature Construction

We now present our Target-Restricted Signatures construction. In the next
sections we argue its correctness and security based on those of the base PKCom.

Construction 5 (Target-restricted signatures from PKCom) Suppose we
are given a PKCom scheme Eg,e,d := (Keyg,e,d,Comg,e,d,Encg,e,d,Decg,e,d). We
build an n-target-restricted signature scheme as follows. We assume all the al-
gorithms satisfy the assumption in Note 1.

– Geng,e,d(1κ, h) where h ∈ [n] is the message to be signed. For i ∈ [n] let
QGeni = ∅.
1. For j ∈ [n], run Keyg,e,d(1κ) → (pkj , skj), and add all g/e Q-A pairs to

QGenj.11

2. Run Comg,e,d(pk1, . . . , pkn) → pp and add all g/e Q-A pairs to QCMP.
3. Return vrk = ((pk1, . . . , pkn),∪j �=hQGenj∪QCMP∪L), sgk = (skh,QGenh).

– Sig(sgk, h) → σ: For sgk as above, return σ := (skh,QGenh).

11 We do not keep track of d queries because of Note 1.
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– Verg,e,d(vrk, σ, h) = Ver1(Ver0O(vrk, h), σ): Parse vrk := ((pk1, . . . , pkn), S)
and σ := (skh,QGenh).
1. Ver0g,e,d(vrk, h) → α := (vrk, h,m, c,QEnc), where (m, c) ← Encg,e,d(pp, h)

and QEnc is the set of all Q-A pairs made to g and e.
2. Ver1(α, σ): Retrieve QEnc and S from α. (Recall S = ∪j �=hQGenj ∪

QCMP∪L is in vrk.) Parse σ := (skh,QGenh). Let All = S∪QEnc∪QGenh.
Run DecSim(h, skh, {pki}, c, (All,QEnc,QGenh)), which simulates the ex-
ecution of DecO(h, skh, {pki}, c) by rendering queries via (All,QEnc,QGenh),
as follows:
(a) For a given g or e query, if the answer is already provided in All,

reply with that answer; else, with a random string z of appropriate
length. In case of answering with a random response, add the Q-A
pair to Fake (initially empty).12

(b) For a query qu := ((tk, y) −→
d

?), if (tk −→
g

ik) ∈ QGenh \ (S ∪ QEnc)

and ((ik, x) −→
e

y) ∈ (All \QEnc)∪Fake for some ik and x, respond to
qu with x. Else if (tk −→

g
ik) ∈ All ∪ Fake for some ik, and ((ik, x) −→

e

y) ∈ All∪Fake for some x, respond to qu with x. Else, respond to qu
with a random r ← {0, 1}κ.13

Letting m′ be the output of DecSim, output 1 if m′ = m and 0 otherwise.

Proof Overview. Our goal is to show that Construction 5 provides both correct-
ness and security. We first discuss correctness. For that we have to argue that
if (skh,QGenh) are produced honestly, then DecSim run by Ver1 will output m
with high probability. For this we have to argue that DecSim respond to all g, e
and d queries consistently with how they were responded to before (if ever). For
example, if a query qu was previously asked during the generation of, say, pki, if
the same query is asked again by DecSim, it should receive the same response.
It is easy to see that this is the case for both g and e queries qu. In particular,
in Step 2a of Construction 5 we check if qu is in All, which contains all Q-A
pairs up to that point. The challenging case is when qu is a d query: Step 2b
Construction 5 responds to d queries only in some some special cases: in other
cases it gives a random response. One scenario in which this happens is when
(a) a Q-A pair ((∗ −→

g
ik)) ∈ QGenh; and (b) ((ik, ∗) −→

e
?)∗ ∈ QEnc and (c)

((∗ −→
g

ik)) /∈ ∪iQGeni�=h ∪ QCMP ∪ QEnc. This means that pp brings some ik

information from index h (more specifically, from pkh). We will prove that the
probability that this happens is small; our proof makes use of the fact that |pp|
is compact. In particular, given pp, for at least one index i, pp cannot bring ik
information about pki that is not present in any other pkj ’s. We present and
prove the compression statement in Lemma 2. This statement is of independent

12 Duplicate queries will be replied to with the same random response.
13 By Note 1, any decryption query is followed by two subsequent g and e dummy

queries. In the last case where a random response r for (tk, y) is generated, we reply
to the subsequent dummy e query with y.
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interest and may find applications in some other impossibility results. Proposi-
tion 1 will then make use of this compression theorem to formalize and prove the
above statement that pp loses ‘ik-information’ for some index i. Finally, Lemma 3
uses this proposition to give the correctness proof.

4.2.2 Compression Lemma for TDP Oracles
We present the compression lemma below.

Lemma 2. Let Ag,e,d(1κ) → z be an arbitrary algorithm (not necessarily poly-
query) that outputs a string z while calling O = (g, e,d). Let w := � 2|z|

3κ + 1
3�. Let

Bg,e,d(z) be an adversary that takes as input z, makes at most 2κ − w queries
to g and d (in total), and an unlimited number of queries to e, and outputs
a set Chal = {ik1, . . . , ikt}, where w ≤ t ≤ 2κ/3. Also, assume B satisfies the
assumptions in Note 1. Let Q be the set of all queries/responses made by B. We
say Chal is non-trivial if for no i ∈ [t], (∗ −→

g
iki) ∈ Q. We say the event Success

holds if (i) all index keys in Chal are different, (ii) Chal is non-trivial and (iii)
for at least w indices i1, . . . , iw ∈ [t], ikij ∈ g(∗) for j ∈ [w].

We then have Pr[Success] ≤ 2−κ/2, where the probability is taken over (g, e,d) ←
Ψ and the random coins of A and B.

Proof. Assume wlog that both A and B are deterministic. We will prove the
lemma for any fixing of the oracle e (note that the oracles g and e are indepen-
dent), obtaining a stronger result.

Since both A and B are deterministic, for any fixed oracle g (in addition to e
already fixed) the event Sucess either holds or not; i.e., the probability of Success
is either zero or one with respect to any fixed g. Let K = 2κ. We prove that any
fixed oracle g for which Success holds can be uniquely described with

f := log

(
2|z|

(
K

w

)
w!

(
t

w

)
(K3 − w)!

(K3 −K)!

)
(1)

bits. This means that there exists at most 2f different Successful oracles. Using
the inequalities (a/b)b ≤ (

a
b

) ≤ (ae/b)b, the fraction of g oracles for which Success
holds is at most the following.

2f

number of L oracles

≤
2|z|

(
K
w

)
w!

(
t
w

) (K3−w)!
(K3−K)!

K3!
(K3−K)!

=
2|z|

(
K
w

)(
t
w

)
(
K3

w

)
≤ 2|z|(Ke

w )w( tew )w

(K
3

w )w
= 2|z|(

e2t

K2w
)w ≤ 2|z|w!(

8× 2κ/3

22κw
)w

≤ 2|z|(
1

2(3/2)κw
)w (because

8× 2κ/3

22κ
≤ 1

2(3/2)κ
for large κ )

≤ 2|z|(
1

2(3/2)κ
)w =

1

2(3/2)κw−|z|
≤ 1

2κ/2
.
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The last inequality follows from 3
2kw − |z| ≥ k/2 implied by w ≥ 2|z|

3κ + 1
3 .

We now prove Equation 1. Fix a Successful oracle g. Let Chal = {ik1, . . . , ikt}
and wlog assume ik1 <lex ik2 <lex · · · <lex ikt, where <lex denotes lexicographical
ordering. Let (iki1 , . . . , ikiw) be the w lexicographically smallest elements in Chal
that have a pre-image under g, and let (tki1 , . . . , tkiw) be their pre-images. By
Condition (iii) of the lemma such a sequence exists. Let Chalx := (tki1 , . . . , tkiw).
Let U be the set of trapdoor keys tk such that (tk −→

g
?) was queried by Bg,e,d(z).

By definition, for any Successful g, we have U ∩ Chalx = ∅, and hence U ⊆
{0, 1}κ \ Chalx.

Given B we claim that any Successful oracle g can be fully described by
z, Chalx, the index set {i1, . . . , iw} and the output of g on all input points in
{0, 1}κ \ Chalx. Indeed, for any tk /∈ Chalx, the value g(tk) is already given. We
determine the g outputs on inputs in Chalx as follows: Run Bg,e,d(z) to get Chal.
We first explain how to reply to B queries using the provided information.

1. Answering g queries of B: Since U ⊆ {0, 1}κ \ Chalx (recall that U contains
the set of B’s queries to g) and that g is fully determined on {0, 1}κ \Chalx,
we can successfully answer all of B’s g queries.

2. Answering e queries of B: the oracle e is fixed and independent of g.
3. Answering d queries: for any query ((tk, y) −→

d
?), by Note 1, tk ∈ U, and

hence tk ∈ {0, 1}κ \ Chalx. Thus, the value of ik := g(tk) can be determined
via the provided information. Once ik is known, since e is also known, we
can compute d(tk, y).

Thus, the set Chal can be retrieved. After that, sort its elements lexico-
graphically to get (ik1, . . . , ikt), and use the provided indices (i1, . . . , iw) to re-
trieve (iki1 , . . . , ikiw). Assuming Chalx = (tk1, . . . , tkw) we have g(tkh) = ikih
for h ∈ [w]. Thus, g can be reconstructed on inputs in Chalx, and hence on all
inputs.

We now count f the number of bits sufficient to describe Chalx, the index set
{i1, . . . , iw} and the output of g on all of {0, 1}κ \ Chalx. We can describe the
ordered set Chalx with log(

(
K
w

)
w!) bits. For describing the (unordered) index set

{i1, . . . , iw}, note that all the indices are distinct and each is in [t]. Thus, we can
describe the index set with log

(
t
w

)
bits. Finally, we can describe the function

g : {0, 1}κ → {0, 1}3κ on {0, 1}κ \ Chalx with log (K3−w)!
(K3−K)! bits. Equation 1 now

follows. ��

4.2.3 Proof of Correctness

We now use the compression theorem (Lemma 2) to argue correctness. As
explained before (in the proof overview), the goal is to show that pp will lose
information, about at least one of pki’s in the sense below. We first start with
some notation.

Definition 5. We define some notations based on Construction 5.
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1. For vrk := (pk1, . . . , pkn, . . . ), let Pubi for i ∈ [n] be the set of index keys
underlying pki; i.e., ik ∈ Pubi iff (∗ −→

g
ik) ∈ QGeni

2. For i ∈ [n] let the random variable Quei be the set of all Q-A pairs during a
random execution of Encg,e,d(pp, i). Let PubCi be the set of all ik such that
(a) ik ∈ g(∗), (b) ((ik, ∗) −→

e
∗) ∈ Quei and (c) (∗ −→

g
ik) /∈ Quei. Let Hi be the

set of all ik such that (a) ((ik, ∗) −→
e

∗) ∈ Quei and (b) (∗ −→
g

ik) /∈ Quei (i.e.,

same as PubCi except it does not need ik to be valid). Note that PubCi ⊆ Hi.
3. Recalling QEnc from Construction 5 let PubC contain all ik such that (a)

ik ∈ g(∗), (b) ((ik, ∗) −→
e

∗) ∈ QEnc, and (c) (∗ −→
g

ik) /∈ QEnc. Note that

PubC and PubCh are identically distributed.

