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Abstract

Time-lock puzzles wrap a solution s inside a puzzle P in such a way that “solving” P to find s requires significantly
more time than generating the pair (s,P), even if the adversary has access to parallel computing; hence it can be
thought of as sending a message s to the future. It is known [Mahmoody, Moran, Vadhan, Crypto’11] that when the
source of hardness is only a random oracle, then any puzzle generator with n queries can be (efficiently) broken by
an adversary in O(n) rounds of queries to the oracle.

In this work, we revisit time-lock puzzles in a quantum world by allowing the parties to use quantum computing
and, in particular, access the random oracle in quantum superposition. An interesting setting is when the puzzle gen-
erator is efficient and classical, while the solver (who might be an entity developed in the future) is quantum powered
and is supposed to need a long sequential time to succeed. We prove that in this setting there is no construction of
time-lock puzzles solely from quantum (accessible) random oracles. In particular, for any n-query classical puzzle
generator, our attack only asks O(n) (also classical) queries to the random oracle, even though it does indeed run in
quantum polynomial time if the honest puzzle solver needs quantum computing.

Assuming perfect completeness, we also show how to make the above attack run in exactly n rounds while asking
a total of m · n queries where m is the query complexity of the puzzle solver. This is indeed tight in the round
complexity, as we also prove that a classical puzzle scheme of Mahmoody et al. is also secure against quantum
solvers who ask n− 1 rounds of queries. In fact, even for the fully classical case, our attack quantitatively improves
the total queries of the attack of Mahmoody et al. for the case of perfect completeness from Ω(mn logn) to mn.
Finally, assuming perfect completeness, we present an attack in the “dual” setting in which the puzzle generator is
quantum while the solver is classical.

We then ask whether one can extend our classical-query attack to the fully quantum setting, in which both the puz-
zle generator and the solver could be quantum. We show a barrier for proving such results unconditionally. In partic-
ular, we show that if the folklore simulation conjecture, first formally stated by Aaronson and Ambainis [arXiv’2009]
is false, then there is indeed a time-lock puzzle in the quantum random oracle model that cannot be broken by classical
adversaries. This result improves the previous barrier of Austrin et. al [Crypto’22] about key agreements (that can
have interactions in both directions) to time-lock puzzles (that only include unidirectional communication).
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1 Introduction
Time lock puzzles (TLPs) allow a puzzle generator Gen to efficiently generate a puzzle P for a solution s, in such a
way that solving the puzzle P back into s would require significantly more time, even if the adversary uses multiple
computers in parallel. TLPs allow “sending a message to the future” as they only allow “opening the envelope” P if a
significant amount of time is spent by the solver.

The work of Rivest, Shamir, and Wagner [RSW96] both presented a construction of a time-lock puzzle and also
presented applications of such primitives. Their construction was based on the assumption that repeated squaring of
integers modulo RSA composites cannot be expedited even with parallel computing, unless one knows the factoring
of the composite in which case they can expedite the process. Hence, the puzzle generator can find the solution by
“solving the puzzle” through a shortcut, while others are forced to follow the sequential path. The work of [RSW96]
also suggested using TLPs for other applications such as delayed digital cash payments, sealed-bid auctions and
key escrow. Boneh and Naor [BN00] further showed the usefulness of such “sequential” primitives by defining and
constructing timed commitments and showing their use for applications such as fair contract signing. More recently,
time-lock puzzles have found more applications such as non-interactive non-malleable commitments [LPS17].

Despite their usefulness, it is still not known how to build TLPs based on more standard assumptions, and par-
ticularly based on “symmetric key” primitives. One might be tempted to use inversion of (say, exponentially hard)
one-way functions as the process of solving puzzles. However, an adversary with k times parallel computing power
can expedite the search process by a factor k through a careful splitting of the search space into k subspaces. Taking
symmetric primitives to their extreme (idealized) form, one can ask whether random oracles can be used for construct-
ing TLPs. The good thing about oracle models in general, and the random oracle model in particular, is that one can
easily define information-theoretic notions of time based on the total number of queries asked to them, and also define
the notion of parallel time based on the number of rounds of queries that an algorithm asks to the oracle. This means
that asking, say, 10 queries in parallel to the oracle only counts as a single unit of (parallel) time.

The work of Mahmoody, Moran, and Vadhan [MMV11] proved a strong barrier against constructing TLPs from
symmetric primitives by ruling out constructions that solely rely on random oracles. In particular, it was proved that
if a puzzle generator asks only n queries to the random oracle and that the puzzle can be solved (honestly) with m
oracle queries, then there is always a way to expedite the solving process to only O(n) rounds of queries while the
total number of queries is still poly(n,m). Note that the polynomial limit on the total number of queries is necessary
to make such an attack interesting, as it is always possible to ask all of the (exponentially many) queries of oracle in
one round and then solve the puzzle without any further queries. The attack of [MMV11] was in fact a polynomial
time attack, though if one was willing to give up on that feature and only aim for polynomial number of queries (which
still suffices for ruling out a ROM-based construction) they could achieve it in exactly n rounds as well.

Motivated by the developments in the area of quantum cryptography, in which some or all of the parties of a
cryptosystem might access quantum computation, we revisit the barrier of constructing TLPs in the random oracle
model. The extension of ROMs with quantum access was formally introduced in the work of Boneh et al. [BDF+11].
Therefore, one can study the existence of TLPs in the quantum random oracle model in which either (or both) of the
puzzle generator or the puzzle solver could access the random oracle in quantum superposition. This leads us to the
main questions:

Can we construct time-lock puzzles from random oracles if either or both of the puzzle generator and
puzzle solver have quantum access to the random oracle?

Therefore, the question above deals with three settings: (1) only the puzzle solver is quantum, (2) only the puzzle
generator is quantum, (3) both algorithms are quantum. In the first two settings, the puzzle is a classical string, as it
needs to be output or read by a classical algorithm. In addition, although the first two settings are not “full-fledged
quantum”, we find them meaningful. Particularly, the first setting is quite natural, as it gives the extra quantum power
to the more power entity; indeed, the puzzle generator is supposed to be the more efficient entity out of the two players
of the scheme.

In a related work, Unruh [Unr14] formalizes the notion of timed-release encryption1 in the quantum setting and

1This is closely related to our notion of time-lock puzzles, with the difference that the puzzle solution is given to the puzzle generator at the
beginning.
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shows how one can bootstrap time-lock puzzles to make them revocable; namely, before the puzzles are solved the
solver can convince the generator, through interaction, that they are not going to find the solution after all.

1.1 Our Results
Our main result is an impossibility result that extends the result of [MMV11] to the setting in which the puzzle solver
is allowed to use quantum power. In particular, we prove the following theorem.

Theorem 1.1 (Attacking classical-generator quantum-solver TLPs – Informally stated, see Theorem 3.1). Any time-
lock puzzle in the random oracle model with a classical-query puzzle generator and a quantum-query puzzle solver
can always be broken by an attacker who asks only O(n) rounds of classical queries to the random oracle, where n is
the total number of oracle queries of the puzzle generator. The total number of queries of the attack will be polynomial
in n,m where m is the number of (potentially quantum) oracle queries of the honest solver.

Note that it would be enough to find an attacker with quantum queries to the random oracle so long as the number
of rounds of queries is polynomial, however, our theorem above goes one step further and shows that the quantum
nature of the honest solver cannot be crucial, as there will always be an “equivalent” classical-query solver as well.

Complexity of our attack. Our vanilla attack is not efficient, but similarly to the work of [MMV11], we are also
able to make our attack efficient, though our efficient attack will run in quantum polynomial time, as it will need to
simulate the honest solver in its head. Note that our attack’s parallel complexity is only measured by its number of
rounds of queries to the oracle, and hence the (sequentially long) running time of the simulation of the honest adversary
in the attacker’s head is ignored in this regard. However, our result shows that basing the sequential soundness solely
on the (quantum-accessible) random oracle is not going to be possible for constructing TLPs, even when we use extra
computational assumptions. In particular, one can imagine potential TLP constructions in the ROM in which quantum
polynomial-time adversaries cannot solve certain puzzles and would be forced to ask a large number of rounds of
oracle queries. This would be similar to classical results such as [BR93] in which random oracles are used along with
computational assumptions. The fact that our attack runs in quantum polynomial time rules out such approaches as
well.

Optimal attacks on perfectly-complete protocols. The work of [MMV11] also presented an attack with exactly n
rounds of queries. They also showed that such n-round attack is optimal, in general, by presenting an n-query puzzle
generator that asks all of its queries in 1 round in such a way that it requires n rounds to be solved. The scheme is
based on a construction that we refer to as a pseudo-chain. In this work, we also show that optimal-round attacks exist,
at least for perfectly complete schemes.

Theorem 1.2 (Tight attack on classical-generator quantum-solver TLPs – Informally stated, see Theorem 4.10). Sup-
pose Π is a TLP as in the setting of Theorem 1.1 and with perfect completeness. Then, Π can be broken in n rounds of
queries and a total of m · n queries.

We further observe that the n-round is indeed optimal by proving that the same pseudo-chain scheme of [MMV11]
needs n rounds of queries by the solver, even if it can ask quantum queries to the random oracle.

Theorem 1.3 (A TLP with a linear difficulty gap for quantum-solver– Informally stated, see Theorem 5.3). Define
the puzzle-generating function f to be fH(x0, x1, . . . , xn+1) := (x0, H(x0) ⊕ x1, . . . ,H(xn) ⊕ xn+1). Then any
attacker that makes at most n rounds of quantum queries can find xn+1 with at most negligible probability.

Breaking quantum-generator classical-solver puzzles. We then turn to the next setting, in which only the puzzle
generator has quantum access to the random oracle. This setting is perhaps less natural for a TLP as the puzzle
generator in a TLP is usually the less resource-intensive party. However, we still find this a natural setting, in part due
to its potential applications beyond the TLP itself. In particular, if one can break quantum-generator classical-solver
TLPs in a few rounds in the ROM, it would have corollaries to the round complexity of attacks on key agreements in the
ROM as well. In fact, as observed in [MMV11], the transcript T of a key agreement can be seen as a puzzle generated
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by the two honest parties with the solution being the agreed key k. Then, an attacker who gets T and finds k can be
seen as a puzzle solver. The work of [ACC+22] showed that under the so-called polynomial compatibility conjecture,
any n query perfectly complete key agreement in the quantum ROM in which the messages are classical can be broken
by poly(n) classical queries to the oracle. Hence, by interpreting the attack on the key agreement as a puzzle solver as
explained above, an attack on TLPs with quantum generators and classical solvers would imply novel attacks on the
key agreement protocols in the quantum ROM with O(n) rounds of attack queries. In part, with such motivation in
mind, we take a step towards proving such attacks on TLPs by proving the following result. Indeed we show a variant
of the attack of Theorem 1.2 that works for the “opposite” direction of quantum-generator classical-solver TLPs.

Theorem 1.4 (Attacking quantum-generator classical-solver TLPs – Informally stated, see Theorem 4.6). Suppose Π
is a TLP with perfect completeness in which the puzzle generator can ask n quantum queries to the random oracle,
and the solver asks m classical queries to the random oracle. Then, Π can be broken in n rounds and a total of m · n
oracle queries.

Theorem 1.4 is also tight, in the sense that it asks exactly n rounds of queries. However, similarly to Theorem 1.2,
it requires perfect completeness. This means that if one can improve the attack of [ACC+22] to find the key with
probability 1 in poly(m,n) total number of classical queries, then our Theorem 1.4 would immediately imply a
round-optimal n-round attack.

Quantum generators and solvers. Finally, we turn to the case in which both puzzle generator and puzzle solver
are allowed to use quantum access to the random oracle model. Note that, in general, in this setting one can imagine
the puzzle itself to be a quantum object. For this setting, we are not able to present an attack. On the contrary,
we identify a barrier for proving such result unconditionally, so long as the attack only uses classical queries to the
oracle, which is the case in all of our attacks above. In particular, we show that if the so-called (folklore) “simulation
conjecture” [AA14] is false, then there exists a TLP with a quantum puzzle generator and a quantum solver that cannot
be solved by classical-query attackers, even if they ask any polynomial number of queries to the oracle.

The simulation conjecture states that for any algorithm Q that asks n quantum queries to a random oracle H , the
probability pH = Pr[QH = 1] can be ε-approximated for 1 − ε fraction of the random oracles H , for arbitrarily
small ε = 1/ poly(n) using only poly(n) number of classical queries to H . When, pH ∈ {0, 1} for all H , then this
conjecture is known to be true (e.g., see [OSSS05]), but the general case is open and has resisted to be solved for more
than a decade after its official exposition by [AA14].

Theorem 1.5 (Barrier for classically attacking fully quantum TLPs – Informally stated, see Theorem 6.2). If the
simulation conjecture is false, then there is a time lock puzzle in the quantum random oracle model that cannot be
broken by classical adversaries.

