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Abstract 

Real-time onboard state monitoring and estimation of the battery over its lifetime is 

indispensable for the safe and durable operation of battery-powered devices. In this study, 

we develop a methodology to predict the entire constant-current cycling curve with 

limited input information that can be collected in a short period of time. A total of 10,066 

charge curves of LiNiO2-based batteries at a constant C-rate are collected. With the 

combination of a feature extraction step and a multiple linear regression step, the method 

can accurately predict an entire battery charge curve with an error of < 2% using only 10% 

of the charge curve as the input information. The method is further validated across other 

battery chemistries (LiCoO2-based) using open-access datasets (4,522 charge curves). 

The prediction error of the charge curves for the LiCoO2-based battery is around 2% with 

only 5% of the charge curve as the input information, indicating the generalization of the 

developed methodology for predicting battery cycling curves. The developed method 

paves the way for fast onboard health status monitoring and estimation for batteries 

during practical applications.  
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Introduction 

Lithium-ion batteries (LIBs) are becoming the dominant rechargeable batteries and 

are widely used in portable electronic devices, electric bikes, and electric vehicles (EVs) 1, 

2. Hundreds or even thousands of LIBs are connected to provide sufficient energy for 

EVs. For example, the Standard-range version of the Tesla Model 3 carries 2,976 LIBs 

arranged in 96 groups of 31 cells and the Long-range version contains 4,416 LIBs 

arranged in 96 groups of 46 cells3. The failure of one battery could propagate quickly 

through the entire battery pack, which triggers the malfunction of the battery system and 

may lead to safety issues like smoke, fire, and explosion4. Therefore, the states, such as 

state of charge (SOC) and remaining energy, and statuses, such as health condition, of 

batteries need to be accurately monitored to ensure their reliable and safe use. 

A battery management system (BMS) is generally adopted to monitor the state of 

batteries, record battery usage information, analyze the status of batteries, and provide 

feedback and suggestion to customers5. The BMS can directly measure some key 

information with sensors, such as voltage, current, and temperature6. The combination of 

this information can further estimate the state of each battery, including SOC, remaining 

energy, and health conditions. Accurately estimating the health conditions of LIBs is very 

important but challenging to guide the use of batteries and at the same time prevent 

accidents and malfunctions7. The health condition of a battery is generally reflected by 

the decreased maximum capacity, the growth of internal resistance, and the appearance of 

fatal aging mechanisms such as the formation of lithium dendrite8. The assessment of 

these parameters is not trivial as BMSs typically only sample charging/discharging 
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current and voltage of batteries at a SOC range that is defined by customers’ usage 

habits9.   

Many efforts have been made to estimate the health state of batteries in real 

applications. One common method is based on models, such as equivalent circuit 

models10 and mechanism-based models11, to simulate the behaviors of batteries, followed 

by various optimization algorithms and observations to identify the parameters in the 

models and the health states12. The estimation capability of battery health states relies on 

the accuracy of the models and the optimization algorithms. Therefore, building a 

representative model is crucial. Recently, data-driven methods are gaining increasing 

attention for battery health estimation and prediction due to their flexibility13, 14. As LIBs 

are nonlinear systems with complex degradation mechanisms that have not been fully 

understood, the nonlinear matching ability of data-driven methods makes them one of the 

most prominent approaches to estimating and predicting the health status for real 

applications7. The data-driven methods have been demonstrated to predict the state of 

health and remaining useful life of LIBs using impedance spectrscopy15, to predict the 

cycle life using information from early cycles14, and to predict the complete charge curve 

based on a part of the charging information9. In almost all these studies, the data-driven 

methods are treated as a “black box”, which provides little help to deepen our 

understanding of the behavior of LIBs during cycling.  

In this study, we combined unsupervised learning methods and supervised learning 

methods to predict the statuses of LIBs. Compared to human experts, unsupervised 

learning algorithms capture hidden features that can better represent the degradation of 

batteries. The physical meanings of the hidden features are discussed to help understand 



4 
 

the battery aging mechanisms. These hidden features are then used to predict the 

complect cycling curve, given a limit section on the curve. Finally, we expanded the 

developed methodology to predict open-source battery data with different chemistries.  