The following lemma shows that with high probability there exists an index
i ∈ [n] such that during a random execution of Encg,e,d(pp, i) the set of valid ik’s
that were not generated in response to g queries during the same Enc execution
and upon which e(ik, ∗) is called, is a subset of ∪j �=iPubj . If this index i happens
to be challenge index in Construction 5 (meaning h = i), then the simulated
decryption DecSim performed by Ver1 will succeed with high probability.

Proposition 1. Suppose �2 |pp|3κ + 1
3� ≤ n. For random variables as in Defini-

tion 5
Pr[∃i : (Pubi ∩ PubCi) ⊆ ∪j �=iPubj ] ≥ 1− 2−κ/2.

Proof. We use notation from Definition 5. Let t = | ∪n
i=1 Hi| be the number of

distinct index keys in ∪n
i=1Hi and let w = �2 |pp|3κ + 1

3�. Let q = | ∪n
i=1 PubCi|, and

recall all index keys in ∪n
i=1PubCi are valid. Since for i ∈ [n], PubCi ⊆ Hi, then

∪n
i=1PubCi ⊆ ∪n

i=1Hi. Therefore, based on Lemma 2, Pr[q ≥ w] ≤ 2−κ/2. To see
why the former claim holds, view pp in Construction 5 as z in Lemma 2 and view
∪n
i=1Hi as Chal. Let Small be the event that q < n. Since, w = �2 |pp|3κ + 1

3� ≤ n,
Pr[Small] ≥ 1− 2−κ/2.

We now show assuming Small holds, there exists an index i ∈ [n] such that
(Pubi ∩ PubCi) ⊆ ∪j �=iPubj . Suppose not. Then, for all f ∈ [n], there exists
a key ik such that ikf ∈ Pubf ∩ PubCf but ikf /∈ ∪j �=fPubj . We claim that
ik1, ik2, . . . , ikn are distinct values, and since for all j, ikj ∈ PubCj , the event
Small holds, a contradiction. If for two different indices j, k ∈ [n], ikj = ikk,
then ikk ∈ Pubj since ikj ∈ Pubj ∩ PubCj . This contradicts the assumption that
ikk /∈ ∪j �=kPubj . The bound of the lemma now follows. ��

The following proposition shows that if the index h was guessed correctly
(i.e., it is the index that pp loses information about the in the sense of the above
lemma), then the simulated decryption of DecSim outputs the correct plaintext
with high probability.

Proposition 2. Assuming

(Pubh ∩ PubC) ⊆ ∪i�=hPubi, (2)

the probability that the algorithm Ver (Construction 5) does not output the correct
bit is at most 2−2κ/3.

21



Proof. Let QDec′ be the set of all Q-A pairs made to (g, e,d) by DecSim inside
Ver1. Let

– β1, . . . , βl be the responses in QDec′ sampled uniformly at random to an-
swer encryption queries and let (ik1, x1), . . . , (ikt, xl) be the corresponding
encryption queries.

– Let α1, . . . , αk be the responses in QDec′ sampled uniformly at random to
answer decryption queries, and let (tk1, y1), . . . , (tkt, yt) be the corresponding
decryption queries.

The output of Ver is ⊥ only when T := ∪jQGenj ∪ QCMP ∪ QEnc ∪ QDec′

is inconsistent in a TDP sense. Say a point a ∈ {0, 1}κ occurs in QEnc if it
occurs as the input or output of an e or d query: ((∗, a) −→

e
∗), ((∗, ∗) −→

e
a),

((∗, a) −→
d

∗) or ((∗, ∗) −→
d

a). First, assume all of αi and βj values are distinct.

(This happens except with probability poly(κ)
2κ .) Assuming this, we might have an

inconsistency because the permutation structure is violated, namely when some
αi or βj occurs in QEnc.14 The probability of this is also at most poly(κ)

2κ . Thus,
below assume all of αi and βj are distinct, and none of them occur in QEnc.

We might now have an inconsistency because a query response generated by
DecSim might conflict with All := ∪jQGenj ∪ QCMP ∪ QEnc. We upperbound
the probability of this below.

For a query qu := ((tk, y) −→
d

?) of DecSim, we might get an inconsistency if

1. for some ik, (tk −→
g

ik) ∈ All, and

2. ((ik, x) −→
e

y) ∈ All, and
3. x 	= x̃ where x̃ is the generated response for qu by DecSim.

Call this event Bad. The event Bad indeed causes a conflict because (tk −→
g

ik) ∈
All and ((ik, x̃) −→

e
y) ∈ All will dictate a response x to a decryption query

(tk, y), but a random response x̃ 	= x was given. Assuming the hypothesis of the
lemma (Equation 2) we show whenever Conditions 1 and 2 hold, we will have
(tk −→

g
ik) ∈ All \ QGenh, and given that ((ik, x) −→

e
y) ∈ All, Condition 3 would

never hold. (See Step 2b of Ver1 in Construction 5.)
Suppose to the contrary (tk −→

g
ik) /∈ All \ QGenh. Since (tk −→

g
ik) ∈ All we

conclude ik ∈ PubCh and ik /∈ ∪i�=hPubCi (Definition 5). Moreover, ((ik, x) −→
e

y) /∈ ∪iQGeni ∪ QCMP because otherwise Condition 3 would never occur. (See
Step 2b of Ver1 in Construction 5.) Since ((ik, x) −→

e
y) ∈ All and All := ∪jQGenj∪

QCMP ∪ QEnc, we get ((ik, x) −→
e

y) ∈ QEnc. Since we assumed (tk −→
g

ik) /∈
All \ QGenh, we get (tk −→

g
ik) /∈ QEnc. Thus, ik ∈ PubC. We have established

ik ∈ PubCh ∩ PubC, and ik /∈ ∪i�=hPubCi, contradicting Equation 2.
��

14 This case does not necessarily lead to an inconsistency, but we show it will, nonethe-
less, occur with small probability.
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Lemma 3 (Correctness). Suppose Π is the signature scheme defined in Con-
struction 5 with oracle access of the form (Geng,e,d, Sig,Verg,e,d) and the PKCom
scheme underlying Π is (1− ε)-correct. Then, Π is (1− ε) (1−2−κ/3)

n -correct.

Proof. Let Success be the event that the verification algorithm outputs the cor-
rect bit. In other words, if Successi holds, we have: Verg,e,d(vrk, i, Sig(sgk, i)) = 1
where (sgk, vrk) ← Geng,e,d(1κ, i). Finally, let X be the random variable denot-
ing the message chosen to be signed. Also, let Good be the event that there exists
h ∈ [n] for which Proposition 1 holds. In other words, if Good happens, we have:

(Pubh ∩ PubC) ⊆ ∪j �=hPubj

Based on Proposition 1, Pr[Good] ≥ 1− 2−κ/2. Therefore:

Pr[Π is correct] =
n∑

i=1

Pr[Success|X = i] Pr[X = i] =
1

n

n∑
i=1

Pr[Successi]

Pr[Successi] = Pr[Successi|Good] Pr[Good] + Pr[Successi|Good] Pr[Good] ≥

Pr[Successi|Good] Pr[Good] ≥ (1− 2−κ/2) Pr[Successi|Good]

⇒ Pr[Π is correct] =
1

n

n∑
i=1

Pr[Successi] ≥ 1

n
(1−2−κ/2)

n∑
i=1

Pr[Successi|Good] ≥

1

n
(1− 2−κ/2) Pr[Successh|Good] ≥ 1

n
(1− 2−κ/2)(1− 2−2κ/3) ≥ (1− 2−κ/3)

n

��

4.2.4 Proof of Security

Now, we prove one-time unforgeability of Construction 5. We first present
the following standard bound.

Lemma 4. Let X1, . . . , Xt+1 be independent, Bernoulli random variables, where
Pr[Xi = 1] = p, for all i ≤ t+ 1. Then

Pr[X1 = 0 ∧ · · · ∧Xt = 0 ∧Xt+1 = 1] ≤ 1

t
.

Lemma 5 (Security of Construction 5). Construction 5 is one-time un-
forgeable if the PKCom scheme is secure.

Before delving in the proof, let us sketch the main challenges in the proof
and how we overcome them.
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Proof sketch of Lemma 5 Suppose B is successful in forging a signature in Eg,e,d.
We need to argue how to build an adversary AB,g,e,d against PKCom. The
adversary B forges a signature by presenting σ := (skh,QGenh). Since B forges
a signature, we know that DecSim(h, skh, {pki}, c, (All,QEnc,QGenh)), outputs
the correct plaintext bit for c. Thinking of c as a challenge ciphertext for A, the
adversary A does not have QEnc so to be able to run

DecSim(h, skh, {pki}, c, (All,QEnc,QGenh)).
Instead, A has full access to all the oracles g, e,d. The reduction works by let-
ting A run DecSim(h, skh, {pki}, c, (All,QEnc,QGenh)), but those queries which
require knowledge of QEnc to be responded to, will be answered by consulting
the real oracles (g, e,d). (Recall that DecSim does not have oracle access to
(g, e,d).) Our analysis will show that the entire distribution of all Q-A pairs
underlying all public keys, ciphertexts and those that appear during decryption
is indistinguishable in the two worlds: the first world is one where things are
decrypted as per DecSim by using QEnc, and the second world is one where the
real oracles (g, e,d) are used for decryption, as explained above. Let us highlight
some of the challenges and how we overcome them.

Suppose that B makes a dummy query (tk −→
g

?) for a random tk and puts

(x, tk) in its forged secret key skh, where x is the first half of ik. And suppose the
decryption algorithm on skh always call the query qu := (tk −→

g
?). Now assuming

that (tk −→
g

?) is not a query in QEnc (which is likely as qu is chosen randomly),

under DecSim this query is responded to with random (which is independent of
x), while under the above strategy, of consulting the real oracle g, we respond
to with ik itself (whose first half equals x). Thus, the two distributions become
distinguishable. To get around this, we use the oracles (g, e,d) in a controlled
way. Namely, we maintain a set of Q-A pairs collect, and if a given query is not
answered in collect we then consult the real oracles (g, e,d). To sample collect,
we run (c′, ∗) ← Encg,e,d(pp, h) many times, each time recording the queries in
a fresh local set QEnc′, and then run DecSim on skh and c′ while using QEnc′

for decryption. We collect all the Q-A pairs that occur during the executions of
DecSim in the set collect. It can now be seen with this enhancement the above
issue goes way: both worlds will respond to qu randomly.

Proof. We show how to transform an adversary B against the signatures into an
adversary AB,g,e,d against PKCom.

1. A samples h, and for i ∈ [n] \ {h}, it samples (pki, ski) ← Key(1κ) and
collects the Q-A pairs in QGeni. It then gives (pki, ski)i�=h to the challenger
to receive (pk, ct).

2. A forms vrk := ({pki},∪j �=hQGenj ∪QCMP), where QCMP is the set of Q-A
pairs made during Com(pk1, . . . , pkn).

3. A runs (sk′h,QGen
′
h) ← B(vrk, h).

4. A runs (ct′, ∗) ← Encg,e,d(pp, h) η times, each time recording the queries in
a set QEnc′, and then runs DecSim while using QEnc′, and records all queries
in collect.
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5. A runs DecSim0(sk
′
h, h, ct): Let All′ = ∪j �=hQGenj ∪QCMP∪ collect. For any

g/e query, if already answered in QGen′h ∪ All′, use that answer; else, reply
with calling the g/e oracle on the same query. For qu := ((tk, y) −→

d
?):

(a) if for some ik and x
i. (tk −→

g
ik) ∈ All′ and ((ik, x) −→

e
y) ∈ All′ ∪ QGen′h\collect, respond to

qu with x.
ii. if (tk −→

g
ik) ∈ QGen′h \ All′ and ((ik, x) −→

e
y) ∈ All′ ∪ QGen′h\collect,

respond to qu with x.
iii. if (tk −→

g
ik) ∈ QGen′h \ All′ and ((ik, x) −→

e
y) /∈ All′ ∪ QGen′h\collect,

respond to qu with random.
(b) Else, respond to qu with d(tk, y).