Our theorem above does not lead to an actual useful TLP in the quantum random oracle model, as it does not even
offer a meaningful gap between the (true) running time of the honest solver and that of the puzzle generator. However,
it has the crucial property that a classical (potentially malicious) solver is at a full disadvantage and cannot solve the
puzzle even with an arbitrary polynomial number of queries, regardless of its parallel complexity. Consequently, it
only serves as a barrier for extending Theorem 1.1 using a classical attack. Having said that, it is certainly possible
that Theorem 1.1 could potentially be extended to the fully quantum setting using a quantum adversary. We leave this
as an intriguing open question.

1.2 Technical Overview
Here we describe some of the ideas behind the proofs of our Theorems 1.1 and 1.5. We start by describing our ideas
behind the attack of Theorem 1.1.

Ideas behind our attacks of Theorem 1.1. Our starting points are the attacks (from the full version of) [MMV11],
in which two different types of attacks on TLPs are presented: (1) computationally unbounded attacks with tight
adaptivity n2 and (2) poly-time attacks with adaptivity O(n) (specifically as small as 2n rounds). When we move to

2In fact, [MMV11] also showed that n-adaptivity is the best one can hope for, as there is a matching positive construction.
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the quantum-solver setting, we observe that their proofs suffer from incomparable issues: the first attack primarily
picks its oracle queries based on the puzzle generator’s algorithm, which for us is also classical, and hence the attack
description is more “quantum-solver friendly”. However, the analysis of this attack goes through conditioning on
events that do not have a direct quantum variant (at least at first sight). The second attack from [MMV11] is in an
opposite form: the attack’s description seems to heavily rely on the solver being classical (more on this below) and
hence seems to be a more challenging path to take for us here. Having said that, we show that it is indeed possible to
extend a variant of the second attack to the quantum-solver setting by developing new ideas that might be useful for
other contexts as well. As a bonus, we are also able to make the attack efficient (in quantum polynomial time).

The classical attack of [MMV11]. We start by describing the attack of [MMV11] at a high level, and then we
address the challenges that arise when we move to the quantum solver setting and explain how to address them.
Suppose the Gen makes n oracle queries. Then, the attacker will do the following in 3n rounds (of oracle queries),
while in each round it learns more oracle queries encoded in a list/partial function L (that grows over time). In round
i, the adversary will pick a full execution of the puzzle solver SolHi(P) → si over the given puzzle P to obtain the
solution si, while Hi is a “random oracle” sampled in adversary’s head conditioned on the learned list L. Then, at the
end of this round, the adversary will ask all of the queries asked by SolHi(P) from the real oracle H and adds this
information to L. Let Qi be the queries asked in this round. The key observation is that during the round by round
executions that the adversary makes and learns more and more about the true oracle H (through the list L) only in n
out of those 3n executions the list Qi can have a new intersection with the solver’s queries Q. So, in most of these
executions, no such intersections exist, in which case the adversary gets a perfectly consistent execution of the random
oracle that would be guaranteed to have the same completeness error as that of the honest solver. Therefore, in most
of the rounds, the adversary finds the true answer s to the puzzle P.

Challenge: quantum queries do not co-exist. When we move to the quantum-solver setting, the adversary still can
sample a full execution SolHi(P) conditioned on a classical list of query-answer pairs L that it has previously learned
about the true oracleH by samplingHi conditioned on L in its head and running the honest solver relative toHi. This
is despite the fact that Sol is now a quantum algorithm, yet this is all happening in the adversary’s head. However, the
real challenge is to go one step further: how can the adversary extract the set of queries that SolHi is asking from its
oracle Hi and ask them from the real oracle? After all, it is well-known that when we move to the quantum setting,
then multiple queries asked by the same algorithm Sol might not coexist.

Idea: learning amplitude-heavy queries, in parallel. Our main idea for resolving the challenge above is to define
a classical set of queries that are well-defined to coexist and can be learned from the real oracle in parallel, while at the
same time, these queries will provide useful information for the attacker to succeed. In particular, for every quantum
execution of SolHi , we say that a classical query q is ε-amplitude heavy, if there is one of the quantum queries q̃ (out of
the m quantum queries) of SolHi such that, the classical query q has at least amplitude ε within q̃. It is easy to see that
the number of such queries cannot be more than poly(m/ε) for every execution SolHi , and therefore, the set HQi

ε of
all ε-amplitude heavy queries of this execution will constitute a sufficiently small (i.e., polynomial-size) classical set.
Our adversary will then ask all of the (classical) queries inside the ε-amplitude heavy queries set HQi

ε at the end of
each round i. One can now show that if the number of rounds of the attack is, say 3n, then again in most of the attack
rounds, the attacker’s heavy set of queries (that it also learns at the end of the round) will not have a new collision with
the puzzle generator’s set of queries Q. It remains to show that this condition will again guarantee that the attacker
will have a good chance of finding the true puzzle solution s in such rounds.

Final touch: one-way to hiding. Suppose the adversary has already learned a set L of oracle query-answer pairs
about the real oracle H , and that it makes a simulation SolHi to obtain a candidate solution si by sampling the oracle
Hi at random conditioned on L. Further, suppose that we somehow have the guarantee that none of the ε-amplitude
heavy (classical) queries of the (quantum) execution SolHi will intersect with any of the puzzle generator’s queries. In
this case, we show how to use the useful one-way to hiding lemma of [AHU19], and show that the execution SolHi

will be statistically close to a perfectly consistent execution, in which one also conditions on the query-answer pairs of
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the puzzle generator. As a result, this execution by the adversary SolHi would have (almost) the same chance to find
the true answer, as an honest solver would.

Putting things together, this means that our attack would also succeed in finding the true answer in most of the
rounds out of the 3n rounds of the attack, and hence it can e.g., take the majority of the obtained solutions to find the
correct solution.

Learning amplitude-heavy queries (parallel) efficiently. In order to make the attack efficient, the following issues
need to be addressed. First, Eve cannot sample a full (exponential size) oracle to run the solver. To efficiently simulate
a partially fixed quantum random oracle, we instead use 2m-wise independent functions [Zha12], where m is the
query complexity of the solver. Next, in each round, Eve cannot compute exponentially many query amplitudes of
the simulated puzzle solver. Instead, we “experimentally extract” such amplitude-heavy queries. To do so, we rely
on the “original version” of one-way to hiding lemma in [Unr14]. Intuitively, if a query q is of high amplitude,
then running the solver until a random point and measuring the query register will output q with sufficiently large
probability. Following this idea, we run such extractions many times in each single round, before extracting a long
list of classical queries and asking them from the oracle. This leads to a quantum time-efficient algorithm to extract
(almost all) ε-amplitude heavy queries, which turns out to be sufficient for the proof.

Ideas behind the proofs of the tight attacks of Theorems 1.2 and 1.4. Our attack is inspired by the classical
result [BI87, Nis89, Tar89, HH87] that D(f) ≤ C0(f) · C1(f), in which f : {0, 1}N → {0, 1} is an arbitrary boolean
function, D is the decision-tree complexity of f (i.e., the smallest number of adaptive queries to the N input bits to
f to determine its output), and Cb(f) for b ∈ {0, 1} is the b-certificate complexity of f (i.e., the smallest number of
input bits that would provably reveal the output to be b). To see the connection, roughly speaking one has to think
of the random oracle of N queries as a giant input x = (x1, . . . , xN ) and the puzzle solution as the “output” of
the function f(x). (Of course the puzzle generation is randomized, but in this simplified exposition we intentionally
ignore this fact.) Below we describe our ideas first for the purely classically case, in which we quantitatively improve
the query-complexity of the attack of [MMV11], and then explain the additional ideas for the quantum case.

We define two specific forms of certificates for the puzzle solution being 0 or 1. Suppose P is a puzzle and
s ∈ {0, 1} is its solution. Consider a full execution of the puzzle generator, using the real oracle H , in which it
contains the query-answer pairs PG about the oracle H and at the end outputs (P, s). In this case, PG serves as a
certificate for s, because no solver can obtain the opposite answer 1 − s with respect to any oracle that is consistent
with PG; this holds due to the perfect completeness of the scheme. Similarly, for any execution of the solver that
solves P into solution s and that it contains query-answer pairs PS about the oracle H , it holds that PS serves as a
certificate for the solution being s for a similar reason. We will limit ourselves to use only PG for s = 0 certificates
and PS for s = 1 certificates.

Now, a key observation is that, in case of perfectly complete TLPs, any b-certificate, as a set of query-answer
pairs, shall be inconsistent with any (1 − b)-certificate, in that they contain a similar query with different answers,
because otherwise one can extend them to a full oracle in which the solver finds a wrong solution. Therefore, this
leads to the following n-round attack of total mn query complexity: so long as the puzzle solution is not determined
by what the attacker knows (which includes the puzzle P), the attacker would pick a 1-certificate S for some oracle
that is consistent with attacker’s knowledge about the random oracle, and then it asks all of the queries Q in S from
the real oracle. The key idea is that, if the answer is still not defined, it at least holds that the effective size of any
0-certificate (among the remaining unknown queries of the oracle) will shrink by one or more. Hence, the process
stops in n rounds.

Quantum solver or quantum generator. For the case that either of the puzzle generator or the puzzle solver are
quantum, we further use inspiration from the attack on key-agreement from random oracles in [ACC+22] for the
case that one party is quantum and the other one is classical. In their work, they show how to associate a degree-d
polynomial over variables x1 . . . xN ∈ {±1} (where the random oracle has N queries) to the quantum state of the
quantum-party conditioned on the transcript of the scheme, in which that party asks d quantum queries to the random
oracle. The key idea, at a high level, that generalizes the fully-classical case described above is to replace the query-set
QP of a classical party by (who is now going to be a quantum algorithm) by the set of oracle queries (that correspond
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to variables xi ∈ {x1 . . . , xN}) that in turn correspond to a maximal monomial in the polynomial that encodes the
quantum state of the quantum party (conditioned on the transcript). Then, we show that the same key idea about the
inconsistency (and hence non-empty intersections of the query sets) of the 0-certificates and 1-certificates still carries
to this generalized setting. This allows us to obtain a classical attack with the same round and query complexity as the
fully classical case. For the case of classical puzzle solvers, the attack indeed remains the same exact (round-optimal)
attack as that of fully classical case. For the case of quantum puzzle solvers, the attacker will pick maximal monomials
in the polynomial representing the solver’s quantum state and ask all of the queries in that monomial in each round.

Ideas behind the proof of Theorem 1.3. Informally, the “knowledge depth” of the attacker after i rounds of queries
is at xi. Therefore, in order for the attacker to solve the puzzle better than randomly guessing xn, the attacker must
make a lucky guess. That is, there exists some i ∈ [n] such that the attacker’s queries in the i-th round hit any of
{xi, xi+1, . . . , xq}. We use hybrid arguments to gradually collect the probabilities that the attacker makes a lucky
guess in every round. Finally, we show that the attacker can only randomly guess xn given there is no lucky guess. In
particular, we design hybrids carefully in such a way that (1) in the first hybrid, the game refers to the actual real attack,
(2) the last hybrid is trivially information theoretically hard to attack, as the adversary would have to guess a random
string of length κ independent of its view, and (3) the neighboring hybrids are computationally indistinguishable up to
certain bounds due to a standard argument. The latter relies on the fact [BBBV97,AHU19] that any quantum algorithm
that makes 1 round of k-parallel quantum queries cannot distinguish whether a random oracle has been reprogrammed
on S random points with advantage more than O(

√
k · S/2κ), where κ is the input length of the random oracle.

Ideas behind the barrier of Theorem 1.5. We now describe ideas behind our barrier of Theorem 1.5 against break-
ing fully TLPs classically. In fact, we prove something more general about key-agreements in the (quantum) random
oracle model resisting classical attacks. Namely, we show that if the simulation conjecture if false, then there is a
way for two (quantum) parties Alice and Bob to agree on a classical (random) key by calling a random oracle H in
quantum superposition and Alice sending a single classical message c to Bob with the following property. Any com-
putationally unbounded Eve who observes Alice’s classical message and can query the random oracle H in poly(κ)
points classically has a negligible chance of finding this key. If we can construct such a protocol, it would be easy to
use it to build a TLP on top of it by having Alice hide the puzzle solution using the key and send s⊕key along with the
transcript (single message) c as the puzzle’s description. The solver will then use Bob’s algorithm to find the key, and
then uncover the puzzle solution s. This protocol has the property that any classical-query adversary will have a neg-
ligible chance of solving it, establishing Theorem 1.5. Previously, [ACC+22] showed how to assume the simulation
conjecture is false to build an interactive key-agreement between quantum-powered parties in the quantum-random
oracle model that was secure against polynomial-classical-query adversaries. Here, in this work, we improve their
result to obtain such a protocol only with one-way communication.

Idea: classically-secure quantum key-agreement with one-way communication. At a high level, we use ideas
from [ACC+22] to prove a similar result, but their result ended up with an interactive key agreement protocol. Here,
it is crucial for us to obtain a non-interactive key-agreement protocol which we can then use to obtain a time-lock
puzzle. We follow the path of [ACC+22] initially, but then the two papers diverge as follows. [ACC+22] relies on a
result from [HMST22] that allows how to leverage interaction to bootstrap the obtained key agreement into one with
negligible soundness and completeness error. The reduction from [HMST22] is computational, which is a stronger
reduction but comes at the cost of interaction. On the other hand, we leverage on the information-theoretic nature of
the security of our key agreement and the fact [ACC+22] already provides a weakly secure key-agreement protocol
with one-way communication that has sufficiently small completeness error.