Methods 

Data generation 

We collected the battery cycling curves in CR-2032 type coin cells with LiNiO2 as 

the cathode and Li metal as the anode. The coin cells were tested at a C/10 rate three 

times after assembling, followed by a cycling test at room temperature with a C/2 charge 

rate and 1C discharge rate. The C/2 charge curves of these cells were collected for this 

study, and a total of 10,066 charge curves were selected with a minimum charge capacity 

of 160 mA h g-1.  

Open-source battery cycling data was also used to evaluate the developed 

methodology. A total number of 4,522 charge curves were taken from the Center for 

Advanced Life Cycling Engineering (CALCE) dataset (CS2_3, CS2_8, CS2_9, CS2_21, 

CS2_33~CS2_38) provided by A. James Clark School of Engineering at the University 

of Maryland16. The CALCE dataset was obtained from batteries with LiCoO2 as the 

cathode material with trace elements of manganese, which is different from the LiNiO2 

cathode tested in our lab. The different chemistries of the two types of batteries lead to 

different shapes of the charge curves.   

Feature extraction  

Charge curves were selected for this study because the charging protocols are more 

controllable than discharge protocols to provide more consistent input in real-world 

applications. Three unsupervised learning algorithms were applied to extract hidden 
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features from the charge curves, which are principal component analysis (PCA), non-

negative matrix factorization (NMF), and Autoencoder (AE). PCA and NMF are 

techniques that can decompose a matrix Q into two separated matrices W and H, such 

that it can be written as equation (1). 

𝑄௜ఓ ൎ ሺ𝑊𝐻ሻ௜ఓ ൌ ∑ 𝑊௜௔𝐻௔ఓ
௣
௔ୀଵ                               (1) 

where Q is an 𝑛 ൈ𝑚 matrix that contains all the raw data information. W and H 

have dimensions of n × p and p × m. The hyperparameter p is the number of 

features. The p columns of W can be interpreted as the hidden features of charge 

curves, which will be used to predict the complete charge curves by a supervised 

learning model. p is chosen based on the prediction accuracy of the validation set 

for all feature extraction algorithms. Each column of H contains the weights in a 

one-to-one correspondence with a basis hidden feature in W17.  

To obtain the elements of W and H, an optimization problem with the objective 

function ‖𝐐 െ𝐖𝐇‖ி  is solved, where ‖൉‖ி  is the Frobenius norm. The difference 

between PCA and NMF lies in the constraints on the optimization. In PCA, the columns 

of W are orthonormal, and the rows of H are orthogonal such that a unique solution is 

guaranteed18. In NMF, the elements of Q, W, and H are constrained to be non-negative. 

There is no unique solution because the problem is non-convex19. As such, we employed 

an initialization scheme called non-negative double singular value decomposition, which 

rapidly reduces the approximation error to a value that is lower than that using a random 

initialization20. PCA and NMF are performed using the Scikit-Learn package21. 

Autoencoder is an unsupervised learning method that adopts neural network 

architectures for the task of feature learning22. The neural network is constructed with a 
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bottleneck layer that enforces a compressed representation of the input layer, which has 

the same dimension as the output layer. The autoencoder with a single hidden layer 

implemented in this work is shown in Fig. S1 in the Supplemental Information. This 

autoencoder is similar to NMF in that the hidden layer contains the weight matrix (H) 

corresponding to the charge curves in the decoder weight matrix (W)23, and the product 

of the two matrices approximates the input charge curve matrix. The autoencoder differs 

from NMF that there is no non-negativity constraint on the decoder weight matrix.  It can 

also be easily extended by adding more fully connected layers or other layer types such 

as recurrent neural networks and convolutional neural networks24. The autoencoders are 

implemented using the Pytorch package25. 