Let All := ∪j �=hQGenj ∪ QCMP ∪ QEnc where QEnc is the set of all Q-A
pairs made during (ct, ∗) ← Enc(pp, h;R). Also let QDec and QDec′ be the set
of Q-A pairs made by DecSim and DecSim0, respectively and let T be the set of
all Q-A pairs made by B while forging (sk′h,QGen

′
h). Consider the following two

distributions:

D : (QGenj∈[n] ∪ QCMP, {pkj}j∈[n],QEnc, ct, σ,QDec,T, R, sk′h,QGen
′
h)

and

D′ : (QGenj∈[n] ∪ QCMP, {pkj}j∈[n],QEnc, ct, σ,QDec′,T, R, sk′h,QGen
′
h).

For each key pair (tk → ik) ∈ T∪QGenh, we define η + 1 variables as below:
For 1 ≤ i ≤ η, let Xi be a Bernoulli variable that equals 1 when (tk −→

g
∗) appears

in ith iteration of collecting queries in collect at step 4 above and 0 otherwise.
Also, let Xη+1 = 1 if (tk −→

g
∗) appears in execution of DecSim(sk′h, h, ct) while

running Ver1 and 0 otherwise. X1, . . . , Xη+1 are independent and have the same
probability of being 1. This is because all Xi, for 1 ≤ i ≤ η, are output of the
same randomized experiment and Xη+1 can also be seen as a result of the same
experiment. Let QDeckey be the set of all tk such that (tk −→

g
∗) is queried in

execution of DecSim(crs, h, σ, vrk, c) while running Ver1. Also, let collectkey be
the set of all tk such that (tk −→

g
∗) ∈ collect.

Therefore, based on Lemma 4, for any key pair (tk → ik) ∈ T ∪ QGenh,

Pr[tk ∈ QDeckey/collectkey] = Pr[X1 = 0 ∧ · · · ∧Xη = 0 ∧Xη+1 = 1] ≤ 1

η
. (3)

Therefore, the probability that for some (tk −→
g

ik) ∈ QDec, (tk −→
g

ik) /∈ collect

but g(tk) is queried while running Ver1 is at most
γ

η
where γ = poly(κ) is the

number of queries in T∪QGenh. Let η = γ2; thus, with probability at least 1− 1

γ
,
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for any key pair (tk −→
g

ik) ∈ (T∪QGenh)∩QDec, we also have (tk −→
g

ik) ∈ collect.

Suppose the decryption algorithm makes no duplicate queries. We first prove
that with high probability, for all g type queries, both distributions are the same.
Suppose not and let (tk∗ −→

g
?) be the first query for which DecSim and DecSim0

will answer with differently and make the distributions different. (tk∗ −→
g

∗) can-

not be present in QGen′h∪All′ because otherwise both DecSim and DecSim0 would
answer with the same response. Also, (tk∗ −→

g
∗) cannot appear in QEnc because

otherwise DecSim will answer according to QEnc and DecSim0 will query the or-
acle which results in DecSim and DecSim0 answering with the same response as
the oracle is correct. That means that (tk∗ −→

g
∗) ∈ T ∪QGenh but based on the

above conclusion, since tk ∈ QDeckey with probability at least 1− 1

γ
, (tk∗ −→

g
∗)

has been collected in collect, therefore (tk∗ −→
g

∗) ∈ All′ which is a contradiction.

Now, we can similarly prove that with high probability, for all e type queries,
both distributions are the same. Suppose not and let ((ik∗, x∗) −→

e
?) be the first

query for which DecSim and DecSim0 will answer with differently and make the
distributions different. ((ik∗, x∗) −→

e
∗) cannot be in QGen′h ∪ All′ ∪ QEnc be-

cause otherwise both DecSim and DecSim0 will answer with the same response.
That means that ((ik∗, x∗) −→

e
∗) ∈ T ∪ QGenh. Similar to 3, we can prove

that with probability at least 1 − 1

γ
, for any pair (ik, x) where ((ik, x) −→

e
∗) ∈

(T ∪ QGenh) ∩ QDec, we also have ((ik, x) −→
e

∗) ∈ collect.

Therefore, since ((ik∗, x∗) −→
e

∗) ∈ QDec with probability at least 1− 1

γ
, ((ik∗, x∗) −→

e

∗) has been collected in collect. Thus, ((ik∗, x∗) −→
e

∗) ∈ All′ which is a contradic-
tion.

We finally prove that with high probability, for all d type queries, both
distributions are the same. Let qu := ((tk, y) −→

d
?) be the first decryption query

that makes the distributions different. There are five cases:

1. There exists a ik such that (tk −→
g

ik) ∈ All∪QGen′h\QEnc and there exists x

such that ((ik, x) −→
e

y) ∈ QGen′h ∪ All\QEnc: In this case, both distributions
will answer with x.

2. There exists a ik such that (tk −→
g

ik) ∈ All and there exists x such that

((ik, x) −→
e

y) ∈ QEnc: In this case, DecSim will answer with x while DecSim0

will query the oracle and answer accordingly. However, since QEnc is pro-
duced by the same oracle and the oracle is correct, the the oracle’s answer
will be x and both distribution will answer the same.

3. There exists a ik such that (tk −→
g

ik) ∈ QEnc and there exists x such that

((ik, x) −→
e

y) ∈ All: In this case, DecSim will answer with x while DecSim0
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will query the oracle and answer accordingly. Therefore, similar to Item 2
both distribution will answer the same.

4. There exists a ik such that (tk −→
g

ik) ∈ QGen′h\All and there exists no x such

that ((ik, x) −→
e

y) ∈ QGen′h ∪ All\QEnc: In this case, both distributions will
answer with a random response.

5. There exists a ik such that (tk −→
g

ik) ∈ All but for no x, ((ik, x) −→
e

y) ∈
QGen′h ∪ All: In this case, if ((ik, x) −→

e
y) /∈ collect, DecSim will answer with

a random response while DecSim0 will query oracle and answer accordingly.
However, note that for some y, ((ik, x) −→

e
y) must appear in QGenh ∪ T

because otherwise there is no way for a distinguisher who only has access to
the two distributions to differentiate between the random and true response.

Similar to 3, we can prove that with probability at least 1− 1

γ
, for any pair

(ik, x) where ((ik, x) −→
e

∗) ∈ (T ∪ QGenh) ∩ QDec, we also have ((ik, x) −→
e

∗) ∈ collect.

Therefore, since ((ik, x) −→
e

y) ∈ QDec with probability at least 1 − 1

γ
,

((ik, x) −→
e

y) has been collected in collect. Thus, with probability at least

1 − 1

γ
, DecSim0 will answer with a random response and both distribution

will be the same.

��

5 Impossibility in Shoup’s Generic Group Model

In this section, we show that there exists a Shoup’s GGM oracle relative to which
PKCom does not exist. First, we recall Shoup’s generic group model [Sho97].

Definition 6. Let p ∈ N be a positive integer and let S = {0, 1}w be a set of
strings where w ≥ log p + κ. A random injection label : Zp → S is chosen,
which we will call the labeling function. All parties have access to the oracle
GRR = (label,add), defined in the following way.

– label: The party submits x ∈ Zp, and receives the label of x.
– add: The party submits (�1, �2) ∈ S2. If there exists x1, x2 ∈ Zp such that

label(x1) = �1 and label(x2) = �2, then the party receives label(x1 + x2).
Otherwise, the party receives ⊥. Note that label completely determines add
and thus also determines the whole oracle.

In this section, we will assume that p ∈ [2κ, 2κ+1] and S = {0, 1}3κ.
Lemma 6. Let Alabel,add(1κ) → z be an arbitrary algorithm (not necessar-
ily poly-query) that outputs a string z while calling GRR = (label,add). Let
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Blabel,add(z) be an adversary that takes as input the advice z, makes at most u
queries to label and add in total, and outputs a set of labels Chal = {�1, . . . , �t}
where t = 2κ/3. Let w := � 2(|z|+u)

3κ + 1
3�. Let Q be the set of all labels that

appear in the responses to the queries made by B. We say the event Success
holds if (i) all �i’s are different, (ii) for no i ∈ [t], �i ∈ Q, and (iii) for
at least w indices i1, . . . , iw ∈ [t], �ij ∈ label(∗) for j ∈ [w]. We then have
Pr[Success] ≤ 2−κ/2 = negl(κ), where the probability is taken over L ← Ψ and
the random coins of A and B.

The proof of Lemma 6 is very similar to the proof of Lemma 2 and thus it is
moved to the appendix.

5.1 Impossibility of CRS-free PKCom in Shoup’s GGM

Similar to Section 4.2, we first present the transformation to target-restricted
signatures for the case in which the PKCom does not have a CRS.

Definition 7. Let x� be the variable that is either ⊥ or x where x is the element
in Zp whose label is �. If � is invalid label, then x� is ⊥.

Definition 8. Suppose Q is a set of group operation Q-A pairs. We define Eq(Q)
to be the set of homogeneous linear equations that are directly implied by Q. In
other words, for a query ((�1, �2) −−→

add
�3) ∈ Q, if �3 	= ⊥, we add to Eq(Q) the

equation x�1 + x�2 − x�3 = 0.

Definition 9. For a set of Q-A pairs Q, define Var(Q) to be the set of all labels
� 	= ⊥ such that ((∗, ∗) −−→

add
�) ∈ Q.

Definition 10. Let LS be the set of all possible labels � ∈ S = {0, 1}∗ such that
� = label(x) for some x ∈ Zp. Also, let υ = label(1).

Definition 11 (Updating the Known function). Given a list L of add Q-
A pairs, update Known ← Upd(L) as follows. Do the following until no further
updates are possible: if there exists ((�1, �2) −−→

add
�3) ∈ L such that Known(�1) =

� or Known(�2) = �, update Known(�3) = �.

Theorem 6. If there exists a (1− ε)-correct PKCom scheme
(KeyGRR ,ComGRR ,EncGRR ,DecGRR) in the RR generic group model, then there
exists a δ-correct target-restricted signature scheme in the same model where
δ = (1− ε) (1−2−κ/3)

n .

Construction 7 Let (KeyGRR ,ComGRR ,EncGRR ,DecGRR) be a PKCom scheme.
We will assume all queries made to GRR are add queries since label queries
can be answered using add queries given υ = label(1). We construct a target-
restricted signature scheme defined over messages in [n] from the PKCom scheme.
We let Known: LS → {⊥,�}, initially set to Known(υ) = �, and ⊥ for all other
labels.
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– GenGRR(1κ, h) → (sgk, vrk) where h ∈ [n] is the message to be signed. For
i ∈ [n] let QGeni = ∅.
1. For 1 ≤ j ≤ n, run KeyGRR(1κ) → (pkj , skj) and add all Q-A pairs made

to GRR to QGenj.
2. Run ComGRR(pk1, . . . , pkn) → pp and let QCMP be the set of all Q-A

pairs made to GRR.
3. Update Known ← Upd(∪i�=hQGeni ∪ QCMP) (Definition 11).
4. Return vrk = ((pk1, . . . , pkn),∪j �=hQGenj ∪ QCMP,Known, υ), sgk =

(skh,QGenh).
– Sig(sgk, h) → σ: For sgk as above, return σ := (skh,QGenh).
– VerGRR(vrk, σ, h) = Ver1(Ver0GRR(vrk, h), σ) : Parse

vrk := ((pk1, . . . , pkn),A,Known, υ) and σ := (skh,QGenh).