Outline of the technical steps for Theorem 1.5. To construct a classically-secure quantum key-agreement with
one-way communication we go through the following steps.

Step 0 We start off with the weak key agreement protocol from [ACC+22] (based on the simulation conjecture being
false) in which Alice and Bob have quantum access to the random oracle, Alice sends a single message to Bob,
and they have completeness error ε = 1/poly(κ) and the soundness error is δ = negl(κ) against any adversary
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with a polynomial number of classical queries. As mentioned above, this completeness error ε = 1/poly(κ)
can be made arbitrarily small.

Step 1 Using Goldreich-Levin’s hard-core bit lemma, we turn the above protocol into a new one in which Alice and
Bob agree on a bit that remains indistinguishable from random, even if the adversary is given the transcript.

Step 2 Using parallel repetition, we increase the length of the key. An interesting subtle point here is that we cannot
rely on the vanilla hybrid arguments to argue that this parallel repetition will increase the length of the key
securely; that is because the adversary’s complexity class is different from that of honest players (who will be
simulated as part of the hybrid argument). Despite this subtlety, since our security notion here is information
theoretic, the hybrid argument still goes through.

Step 3 The completeness error in all the steps above can be kept ε′ < 1/poly(κ) < 1/2. We finally make a final
change to make the completeness error also negligible: we use another parallel repetition, and this time we let
Alice pick a random key key and send key ⊕ keyi for various keys that she agrees with Bob. Bob then recovers
key in most of these executions and finds key by taking a majority.

1.3 Related Work
The study of so-called sequential primitives is not limited to time-lock puzzles. A closely related primitive is a proof of
sequential work (PoSW) [MMV13,CP18]. A PoSW also has a challenger (who takes the role of the puzzle generator)
and a solver, but the solver’s answer back to the challenger could be not unique, while its validity should be efficiently
verifiable. Hence, one can interpret PoSW as a TLP with more than one possible solution, and whose exact solutions
might not be even known to the challenger at the time of generating the challenge to the solver/prover. The works
of [CFHL21, BLZ21] showed that PoSW can be achieved in a post-quantum world from random oracles in a strong
sense that stands at the opposite of our negative result of Theorem 1.1: there is a TLP in which the protocol for the
honest parties is classical, while its soundness holds against adversaries who are quantum powered.

Another closely related primitive to TLPs the primitive of verifiable delay functions [BBBF18, LW17, Pie19,
Wes19]. A VDF is similar to a time-lock puzzle, in the sense that the challenger generates a puzzle/challenge with a
unique solution s, but s might not be known to the challenger during the time of generation. Yet, when the solver solves
the challenge, it can prove the validity of its answer through a verification process that is quite fast, just like the puzzle
generation phase. It was shown [MSW20] that certain special forms of VDFs are impossible to achieve in the random
oracle model. It is possible that using (a generalization of) our techniques one could extend our impossibility results
to such classes of VDFs as well, though we leave this exploration for the full version of this paper. See [JMRR21] for
a comprehensive study of the relation between the primitives above and other closely related sequential primitives.

Our work can be seen as continuing the line of work initiated by [HY20] for proving quantum black-box sep-
arations. Their work proved that collision-resistant hash functions cannot be based on trapdoor permutations, even
through a quantum reduction. Even though we do not prove any such results explicitly, we present attacks in the
random oracle model, which can provide many computational primitives for free, and so our work would also im-
ply corresponding black-box separations. See [AHY23, AK22] for more recent works on barriers against black-box
quantum constructions.

2 Preliminaries

2.1 Basic Notations
Let κ ∈ N denote the security parameter. For n ∈ N, let [n] to denote the set {1, 2, . . . , n}. Let Un be a random
variable that returns a random string of length n. By negl(·) we denote a negligible function. For a finite set S,

by x $←− S we mean x is chosen uniformly from S. Throughout this work, we use the standard bra-ket notation for
quantum objects. For the basics of quantum computing, we refer the readers to [NC10]. By ∥·∥ we denote the 2-norm.
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2.2 Quantum Computation
Definition 2.1 (Quantum Oracle Algorithm). A q-query quantum oracle algorithm A(·) that has access to an oracle
H , defined by the unitary OH can be specified by a sequence of unitaries (Uq, Uq−1, . . . , U0). The final state of the
algorithm is defined as UqOHUq−1 . . . OHU0|0⟩.

The query operator OH is defined as OH |x, y⟩ 7→ |x, y ⊕H(x)⟩, where we refer to the first register as the query
register. ♢

Definition 2.2 (Query Amplitude [BBBV97]). Let A(·) = (Uq, . . . , U0) be a quantum oracle algorithm, H : X → Y
be an oracle and S ⊆ X be a set. The query amplitude µ(AH ,S) ∈ R≥0 is defined as

µ(AH ,S) :=
q−1∑
i=0

∥ΠS |ψH
i ⟩∥2,

where ΠS is the projector onto S acting on the query register of A; each |ψH
i ⟩ denotes the state of the algorithm right

before the (i+ 1)th query, i.e., |ψH
i ⟩ := UiOH . . . OHU0|0⟩. ♢

If S is a singleton, i.e., {x}, by a slight abuse of the notation we denote it as µ(AH , x). Note that µ(AH ,S) is at
most the number of queries made byA. Moreover, for any disjoint S1,S2 ⊆ X , it holds that µ(AH ,S1)+µ(AH ,S2) =
µ(AH ,S1 ∪ S2).

The following lemma is restated from a similar result in [Unr14].

Lemma 2.3 ( [Unr14]). For every (fixed) H : X → Y , every (fixed) S ⊆ X , every (fixed) z ∈ {0, 1}∗, and every
quantum oracle algorithmA(·), there exists a quantum oracle algorithm Ext(AH(z)) that usesA(·) as subroutine and
outputs an element in S with probability µ(AH(z),S)/q, where q is the number of queries made by AH(z).

For completeness, the proof of Lemma 2.3 and the explicit description of the extractor Ext can be found in Sec-
tion A.

Lemma 2.4 (One-way-to-hiding, Theorem 3 in [AHU19], restated). Let S ⊆ X be random. Let F,G : X → Y be
random functions satisfying ∀x /∈ S, F (x) = G(x). Let z be a random bitstring. (S, F,G, z may have arbitrary joint
distribution.) Let A(·) be a q-query quantum oracle algorithm. Let

Pleft := Pr[b = 1 : b← AF (z)],

Pright := Pr[b = 1 : b← AG(z)],

Pguess := Pr[x ∈ S : x← Ext(AF (z))].

Then
|Pleft − Pright| ≤ 2q

√
Pguess.

The same holds with Ext(AG(z)) instead of Ext(AF (z)) in the definition of Pguess.

Combining Lemma 2.3 and Lemma 2.4, we obtain the following corollary.

Corollary 2.5. Let S ⊆ X be random. Let F,G : X → Y be random functions satisfying ∀x /∈ S, F (x) = G(x).
Let z be a random bitstring. (S, F,G, z may have arbitrary joint distribution.) Let A(·) be a q-query quantum oracle
algorithm. Then

|Pleft − Pright| ≤ 2
√
q E [µ(AF (z),S)],

where the probability of the expectation is over S, F,G and z.

Proof. Note that the probability Pguess can be written as

Pguess = Pr
[
x ∈ S : x← Ext(AF (z))

]
= E

s,f,g,z′

[
Pr
[
x ∈ S | S = s, F = f,G = g, z = z′ : x← Ext(AF (z))

]]
= E
S,F,G,z

[
µ(AF (z),S)

q

]
,

where the last equality follows from Lemma 2.3. Plugging Pguess into Lemma 2.4 finishes the proof.
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2.3 Time-Lock Puzzles in the Random Oracle Model
The following definition of time-lock puzzles in the quantum world focuses on a classical puzzle generator, while
the solver and the adversary are both quantum. We only allow a constant blow-up in the parallel complexity of the
attacker, compared to that of the honest solver.

Definition 2.6 (Time-Lock Puzzle with Quantum Solver). A time-lock puzzle scheme consists of a randomized oracle
algorithm puzzle generator (P, s) ← GenH(rG) (where P is the puzzle and s is the correct solution), and a quantum
oracle algorithm puzzle solver s′ ← SolH(P) (where s′ is the solution that the solver finds). For a puzzle generator
who makes at most n classical queries and a puzzle solver who makes at most m (m ≫ n) quantum queries to the
oracle, we expect the following properties:

• Completeness: If the honest solver Sol finds the correct solution with probability 1− ρ as follows

Pr[s = s′ : (P, s)← GenH(rG), s
′ ← SolH(P)] ≥ 1− ρ,

we say the scheme has ρ completeness error. By default, we anticipate the completeness error to be negligible
ρ ≤ negl(κ).

• Soundness: We say the scheme has σ soundness error, if for every quantum oracle algorithm E that makes
poly(κ) queries to the oracle H in O(n) rounds,

Pr[s = s′ : (P, s)← GenH(rG), s
′ ← EH(P)] = σ.

By default, we anticipate the scheme to have σ ≤ negl(κ) soundness error.

♢

3 Attacks on Time-Lock Puzzles with Classical Puzzle Generators
In this section, we present attacks for time-lock puzzles with classical generators and quantum solvers (CGQS). The
attacks can be seen as a quantum extension of the “efficient but non-optimal adversary” in the full version of [MMV11].
We provide two attacks: one is query-efficient and one is (quantum) time-efficient, but they are incomparable as they
provide different trade-offs between parameters.

3.1 Inefficient Attacks on CGQS Time-Lock Puzzles
We now state our result about breaking classical-generator quantum-solver (CGQS) time-lock puzzles in the (quantum)
random oracle model. In order to keep the notation clean, for the rest of the work, we sometimes omit the ceiling
function of parameters and treat it as an integer when it is clear from the context.

Theorem 3.1 (Breaking CGQS Time-Lock Puzzles). Consider any time-lock puzzle scheme in the random oracle
model where the generator asks n classical queries, the solver asks m quantum queries and the completeness is
1 − ρ (see Definition 2.6). For any ε, δ ∈ (0, 1], there exists a randomized solver Eve (denoted by E) who asks
at most qE classical queries in at most dE rounds and achieves the following bounds for the completeness error
ν = 1−Pr[s = s′ : (P, s)← GenH(rG), s

′ ← EH(P)], where the probability is over the randomness of the generator,
the randomness of Eve and the random oracle H .

1. Small completeness error: Eve asks qE = 4n2m2

εδ2 queries in dE = n/ε rounds with completeness error ν ≤
ρ+ ε+ δ.

2. 2n adaptivity: Eve asks qE = 8n2m2

δ2 queries in dE = 2n rounds with completeness error ν ≤ (2n+1)(ρ+ δ).

Proof of Theorem 3.1. We first prove Part 1 of Theorem 3.1. Then we will obtain Part 2 through a modified attack and
a different analysis. We first introduce some notations.
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Notation. LetQG be the set of points queried by GenH for generating the puzzle and the solution. Let PG be the set
of query-answer pairs learned by GenH , i.e., PG = {(q,H(q)) | q ∈ QG}. Sometimes we abuse the notation and use
(QG, H(QG)) to denote the same thing (PG). For a partial function F : S → Y where S is a subset of the domain X ,
by YX |F we mean the set of functions that are consistent with F . Sometimes we refer to a partial function L as a list
and use Q(L) to denote its domain.

Consider the following construction:

Construction 3.2 (Random Stoppage Attack). Let n, m be, in order, the number of queries made by GenH and SolH .

• Input: the puzzle P generated by GenH and parameters ε, δ ∈ (0, 1].

• Set I = n/ε and initialize a list L1 = ∅.

• Pick i∗ $←− [I].

• For i ∈ {1, . . . , i∗}, run Solve(i).

• Output si∗ .

In the ith round, the subroutine Solve(i) is defined in Algorithm 3.3. We note that Construction 3.2 should be
understood by syntactically replacing Solve(i) with the code of Solve(i). Looking ahead, Solve(i) will appear again
in the rest of the proof.

Algorithm 3.3. Solve(i) :

• Set Qi = ∅.

• Sample a full oracle Hi
$←− YX |Li

.

• Run SolHi(P) to get the solution si.

• For every x ∈ X \ Q(Li), compute the query amplitude µ(SolHi(P), x).

• For every x ∈ X \ Q(Li), if µ(SolHi(P), x) ≥ δ′ := δ2

4nm , then let Qi ← Qi ∪ {x}.

• Ask the classical queries Qi from the real oracle to obtain H(Qi).

• Update the list by Li+1 ← Li ∪ (Qi, H(Qi)).

Efficiency. In each round, since the number of queries made by Sol is at mostm, there are at most m
δ′ = 4nm2

δ2 points
that can be added intoQi. Moreover, there are at most I = n

ε rounds. Therefore, Eve’s adaptivity is at most n
ε and the

total number of Eve’s queries is at most 4n2m2

εδ2 .

Completeness. For analysis, we introduce the following experiment which is identical to Construction 3.2 except
that it does not stop at a random point.