Charge curve prediction  

The 10,066 charge curves of the LiNiO2 cells were randomly divided into a training 

set and a testing set with a ratio of 8: 2. Hidden features were extracted from the training 

dataset using PCA, NMF, and AE, from which we obtained the matrix W that contains p 

columns. Each column in matrix W represents a feature extracted from the training set.  

Schematic 1 shows the workflow of this study. Given a partial charge curve with 

arbitrary starting voltage that corresponds to a starting capacity 𝑄଴ and voltage window 

length that corresponds to a capacity range of 𝑄௣௔௥௧௜௔௟, we assume it can be approximated 

by the linear combinations of the same features in W. Thus, for the ith point on the partial 

charge curve, we can write the following equation (2). 

𝑄଴ ൅ 𝛥𝑄௜ ൌ ∑ 𝐖௝ሺ𝑉௜ሻ ൉ ℎ௝
௣
௝ୀଵ ൅ 𝜀௜                               (2) 

where 𝑄଴ is the unknown starting capacity and is equivalent to the intercept of the 

linear regression, 𝛥𝑄௜ is the incremental capacity relative to the starting capacity 
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𝑄଴, obtainable from experimental measurements. 𝐖௝ is the jth column of W, ℎ௝ is 

the unknown weight corresponding to the features in W, and ε is the error that 

follows a normal distribution.  

 
Schematic 1. The workflow for predicting an entire charge curve of a battery based on a 
portion of the charge curve. Both a continuous segment and multiple separated segments 
can be used as the input. The output charge curve can derive many key states (SOC, 
SOH, and remaining energy) and even the aging mechanism of the battery. 
 

The relationship between the incremental capacity 𝛥𝑄௜ and the feature at a specific 

voltage 𝐖௝ሺ𝑉௜ሻ can thus be modeled as a multiple linear regression problem. We use the  

L1-norm as the regularization term to penalize the parameters and reduce overfitting. This 

regularizer (also called Lasso regularizer) can lead to some parameters being zero, i.e., 

removing the parameters for output evaluation26. Thus, the Lasso regularizer can also 

serve as a feature selection method. Given a single-segment partial charge curve with n 

points, the cost function can be defined as equation (3). 

ℒሺ𝒉,𝑄଴ሻ ൌ ∑ ൫𝑄଴ ൅ 𝛥𝑄௜ െ ∑ 𝐖௝ሺ𝑉௜ሻ ൉ ℎ௝
௣
௝ୀଵ ൯

ଶ௡ିଵ
௜ୀ଴ ൅ 𝜆∑ หℎ௝ห

௣
௝ୀଵ            (3) 
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where 𝜆 ൒ 0  is the regularization parameter that controls the trade-off 

between approximation error and regularization strength26. The 

hyperparameter 𝜆 is determined through the validation set. 

Solving this multiple linear regression will lead us to the h and 𝑄଴ that minimize the 

cost function. To determine the complete charge curve 𝑄௖௢௠௣௟௘௧௘, we just need to take the 

linear combination of the charge curves W obtained from feature extraction and the 

weight vector h corresponding to the partial charge curve, 

𝑄௖௢௠௣௟௘௧௘ ൌ 𝐖 ൉ 𝒉                                          (4) 

The accuracy of the prediction is quantified by the root-mean-squared error (RMSE) 

between the predicted complete charge curve 𝑄௖௢௠௣௟௘௧௘ and the ground true charge curve 

𝑄௧௥௨௘, as shown in equation (5). 

RMSE ൌ ටଵ

௡
∑ ቀ𝑄௖௢௠௣௟௘௧௘ሺ𝑖ሻ െ 𝑄௧௥௨௘ሺ𝑖ሻቁ

ଶ
௡ିଵ
௜ୀ଴                                 (5) 

In practical applications, regenerative braking has been widely adopted in electric or 

hybrid vehicles to restore the wasted energy from the process of slowing down a car and 

using it to recharge the batteries27. The process of regenerative braking results in many 

separated charge segments instead of a continuous charge curve during the charging 

process. These separated segments can also be used as the input in the model to predict 

the entire charge curve.  