1. Ver0GRR(vrk, h) → α := (vrk, h,m, c,QEnc), where (m, c) ← EncGRR(pp, h)
and QEnc is the set of all Q-A pairs made to GRR.

2. Ver1(α, σ) : Retrieve QEnc, A and Known from α. Recall A = ∪j �=hQGenj∪
QCMP. Update Known ← Upd(QEnc). Let All = ∪j �=hQGenj ∪ QCMP ∪
QEnc. Run DecSim which simulates the execution of DecGRR(h, skh, {pki}, c)
by rendering queries via (All,QGenh), as follows: Initialize two sets E =
Eq(All) and V = Var(All). For a given query add(�1, �2) do the following:
(a) If �1 /∈ V∪Var(QGenh) or �2 /∈ V∪Var(QGenh), respond to the query

with ⊥.
(b) Else if both �1, �2 ∈ V, if there exists � ∈ V ∪ Var(QGenh) such that

x�1 + x�2 − x� ∈ Span(E ∪ Eq(QGenh)), return �. If no such an � is
found, respond with a random label �′, add x�1 + x�2 − x�′ to E and
add �′ to V. Also, set Known(�′) = �.

(c) Else if there exists a label � such that x�1+x�2−x�′ ∈ Span(Eq(QCMP∪i

QGeni)), return �;
(d) Else, if there exists a label � such that Known(�) = � and x�1 +x�2 −

x� ∈ Span(E ∪ Eq(QGenh)), return �. Else, respond with a random
label �′, add x�1+x�2−x�′ to E, and add �′ to V. Also, set Known(�′) =
�.

Let m′ be the output of DecSim, output 1 if m = m′ and 0 otherwise.

Definition 12. We define some notations based on Construction 7.

1. For i ∈ [n] let the random variable Qui be the set of all Q-A pairs during a
random execution of EncGRR(pp, i). Let Qi be the set of all labels � such that
(a) (add(�, ∗) → ∗) ∈ Qui or (add(∗, �) → ∗) ∈ Qui and (b) � /∈ Var(Qui).
Let VQi be the set of all labels � such that (a) � ∈ Qi and (b) � ∈ label(∗).
Note that VQi ⊆ Qi.

2. Recalling QEnc from Construction 7 let VQ contain all labels � such that (a)
� ∈ label(∗), (b) (add(�, ∗) → ∗) ∈ QEnc or (add(∗, �) → ∗) ∈ QEnc, and
(c) � /∈ Var(QEnc). Note that VQ and VQh are identically distributed.

3. Recalling QGeni from Construction 7 let Vi contain all labels � such that
� ∈ Var(QGeni).
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4. Recalling QCMP from Construction 7 we construct VCMPi in an inductive
way. First, add to VCMPi all labels � such that there exists ((�1, �2) −−→

add
�) ∈

QCMP where �1 ∈ Vi and �2 ∈ Vi. Then, as long as there exist ((�1, �2) −−→
add

�) ∈ QCMP where �1 ∈ (VCMPi ∪ Vi) and �2 ∈ (VCMPi ∪ Vi), add � to
VCMPi.

5.2 Proof of Correctness

Proposition 3. Suppose n ≥ � 2(|pp|+u)
3κ + 1

3� where u is the total number of
queries made by Enc(pp, ∗) to GRR. For random variables as in Definition 12

Pr[∃i : ((Vi ∪ VCMPi) ∩ VQi) ⊆ ∪j �=i(Vj ∪ VCMPj)] ≥ 1− 2−κ/2.

Proof. We use notation from Definition 12. Let t = | ∪n
i=1 Qi| be the number of

distinct labels in ∪n
i=1Qi and let w = �2(|pp|+u)

3κ + 1
3�. Let q = | ∪n

i=1 VQi| be the
number of distinct labels in ∪n

i=1VQi and recall all labels in ∪n
i=1VQi are valid.

Since for i ∈ [n], VQi ⊆ Qi, then ∪n
i=1VQi ⊆ ∪n

i=1Qi.
Based on Lemma 6, Pr[q ≥ w] ≤ 2−κ/2. To see why the former claim holds, view
pp in Construction 7 as z in Lemma 6 and view ∪n

i=1Qi as Chal. Let Small be
the event that q < n. Since n ≥ �2(|pp|+u)

3κ + 1
3�, Pr[Small] ≥ 1− 2−κ/2.

We now show assuming Small holds, there exists an index i ∈ [n] such that
((Vi ∪ VCMPi) ∩ VQi) ⊆ ∪j �=i(Vj ∪ VCMPj). Suppose not. Then, for all k ∈ [n].
there exists a label �k such that �k ∈ ((Vk ∪VCMPk)∩VQk) but �k /∈ ∪i�=k(Vi ∪
VCMPi). We claim �1, . . . , �n are distinct labels, and since for all i, �i ∈ VQi, the
event Small holds, a contradiction. If for two different indices j, k ∈ [n], �j = �k,
then �k ∈ Vj ∪ VCMPj since �j ∈ (Vj ∪ VCMPj) ∩ VQj . This contradicts the
assumption that �k /∈ ∪i�=k(Vi ∪ VCMPi). The bound of the lemma now follows.

��

Proposition 4. Let � ← AGRR(1κ) be an arbitrary poly-query algorithm that
takes in the security parameter 1κ, and outputs a label �. Let Q′ be the set of all
labels generated by calling GRR during A’s execution. Then,

Pr[� /∈ Q′ ∧ � ∈ label(∗)] ≤ 2−2κ.

Proof. Suppose that A checks r public keys using the oracle before outputting
the final guess. Recalling the definition of add from 6, note that A can check
validity of a label �1 by querying add(�1, �1) and if the response was not ⊥, it can
conclude that �′ is valid. Since A is a poly-query algorithm, q = |Q′|+r = poly(κ).
Since label : Zp 
→ S and p = 2κ, there are at most 2κ valid labels. Let Badi for
1 ≤ i ≤ t be the event that the ith label that is checked by the adversary is not
valid. Then, the probability that A’s final guess is valid is:

1− Pr[Badr+1] = 1− 23κ − 2κ − r

23κ − q

r∏
i=1

Pr[Badi] < 1− (
23κ − 2κ − r

23κ − q
)r+1

30



For sufficiently large κ,
23κ − 2κ − r

23κ − q
< 1. Therefore,

1− Pr[Badr+1] < 1− (
23κ − 2κ − r

23κ − q
)

r∑
i=1

(
23κ − 2κ − r

23κ − q
)i < (

2κ − |Q′|
23κ − q

)(r + 1).

Therefore, for sufficiently large κ, Pr[� ∈ Q′ ∧ � ∈ label(∗)] is bounded by 2−2κ.
��

Lemma 7. Suppose we update Known ← Upd(∪i�=hQGeni ∪ QCMP ∪ QEnc).
Then, assuming

((Vh ∪ VCMPh) ∩ VQ) ⊆ ∪i�=h(Vi ∪ VCMPi), (4)

with probability at least 1− poly(κ).2−2κ for any label that � ∈ Var(∪i�=hQGeni ∪
QCMP ∪ QEnc) but � /∈ VCMPh, Known(�) = �.

Proof. Suppose there exists a label � ∈ Var(∪i�=hQGeni ∪ QCMP ∪ QEnc) such
that � /∈ VCMPh and Known(�) = ⊥. There are three cases:

– � ∈ Var(QGeni) where i 	= h: Let � be the first label in Var(QGeni) such
that Known(�) = ⊥. � ∈ Var(QGeni); thus, as per Definition 9, there ex-
ists a Q-A pair ((�x, �y) −−→

add
�) ∈ QGeni. Therefore Known(�x) = ⊥ and

Known(�y) = ⊥ because otherwise Known(�) = �. Since � is the first la-
bel in Var(QGeni) whose Known = ⊥, we must have �x /∈ Var(QGeni) ∧
�y /∈ Var(QGeni). Moreover, �x, �y must be valid because otherwise, � = ⊥
and � /∈ Var(QGeni). Based on Proposition 4, the probability that �x /∈
Var(QGeni) ∧ �y /∈ Var(QGeni) but �x, �y are valid is at most 2−4κ.

– � ∈ Var(QCMP) ∧ � /∈ VCMPh: Let � be the first label in Var(QCMP) such
that Known(�) = ⊥ and � /∈ VCMPh. � ∈ Var(QCMP); thus, as per Def-
inition 9, there exists a Q-A pair ((�x, �y) −−→

add
�) ∈ QCMP. Therefore

Known(�x) = ⊥ and Known(�y) = ⊥ because otherwise Known(�) = �.
Thus, �x and �y cannot be in ∪i�=hVar(QGeni) because otherwise they will
be known with probability 1 − 2−4κ based on the previous case. Since � is
the first label in Var(QCMP) whose Known = ⊥ and is not in VCMPh, we
must have (�x /∈ Var(QCMP) or �x ∈ VCMPh) and (�y /∈ Var(QCMP) or
�y ∈ VCMPh). Moreover, �x, �y must be valid because otherwise, � = ⊥ and
� /∈ Var(QCMP). If both �x, �y ∈ Vh ∪ VCMPh, then � ∈ VCMPh. Therefore,
at most one of �x, �y can be in Vh ∪ VCMPh and at least one of �x, �y must
not be in Var(QCMP ∪ QGenh). Thus, at least one of �x, �y must not be in
Var(QCMP ∪n

i=1 QGeni). Based on Proposition 4, the probability that this
case happens is at most 2−2κ + 2−4κ which is bounded by 2−κ+1.

– � ∈ Var(QEnc): Let � be the first label in Var(QEnc) such that Known(�) = ⊥.
� ∈ Var(QEnc); thus, as per Definition 9, there exists a Q-A pair ((�x, �y) −−→

add

�) ∈ QEnc. Therefore Known(�x) = ⊥ and Known(�y) = ⊥ because otherwise
Known(�) = �. Since � is the first label in Var(QEnc) whose Known = ⊥, we
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must have �x /∈ Var(QEnc) ∧ �y /∈ Var(QEnc). Moreover, �x, �y must be valid
because otherwise, � = ⊥ and � /∈ Var(QEnc). Based on 4, if �x ∈ Vh∪VCMPh,
then �x ∈ ∪i�=hVi∪VCMPi and based on the two previous cases, Known(�x) =
� with probability 1−2−2κ. Therefore, �x /∈ Vh∪VCMPh. The same argument
holds for �y. Thus, both of �x, �y are not in Var(QCMP ∪n

i=1 QGeni ∪QEnc).
Thus, based on Proposition 4, the probability that �x, �y are valid labels is
at most 2−4κ. Therefore, the probability that this case happens is at most
2−2κ+1.

Therefore, with probability at least p1 = 1 − poly(κ).2−2κ, for any label that
� ∈ Var(∪i�=hQGeni ∪ QCMP ∪ QEnc) but � /∈ VCMPh, Known(�) = �.