Experiment 3.4. Let n, m be, in order, the number of queries made by GenH and SolH .

1. Input: the puzzle P generated by GenH and parameters ε, δ ∈ (0, 1].

2. Set I = n/ε and initialize a list L1 = ∅.

3. For i ∈ [I], run Solve(i).

4. Output sI .
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Before proving the completeness, we introduce some notations for the above experiment. By private queries we
mean the setQG \Q(Li), i.e., the set of queries that are asked by the puzzle generator but not asked by Eve before the
ith round. For an oracle H : X → Y and a set S ⊆ X , by H[S⟲] we mean the oracle that is obtained by resampling
the function value of every point in S uniformly from Y .
For every i ∈ [I], define the event Heavyi as

Heavyi :=
[
µ(SolHi(P),QG \ Q(Li)) ≥ nδ′

]
, (1)

i.e., the query amplitude of SolHi(P) on the private queries is at least nδ′ in the ith round. We say that the ith round
is heavy if the event Heavyi holds.

For every i ∈ [I], define the event Findi as

Findi := [Qi ∩ (QG \ Q(Li)) ̸= ∅] ,

i.e., Eve learns at least one of the private queries in the ith round.
First, the following lemma states that the occurrence of Heavyi implies that Eve learns some private query in the

ith round.

Lemma 3.5. For every i ∈ [I],
Pr[Findi | Heavyi] = 1.

Equivalently, Heavyi ⊆ Findi.

Proof. Conditioned on the event Heavyi happening, it means that the query amplitude of SolHi(P) on the private
queries QG \ Q(Li) is at least nδ′ in the ith round. Since the number of queries made by Gen is at most n, by an
averaging argument, there exists x ∈ QG \Q(Li) such that µ(SolHi(P), x) ≥ δ′. By construction, the point x will be
added into Qi. Thus, Eve learns at least one of the private queries in the ith round.

Next, since the puzzle generator asks at most n queries, the number of occurring events among {Findi}i∈[I] is at
most n in every execution.

Lemma 3.6. For every i ∈ [I], let IFindi be the indicator variable of Findi. Then

Pr

∑
i∈[I]

IFindi ≤ n

 = 1.

Proof. For the sake of contradiction, suppose there is a nonzero probability that all events Findi1 , . . . ,Findiℓ occur for
some pairwise distinct i1, . . . , iℓ ∈ [I], where ℓ > n. Then it means that for all k ∈ [ℓ], the setQik ∩QG is nonempty.
Moreover, all of them are pairwise disjoint since Eve never asks the same query. However, it will lead to the following
contradiction

n < ℓ ≤
⋃
k∈[ℓ]

|Qik ∩QG| ≤ |QG| ≤ n.

The above two lemmas together imply that the number of occurring events among {Heavyi}i∈[I] is at most n in
every execution.

Corollary 3.7. For every i ∈ [I], let IHeavyi be the indicator variable of Heavyi. Then

Pr

∑
i∈[I]

IHeavyi ≤ n

 = 1.

Proof. It immediately follows from Lemma 3.5 and Lemma 3.6.
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Before we move on, we rewrite Experiment 3.4 as the following equivalent experiment under the view of lazy evalua-
tion:

Experiment 3.8.

1. Run (P, s)← Gen(·)(rG) by lazy evaluation. // Now, the set PG of query-answer pairs is sampled.

2. Learn Li ← E(·)(P) as Step 2 in Experiment 3.4 by lazy evaluation.

// Now, the set Li of query-answer pairs is sampled.

3. For every x ∈ X \ (QG ∪Q(Li)), uniformly sample a value yx from Y .

4. Combine all the pairs from Step 1 to 3 into a full oracle H .

5. Sample Hi ← H [(QG \ Q(Li))
⟲]. // Private queries are resampled uniformly.

6. Run si ← SolHi(P).

The distribution of Hi is consistent with that in Experiment 3.4 since every query beyond Q(Li) is independently
and uniformly sampled (in Steps 3 and 5).

We now show that, as long as the ith round is not heavy, Eve’s simulation will be good enough to generate the
correct solution with high probability. Formally, we have the following lemma.

Lemma 3.9. For every i ∈ [I], it holds that

Pr [s = si ∧ ¬Heavyi] ≥ Pr [s = s′ ∧ ¬Heavyi]− δ.

where the probability is defined over Experiment 3.8 and s′ is defined to be generated by SolH(P ) instead of using Hi.

Proof. By Corollary 2.5 (setting F = Hi, G = H , S = QG \ Q(Li), z = (P, s), and AF (z) = V ◦ SolHi(P ), where
V(si) = 1 if s = si, and 0 otherwise), we have

Pr [s = si ∧ ¬Heavyi]
=Pr[¬Heavyi] · Pr [s = si | ¬Heavyi]

=Pr[¬Heavyi] · Pr
[
AF (z) = V ◦ SolHi(P ) = 1 | ¬Heavyi

]
≥Pr[¬Heavyi] ·

(
Pr
[
AG(z) = V ◦ SolH(P ) = 1 | ¬Heavyi

]
− 2
√
mnδ′

)
≥Pr

[
V ◦ SolH(P ) = 1 ∧ ¬Heavyi

]
− δ

=Pr [s = s′ ∧ ¬Heavyi]− δ,

where the first inequality is due to Corollary 2.5 and the second inequality follows from our choice of parameter
δ = 2

√
mnδ′. This finishes the proof.

Finally, with the above lemmas in hand, the completeness can be proven in the following lemma:

Lemma 3.10 (Completeness of Construction 3.2).

Pr

[
s = si∗ :

(P,s)←GenH(rG)
i∗←[I]

si∗←SolHi∗ (P)

]
≥ 1− ρ− ε− δ.

Proof. The success probability of Eve in Construction 3.2 is given by

Pr

[
s = si∗ :

(P,s)←GenH(rG)
i∗←[I]

si∗←SolHi∗ (P)

]
=

1

I

I∑
i=1

Pr [s = si]
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≥ 1

I

I∑
i=1

Pr [s = si ∧ ¬Heavyi]
(i)

≥ 1

I

I∑
i=1

Pr [s = s′ ∧ ¬Heavyi]− δ

≥ 1

I

I∑
i=1

(Pr [s = s′]− Pr[Heavyi])− δ = Pr [s = s′]− 1

I
E

[
I∑

i=1

IHeavyi

]
− δ

(ii)
≥ Pr [s = s′]− ε− δ

(iii)
≥ 1− ρ− ε− δ,

where (i) is due to Lemma 3.9, (ii) follows from Corollary 3.7 and (iii) follows from the completeness of the puzzle.

This concludes the efficiency and completeness of Eve in Construction 3.2, and hence it finishes the proof of Part 1 of
Theorem 3.1.

Part 2. We now move to prove Part 2 of Theorem 3.1. The idea is to use the majority of the solutions obtained in all
rounds. Consider the following construction:

Construction 3.11 (Majority Vote Attack). Let n, m be, in order, the number of queries made by GenH and SolH .

• Input: the puzzle P generated by GenH and a parameter δ ∈ (0, 1].

• Set I = 2n and initialize a list L1 = ∅ and a multiset S = ∅.

• For i ∈ {1, . . . , I}, do the following:

– Run Solve(i).

– Update the solution set by S ← S ∪ {si}.

• Sample a full oracle HI+1
$←− YX |LI+1

.

• Run one more execution SolHI+1(P) to get the solution sI+1.

• Update the solution set by S ← S ∪ {sI+1}.

• If there exists s∗ ∈ S that has multiplicity at least I/2 + 1 = n+ 1, output s∗.
Otherwise, abort.

Efficiency. In each round, since the number of queries made by Sol is at mostm, there are at most m
δ′ = 4nm2

δ2 points
that can be added into Qi. Moreover, there are at most I = 2n rounds. Therefore, Eve’s adaptivity is 2n and the total
number of Eve’s queries is at most 8n2m2

δ2 .

Completeness. For every i ∈ [I + 1], let Successi denote the event that s = si. Following the same argument
in Lemma 3.9, Eve’s simulation error is at most δ conditioned on the event ¬Heavyi happening. Hence, for every
i ∈ [I + 1], we have

Pr[Successi ∨ Heavyi] = Pr[¬Heavyi] · Pr[Successi | ¬Heavyi] + Pr[Heavyi]

≥ 1− ρ− δ.

Equivalently, for every i ∈ [I + 1],
Pr[¬Successi ∧ ¬Heavyi] ≤ ρ+ δ.

Therefore, by a union bound over i ∈ [I + 1], we have

Pr

 ∧
i∈[I+1]

(Successi ∨ Heavyi)

 ≥ 1− (I + 1)(ρ+ δ).
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Suppose the above event holds for the rest of the proof. By Corollary 3.7, with probability one, the number of the
happening events Heavyi is at most n, which means the number of happening events Successi is at least n + 1. This
implies the success of Eve’s attack in Construction 3.11 and finishes the proof of Part 2 of Theorem 3.1.

3.2 Efficient Attacks on CGQS Time-Lock Puzzles
The attacks in the last subsection could be made efficient. In Construction 3.2 and Construction 3.11, in order to find
queries with a large amplitude, Eve needs to sample a full oracle and compute exponentially many query amplitudes.
Moreover, as a quantum nature, the queries made by SolHi(P) cannot be “recorded”. Fortunately, by leveraging
Lemma 2.3, we still have an efficient way to extract queries with a large amplitude. Although directly invoking
Lemma 2.3 guarantees some probability for successful extraction, the probability is still too low. In this way, it will
increase the number of rounds (adaptivity) by a large factor.

To overcome this issue, Eve will instead run the solver many times in each round. By choosing parameters properly,
we show that Eve can find queries with a large amplitude with high probability. Lastly, the efficient simulation of a
(partially fixed) quantum random oracle can be done by using 2m-wise independent functions [Zha12]. Below, we
show how to convert Construction 3.2 into a quantum time-efficient attack.

Theorem 3.12 (Efficiently Breaking CGQS Time-Lock Puzzles). Consider any time-lock puzzle scheme in the random
oracle model where the generator asks n classical queries, the solver asks m quantum queries and the completeness
is 1− ρ (see Definition 2.6). For any ε, δ ∈ (0, 1] and γ > 1, there exists an efficient, randomized solver Eve (denoted
by E) who asks at most qE classical queries in at most dE rounds and in time O(dE · T ), where T is the running time
of the honest solver, and it achieves the following bound for the completeness error ν = 1 − Pr[s = s′ : (P, s) ←
GenH(rG), s

′ ← EH(P)], where the probability is over the randomness of the generator, the randomness of Eve
(including the randomness of using the quantum solver as subroutines) and the random oracle H .

• Small completeness error: Eve asks qE = 4nm2

εδ2 ln
(

γ
γ−1

)
queries in dE = n/ε rounds with completeness error

ν ≤ ρ+ γε+ δ.

Remark 3.13. Here, we compare the parameters in Theorem 3.12 with the parameters in Theorem 3.1. Suppose we let
n = ln

(
γ

γ−1

)
and let n,m, ε, δ be identical, then Eve’s adaptivity and the number of total queries in each construction

will be equivalent. In this way, we can solve the above equation and obtain γ ≈ 1 + e−n.

Remark 3.14. Construction 3.11 can be made efficient in a similar manner.

Proof of Theorem 3.12. Consider the following efficient variant of Construction 3.2:

Construction 3.15 (Efficient Random Stoppage Attack). Let n, m be, in order, the number of queries made by GenH

and SolH .

• Input: the puzzle P generated by GenH and parameters ε, δ ∈ (0, 1], γ > 1.

• Set I = n/ε and initialize a list L1 = ∅.

• Pick i∗ $←− [I].

• For i ∈ {1, . . . , i∗}, do the following:

– Set Qi = ∅.

– Use 2m-wise independent functions to simulate Hi
$←− YX |Li .

– Run SolHi(P) to get the solution si.

– Let γ′ := m
nδ′ ln

(
γ

γ−1

)
, where δ′ := δ2

4nm .

– For j ∈ [γ′], do the following:
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* Run Ext(SolHi(P)) to get x ∈ X .
(Note that the oracle used in each execution is fixed, i.e., Hi.)

* If x /∈ Q(Li) ∪Qi, then Qi ← Qi ∪ {x}.
– Make classical queries to the (real) random oracle H on all points in Qi and obtain H(Qi).

– Update the list by Li+1 ← Li ∪ (Qi, H(Qi)).

• Output si∗ .

Efficiency. In each round, the size of Qi is at most γ′ = m
nδ′ ln

(
γ

γ−1

)
= 4m2

δ2 ln
(

γ
γ−1

)
. Moreover, there are at

most I = n/ε rounds. Therefore, Eve’s adaptivity is at most n/ε and the total number of Eve’s queries is at most
4nm2

εδ2 ln
(

γ
γ−1

)
. Notice that the iteration of the extractor in each round can be performed in parallel. In addition, the

amount of randomness for initiating a 2m-wise independent function is O(m) = O(T ). Hence, Eve’s running time is
O(dE · T ).

Completeness. The following lemma is the generalization of Lemma 3.5. Given that the ith round is heavy, repeating
the extractor in Lemma 2.3 many times will output a private query with high probability.