Given m input segments with n points in total, we have m starting capacity 𝑄଴,௞ 

ሺ𝑘 ൌ 1, 2, … ,𝑚ሻ. This makes the multiple linear regression problem challenging to solve. 

For each segment, the linear relation at each point is displayed in equation (6). 

𝑄଴,௞ ൅ 𝛥𝑄௜,௞ ൌ ∑ 𝐖௝൫𝑉௜,௞൯ ൉ ℎ௝
௣
௝ୀଵ ൅ 𝜀௜,௞                                 (6) 
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All input segments share the same h but have different starting capacity 𝑄଴,௞ . This 

implies that the problem becomes m linear regressions with the same hyperplanes and 

different intercepts. One way to solve this is to center the W’s and 𝛥𝑄’s for different 

segments at the origin by subtracting their means, then combine the centered values into 

new variables W* and 𝛥𝑄∗. The m linear regressions are converted to a single formula (7). 

𝛥𝑄∗ ൌ ∑ 𝐖∗൫𝑉௜,௞൯ ൉ ℎ௝
௣
௝ୀଵ ൅ 𝜀௜                                          (7) 

The common h for the multiple input segments can then be solved. 

Another way around it is to take the derivative of the input segments with respect to 

voltage, which generates the incremental capacity (IC) curves or dQ dV-1 curves. The dQ 

dV-1 analysis removes the unknown 𝑄଴,௞  because the analysis is based on the relative 

change of capacity. For this approach to work, we need to create another dataset with dQ 

dV-1 curves and perform feature extraction to obtain the dQ dV-1 curve matrix 𝐖ூ஼. The 

ith point on the n total points of the input can then be written as equation (8). 

ቀௗொ
ௗ௏
ቁ
௜
ൌ ∑ 𝐖ூ஼,௝ሺ𝑉௜ሻ ൉ ℎூ஼,௝

௣
௝ୀଵ ൅ 𝜀ூ஼,௜                             (8) 

where 𝐖ூ஼,௝ is the jth column of 𝐖ூ஼ . The cost function can be defined as equation 

(9). 

ℒூ஼ሺ𝒉ூ஼ሻ ൌ ∑ ቀቀௗொ
ௗ௏
ቁ
௜
െ ∑ 𝐖ூ஼,௝ሺ𝑉௜ሻ ൉ ℎூ஼,௝

௣
௝ୀଵ ቁ

ଶ
൅ 𝜆∑ หℎூ஼,௝ห

௣
௝ୀଵ

௡ିଵ
௜ୀ଴        (9) 

The complete dQ dV-1 curve is obtained by ቀௗொ
ௗ௏
ቁ
௖௢௠௣௟௘௔௧௘

ൌ 𝐖ூ஼𝒉ூ஼ , and the 

complete charge curve is recovered by integrating the dQ dV-1  curve with respect to the 

voltage. 

Results and Discussion 

Charge curve feature extraction and reconstruction  
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The cycling stability of a battery largely depends on electrolytes that connect the 

two electrodes by providing Li+ transport channels. Our group recently developed a novel 

electrolyte, namely, localized saturated electrolyte (LSE) that can significantly reduce the 

capacity fading rate of LiNiO2-based batteries28, 29. For example, Figure 1a shows the 

evolution of the cell charge curve in the first 200 cycles tested in two different 

electrolytes, i.e., a conventional carbonate electrolyte (LP57) and an LSE. Compared to 

the LP57 electrolyte, the LSE slows down the shift speed of the charge curve to a lower 

capacity and a higher overpotential region (upper left) during cycling, which indicates 

that the LSE provided much better protection to the LiNiO2 cathode during extended 

cycling.  