��
Proposition 5. Assuming

((Vh ∪ VCMPh) ∩ VQ) ⊆ ∪i�=h(Vi ∪ VCMPi), (5)

the probability that the algorithm Ver (Construction 7) doesn’t output the correct
bit is at most 1− 2−2κ/3.

Definition 13 (Inconsistency). Suppose Se is a set of Q-A pairs. We say a
Q-A pair ((�1, �2) −−→

add
�′) is inconsistent with Se if one the following happens:

– Inconsistent1: This case happens if Q-A pairs in Se imply that ((�1, �2) −−→
add

⊥) while �′ 	= ⊥. In other words, Inconsistent1 happens if:
1. �1 /∈ Var(Se) or �2 /∈ Var(Se). Let b ∈ {1, 2} be an index where �b /∈

Var(Se).
2. There exists a Q-A pair ((�b, �̃) −−→

add
⊥) ∈ Se or ((�̃, �b) −−→

add
⊥) ∈ Se

where �̃ ∈ Var(Se) or �̃ = �j where j = 1 or j = 2.
3. �′ 	= ⊥.

– Inconsistent2: This case happens if Q-A pairs in Se imply that ((�1, �2) −−→
add

�∗ 	= ⊥) while �′ 	= �∗. In other words, Inconsistent2 happens if:
1. x�1 + x�2 − x�∗ ∈ Span(Eq(Se)).
2. �′ 	= �∗.

Claims for Correctness. Suppose qu = add(�1, �2) is the first query inside
DecSim whose response creates an inconsistency as per Definition 13. Let �′

be the response generated by DecSim and view (∪QGeni ∪ QCMP ∪ QEnc ∪ T)
where T is the previous set of Q-A pairs in DecSim as Se in Definition 13.

– If qu results in Inconsistent1, then we must have �j /∈ Var(∪QGeni ∪QCMP∪
QEnc ∪ T) where j = 1 or j = 2.
we must also have �′ 	= ⊥ because otherwise we would not run into an
inconsistency. Considering the DecSim procedure in answering queries, �′ 	=
⊥ if and only if �1 ∈ V∪Var(QGenh) and �2 ∈ V∪Var(QGenh). It is easy to see
that V ∪ Var(QGenh) = Var(∪QGeni ∪QCMP ∪QEnc ∪T) which contradicts
�j ∈ (V∪Var(QGenh)) for j = 1, 2. Therefore, Inconsistent1 does not happen.
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– If qu results in Inconsistent2, then:
1. x�1 + x�2 − x�∗ must be in Span(Eq(∪QGeni ∪ QCMP ∪ QEnc ∪ T)).
2. �′ 	= �∗.

First we argue that in order for Inconsistent2 to occur, we must have �∗ ∈
Var(∪QGeni ∪ QCMP ∪ QEnc ∪ T). Let’s call this condition Cond. Suppose
not. Then, there is no Q-A pair such that

((∗, ∗) −−→
add

�∗) ∈ ∪QGeni ∪ QCMP ∪ QEnc ∪ T.

Thus, there must be a query ((�∗, ∗) −−→
add

ly) ∈ ∪QGeni ∪ QCMP ∪ QEnc ∪ T

or ((∗, �∗) −−→
add

ly) ∈ ∪QGeni ∪ QCMP ∪ QEnc ∪ T because otherwise x�1 +

x�2 − x�∗ could have not been in Span(Eq(∪QGeni ∪ QCMP ∪ QEnc ∪ T)).
Since �∗ /∈ Var(∪QGeni ∪ QCMP ∪ QEnc ∪ T), Proposition 4 implies that �∗

is invalid with probability 1 − 2−2κ. Therefore, ly = ⊥ with probability
1 − 2−2κ. Since equations containing ⊥ will not be added to the Eq(∗), no
equation containing x�∗ will be added to Eq(∪QGeni ∪ QCMP ∪ QEnc ∪ T)
which contradicts x�1 + x�2 − x�∗ ∈ Span(Eq(∪QGeni ∪QCMP∪QEnc∪T)).
Therefore, if Cond does not hold, the probability that qu causes Inconsistent2
is at most 2−2κ.
Now, suppose there exist a Q-A pair ((�′1, �

′
2) −−→

add
�∗) ∈ ∪QGeni ∪QCMP ∪

QEnc ∪ T. We consider all possible cases:

1. �∗ ∈ Var(QEnc): Suppose ((�′1, �
′
2) −−→

add
�∗) ∈ QEnc. If both �1, �2 ∈ V,

then considering Condition 1, by Item 2b of DecSim, �′ = �∗. Else, we
claim that Known(�∗) = �; thus, considering Condition 1, by Item 2d of
DecSim, �′ = �∗. If Known(�∗) = ⊥, then Known(�′1) = ⊥ and Known(�′2) =
⊥. Recall updating Known in 2 and 3. Based on Lemma 7, if �′1 ∈
Var(∪i�=hQGeni ∪QCMP ∪QEnc)\VCMPh, with probability p1, we must
have Known(�′1) = �. Suppose �′1 /∈ Var(∪i�=hQGeni∪QCMP∪QEnc)\VCMPh,
thus there are two possible cases:
(a) �′1 ∈ Var(QGenh) ∪ VCMPh: Considering Definition 12, �′1 ∈ (Vh ∪

VCMPh) ∩ VQ but �′1 /∈ ∪i�=h(Vi ∪ VCMPi) which contradicts Equa-
tion 5.

(b) �′1 /∈ Var(All ∪ QGenh): �′1 must be valid because otherwise �∗ = ⊥
and qu could not have caused Inconsistent2. Thus, by Proposition 4,
the probability of this case happening is at most 2−2κ.

Therefore, the probability that Known(�′1) = ⊥ and Known(�′2) = ⊥ is
at most (1 − p1 + 2−2κ)2 = poly(κ).2−4κ. Thus, the probability that
�∗ ∈ Var(QEnc) and Known(�∗) = ⊥ is bounded by 2−3κ.

2. �∗ ∈ Var(∪iQGeni ∪ QCMP): Suppose ((�′1, �
′
2) −−→

add
�∗) ∈ ∪iQGeni ∪

QCMP. If �1 ∈ V ∧ �2 ∈ V, considering Condition 1 above, Item 2b
of DecSim, implies that �′ = �∗. Else, if �1 ∈ Var(QGenh) or �2 ∈
Var(QGenh), considering Condition 1 above, Item 2c of DecSim, implies
that �′ = �∗.

33



3. �∗ ∈ Var(T): Since �∗ /∈ Var(All∪QGenh), �∗ must be one of the labels that
are randomly generated by DecSim. Therefore, based on the definition of
DecSim, Known(�∗) = �. Thus, if �1 ∈ V∧�2 ∈ V, considering Condition 1
above, Item 2b of DecSim, implies that �′ = �∗ and if �1 ∈ Var(QGenh)
or �2 ∈ Var(QGenh), considering Condition 1 above, Item 2c of DecSim,
implies that �′ = �∗.

Thus, if Cond holds, the probability that qu causes Inconsistent2, is at most
2−3κ. Therefore, Ver doesn’t output the correct bit with probability at most
poly(κ).(2−3κ + 2−2κ) ≤ 2−2κ/3.

Lemma 8. Suppose Π is the signature scheme defined in Construction 7 with
oracle access of the form (GenGRR , Sig,VerGRR) and the PKCom scheme under-
lying Π is (1− ε)-correct. Then, Π is (1− ε) (1−2−κ/3)

n correct.

Proof. Let Success be the event that the verification algorithm outputs the cor-
rect bit. In other words, if Successi holds, we have: VerGRR(vrk, i, Sig(sgk, i)) = 1
where (sgk, vrk) ← GenGRR(1κ, i). Finally, let X be the random variable denoting
the message chosen to be signed. Also, let Good be the event that there exists
h ∈ [n] for which Proposition 3 holds. In other words, if Good happens, we have:

((Vh ∪ VCMPh) ∩ VQ) ⊆ ∪j �=h(Vj ∪ VCMPj)

Based on Proposition 3, Pr[Good] ≥ 1− 2−κ/2. Therefore:

Pr[Π is correct] =
n∑

i=1

Pr[Success|X = i] Pr[X = i] =
1

n

n∑
i=1

Pr[Successi]

Pr[Successi] = Pr[Successi|Good] Pr[Good] + Pr[Successi|Good] Pr[Good] ≥
Pr[Successi|Good] Pr[Good] ≥ (1− 2−κ/2) Pr[Successi|Good]

⇒ Pr[Π is correct] =
1

n

n∑
i=1

Pr[Successi] ≥ 1

n
(1− 2−κ/2)

n∑
i=1

Pr[Successi|Good] ≥

1

n
(1− 2−κ/2) Pr[Successh|Good] ≥ 1

n
(1− 2−κ/2)(1− 2−2κ/3) ≥ (1− 2−κ/3)

n
��

5.2.1 Security

Lemma 9 (Security of Construction 7). Construction 7 is one-time un-
forgeable if the PKCom scheme is secure.

Proof. Our proof of security follows exactly the same steps made in Lemma 5.
Namely, the adversary against the PKCMP uses its full oracle access to add to
make up for its lack of access to QEnc.

We show how to transform an adversary B against the signatures into an
adversary AB,GRR against PKCom.
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1. A samples h, and for i ∈ [n] \ {h}, it samples (pki, ski) ← KeyGRR(1κ) and
collects the Q-A pairs made to GRR in QGeni. It then gives (pki, ski)i�=h to
the challenger to receive (pkh, ct).

2. A runs ComGRR(pk1, . . . , pkn) and adds all Q-A pairs made to GRR to
QCMP. Then, A updates Known ← Upd(∪i�=hQGeni ∪ QCMP) forms vrk :=
({pki},∪j �=hQGenj ∪ QCMP,Known, υ), where υ = label(1).

3. A runs (sk′h,QGen
′
h) ← B(vrk, h).

4. A runs (ct′, ∗) ← EncGRR(pp, h) η times, each time recording the queries in
a set QEnc′, and then runs DecSim while using QEnc′, records all queries in
collect and updates Known ← Upd(collect).

5. A runs DecSim0(sk
′
h, h, ct): Let All′ = ∪j �=hQGenj ∪ QCMP ∪ collect and let

E = Eq(All′) and V = Var(All′). For a query qu := add(�1, �2):
(a) if �1 /∈ V ∪ Var(QGen′h) or �2 /∈ V ∪ Var(QGen′h), return ⊥.
(b) if �1 ∈ V and �2 ∈ V if there exists � ∈ V ∪ Var(QGen′h) such that

x�1 +x�2 −x� ∈ Span(E∪Eq(QGenh)), return �. If no such an � is found,
respond with a random label �′, add x�1 + x�2 − x�′ to E and add �′ to
V. Also, set Known(�′) = �.

(c) Else if there exists a label � such that x�1 +x�2 −x�′ ∈ Span(Eq(QCMP∪i

QGeni)), return �;
(d) Else, if there exists a label � such that Known(�) = � and x�1+x�2−x� ∈

Span(E∪Eq(QGenh)), return �. Else, respond with a random label �′, add
x�1 + x�2 − x�′ to E, and add �′ to V. Also, set Known(�′) = �.

(e) Else, respond to qu with add(�1, �2).

��
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A Omitted Proofs

For sake of completeness, here we include a full of Lemma 1, which is heavily
based on that of [Zha22] and is simply adapted to our setting.