Lemma 3.16. For every i ∈ [I], it holds that

Pr[Findi | Heavyi] ≥
1

γ
.

Proof. Conditioned on the event Heavyi happening, it means that the query amplitude of SolHi(P) on the private
queries QG \ Q(Li) is at least nδ′ in the ith round. By Lemma 2.3, the probability of obtaining x ∈ QG \ Q(Li) in
each iteration of the extractor is at least nδ′/m. Moreover, each iteration is independent because the randomness of
the extractor comes from the choice of query and the measurement. Both of them are fresh every time. Hence, after
γ′ iterations, the probability of obtaining x ∈ QG \ Q(Li) is at least

1−
(
1− nδ′

m

)γ′

≥ 1− eln(1−1/γ) = 1

γ
,

where we use 1− x ≤ e−x for x ∈ R and γ′ = m
nδ′ ln

(
γ

γ−1

)
.

Lemma 3.17. For every i ∈ [I], let IFindi be the indicator variable of Findi. Then

Pr

∑
i∈[I]

IFindi ≤ n

 = 1.

Proof. The proof is the same as Lemma 3.6.

The following corollary is the generalization of Corollary 3.7.

Corollary 3.18. For every i ∈ [I], let IHeavyi be the indicator variable of Heavyi. Then

E

∑
i∈[I]

IHeavyi

 ≤ γn.
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Proof. From Lemma 3.16, we have

Pr[Heavyi] ≤ γ Pr[Heavyi ∧ Findi] ≤ γ Pr[Findi].

By Lemma 3.17, it holds that

E

∑
i∈[I]

IHeavyi

 =
∑
i∈[I]

Pr[Heavyi] ≤ γ
∑
i∈[I]

Pr[Findi] = γ E

∑
i∈[I]

IFindi

 ≤ γn.

Finally, we have the following lemma, which is the counterpart of Lemma 3.10.

Lemma 3.19 (Completeness of Construction 3.15).

Pr

[
s = si∗ :

(P,s)←GenH(rG)
i∗←[I]

si∗←SolHi∗ (P)

]
≥ 1− ρ− γε− δ.

Proof. Following the same lines in the proof of Lemma 3.10, we have

Pr

[
s = si∗ :

(P,s)←GenH(rG)
i∗←[I]

si∗←SolHi∗ (P)

]

≥ Pr
[
s = s′ : (P,s)←GenH(rG)

s′←SolH(P)

]
− 1

I
E

∑
i∈[I]

IHeavyi

− δ
≥ Pr

[
s = s′ : (P,s)←GenH(rG)

s′←SolH(P)

]
− γε− δ

≥ 1− ρ− γε− δ.

where the second to last inequality follows from Corollary 3.18.

This concludes the efficiency and completeness of Eve in Construction 3.15.

4 Round-Optimal Attack on Perfectly-Complete Time-Lock Puzzles
In this section, we present a round-optimal attack on perfectly-complete time-lock puzzles. As a warm-up, we describe
our attack under the setting where both the puzzle generator and solver can make classical queries in Section 4.1.
Compared to the round-optimal attack in [MMV11], our attack is strictly better in terms of success probability and the
number of queries, though our attack is limited to perfectly complete schemes. In particular, the attack in [MMV11]
needs O((mn/ε) log(n/ε)) queries to find the solution with probability at least 1 − ε. While our attack only needs
mn queries and finds the solution with probability 1. In Sections 4.2 and 4.3, we extend the attack to the settings in
which the generator and solver, respectively, can make quantum queries.

4.1 Round-Optimal Attack on Perfectly-Complete CGCS Time-Lock Puzzles
Theorem 4.1. Consider any time-lock puzzle scheme in the random oracle model where the generator asks n classical
queries, the solver asks m classical queries and the completeness is 1. There exists a deterministic, inefficient solver
Eve who asks at most nm classical queries in at most n rounds and finds the solution with probability 1.
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Definitions. We use the same notation defined in Section 3.1. Consider the full execution of the puzzle generator
and (honest) solver. The full sample X is a tuple of random variables (rG, rS , H,P, s, s

′). Note that we only con-
sider puzzles with perfect completeness, so every element in the support set of X must satisfy s = s′. The view of
the generator is a tuple of random variables vG = (rG,PG). The view of the solver is a tuple of random variables
vG = (rG,P,PS). For any fixed view vG, puzzle P, solution s and list L, we say that vG is consistent with (P, s,L) if
there exists some x in the support set of X such that vG,P, s and L are all consistent with x. The consistency between
the solver’s view and (P, s′,L) is defined similarly except that s is replaced with s′.

Consider the following construction:

Construction 4.2. Let n, m be, in order, the number of queries made by GenH and SolH . Let S be the solution space.

1. Input: the puzzle P generated by GenH .

2. Initialize a list L = ∅.

3. While the solution is not fully determined conditioned on (P,L),3 do the following:

(a) Pick the lexicographically first4 s′ ∈ S such that there exists some solver’s view vS that is consistent with
(P, s′,L). Pick the lexicographically first such vS .

(b) Query the (true) random oracleH on every point inQS \Q(L), whereQS is the solver’s query set defined
in the view vS . Then update the list L accordingly.

4. Output the remaining, unique solution.

The following observation is the crux of proving efficiency.

Lemma 4.3. For any (fixed) puzzle P, list L, solutions s, s′ ∈ S such that s ̸= s′, any generator’s view vG that is
consistent with (P,L, s), and any solver’s view vS that is consistent with (P,L, s′), there exists some inconsistency
between PG and PS , i.e., ∃q ∈ QG ∩QS such that PG(q) ̸= PS(q), which implies that (QG ∩QS) \ Q(L) ̸= ∅.

Proof. Suppose it does not hold, then we can extend PG,PS and L into a full oracle. Since rG, rS , andH are sampled
independently, there exists some full sample x that is consistent with vG and vS simultaneously. However, this would
contradict perfect completeness.

Lemma 4.4. The number of iterations in Step 3 of Construction 4.2 is at most n with probability 1.

Proof. In each iteration, if all the answers in Step 3(b) already determine the solution, then we are done. Otherwise,
by Lemma 4.3, the queries made in Step 3(b) must hit at least one element in QG \ Q(L) of every generator’s view
that has a solution different from s′. Since the generator makes a total of n queries plus the fact that Eve always picks
the lexicographically first s′ in Step 3(a), inductively we can show that the latter case could occur at most n times.

Proof of Theorem 4.1. By perfect completeness and construction, until the point Eve has queried the whole oracle, the
solution will be fully determined. Hence, Eve’s attack succeeds with probability 1. Moreover, by Lemma 4.4, Eve
asks at most n rounds of queries. In each round, Eve asks at most m queries. This completes the proof.

Remark 4.5. The attack in Construction 4.2 also works for perfectly-complete key agreements by replacing the
solver with Alice, and the generator with Bob, respectively. It halves the number and round of queries of the attack
in [BKSY11].

3That is, conditioned on fixed (P,L), there exist x1, x2 in the sample space such that the solution of x1 is different from that of x2. Note that
due to perfect completeness, s and s′ of every x are the same.

4Here, it’s essential to pick the lexicographically first one for proving efficiency.
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4.2 Round-Optimal Attack on Perfectly-Complete QGCS Time-Lock Puzzles
Interestingly, the same attack in Construction 4.2 also works when the puzzle generator is able to make quantum
queries.

Theorem 4.6. Consider any time-lock puzzle scheme in the random oracle model where the generator asks n quantum
queries, the solver asks m classical queries and the completeness is 1. There exists a deterministic, inefficient solver
Eve who asks at most nm classical queries in at most n rounds and finds the solution with probability 1.

We define the purified view of quantum puzzle generators below. Note that since time-lock puzzles are non-interactive,
defining the purified view only for the generator is sufficient for finishing the proof.

Definition 4.7 (Purified view of quantum puzzle generators). Let (Gen,Sol) be a time-lock puzzle in which Gen can
make quantum queries to the oracle. Let Gen = (Un, Un−1, . . . , U0), where n is the number of queries made by Gen
and Ui’s are unitaries. WLOG we assume that Gen measures all of its registers in the computational basis at the end
of the computation.5 Consider the following registers that record every classical transcript right after the puzzle and
solution are generated:

• G : The generator’s internal register.

• F : The truth table of the (true) random oracle H .

• P : The register that records the classical puzzle.

• S : The register that records the classical solution.

LetH be the set of all functions from X to Y where X is a finite set and Y is a finite additive group that has cardinality
N . Let Ŷ be the dual group of Y . Let the initial state |Ψ0⟩ be

|Ψ0⟩ := |0⟩G ⊗ |0⟩P ⊗ |0⟩S ⊗

(∑
h∈H

1√
|H|
|h⟩F

)
.

The purified view of quantum puzzle generators is a quantum state defined by

|Ψn⟩ := UnOUn−1O . . . U1OU0|Ψ0⟩ =
∑

w,P,s,D

αw,P,s,D|w⟩G|P⟩P |s⟩S |D⟩F ,

where D ∈ ŶX and O is the controlled-query operator defined as

O : |x⟩X |y⟩Y |h⟩F 7→ |x⟩X |y + h(x)⟩Y |h⟩F .

For D ∈ ŶX , we also define Q(D) := {x ∈ X : D(x) ̸= 0̂}. ♢

Lemma 4.8 ( [Zha19]). The final state |Ψ⟩ of the generator can be written as

|Ψ⟩ =
∑

w,P,s,D:|D|≤n

αw,P,s,D|w⟩G|P⟩P |s⟩S |D⟩F ,

where |D| := |Q(D)|.

Proof of Theorem 4.6. Similarly, it is sufficient to prove efficiency. First, we augment an additional register L starting
with the content ∅ that records Eve’s list. Consider any (fixed) puzzle P that has a non-zero probability. After Eve saw
the puzzle P, the purified view collapses to the post-measurement state of measuring the register P and obtaining the
outcome P. Hence, the state is of the form

|ΨP,∅⟩ =
∑

w,s,D:|D|≤n

αw,P,s,D,L|w⟩G|P⟩P |s⟩S |D⟩F |∅⟩L. (2)

5Doing so will not change the distribution of the experiment since the communication (puzzle) is classical.
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In each iteration, the dynamical process of the purified view is modeled in the following recursive way. Suppose the
current purified view at the beginning of the ith iteration is

|ΨP,L⟩ =
∑

w,s,D:|D|≤ni

αw,P,s,D,L|w⟩G|P⟩P |s⟩S |D ⊔ L⟩F |L⟩L

for some fixed L and integer ni ≥ 0, where D ∈ ŶX\Q(L) and |D ⊔ L⟩F is the basis vector that stores D(x) in the
Fourier basis for every x ∈ X \ Q(L) and stores L(x) in the computational basis for every x ∈ Q(L). We note that
(2) is of this form with L = ∅ and n1 = n.

After Eve picks a solver’s view vS in Step 3(a), Eve will make classical queries defined in the view vS and update
L in register L. Let L′ denote the updated list. Further conditioned on any possible (fixed) L′, the purified view will
be the post-measurement state corresponding to L′ of the following form

|ΨP,L′⟩ =
∑

w,s,D:|D|≤ni+1

αw,P,s,D,L′ |w⟩G|P⟩P |s⟩S |D ⊔ L′⟩F |L′⟩L.

We use the following notation to further fix w and s in |ΨP,L⟩:

|ΨP,L⟩ =
∑
w,s

βw,P,s,L|ΨP,w,s,L⟩GPSF |L⟩L,

where

|ΨP,w,s,L⟩ := |w⟩G|P⟩P |s⟩S ⊗
1

βw,P,s,L
·
∑

D:|D|≤ni

αw,P,s,D,L|D ⊔ L⟩F

= |w⟩G|P⟩P |s⟩S ⊗
∑

D:|D|≤ni

γw,P,s,D,L|D ⊔ L⟩F ,

βw,P,s,L is the normalization factor so that |ΨP,w,s,L⟩ is of unit length, i.e.,

βw,P,s,L :=
∑

D:|D|≤ni+1

|αw,P,s,D,L|2,

and γw,P,s,D,L := αw,P,s,D,L/βw,P,s,L. In particular, for every |ΨP,w,s,L⟩, we say that D is a maximum database6 if
γw,P,s,D,L ̸= 0 and there does not exist D′ such that γw,P,s,D′,L ̸= 0 and |D′| > |D|. Let Dmax

P,w,s,L denote the set of
all maximum databases of |ΨP,w,s,L⟩.

We have the following observation which is the counterpart of Lemma 4.3.

Lemma 4.9. For any (fixed) puzzle P, list L, solutions s, s′ ∈ S such that s ̸= s′, any w such that βw,P,s,L > 0 in
|ΨP,L⟩ and any solver’s view vS that is consistent with (P,L, s′),

QS ∩Q(D) ̸= ∅

for every D ∈ Dmax
P,w,s,L.