Figure 1b normalizes all the charge curves in the aspect of the capacity for the 

batteries tested in both electrolytes. For the battery tested in the LSE, almost all 

normalized charge curves overlap with each other. The overlap of these normalized 

charge curves suggests that the maximum charge capacity is a dominant factor that 

describes the degradation of the battery during cycling. By comparison, there is a 

mismatch among the normalized charged curves for the battery tested in the LP57 

electrolyte. The mismatch indicates that, in addition to the maximum charge capacity, 

there are other dominant factors that lead to the degradation of the battery. The maximum 

charge capacity and other dominant factors can be recognized as the expert-extracted 

features in the charge curve, which have physical meanings. For example, the maximum 

charge capacity can be correlated to the amount of LiNiO2 active material. These expert-

extracted features can not only be used to understand the degradation mechanisms of 

batteries during cycling but also to reconstruct the actual charge curve.  
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To examine the accuracy of the expert-extracted features to reconstruct the actual 

charge curve, we collected a total of 10,066 LiNiO2-based battery charge curves from 52 

cells. These cells used the same cathode (LiNiO2) and anode (Li) but different 

electrolytes. All the charge curves were obtained at a rate of C/2 at room temperature. 

Figure 1c displays all the charge curves, and the capacity distribution of these curves is 

shown in Fig. S2. Figure 1d shows the normalized charge curves and the averaged 

normalized curve, which was calculated by taking the average of the normalized capacity 

for all the normalized curves at different voltages. The averaged normalized curve is 

considered as the expert-extracted feature, which is further used to reconstruct the actual 

charge curves.  

Figure 1e shows the reconstruction of three charge curves based on the expert-

extracted feature (averaged normalized curve in Figure 1d). The three charge curves were 

selected to be the ones with the maximum capacity (curve 3), the minimum capacity 

(curve 1), and the medium capacity (curve 2). The reconstructed curve 2 matches well 

with the measured curve, while there are noticeable differences between the reconstructed 

and the measured data for curve 1 and curve 3. Moreover, Figure 1f summarizes the 

distribution of the reconstruction errors of all the charge curves calculated from the 

equation (10),  

𝐸𝑟𝑟𝑜𝑟 ൌ ටଵ

௡
∑ ൫𝑄௠௘௔௦௨௥௘ௗሺ𝑖ሻ െ 𝑄௥௘௖௢௡௦௧௥௨௖௧௘ௗሺ𝑖ሻ൯

ଶ௡ିଵ
௜ୀ଴                 (10) 

where 𝑄௠௘௔௦௨௥௘ௗሺ𝑖ሻ is the actual capacity value at the sampling point i, 𝑄௥௘௖௢௡௦௧௥௨௖௧௘ௗሺ𝑖ሻ 

is the reconstructed capacity value at the sampling point i, and n is the total number of 

sampling points. The average error is 4.7 mA h g-1 with a standard deviation of 2.0 mA h 

g-1.  
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The averaged normalized curve in Figure 1d represents the characteristic voltage 

profile of LiNiO2 during de-lithiation, while the charge capacity is determined by the 

number of active materials. If the loss of active materials is the only degradation 

mechanism for the capacity fading of LiNiO2 cells, all the charge curves can then be 

accurately reconstructed using the extracted feature (the averaged normalized curve) and 

the corresponding parameter (maximum charge capacity). However, there are many other 

degradation mechanisms, such as impedance growth and reaction heterogeneity30. The 

impedance growth leads to an increased voltage polarization, which shifts the charge 

curve upwards. Moreover, the impedance of a battery is a function of the state of charge 

(SOC)31, complicating the reconstruction process of the charge curve. Similarly, a LiNiO2 

electrode is composed of many secondary particles with a diameter of around 12 μm, 

which is further composed of hundreds of primary particles with a length of around 100 

nm28. The extraction of Li+ from these primary particles and secondary particles is 

nonuniform. The heterogeneity of the Li+ extraction also depends on the SOC and 

different aging status, making the reconstruction process of the actual charge curve even 

more complicated. Therefore, the features that represent other degradation mechanisms of 