Proof (of Lemma 1 - adapted from [Zha22]). Consider choosing an oracle O, a
random m, and (sgk, vrk) ← GenO(1κ,m), and then fixing them. We will say
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that σ is “good” if Pr[VerO(vrk,m, σ) = 1] ≥ δ/2, where the probability is taken
over the random coins of Ver. By correctness, with probability at least δ/2 over
m, (sgk, vrk) ← GenO(1κ,m), there will exist at least one good σ, namely the
output of σ ← SigO(sgk,m).

Suppose Ver0 was deterministic. Then we could compute v ← Ver0O(vrk,m),
and consider the oracle-free probabilistic circuit C(σ) = Ver1(v, σ). Then an
input σ is good if and only if C(σ) accepts with probability at least δ/2. Since C
is oracle-free, we can brute-force search for such a σ, finding it with probability
at least δ/2. The forgery will then be (m,σ), which is accepted by the challenger
with probability δ/2, giving an overall advantage δ2/4.

For a potentially randomized Ver0, we have to work slightly harder. For a
good σ, we have that Prv←Ver0O(vrk,m)[Pr[Ver1(v, σ) = 1] ≥ δ/4] ≥ δ/4. Mean-
while, we will call a σ “bad” if Prv←Ver0O(vrk,m)[Pr[Ver1(v, σ) = 1] ≥ δ/4] ≤ δ/8.

For a parameter t chosen momentarily, we let v1, . . . , vt ← Ver0O(vrk,m),
and construct circuits Ci(σ) = Ver1(vi, σ). We then brute-force search for a
σ such that Pri←[t][Pr[Ci(σ) = 1] ≥ δ/4] ≥ 3δ/8. By Hoeffding’s inequality,
any good σ will be a solution with probability 1− 2Ω(δ2t). Meanwhile, any bad
σ will be a solution with probability 2−Ω(δ2t). By setting t such that t/δ2 is
sufficiently longer than the bit-length of signatures, we can union bound over
all bad δ, showing that there will be no bad solutions except with negligible
probability. We will therefore find a not-bad solution with probability at least
δ/2− negl ≥ δ/3. In this case, with probability at least δ/8 over the choice of v
by the verifier, Pr[Ver1(v, σ) = 1] ≥ δ/4. Hence, the overall success probability
is at least (δ/3)× (δ/8)× (δ/4) ≥ δ3/100. ��

We now present proof of Lemma 6.

Proof (Proof of Lemma 6). Let s = |S| = 23κ. Assume wlog that both A and
B are deterministic. We prove that any fixed labeling function label for which
Success holds can be uniquely described with

f := log

(
2|z|

(
p

w

)
w!

(
t

w

)
(s− w)!

(s− p)!
2uw!

)
(6)

bits.

This means that there exists at most 2f different Successful oracles. Using the
inequalities (a/b)

b ≤ (
a
b

) ≤ (ae/b)b, the fraction of g oracles for which Success
holds is at most
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2f

number of L oracles
≤

2|z|+uw!
(
p
w

)
w!

(
t
w

) (s−w)!
(s−p)!

s!
(s−p)!

=
2|z|+uw!

(
p
w

)(
t
w

)(
s
w

)
≤ 2|z|+uw!(pew )w( tew )w

( s
w )w

= 2|z|+uw!(
e2tp

sw
)w ≤ 2|z|+uw!(

16× 2κ/3

22κw
)w

≤ 2|z|+uw!(
1

2(3/2)κw
)w because

16× 2κ/3

22κ
≤ 1

2(3/2)κ
for large κ

≤ 2|z|+u(
1

2(3/2)κ
)w =

1

2(3/2)κw−|z|−u
≤ 1

2κ/2
,

as desired. The last inequality follows from 3
2kw−|z|−u ≥ k/2, in turn obtained

from w ≥ 2(|z|+u)
3κ + 1

3 .
We now prove Equation 6. Fix a Successful labelling function label. Let

Chal = {�1, . . . , �t} and wlog assume �1 <lex �2 <lex · · · <lex �t, where ≤lex denotes
lexicographical ordering. Let (�i1 , . . . , �iw) be the w lexicographically smallest
elements in Chal that have a pre-image under label, and let (xi1 , . . . , xiw) be
their pre-images. Let Chalx := {xi1 , . . . , xiw}.

We say a query to add is new for B if it satisfies the following requirements:
(1) the answer to this query is not ⊥; (2) at least one of the input labels has not
been input to queries to add made by B before and the label belongs to Chal.
Such labels are called new labels. Let New be the list of pre-images to the new
labels in the order as they appear in the queries. Let v be a bit string of length
u that records the new queries of B such that the ith bit of v is 1 if and only if
the ith query made by B is a new add query.

Given B we claim that any Successful labeling function label can be fully
described by z, Chalx, the index set {i1, . . . , iw}, v, New and the outputs of
label on all input points in Zp \ Chalx. Indeed, for any x /∈ Chalx, the value
label(x) is already given. We determine the labels of x ∈ Chalx as follows: run
Blabel,add(g, z) to get Chal. We first explain how to reply to B’s queries using
the provided information.

1. Answering label queries of B: By condition (ii), we know the answer does
not appear in Chal, which means the input of the query does not appear in
Chalx. Since label is completely determined on Zp\Chalx, we can successfully
answer such queries.

2. Answering add queries of B: First note that by assumption, if the answer to
the query is not ⊥, then its pre-image must be in Chalx, which means we can
answer correctly assuming we know the pre-images to the input labels. In the
following, we show how to find pre-images with the provided information.
Using v, one can tell if the query is new.
– Suppose the query is new. We then know both of the input labels are

valid.
• If one of the labels has pre-image in Zp \ Chalx or has been seen

before, we can retrieve the pre-image of the other label in New.
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• Otherwise, it must be the case that both labels are new and we can
retrieve the pre-images in New.

– Suppose the query is not new.
• If the answer query to this query is not ⊥, it must be the case that

the labels either have pre-images in Zp \ Chalx or have been seen
before, we can answer the queries directly.

• Otherwise, it must be the case that the answer to this query is ⊥.

Thus, the set Chal can be retrieved. Once Chal is retrieved, sort its elements
to get (�1, . . . �t) and use the provided (i1, . . . , iw) to retrieve (�i1 , . . . , �iw). As-
suming Chalx = (xi1 , . . . , xiw), we have label(xih) = �ih for h ∈ [w].

We now count f the number of bits required to describe Chalx, the indices
{i1, . . . , iw} and label’s outputs on all of Zp \Chalx. We can describe the sorted
set Chalx with log(

(
p
w

)
w!) bits. We can describe the index set with log

(
t
w

)
bits.

We can describe the function label on Zp \Chalx with log (s−w)!
(s−p)! bits. The string

v has length u. The list New can be described with logw! bits because we can
choose a permutation of the w pre-images whose initial items form the list New.

��

B Attacks on RBE with CRS

B.1 TDP-Impossibility of PKCom with CRS

Theorem 8. For ε := 1
poly(κ) let EO := (CRSO,KeyO,ComO,EncO,DecO) be

a (1 − ε)-correct PKCom scheme with respect to a random TDP oracle O =

(g, e,d). Suppose a public parameter pp under Eg,e,d satisfies |pp| ≤ (n−2)|ik|
2 ,

where n is the number of users and ik is a base index key (recall |ik| = 3κ,
Defintion 2). Also, let α be the number of queries made by CRSO(1κ, 1n) to the
oracle O. Then, there exists a (1 − ε)(1 − 1

α )
(1−2−κ/3)

n -correct target-restricted
signature scheme relative to O = (g, e,d)

We give the construction in Construction 9.

Construction 9 We construct a n-target-restricted signature scheme from any
PKCom scheme EO = (CRSO,KeyO,ComO,EncO,DecO). The construction is
parameterized over an integer s, which will be parameterized later; this parameter
will only affect the size of the verification key. We assume all the algorithms
satisfy the assumption in Note 1.

– GenO(1κ, h) → (sgk, vrk) where h ∈ [n] is the message to be signed:
1. Run CRSO(1κ, 1n) → crs and let QCRS be the set of all Q-A pairs made

to g and e.15

2. For 1 ≤ j ≤ n, run KeyO(1κ, crs) → (pkj , skj). Let QGenj be the set of
all Q-A pairs made to g and e.

15 We do not keep track of d queries because of Note 1.
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Algorithm 1 SampleKeys(s)

Require: h ∈ [n], crs, {pki}i �=h

K← φ
j ← 0
while j < s do

j ← j + 1
(pkh, skh)← Key(1κ, crs)
pp← Com(crs, pk1, . . . , pkh, . . . , pkn)
(m, ct)← Enc(pp, h)
run Dec(crs, skh, ct):
for qu = d(tk, y) do:

ik← g(tk)
add (tk, ik) to K

end for
end while
return K

3. Run ComO(crs, pk1, . . . , pkn) → pp and let QCMP be the set of all query
response pairs made to g and e.

4. Run SampleKeys(crs, h, {pki}i�=h) as defined in Algorithm 1 to obtain a
set K.

5. Return vrk = ((pk1, . . . , pkn),∪j �=hQGenj∪QCMP,K), sgk = (skh,QGenh,QCRS).
– Sig(sgk, h) → σ: For sgk as above, return σ = (skh,QGenh,QCRS).
– Verg,e,d(vrk, σ, h) = Ver1(Ver0O(vrk, h), σ): Parse vrk := ((pk1, . . . , pkn), S,K)

and σ := (skh,QGenh,QCRS).
1. Ver0g,e,d(vrk, h) → α := (vrk, h,m, c,QEnc), where (m, c) ← Encg,e,d(pp, h)

and QEnc is the set of all Q-A pairs made to g and e.
2. Ver1(α, σ): Retrieve QEnc, S and K from α. (Recall S = ∪j �=hQGenj ∪

QCMP∪K is in vk.) Parse σ := (skh,QGenh,QCRS). Let All = S∪QEnc∪
QGenh∪QCRS. Run DecSim(crs, h, skh, {pki}, c, (All,QEnc,QGenh,QCRS)),
which simulates the execution of DecO(crs, h, skh, {pki}, c) by rendering
queries via (All,QEnc,QGenh,QCRS), as follows:
(a) For a given g or e query, if the answer is already provided in All,

reply with that answer; else, with a random string z of appropriate
length. In case of answering with a random response, add the Q-A
pair to Fake (initially empty).16

(b) For a given query qu := ((tk, y) −→
d
?), if for some ik, (tk −→

g
ik) ∈

(All ∪ Fake)/(QGenh ∪ QCRS) and ((ik, x) −→
e

c) ∈ All for some x,
respond to the query with x. Else, if for some ik, (tk −→

g
ik) ∈ QGenh∪

QCRS and ((ik, x) −→
e

y) ∈ (All/QEnc) ∪ Fake for some x, respond to
the query with x. Else, respond to the query with a random value
r ← {0, 1}κ.

Letting m′ be the output of DecSim, output 1 if m′ = m and 0 otherwise.
16 Duplicate queries will be replied to with the same random response.
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Lemma 10. Suppose

(Pubh ∩ PubC) ⊆ ∪i�=hPubi. (7)

Then by setting s = α2, where α is the number of queries made by CRS(1κ, 1n),
the probability that the algorithm Ver (Construction 9) outputs the correct bit is
at least (1− 2−2κ/3)(1− 1

α ).