Proof. For sake of contradiction, suppose there exist |ΨP,w,s,L⟩, a view vS , and D∗ ∈ Dmax
P,w,s,L such that QS ∩

Q(D∗) = ∅. First, we claim that
∥ΠPS

|ΨP,w,s,L⟩∥ > 0, (3)

where PS is defined in vs and ΠPS
is the projection operator acting on register F defined as

⊗
x∈QS

|PS(x)⟩⟨PS(x)|.
In particular, consider the list L′ defined by combining L and PS . For every D ∈ ŶX\Q(L), define the database that
is “reprogrammed” according to L′, i.e.,

D|L′(x) :=

{
L′(x) if x ∈ Q(L′)
D(x) if x ∈ X \ Q(L′).

6Note that D’s are now defined on the restricted domain X \ Q(L).
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Also, we define the database D◦ ∈ ŶX\Q(L′) as the database D∗ restricted on X \ Q(L′), i.e.,

D◦(x) := D∗(x) ∀x ∈ X \ Q(L′).

Since we assume that Q(D∗) ∩QS = ∅, the non-zero entries of D∗ will not be changed by L′, i.e.,

D∗|L′ = D◦ ⊔ L′.

Now we are ready to prove (3). Suppose

|ΨP,w,s,L⟩ = |w⟩G|P⟩P |s⟩S ⊗
∑

D:|D|≤ni

γw,P,s,D,L|D ⊔ L⟩F .

Since we assume that Q(D∗) ∩ QS = ∅, there does not exist D ∈ ŶX\Q(L) such that γw,P,s,D,L ̸= 0 and D|L′ =
D∗|L′ = D◦ ⊔ L′ by the maximality of D∗. Therefore, if we consider the (sub-normalized) state after the projection

ΠPS
|ΨP,w,s,L⟩ =

∑
D:|D|≤ni+1

γ′
w,P,s,D,L′ |D ⊔ L′⟩F

where D’s are defined on X \ Q(L′), the coefficient satisfies

γ′w,P,s,D◦,L′ = N
−1
2 |QS\Q(L)| · γw,P,s,D∗,L ̸= 0.

Hence, we complete the proof of (3). However, by (3), if we represent |ΨP,w,s,L⟩ in the computational basis as

|ΨP,w,s,L⟩ = |w⟩G|P⟩P |s⟩S ⊗
∑
h∈H

γ
′′

w,P,s,h,L|h⟩F ,

then there exists h ∈ H such that γ
′′

w,P,s,h,L ̸= 0 and h is consistent withPS . Consequently, we have Pr[h,P, w, s,L] >
0 which implies that Pr[h,P, s] > 0. This means that if the random oracle is picked to be h, then there is a non-zero
probability that Genh outputs (P, s). Moreover, since h is consistent with PS , when the solver takes as input P and
picks the randomness rS defined in vS , the output will be Solh(P; rS) = s′. However, the above together would imply
that there is a non-zero probability over the full execution that s ̸= s′, which contracts the perfect completeness of the
puzzle.

We complete the proof by following the similar lines in Theorem 4.4. For any i, in the ith iteration, if the learned
query-answer pairs already determine the solution, then we are done. Otherwise, for every |ΨP,w,s,L⟩ such that s ̸= s′,
we must have ni+1 ≤ ni − 1 by Lemma 4.9. Finally, since n1 = n, the number of iterations is at most n.

4.3 Round-Optimal Attack on Perfectly-Complete CGQS Time-Lock Puzzles
In this subsection, we consider a “dual” setting in which the generator can only make classical queries while the solver
can make quantum queries.

Theorem 4.10. Consider any time-lock puzzle scheme in the random oracle model where the generator asks n clas-
sical queries, the solver asks m quantum queries and the completeness is 1. There exists a deterministic, inefficient
solver Eve who asks at most nm classical queries in at most n rounds and finds the solution with probability 1.

Now, since the solver is quantum, it is not clear how to define a view for the solver. To overcome the challenge,
consider the following experiment in which we treat the quantum solver as an isolated algorithm.

Experiment 4.11 (Isolated Solver’s Experiment).

1. Input: a puzzle P
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2. Sample H $←− H.

3. Run SolH(P) to get s′.

4. Output s′.

We emphasize that Experiment 4.11 totally ignores the correlation between the puzzle P and oracle H . Note that
conditioned on a fixed puzzle P could change the distribution of the oracle.7 Hence, the distribution of Experiment 4.11
does not faithfully reflect the distribution of the full execution. However, assuming perfect completeness, showing the
positivity of the probability of certain events occurring is sufficient to lead to a contradiction. We define the purified
view of Experiment 4.11 as follows.

Definition 4.12. For any fixed P and quantum solver Sol = (Um, Um−1, . . . , U0), the purified view of Experi-
ment 4.11 is defined to be

|ΨP⟩ := UP
mOU

P
m−1O . . . U

P
1 OU

P
0 |Ψ0⟩SS′F |P⟩P ,

where the dependency between Ui and P is specified. The register S is the solver’s internal register and register S′

records the solver’s classical solution. ♢

By Lemma 4.8, the purified view is of the form

|ΨP⟩ =
∑

w,s′,D:|D|≤m

αw,s′,D|w⟩S |s′⟩S′ |D⟩F |P⟩P .

Similarly, we can also define the state |ΨP,w,s′,L⟩ that is further conditioned on (w, s′,L) which has a non-zero
probability of happening.

Construction 4.13. Let n, m be, in order, the number of queries made by GenH and SolH . Let S be the solution
space.

1. Input: the puzzle P generated by GenH .

2. Initialize a list L = ∅.

3. While the solution is not fully determined conditioned on (P,L), do the following:

(a) Pick the lexicographically first s′ ∈ S such that there exists a tuple of fixed (w, s′,L) such that ∥|ΨP,w,s′,L⟩∥ >
0.

(b) Pick the lexicographically first such |ΨP,w,s′,L⟩.
(c) Pick the lexicographically first D ∈ Dmax

P,w,s′,L.
(d) Query the (true) random oracle H on every point in Q(D), and then update the list L accordingly.

4. Output the remaining, unique solution.

We have the following observation that aligns with Lemma 4.9 except that the roles of the generator and solver are
switched.

Lemma 4.14. For any (fixed) puzzle P, list L, solutions s, s′ ∈ S such that s ̸= s′, any w such that ∥|ΨP,w,s′,L⟩∥ > 0
and any generator’s view vG that is consistent with (P,L, s),

QG ∩Q(D) ̸= ∅

for every D ∈ Dmax
P,w,s′,L.

Proof. The proof is virtually the same as that of Lemma 4.9. Suppose not, then there exists a fixed, full oracle h ∈ H
relative to which the generator could possibly generate (P, s) but Pr[Solh(P) = s′] > 0, which contradicts perfect
completeness.

Proof of Theorem 4.10. Similarly, it remains to prove efficiency. By Lemma 4.14, Q(D) of the database D picked by
Eve in Step 3(c) always intersects with QG.8 This ensures that there will be at most n iterations.

7For example, P is defined to be H(0).
8Recall that D is defined over the restricted domain X \ Q(L). So Eve will learn something “new” beyond Q(L).
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5 Post-Quantum Security of Pseudo-Chains
Notation. For m,n ∈ N, by Func(m,n) we denote the set of all functions from m bits to n bits. For H ∈
Func(m,n), x∗ ∈ {0, 1}m and y∗ ∈ {0, 1}n, by H[x∗ 7→ y∗] we denote the function obtained by reprogramming
H(x∗) to y∗. That is,

H[x∗ 7→ y∗](x) :=

{
y∗ if x = x∗

H(x) otherwise.

Definition 5.1 (Pseudo-chain puzzles [MMV11]). Let H : {0, 1}κ → {0, 1}κ be a random oracle. The pseudo-chain
puzzle experiment is defined as follows. On input the security parameter 1κ and an integer q ≥ 0, do the following:

1. Sample x0, x1, . . . , xq+1
$←− {0, 1}κ.

2. Make (one-round of) queries to the random oracleH on (x0, . . . , xq) and obtain the answers (H(x0), . . . ,H(xq)).

3. Set P := (x0, H(x0)⊕ x1, . . . ,H(xq)⊕ xq+1) and s := (x0, . . . , xq+1).

4. Send P to the (solver) algorithm A.

5. After making queries to H , the algorithm A outputs s′.

We write ⟨C,A⟩ to denote the interaction between the challenger C and the algorithm A in the pseudo-chain puzzle
experiment. We define ⟨C,A⟩ = 1 if and only if s = s′, and 0 otherwise. It’s easy to see that if A can make at least
(q + 1) rounds of queries, then A can always find s. ♢

Definition 5.2. The k-parallel query operator is defined as

O⊗k : |x1, . . . , xk⟩|y1, . . . , yk⟩ 7→ |x1, . . . , xk⟩|y1 ⊕H(x1), . . . , yk ⊕H(xk)⟩.

♢

Theorem 5.3. For any integers k, q ≥ 0 and any computationally unbounded algorithm A that makes at most q
k-parallel quantum queries to a random oracle H : {0, 1}κ → {0, 1}κ, it holds that

Pr[⟨C,A⟩(1κ, q) = 1] = O

(√
kq3

2κ

)
.

Proof. First, we provide some intuitions before the proof. Informally, in order for the adversary A to solve the puzzle
better than randomly guessing xq+1, there are only two possibilities: (i) Collision: there are some i, j ∈ {0, 1, . . . , q}
such that xi = xj and i ̸= j (ii) Lucky guess: there is some i ∈ [q] such that A’s queries in the i-th round hit
any of {xi, xi+1, . . . , xq}. Looking ahead, hybrids Hreal and H0 capture case (i), and hybrids H0, . . . ,Hq capture
case (ii). Finally, we show that the algorithmA inHq can only make a random guess to solve the puzzle since xq+1 is
information-theoretically hidden from A.

Next, for convenience, we rewrite the pseudo-chain puzzle experiment into the following equivalent experiment
Hreal.

ExperimentHreal :

1. Sample H $←− Func(κ, κ).

2. Sample x0, x1, . . . , xq+1
$←− {0, 1}κ.

3. Sample y0, y1, . . . , yq
$←− {0, 1}κ.
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4. Define the oracle

Hq := H

 xq 7→yq,
xq−1 7→yq−1,

...
x0 7→y0

 .
(Note that the order of reprogramming is from top to bottom. Hence, if there exist repeated xi’s, the
function value Hq(xi) is defined to be yj where j is the smallest index such that xi = xj . This convention
aligns with the lazy evaluation and makes our later analysis more convenient.)

5. Set P := (x0, Hq(x0)⊕ x1, . . . ,Hq(xq)⊕ xq+1) and s := (x0, . . . , xq+1).

6. Send P to the algorithm A.

7. The algorithmA adaptively makes q k-parallel queries to the oracle, where all the queries are answered by
Hq .

8. The algorithm A outputs s′ = (x′0, x
′
1, . . . , x

′
q+1).

9. Output 1 if and only if s = s′, and 0 otherwise.

We finish the proof by hybrid arguments. Consider the following hybrid. The difference between H0 and the
pseudo-chain puzzle experimentHreal is colored in red.

HybridH0 :

1. Sample H $←− Func(κ, κ).

2. Sample x0, x1, . . . , xq+1
$←− {0, 1}κ.

3. Sample y0, y1, . . . , yq
$←− {0, 1}κ.

4. Define the oracle

Hq := H

 xq 7→yq,
xq−1 7→yq−1,

...
x0 7→y0

 .
5. Set P := (x0, y0 ⊕ x1, . . . , yq ⊕ xq+1) and s := (x0, . . . , xq+1).

6. Send P to the algorithm A.

7. The algorithmA adaptively makes q k-parallel queries to the oracle, where all the queries are answered by
Hq .

8. The algorithm A outputs s′ = (x′0, x
′
1, . . . , x

′
q+1).

9. Output 1 if and only if s = s′, and 0 otherwise.

Suppose there exist repeated xi’s, then the same value H(xi) = yj is used to generate the puzzle in Hreal; while
independent, uniform yi’s are used inH0. On the other hand, if all xi’s are pairwise distinct, then the two experiments
are identically distributed. Let Col be the event defined over bothH0 andHreal that x0, x1, . . . , xq+1 are not pairwise
distinct. Then we have

Pr
Hreal

[⟨C,A⟩(1κ, q) = 1 ∧ Col] = Pr
H0

[⟨C,A⟩(1κ, q) = 1 ∧ Col]

which implies ∣∣∣∣ Pr
Hreal

[⟨C,A⟩(1κ, q) = 1]− Pr
H0

[⟨C,A⟩(1κ, q) = 1]

∣∣∣∣ ≤ Pr[Col] = O

(
q2

2κ

)
.

Next, consider the following sequence of hybrids in which the order of oracles answering A′s queries is different:
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HybridHi for i ∈ {1, 2, . . . , q − 1, q} :

1. Sample H $←− Func(κ, κ).

2. Sample x0, x1, . . . , xq+1
$←− {0, 1}κ.

3. Sample y0, y1, . . . , yq
$←− {0, 1}κ.

4. Define a sequence of oracles for j ∈ {0, 1, . . . , i− 1}:

Hj := H

 xj 7→yj ,
xj−1 7→yj−1,

...
x0 7→y0

 .
5. Set P := (x0, y0 ⊕ x1, . . . , yq ⊕ xq+1) and s := (x0, . . . , xq+1).

6. Send P to the algorithm A.

7. The algorithmA adaptively makes q k-parallel queries to the oracle, where the queries are answered in the
following way. For j ∈ {1, 2, . . . , i}, the jth query is answered by Hj−1. All the remaining queries are
answered by Hq .

8. The algorithm A outputs s′ = (x′0, x
′
1, . . . , x

′
q+1).

9. Output 1 if and only if s = s′, and 0 otherwise.

For convenience, the oracle calls of A in each hybrid are summarized in Table 1.

Table 1: Oracle calls of A in each hybrid.
Index of queries

1 2 3 . . . i i+ 1 i+ 2 . . . q
Hreal Hq Hq Hq . . . Hq Hq Hq . . . Hq

H0 Hq Hq Hq . . . Hq Hq Hq . . . Hq

H1 H0 Hq Hq . . . Hq Hq Hq . . . Hq

H2 H0 H1 Hq . . . Hq Hq Hq . . . Hq

...
Hi H0 H1 H2 . . . Hi−1 Hq Hq . . . Hq

Hi+1 H0 H1 H2 . . . Hi−1 Hi Hq . . . Hq

...
Hq H0 H1 H2 . . . Hi−1 Hi Hi+1 . . . Hq−1

The following lemma states the statistical closeness of the hybrids. For intuition, let us consider a simpler case whereA
only makes classical queries. First, the only difference betweenHi andHi+1 is that the (i+1)th oracle call is answered
by Hq or Hi. Moreover, the oracles Hq and Hi can only be inconsistent on xi+1, . . . , xq by definition. However, the
first i queries answered by H0, . . . ,Hi−1 contain no information about xi, yi, . . . , xq, yq, xq+1. Therefore, before
the (i + 1)th query of A, each of the last (q − i + 1) coordinates of the puzzle yi ⊕ xi+1, . . . , yq ⊕ xq+1 are the
XOR of two fresh, uniform bitstrings. Hence, the distribution of xi+1, . . . , xq in A’s view is the same as (q − i)
independent, uniform bitstrings. So the probability that some of the k parallel branches of the (i + 1)th query hits
some of xi+1, . . . , xq is roughly O(k(q − i)/2κ).
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Lemma 5.4. For i ∈ {0, 1, . . . , q − 1},∣∣∣∣PrHi

[⟨C,A⟩(1κ, q) = 1]− Pr
Hi+1

[⟨C,A⟩(1κ, q) = 1]

∣∣∣∣ ≤ O
(√

k(q − i)
2κ

)
.

Proof. We rewrite each hybridHi as the following experimentH′i. The differences between them are colored in red.

HybridH′i for i ∈ {0, 1, . . . , q − 1, q} :

1. Sample H $←− Func(κ, κ).

2. Sample x0, x1, . . . , xi−1, xi
$←− {0, 1}κ. // xi+1, . . . , xq+1 are not sampled.

3. Sample y0, y1, . . . , yi−1
$←− {0, 1}κ. // yi, . . . , yq are not sampled.

4. Define a series of oracles for j ∈ {0, 1, . . . , i− 1}:

Hj := H

 xj 7→yj ,
xj−1 7→yj−1,

...
x0 7→y0

 .
5. Sample zi+1, . . . , zq+1

$←− {0, 1}κ.

6. Set P := (x0, y0 ⊕ x1, . . . , yi−1 ⊕ xi, zi+1, . . . , zq+1). // s is not defined yet.

7. Send P to A.

8. The algorithm A adaptively makes q k-parallel queries to the oracle. For j ∈ {1, 2, . . . , i}, the jth query
is answered by Hj−1.

9. After answering the ith query of A, sample xi+1, . . . , xq+1
$←− {0, 1}κ. Let yi := zi+1 ⊕ xi+1, . . . , yq :=

zq+1 ⊕ xq+1.

10. Let s := (x0, x1, . . . , xq+1) and define the oracle

Hq := H

 xq 7→yq,
xq−1 7→yq−1,

...
x0 7→y0


11. All the remaining queries of A are answered by Hq .

12. The algorithm A outputs s′ = (x′0, x
′
1, . . . , x

′
q+1).

13. Output 1 if and only if s = s′.

First, we show that PrHi
[⟨C,A⟩(1κ, q) = 1] = PrH′

i
[⟨C,A⟩(1κ, q) = 1]. Let us consider Hi. For the first

i queries, the oracles H0, . . . ,Hi−1 contain no information about xi, yi, . . . , xq, yq, xq+1. Hence, right before the
(i+1)th query ofA, each of the last (q− i+1) coordinates of the puzzle P, i.e., yi⊕ xi+1, . . . , yq ⊕ xq+1, is simply
the XOR of two fresh, uniform bitstrings. Hence, we can instead sample independent, uniform zi+1, . . . , zq+1 and
define the consistent oracle Hq and solution s afterward.

Next, let us consider H′i and H′i+1. Fix H,x0, y0, . . . , xi−1, yi−1, xi and zi+1, . . . , zq+1 in H′i. Right before A’s
(i+ 1)th query, the states of A inH′i andH′i+1 are the same. After then, the only difference betweenH′i andH′i+1 is
the oracle used to answer the (i+ 1)th query, which is either Hq or Hi. The oracles Hq and Hi could possibly differ
only on xi+1, . . . , xq due to the order of reprogramming. Let |ψi⟩ be the state of A right before the (i+ 1)th query in
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both H′i and H′i+1. Because xi+1, . . . , xq are sampled after the first i queries are made, the state |ψi⟩ is independent
of xi+1, . . . , xq . Therefore, by a standard quantum hybrid technique9 [BBBV97, AHU19], we have∣∣∣∣∣PrH′

i

[⟨C,A⟩(1κ, q) = 1]− Pr
H′

i+1

[⟨C,A⟩(1κ, q) = 1]

∣∣∣∣∣ ≤ O
(√

k(q − i)
2κ

)
.

In particular, we use the fact that any quantum algorithm that makes 1 k-parallel query can distinguish whether or not
an oracle has been reprogrammed on at most S i.i.d uniform points with advantage O(

√
kS/2κ).

The following lemma states that the probability of A outputting the correct xq+1 in Hybrid Hq is no better than a
random guess.

Lemma 5.5. PrHq
[⟨C,A⟩(1κ, q) = 1] ≤ 2−κ.

Proof. Consider the experiment H′q defined in the proof of Lemma 5.4. For convenience, we write the description of
H′q explicitly in the following.

HybridH′q :

1. Sample H $←− Func(κ, κ).

2. Sample x0, x1, . . . , xq−1, xq
$←− {0, 1}κ. // xq+1 is not sampled.

3. Sample y0, y1, . . . , yq−1
$←− {0, 1}κ. // yq is not sampled.

4. Define a series of oracles for j ∈ {0, 1, . . . , q − 1}:

Hj := H

 xj 7→yj ,
xj−1 7→yj−1,

...
x0 7→y0

 .
5. Sample zq+1

$←− {0, 1}κ.

6. Set P := (x0, y0 ⊕ x1, . . . , yq−1 ⊕ xq, zq+1). // s is not defined yet.

7. Send P to the algorithm A.

8. The algorithmA adaptively makes q k-parallel queries to the oracle, where the queries are answered in the
following way. For j ∈ {1, 2, . . . , q}, the jth query is answered by Hj−1.

9. The algorithm A outputs s′ = (x′0, x
′
1, . . . , x

′
q+1).

10. Sample xq+1
$←− {0, 1}κ.

11. Set yq := zq+1 ⊕ xq+1 and s := (x0, . . . , xq+1).

12. Output 1 if and only if s = s′, and 0 otherwise.

Observe that xq+1 is independently, uniformly sampled after A outputs the solution s′, so we have

Pr
Hq

[⟨C,A⟩(1κ, q) = 1] ≤ Pr
H′

q

[x′q+1 = xq+1] = 2−κ.

9We note that the technique in [BBBV97] can be extended to the parallel-query setting easily as shown in [AHU19].
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Putting Lemma 5.5 and Lemma 5.4 together, we have

Pr
Hreal

[⟨C,A⟩(1κ, q) = 1] ≤
q−1∑
i=0

O

(√
k(q − i)

2κ

)
+O

(
q2

2κ

)
+ 2−κ

= O

(√
kq3

2κ

)
.

This finishes the proof.

6 Barriers for Classical Attacks on Fully Quantum Puzzles
In this section, we present a fully quantum - i.e., quantum generator and quantum solver (QGQS) - time-lock puzzle
construction that is secure against polynomial-query classical adversaries, assuming the quantum simulation conjecture
does not hold.

Simulation Conjecture. Let A(·) be a quantum oracle algorithm that outputs a single bit. For every fixed oracle
H , let p(AH) := Pr[1 ← AH(1κ)]), where the probability is over the execution of A. We say an algorithm B
λ-approximates an algorithm A if:

E
H
[|p(AH)− p(BH)|] ≤ λ

The following is a weaker (asymptotic) version of the folklore Simulation Conjecture, which is stated as Conjecture
4 in [AA14].

Conjecture 6.1 (Quantum Polynomial-Query Simulation Conjecture). For any constant c, there exists a constant d,
such that for all κc-query quantum algorithm Q(·)(·), there exists a deterministic κd-query classical algorithm A(·)(·),
such that A(1κ) κ−c-approximates Q(1κ) for sufficiently large κ (when accessing a random oracle).

We now formally define the main result of this section, which is a fully quantum time-lock puzzle that cannot be
broken by classical-query adversaries, assuming that the simulation conjecture is false.

Theorem 6.2 (Classically breaking QGQS TLPs implies the Simulation Conjecture). If Conjecture 6.1 does not hold,
there exists an infinite set K (of security parameters κ) such that there is a protocol between two quantum oracle
algorithms Gen and Sol that (quantumly) access a random oracle H satisfying the following:

• Completeness: Pr[s′ = s : (P, s)← GenH , s′ ← SolH(P)] ≥ 1− negl(κ).

• Soundness: For any computationally unbounded classical adversary A who ask poly(κ) classical queries to
H , and for every κ ∈ K, we have

Pr[s′′ = s : (P, s)← GenH , s′′ ← AH(P)] ≤ negl(κ).

The exact form of Conjecture 6.1 first appeared in [ACC+22], using which they proved the following lemma.

Lemma 6.3 (Weak Key Agreement with One-Way Communication [ACC+22]). If Conjecture 6.1 does not hold,
there exists an infinite set K (of security parameters κ), such that for all polynomially small ε0 = 1/poly(·) there is a
protocol between two quantum oracle algorithms QA and QB that (quantumly) access a random oracle H satisfying
the following:

• One-way communication: QH
A sends a single classical message c toQH

B , after which they each output keyA,keyB.

• Completeness: Pr[keyA = keyB : (keyA, c)← QH
A , keyB ← QH

B (c)] ≥ 1− ε0(κ).

• Soundness: For any computationally unbounded classical adversary A who ask poly(κ) classical queries to
H , and for every κ ∈ K, we have

Pr[keyA = keyE : (keyA, c)← QH
A , keyE ← AH(c)] ≤ δ0(κ),

where δ0(·) is a negligible function.
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Outline of the technical steps. To construct a fully quantum time-lock puzzle we first show how to amplify the key
agreement of Lemma 6.3 to a key agreement with negligible completeness and soundness error. Then we will show
how to transform such a key agreement protocol into a time-lock puzzle. Here is a sketch of this process, where all the
items below are with one-way communication (OWC).

Step 0 Start with the weak key agreement with OWC of Lemma 6.3.

Step 1 Construct a weakly complete and strongly sound (WCSS) single-bit key agreement with OWC. (See Construc-
tion 6.4.)

Step 2 Construct a weakly complete and strongly sound multi-bit key agreement with OWC. (See Construction 6.7.)

Step 3 Construct a strongly complete and strongly sound (SCSS) multi-bit key agreement with OWC. (See Construc-
tion 6.10.)

Step 4 Transform a multi-bit key agreement with OWC to a time-lock puzzle while preserving the soundness and
completeness error. (See Construction 6.13)

Here we show how to do Step 1.

Construction 6.4 (WCSS Single-Bit Key Agreement with OWC). Let QA0
, QB0

be a weak key agreement scheme
from Lemma 6.3 with completeness error ε0(κ) and soundness error δ0(κ). Let H be an oracle and define QA1

and
QB1

as follows:

• QA1
performs the following:

1. Run QA0
to get (c0, keyA0

)← QH
A0

.

2. Sample r ← {0, 1}|keyA0 | and compute keyA1
= ⟨r, keyA0

⟩.
3. Let c1 = c0||r

• QB1
performs the following:

1. Let c1 = c0||r.

2. Run QB0 to get keyB0
← QH

B0
(c0).

3. Compute keyB1
= ⟨r, keyB0

⟩.

Theorem 6.5 (Completeness of Construction 6.4). If the construction from Lemma 6.3 has completeness error ε0(κ),
then Construction 6.4 has completeness error ε1 ≤ ε0.

Proof. By the construction, if keyA0
= keyB0

, then keyA1
= keyB1

, thus ε1 ≤ ε0.