Proof. The proof is similar to the proof of Proposition 2.
For αi, βj defined in Proposition 2, we can use the same arguments to prove

that with probability at least 1− poly(κ).2−κ, αi and βj are distinct, and none
of them occur in QEnc.

An inconsistency may occur if the response to some query is incorrect ac-
cording to what is entailed by ∪jQGenj ∪ QCMP ∪ QCRS ∪ QEnc.

All g and e type queries will be answered according to All. Thus, we will not
run into any inconsistency.

For a query qu := ((tk, y) −→
d
?), we might run into an inconsistency if

1. for some ik, (tk −→
g

ik) ∈ All, and

2. ((ik, x̃) −→
e

y) ∈ All, and
3. x̃ 	= x where x is the generated response for qu by DecSim.

Call this event Bad. The event Bad indeed causes a conflict because (tk −→
g

ik) ∈
All and ((ik, x̃) −→

e
y) ∈ All will dictate a response x̃ to a decryption query (tk, y),

but a random response x 	= x̃ was given.
We must have (tk −→

g
ik) /∈ All/(QGenh∪QCRS), because otherwise a random

response would not have been generated. Therefore, (tk −→
g

ik) ∈ QGenh∪QCRS.

If (tk −→
g

ik) ∈ QGenh, then based on Equation 7 we will not run into any

inconsistencies as proved in the Proposition 2.
Let Fail be the event that (tk −→

g
ik) ∈ QCRS, ((ik, x̃) −→

e
y) ∈ QEnc, and

x̃ 	= x. Note that Fail happens if (tk −→
g

ik) ∈ QCRS/K because otherwise a

random response would have not been generated.
For each key pair (tk → ik) ∈ QCRS, we define s+ 1 variables as below: For

1 ≤ i ≤ s, let Xi be a Bernoulli variable that equals 1 when d(tk, ∗) appears
in ith iteration of Algorithm 1 and 0 otherwise. Also, let Xs+1 = 1 if d(tk, ∗)
appears in execution of Dec(crs, h, σ1, c) while running Ver1 and 0 otherwise.
X1, . . . , Xs+1 are independent and have the same probability of being 1. This is
because all Xi, for 1 ≤ i ≤ s, are output of the same randomized experiment
and Xs+1 can also be seen as a result of the same experiment. Let DQ be the
set of all tk such that d(tk, ∗) is queried in execution of DecSim(crs, h, σ, vrk, c)
while running Ver1.

Therefore, based on Lemma 4, we can conclude that for any key pair (tk →
ik) ∈ QCRS,

Pr[tk ∈ DQ/K] = Pr[X1 = 0 ∧ · · · ∧Xs = 0 ∧Xs+1 = 1] ≤ 1

s
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which is negligible for sufficiently large s. Therefore, the probability that for
some (tk −→

g
ik) ∈ QCRS, (tk −→

g
ik) /∈ K but d(tk, ∗) is queried while running

Ver1 is at most α
s where α = poly(κ) is the number of queries made to the oracle

by CRS to output crs. Let s = α2. Thus, Fail occurs with probability at most 1
α

The proof is now complete. ��
Lemma 11. Suppose Π is the signature scheme defined in Construction 9 with
oracle access of the form (Geng,e,d, Sig,Verg,e,d) and the PKCom scheme un-
derlying Π is (1− ε)-correct. Then, Π is (1− ε)(1− 1

α )(
1−2−κ/3

n )-correct.

Proof. Let Success be the event that the verification algorithm outputs the cor-
rect bit. In other words, if Successi holds, we have: Verg,e,d(vrk, i, Sig(sgk, i)) = 1
where (sgk, vrk) ← Geng,e,d(1κ, i). Finally, let X be the random variable denot-
ing the message chosen to be signed. Also, let Good be the event that there exists
h ∈ [n] for which Proposition 1 holds. In other words, if Good happens, we have:

(Pubh ∩ PubC) ⊆ ∪j �=hPubj

Based on Proposition 1, Pr[Good] ≥ 1− 2−κ/2. Therefore:

Pr[Π is correct] =
n∑

i=1

Pr[Success|X = i] Pr[X = i] =
1

n

n∑
i=1

Pr[Successi]

Pr[Successi] = Pr[Successi|Good] Pr[Good] + Pr[Successi|Good] Pr[Good] ≥
Pr[Successi|Good] Pr[Good] ≥ (1− 2−κ/2) Pr[Successi|Good]

Finally, let Unlucky be the event that there exists a (tk −→
g

ik) ∈ QCRS∧((ik, ∗) −→
e

∗) ∈ QEnc but (tk −→
g

ik) /∈ K. Based on Lemma 4, Pr[Unlucky] ≤ 1
α .

Pr[Π is correct] =
1

n

n∑
i=1

Pr[Successi] ≥ 1

n
(1− 2−κ/2)

n∑
i=1

Pr[Successi|Good] ≥

1

n
(1−2−κ/2) Pr[Successh|Good] ≥ 1

n
(1−2−κ/2) Pr[Successh|Good∧Unlucky] Pr[Unlucky] ≥

1

n
(1− 2−κ/2)(1− 2−2κ/3)(1− 1

α
) ≥ (1− 1

α
)
(1− 2−κ/3)

n
��

Lemma 12. Construction 9 is one-time unforgeable if the PKCom scheme is
secure.

Proof. Let A be a PPT adversary such that Pr[Verg,e,d(vrk, h, σ) = 1 where σ ←
AO(vrk, h)] is non-negligible, where h ← [n], and (sgk, vrk) ← Geng,e,d(1κ, h).
We construct an adversary A′ to win the security game in Definition 1 with
non-negligible advantage performing the following steps:
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1. A′ runs A and receives h ∈ [n] as the challenge message to be signed by A.
2. A′ receives crs from its challenger C and runs 1 to obtain K.
3. A′ runs (pkj , skj) ← Key(1κ, crs) for j ∈ [n]\h and adds all Q-A pairs to

QGenj . Then, it sends (h, {pkj}j∈[n]\h) to its challenger C.
4. A′ receives pkh and ct from the challenger, runs Com(crs, pk1, . . . , pkn) and

add all query answer pairs to QCMP.
5. A′ sends ({pkj}nj=1,∪j �=hQGenj ∪ QCMP,K) to A.
6. A′ receives σ from A, runs Decg,e,dAttack(h, σ, {pkj}j∈[n],∪j �=hQGenj∪QCMP,K, ct)

to obtain m1 and outputs m1.
The algorithm DecAttack is similar to Dec but answers queries in a slightly
different way. Let σ1 be the first part of σ. DecAttack takes as an input
(h, σ, {pkj}j∈[n],∪j �=hQGenj ∪ QCMP,K, ct) and works as follows:
Run Dec(crs, h, σ1, ct): For any g or e type query, call the oracle O and return
the same response. Let U = ∪j �=hQGenj ∪QCMP∪K∪QGen′h∪QCRS′. For a
given query d(tk, y), if for no ik, (tk −→

g
ik) ∈ U, then query d(tk, y) to obtain

x′ and respond with x′. If for some ik, (tk −→
g

ik) ∈ U/(QGen′h ∪ QCRS′) and

for some x′, ((ik, x′) −→
e

y) ∈ QGen′h ∪ QCRS′, then respond with x′. Else, if

for some ik, (tk −→
g

ik) ∈ U/(QGen′h ∪ QCRS′), then query d(tk, y) to obtain

x′ and respond with x′.
Else, if for some ik, (tk −→

g
ik) ∈ QGen′h ∪QCRS′ and for some x′, ((ik, x′) −→

e

y) ∈ U, then respond with x′. Else, respond to the query with a random
value r ← {0, 1}κ.

Let QEnc be the set of all Q-A pairs made during the execution of Encg,e,d(pp, h) →
(m0, ct) by the challenger C. Therefore, All′ = U∪QEnc. Also, let QDec be the set
of all Q-A pairs generated during the execution of Decattack(crs, h, σ, {pkj}j∈[n],∪j �=hQGenj∪
QCMP,K, ct) → m1 and QDec′ be the set of all Q-A pairs made during the ex-
ecution of DecSim(crs, h, σ, {pkj}j∈[n],∪j �=hQGenj ∪ QCMP,QEnc, ct) → m2 as
defined in Construction 5.

Now, consider the two distributions
D : (QCRS,QGenj �=h ∪ QCMP, {pkj}j∈[n],QEnc, ct, σ,QDec,m1) and
D̃ : (QCRS′,K,QGenj �=h ∪ QCMP, {pkj}j∈[n],QEnc, ct, σ,QDec′,m2). We claim
that D and D̃ are almost identical meaning that for any event E, we have:

|Pr[E holds for D]− Pr[E holds for D̃]| ≤ neg(κ)

where neg(κ) is a negligible function with respect to κ.
Let dSim,dattack denote the answers to a decryption query provided by DecSim,DecAttack,

respectively. For a given decryption query (tk, c), there are six possible cases:

– There exists a ik such that (tk −→
g

ik) ∈ U/(QGen′h ∪QCRS′) and there exists

x such that ((ik, x) −→
e

y) ∈ QGen′h∪QCRS′: In this case the response to both
dSim(tk, y),dattack(tk, y) will be x.
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– There exists a ik such that (tk −→
g

ik) ∈ U/(QGen′h ∪QCRS′) and there exists

x such that ((ik, x) −→
e

y) ∈ QEnc ∪j �=h QGenj ∪ QCMP: In this case the
response to dSim(tk, y) will be x and the response to dattack(tk, y) will be
d(tk, y) which equals x since the oracle O is correct.

– There exists a ik such that (tk −→
g

ik) ∈ QGen′h ∪ QCRS′ and for some x,

we have ((ik, x) −→
e

y) ∈ U: In this case the response to both dSim(tk, y),
dattack(tk, y) will be x.

– For some ik, (tk −→
g

ik) ∈ QGen′h ∪ QCRS′ and for no x, we have ((ik, x) −→
e

y) ∈ U: In this case, the response to both dSim(tk, y), dattack(tk, y) will be
chosen at random. Therefore, both will have the same distribution.

– For some ik, (tk −→
g

ik) ∈ QEnc and for some x, we have ((ik, x) −→
e

y) ∈ All′,

then the response to dSim(tk, y) will be x and the response to dattack(tk, y)
will be d(tk, y) which equals x since the oracle O is correct.

– For some ik, (tk −→
g

ik) ∈ QEnc but for no x, we have ((ik, x) −→
e

y) ∈ All′,

then the response to dSim(tk, y) will be chosen at random, while the response
to dattack(tk, y) will be d(tk, y). Note that since for no x, ((ik, x) −→

e
y) ∈ All′,

the query doesn’t make a conflict between the two distributions because
there is no way to distinguish between d(tk, y) and a random value for a
distinguisher who only has access to All′.

Now let E be the event that m1, the decryption of ct using the simulated
decryption algorithm, equals m0. Since D and D̃ are almost identical, if E holds
for D̃, it will also hold for D with all but negligible probability. Considering
that A has non-negligible advantage in forging a valid signature, i.e. one that
is accepted with the algorithm Ver defined in Construction 9, m2 will be equal
to m0, with non-negligible probability. Therefore, E holds for D̃ as well as D
and m1 = m0 with non-negligible probability which contradicts security of the
PKCom scheme. ��

B.2 Impossibility of PKCom with CRS in Shoup’s GGM

Now, we present the transformation of PKCom to target-restricted signatures
while allowing CRS.