Theorem 6.6 (Soundness of Construction 6.4). If the construction from Lemma 6.3 has a soundness error δ0(κ), then
Construction 6.4 has a soundness error δ1 ≤ nO(1) · δΩ(1)

0 , where n = |keyA0
|. In particular, if δ1 ≤ negl(κ), then

δ0 ≤ negl(κ) as well.

Proof. The proof is similar to the proof of the Hard-core bit lemma from [GL89]. In particular, the proof of the
Hard-core bit lemma from [GL89] is black-box and transforms any adversary who guesses the hard-core bit with
probability ρ, to an inverting adversary that guesses the pre-image with probability poly(ρ/n), and the same reduction
works even if the pre-image and image are jointly sampled (rather than the image being a deterministic function of the
pre-image).

Next, we show how to do Step 2.

Construction 6.7 (WCSS Multi-Bit Key Agreement with OWC). LetQA1 , QB1 be a WCSS Single-Bit key agreement
scheme from Construction 6.4 with completeness error ε1(κ) and soundness error δ1(κ). Let u = poly(κ) (to be
chosen later) be the length of the key, H be an oracle, and define QA2

and QB2
as follows:
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• QA2 performs the following:

1. Divide oracle H to u independent oracles Hi (according to some canonical division).

2. For i ∈ [u] run QA1
to get (c1,i, keyA1,i)← QHi

A1
.

3. Let c2 = c1,1|| · · · ||c1,u and keyA2
= keyA1,1|| · · · ||keyA1,u.

• QB2 performs the following:

1. Let c2 = c1,1|| · · · ||c1,u.

2. Divide oracle H to u independent oracles Hi (according to the same canonical division).

3. For i ∈ [u] run QB1
to get keyB1,i ← QHi

B1
(c1,i).

4. Compute keyB2
= keyB1,1|| · · · ||keyB1,u.

Theorem 6.8 (Completeness of Construction 6.7). If Construction 6.4 has completeness error ε1(κ), then Construc-
tion 6.7 has completeness error ε2 ≤ u · ε1.

Proof. By the construction, if for all i ∈ [u], keyA1,i = keyB1,i, then keyA2
= keyB2

. We conclude the proof by a
union bound and letting ε2 ≤ uε1.

Theorem 6.9 (Soundness of Construction 6.7). If Construction 6.4 has a soundness error δ1(κ), then Construction 6.7
has a soundness error (advantage) δ2 = uδ1.

Proof. Suppose there exists an adversary QE2 such that:

|Pr[1← QH
E2
(c2, keyA2

)]− Pr[1← QH
E2
(c2, Uu)]| ≥ δ2.

We show there exists an adversary QE1
that breaks the soundness in Theorem 6.6 with an advantage at least δ1.

To do so define hybrids {Hk}k for k ∈ {0, · · · , u} (where H0 is the experiment of Construction 6.7) such that in
hybrid Hk, we replace keyA1,i with key′A1,i ← {0, 1} when constructing keyA2

. Namely, in hybrid Hk, we have
keyA2

= key′A1,1|| · · · ||key
′
A1,k||keyA1,k+1|| · · · ||keyA1,u. Now note that in hybrid Hu, keyA2

is completely random,
thus an adversary has no advantage in distinguishing keyA2

from random. Therefore, if QE2
exists, then there is an

index k∗ ∈ [u] s.t. there is a computationally unbounded classical adversary QE2,k∗ that can distinguish hybrids
Hk∗−1 andHk∗ with an advantage at least δ2/u = δ1. I.e., there is QE2,k∗ such that:

|Pr[1← QH
E2,k∗(c2, key

k∗−1
A2

)]− Pr[1← QH
E2,k∗(c2, key

k∗

A2
)]| ≥ δ1,

where keykA2
is the corresponding values of keyA2

in hybridHk. Now constructQE1
on input (c′′1 , b

′′) and given access
to oracle H ′′ as follows:

1. For i ∈ [u]/{k∗} sample oracles Hi
′′, and compute (c′′1,i, key

′′
A1,i)← QHi

′′

A1
.

2. Let (c′′1,k∗ , key
′′
A1,k∗) = (c′′1 , b

′′).

3. Let c′′2 = c′′1,1|| · · · ||c′′1,u and key′′A2
= U1|| · · · ||U1||key′′A1,k∗ || · · · ||key′′A1,u.

4. Send (c′′2 , key
′′
A2
) to QE2,k∗ .

5. Answer QE2,k∗ ’s queries on oracle i using H ′′ for i = k∗, and Hi
′′ otherwise.

6. Output whatever QE2,k∗ outputs.

Now note that (c′′2 , key
′′
A2
) perfectly simulates (c2, key

k∗−1
A2

) if b′′ = keyA1
, and perfectly simulates (c2, key

k∗

A2
) if

b′′ ← {0, 1}. Thus QE1
perfectly simulates the security experiment for QE2,k∗ , therefore, has the same advantage

δ1.
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Now we show how to do Step 3.

Construction 6.10 (SCSS Multi-Bit Key Agreement with OWC). Let QA2
, QB2

be a WCSS Multi-Bit key agreement
scheme from Construction 6.7. Let t = poly(κ) (to be chosen later), H be an oracle, and define QA3 and QB3 as
follows:

• QA3
performs the following:

1. Divide oracle H to t independent oracles Hi (according to some canonical division).

2. For i ∈ [t] run QA2
to get (c2,i, keyA2,i)← QHi

A2
.

3. Sample keyA3
← {0, 1}t.

4. For i ∈ [t] let keyi = keyA3
⊕ keyA2,i.

5. Let c3 = c2,1|| · · · ||c2,t||key1|| · · · ||keyt.

• QB3
performs the following:

1. Let c3 = c2,1|| · · · ||c2,t||key1|| · · · ||keyt.
2. Divide oracle H to t independent oracles Hi (according to the same canonical division).

3. For i ∈ [t] run QB2
to get keyB2,i ← QHi

B2
(c2,i).

4. For i ∈ [t] compute keyB3,i ← keyi ⊕ keyB2,i.

5. Compute keyB3
= maji(keyB3,i).

Theorem 6.11 (Completeness of Construction 6.10). If Construction 6.7 has completeness error ≤ 1/4, then Con-
struction 6.10 has completeness error ε3 ≤ 2−t/8.

Proof. By the construction, if for at least t/2 of i ∈ [t] we have keyA2,i = keyB2,i, then keyA3
= keyB3

. Since for each
of the sub-prtocols the probability of keyA2,i = keyB2,i is at least 3/4, then by the Hoeffding inequality, the probaiblity
of not having the correct key in at least t/2 of i ∈ [t] is at most e−2σ

2t for σ = |1/2− 1/4| = 1/4, which implies the
error to be at most e−2t/16 < 2−t/8.

Theorem 6.12 (Soundness of Construction 6.10). If Construction 6.7 has a soundness error δ2(κ), then Construc-
tion 6.10 has a soundness error δ3 = tδ2.

Proof. Suppose there exists an adversary QE3 such that:

|Pr[1← QH
E3
(c3, keyA3

)]− Pr[1← QH
E3
(c3, Uu)]| ≥ δ3.

We show there exists an adversary QE2
that breaks the soundness in Theorem 6.9 with an advantage at least δ2. To

do so define hybrids {Hk}k for k ∈ {0, · · · , t} (where H0 is the experiment of Construction 6.10) such that in
hybrid Hk, we replace keyi with key′i = keyA3

⊕ key′A2,i when constructing c3. Namely, in hybrid Hk, we have
c3 = c2,1|| · · · ||c2,t||key′1|| · · · ||key

′
k||keyk+1|| · · · ||keyt. Now note that in hybrid Ht, there is no information about

keyA3
in c3, thus an adversary has no advantage in distinguishing keyA3

from random. Therefore, if QE3
exists, then

there is an index k∗ ∈ [t] s.t. there is a computationally unbounded classical adversary QE3,k∗ that can distinguish
hybridsHk∗−1 andHk∗ with an advantage at least δ3/t = δ2. I.e., there is QE3,k∗ such that:

|Pr[1← QH
E3,k∗(ck

∗−1
3 , keyA3

)]− Pr[1← QH
E3,k∗(ck

∗

3 , keyA3
)]| ≥ δ2,

where ck3 is the corresponding values of c3 in hybrid Hk. Now construct QE2
on input (c′′2 , x

′′) and given access to
oracle H ′′ as follows:

1. For i ∈ [t]/{k∗} sample oracles Hi
′′, and compute (c′′2,i, key

′′
A2,i)← QHi

′′

A2
.

2. Let (c′′2,k∗ , key
′′
A2,k∗) = (c′′2 , x

′′).
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3. Sample a random key′′A3
← {0, 1}u.

4. For i ∈ [t] let key′′i = key′′A3
⊕ key′′A2,i.

5. Let c′′3 = c′′2,1|| · · · ||c′′2,t||Uu|| · · · ||Uu||key′′k∗ || · · · ||key′′t .

6. Send (c′′3 , key
′′
A3
) to QE3,k∗ .

7. Answer QE3,k∗ ’s queries on oracle i using H ′′ for i = k∗, and Hi
′′ otherwise.

8. Output whatever QE3,k∗ outputs.

Now note that c3 perfectly simulates ck
∗−1

3 if x′′ = keyA2
, and perfectly simulates ck

∗

3 if x′′ ← {0, 1}u. Thus QE2

perfectly simulates the security experiment for QE3,k∗ , therefore, has the same advantage δ2.

Finally, we show how to do Step 4.

Construction 6.13 (QGQS Time-Lock Puzzle From Key Agreement with OWC). Let QA3 , QB3 be an SCSS Multi-
Bit key agreement scheme from Construction 6.10 with completeness error ε3(κ) and soundness error δ3(κ). Let H
be an oracle, and define Gen and Sol as follows:

• Gen performs the following:

1. Run QA3 to get (c3, keyA3
)← QH

A3
.

2. Let P = c3 and s = keyA3
.

• Sol performs the following:

1. Let P = c3.

2. Run QB3
to get keyB3

← QH
B3
(c3).

3. Let s′ = keyB3
.

Theorem 6.14 (Completeness of Construction 6.13). If Construction 6.10 has completeness error ε3(κ), then Con-
struction 6.13 has completeness error ε4 ≤ ε3. Namely, we have:

Pr[s′ = s : (P, s)← GenH , s′ ← SolH(P)] ≥ 1− ε4(κ).

Proof. By the construction, if we have keyA3
= keyB3

, then s′ = s, thus ε4 ≤ ε3.

Theorem 6.15 (Soundness of Construction 6.13). If Construction 6.10 has a soundness error δ3(κ), then Construc-
tion 6.13 has a soundness error δ4 = δ3 + 2−u. Namely, we have:

Pr[s′′ = s : (P, s)← GenH , s′′ ← QH
E4
(P)] ≤ δ4(κ).

Proof. Suppose there exists an adversary QE4
such that:

Pr[s′′ = s : (P, s)← GenH , s′′ ← QH
E4
(P)] ≥ δ4.

We show there exists an adversary QE3
that breaks the soundness in Theorem 6.12 with an advantage at least δ3.

Consider hybrids H0 and H1 where H0 is the output of Construction 6.13, and H1 is similar to H0 except that we
replace s = keyA3

with s′ ← {0, 1}u. Note that in H1, no adversary can find the key with a better advantage than
a random guess, so if QE4 exists, then there exists QE3 that distinguishes H0 and H1 with an advantage at least
δ4 − 2−u = δ3. Construct QE3 s.t. on input (c3, x), send (P, s) = (c3, x) to Q′E4

and output whatever QE4 outputs.
Note that QE3

perfectly simulates H0 if x = keyA3
and perfectly simulates H1 if x ← {0, 1}u. Thus, QE3

has the
same advantage as Q′E4

.
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Proof of Theorem 6.2. To prove this theorem we only need to determine the choice of parameters in Construc-
tions 6.3, 6.4, 6.7, 6.10, and 6.13. Let κ be chosen according to K in Lemma 6.3. Then let t = u = κ, ε0 = 1/4κ
and δ0 = negl(κ). Then by Theorem 6.5 ε1 ≤ 1/4κ, by Theorem 6.6 δ1 ≤ negl(κ), by Theorem 6.8 ε2 ≤ 1/4,
by Theorem 6.9 δ2 ≤ negl(κ), by Theorem 6.11 ε3 ≤ negl(κ), by Theorem 6.12 δ2 ≤ negl(κ), by Theorem 6.14
ε4 ≤ negl(κ), by Theorem 6.15 δ4 ≤ negl(κ). Finally, note that ε4 and δ4 are the completeness and soundness of a
QGQS time-lock puzzle.
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A Omitted Proof

A.1 The description of the extractor in Lemma 2.3
We give a proof and the description of Ext for completeness.

Proof of Lemma 2.3. Define the algorithm Ext(AH(z)) as follows:

• Pick i $←− [q].

• Run AH(z) until (right before) the ith query.

• Measure the query register of AH(z) in the computational basis to obtain the outcome x ∈ X .

• Output x.

The probability that Ext(AH(z)) successfully outputs x ∈ S is given by

q∑
j=1

Pr[i = j] Pr[x ∈ S | i = j : x← |ψH
i ⟩] =

1

q

q∑
j=1

∥ΠS |ψH
j ⟩∥2 =

µ(AH(z),S)
q

.
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