Theorem 10. If there exists a (1− ε)-correct PKCom scheme
(CRSGRR ,KeyGRR ,ComGRR ,EncGRR ,DecGRR) in the RR generic group model,
then there exists a δ- correct target-restricted signature scheme in the same model
where δ = (1− ε) (1−2−κ/3)

n .

Construction 11 We construct a target-restricted signature scheme defined over
messages in [n] from any PKCom scheme in the following way.

– GenGRR(1κ, h) → (sgk, vrk) where h ∈ [n] is the message to be signed. For
i ∈ [n] let QGeni = ∅.
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1. Run CRSGRR(1κ, 1n) → crs and all Q-A pairs made to GRR to QCRS.
2. For 1 ≤ j ≤ n, run KeyGRR(1κ, crs) → (pkj , skj) and add all Q-A pairs

made to GRR to QGenj.
3. Run ComGRR(crs, pk1, . . . , pkn) → pp and let QCMP be the set of all Q-A

pairs made to GRR.
4. Update Known ← Upd(∪i�=hQGeni ∪ QCMP ∪ QCRS) (Definition 11).
5. Return vrk = ((pk1, . . . , pkn),∪j �=hQGenj ∪ QCMP,Known, υ), sgk =

(skh,QGenh,QCRS).
– Sig(sgk, h) → σ: For sgk as above, return σ := (skh,QGenh,QCRS).
– VerGRR(vrk, σ, h) = Ver1(Ver0GRR(vrk, h), σ) : Parse vrk := ((pk1, . . . , pkn),A,Known, υ)

and σ := (skh,QGenh,QCRS).
1. Ver0GRR(vrk, h) → α := (vrk, h,m, c,QEnc), where (m, c) ← EncGRR(pp, h)

and QEnc is the set of all Q-A pairs made to GRR.
2. Ver1(α, σ) : Retrieve QEnc, A and Known from α. Recall A = ∪j �=hQGenj∪

QCMP. Update Known ← Upd(QEnc). Let All = ∪j �=hQGenj ∪ QCMP ∪
QEnc. Run DecSim which simulates the execution of DecGRR(crs, h, skh, {pki}, c)
by rendering queries via (All,QGenh,QCRS), as follows: Initialize two
sets E = Eq(All) and V = Var(All). For a given query add(�1, �2) do the
following:
(a) If �1 /∈ V ∪ Var(QGenh ∪ QCRS) or �2 /∈ V ∪ Var(QGenh ∪ QCRS),

respond to the query with ⊥.
(b) Else if both �1, �2 ∈ V, if there exists � ∈ V∪Var(QGenh∪QCRS) such

that x�1 + x�2 − x� ∈ Span(E ∪ Eq(QGenh ∪ QCRS)), return �. If no
such an � is found, respond with a random label �′, add x�1 +x�2 −x�′

to E and add �′ to V. Also, set Known(�′) = �.
(c) Else if there exists a label � such that x�1+x�2−x�′ ∈ Span(Eq(QCMP∪i

QGeni ∪ QCRS)), return �;
(d) Else, if there exists a label � such that Known(�) = � and x�1 +x�2 −

x� ∈ Span(E ∪ Eq(QGenh ∪ QCRS)), return �. Else, respond with a
random label �′ and add x�1 + x�2 − x�′ to E, and add �′ to V. Also,
set Known(�′) = �.

Lemma 13. Suppose we update Known ← Upd(QCRS ∪i�=h QGeni ∪ QCMP ∪
QEnc). Then, assuming

((Vh ∪ VCMPh) ∩ VQ) ⊆ ∪i�=h(Vi ∪ VCMPi), (8)

with probability at least 1 − poly(κ).2−2κ for any label that � ∈ Var(QCRS ∪i�=h

QGeni ∪ QCMP ∪ QEnc) but � /∈ VCMPh, Known(�) = �.

Proof. Suppose there exists a label � ∈ Var(QCRS ∪i�=h QGeni ∪ QCMP ∪ QEnc)
such that � /∈ VCMPh and Known(�) = ⊥. If � ∈ Var(QCRS), then as per Def-
inition 9, there exists a Q-A pair ((�x, �y) −−→

add
�) ∈ QCRS. Let � be the first

label in Var(QCRS) such that Known(�) = ⊥. We must have Known(�x) = ⊥ and
Known(�y) = ⊥ because otherwise Known(�) = �. Since � is the first label in
Var(QCRS) whose Known = ⊥, we must have �x /∈ Var(QCRS)∧ �y /∈ Var(QCRS).
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Moreover, �x, �y must be valid because otherwise, � = ⊥ and � /∈ Var(QCRS).
Based on Proposition 4, the probability that �x /∈ Var(QCRS) ∧ �y /∈ Var(QCRS)
but �x, �y are valid is at most 2−4κ.
If � /∈ Var(QCRS), considering that for all labels �′ ∈ Var(QCRS), Known(�′) = �,
Lemma 7 proves that with probability at least p1, Known(�) = �.
Therefore, with probability at least p2 = 1 − poly(κ).2−2κ for any label that
� ∈ Var(QCRS∪i�=hQGeni ∪QCMP∪QEnc) but � /∈ VCMPh, Known(�) = �. ��
Lemma 14. Assuming

((Vh ∪ VCMPh) ∩ VQ) ⊆ ∪i�=h(Vi ∪ VCMPi), (9)

as defined in Definition 12, the probability that the algorithm Ver (Construc-
tion 11) doesn’t output the correct bit is at most (1−2−κ/3)

n .

Proof. The proof is similar to the proof of Proposition 5. If we run to no in-
consistencies, the decryption will be done correctly. Suppose qu = add(�1, �2)
is the first query inside DecSim whose response creates an inconsistency as per
Definition 13. Let �′ be the response generated by DecSim and view (∪QGeni ∪
QCMP ∪QEnc ∪QCRS ∪ T) where T is the previous set of Q-A pairs in DecSim
as Se in Definition 13. It can be proved that qu cannot result in Inconsistent1
using the same argument as Proposition 5.

If qu results in Inconsistent2, then:

1. x�1 + x�2 − x�∗ must be in Span(Eq(∪QGeni ∪QCMP ∪QEnc ∪QCRS ∪ T)).
2. �′ 	= �∗.

First we argue that in order for Inconsistent2 to occur, we must have �∗ ∈
Var(∪QGeni ∪ QCMP ∪ QEnc ∪ QCRS ∪ T). Let’s call this condition Cond. Sup-
pose not. Then, there is no Q-A pair such that
((�′1, �

′
2) −−→

add
�∗) ∈ ∪QGeni ∪ QCMP ∪ QEnc ∪ QCRS ∪ T. Therefore, there must

be a query ((�∗, x) −−→
add

y) ∈ QCRS ∪n
i=1 QGeni ∪ QCMP ∪ QEnc ∪ T or ((x, �∗) −−→

add

y) ∈ QCRS ∪n
i=1 QGeni ∪ QCMP ∪ QEnc ∪ T because otherwise x�1 + x�2 − x�∗

could have not been in Span(Eq(∪QGeni ∪ QCMP ∪ QEnc ∪ QCRS ∪ T)). Since
�∗ /∈ Var(∪QGeni ∪ QCMP ∪ QEnc ∪ QCRS ∪ T), Proposition 4 implies that �∗ is
invalid with probability 1 − 2−2κ. Therefore, y = ⊥ with probability 1 − 2−2κ.
Since equations containing ⊥ will not be added to the Eq(∗), no equation con-
taining x�∗ will be added to Eq(∪QGeni ∪ QCMP ∪ QEnc ∪ QCRS ∪ T) which
contradicts x�1 + x�2 − x�∗ ∈ Span(Eq(∪QGeni ∪ QCMP ∪ QEnc ∪ QCRS ∪ T)).
Therefore, if Cond does not hold, the probability that qu causes Inconsistent2 is
at most 2−2κ.

Now, suppose there exist a Q-A pair ((�′1, �
′
2) −−→

add
�∗) ∈ QCRS ∪ QGeni ∪

QCMP ∪ QEnc ∪ T.
We consider all possible cases:

1. �∗ ∈ Var(QEnc): Suppose ((�′1, �
′
2) −−→

add
�∗) ∈ QEnc. If both �1, �2 ∈ V, then

considering Condition 1, by Item 2b of DecSim, �′ = �∗. Else, we claim that
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Known(�∗) = �; thus, considering Condition 1, by Item 2d of DecSim, �′ = �∗.
If Known(�∗) = ⊥, then Known(�′1) = ⊥ and Known(�′2) = ⊥. Recall updating
Known in 2 and 4. Based on Lemma 13, if �′1 ∈ Var(∪i�=hQGeni ∪ QCRS ∪
QCMP∪QEnc)\VCMPh, with probability p2, we must have Known(�′1) = �.
Suppose �′1 /∈ Var(QCRS ∪i�=h QGeni ∪ QCMP ∪ QEnc)\VCMPh, thus there
are two possible cases:
(a) �′1 ∈ Var(QGenh)∪VCMPh: Considering Definition 12, �′1 ∈ (Vh∪VCMPh)∩

VQ but �′1 /∈ ∪i�=h(Vi ∪ VCMPi) which contradicts Equation 9.
(b) �′1 /∈ Var(All∪QGenh∪QCRS): �′1 must be valid because otherwise �∗ = ⊥

and qu could not have caused Inconsistent2. Thus, by Proposition 4, the
probability of this case happening is at most 2−2κ.

Therefore, the probability that Known(�′1) = ⊥ and Known(�′2) = ⊥ is at
most (1 − p2 + 2−2κ)2 = poly(κ).2−4κ. Thus, the probability that �∗ ∈
Var(QEnc) and Known(�∗) = ⊥ is bounded by 2−3κ.

2. �∗ ∈ Var(∪iQGeni ∪QCMP∪QCRS): Suppose ((�′1, �
′
2) −−→

add
�∗) ∈ ∪iQGeni ∪

QCMP ∪ QCRS. If �1 ∈ V ∧ �2 ∈ V, considering Condition 1 above, Item 2b
of DecSim, implies that �′ = �∗. Else, if �1 ∈ Var(QGenh ∪ QCRS) or �2 ∈
Var(QGenh ∪ QCRS), considering Condition 1 above, Item 2c of DecSim,
implies that �′ = �∗.

3. �∗ ∈ Var(T): Since �∗ /∈ Var(All ∪ QGenh ∪ QCRS), �∗ must be one of the
labels that are randomly generated by DecSim. Therefore, based on the
construction of DecSim, Known(�∗) = �. Thus, if �1 ∈ V ∧ �2 ∈ V, con-
sidering Condition 1 above, Item 2b of DecSim, implies that �′ = �∗ and if
�1 ∈ Var(QGenh∪QCRS) or �2 ∈ Var(QGenh∪QCRS), considering Condition 1
above, Item 2d of DecSim, implies that �′ = �∗.

Thus, if Cond happens, the probability that qu causes Inconsistent2, is at
most 2−3κ. Therefore, Ver doesn’t output the correct bit with probability at
most poly(κ).(2−3κ + 2−2κ) ≤ 2−2κ/3.

��
We will now obtain the following lemma.

Lemma 15. Suppose Π is the signature scheme defined in Construction 11 with
oracle access of the form (GenGRR , Sig,VerGRR) and the PKCom scheme under-
lying Π is (1− ε)-correct. Then, Π is (1− ε) (1−2−κ/3)

n -correct.
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