LiNiO2 cells need be considered and extracted to predict the health status of batteries.  
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Figure 1 | Battery charge curves feature extraction and reconstruction. (a, b) The 
battery charge curves and normalized charge curves in the first 200 cycles tested with the 
LP57 electrolyte and the LSE. (c) The visualization of all the 10,066 charge curves used 
in this study. (d) The normalized charge curves and the averaged normalized charge 
curve of the total 10,066 profiles. The averaged normalized charge curve was calculated 
by taking the average of the normalized capacity for all the normalized curves at different 
voltages. (e) The comparison between three measured charge curves and the 
corresponding reconstructed charge curves. The reconstructed curves were obtained 
based on the averaged normalized curve shown in (d) and the maximum charge capacity. 
(f) The distribution of the reconstruction error of the 10,066 charge curves. 

Unsupervised learning algorithms were applied to extract hidden features from the 

charge curves. Figure 2a shows the decomposition of all the 10,066 charge curves (Q) 

into two components (W, features) and the corresponding weights (W) using PCA. The 

mathematical principle of charge curve matrix decomposition can be found in the Method 

Section. Component 1 has a similar shape as the expert-extracted feature shown in Figure 

1d. Thus, it represents the characteristic voltage profile of LiNiO2 during de-lithiation and 

the corresponding weight 1 represents the number of active materials. Interestingly, 

component 2 shows a similar shape to dQ dV-1 analysis of the charge curve, where each 

phase transition corresponds to a peak in the dQ dV-1 curve32. It needs to be noted that the 
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Li+ diffusion coefficient follows the phase transition of LiNiO2, and each phase transition 

in the dQ dV-1 curve corresponds to a sharp decrease in the Li+ diffusion coefficient. Thus, 

component 2 may represent the kinetic effect of LiNiO2 during de-lithiation, and the 

corresponding weight 2 represents the kinetic contribution to the overall charge capacity. 

More hidden features can be extracted from the charge curve when increasing the number 

of components, but the physical meanings behind these features are hard to explain.  

The accuracy of the reconstructed charge curve can be improved by increasing the 

number of components using PCA and NMF. For example, Figure 2b suggests that the 

charge curve can be accurately reconstructed when the number of components is 

increased to three (𝑝 ൌ 3) in PCA, while there are noticeable differences between the 

measured charge curve and the reconstructed curves when the number of components is 

less than three (𝑝 ൌ 1, 2). Thus, there are at least three different degradation mechanisms 

that significantly affect the shape of the charge curve. Similarly, Figure 2c suggests that 

three components (𝑝 ൌ 3) are needed to well reconstruct the measured charge curve using 

NMF. It needs to be noted that the NMF algorithm does not converge when the number 

of components is one (𝑝 ൌ 1), thus it is not included here. Figure 2d further shows the 

average reconstruction error of all the 10,066 charge curves with respect to the number of 

components using PCA and NMF, and the standard deviation of the errors is shown by 

the error bar. The reconstruction error decreases as the number of components increases. 

However, the physical meanings behind all these components (features) are hard to be 

explained when too many components are applied. Thus, the number of components 

should be chosen so that these components can accurately fit the charge curves at the 

same time provide explainable battery degradation mechanisms.  
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Figure 2 | Battery charge curve feature extraction and reconstruction using 
unsupervised learning algorithms. (a) Visual representation of charge curves matrix 
decomposition with the number of components in two. (b, c) The comparison between a 
measured charge curve and reconstructed charge curves based on (b) PCA and (c) NMF 
with different number of components (p). The charge curve was randomly picked just to 
demonstrate the effect of the number of components on the reconstruction accuracy. (d) 
The evolution of the reconstruction errors of all the 10,066 charge curves with the 
number of components in the PCA and NMF. The error bar represents the standard 
deviation of the errors.  

 

Charge curve prediction based on a single input segment 

The accurately reconstructed charge curves shown in Figure 2 indicate that the 

hidden features extracted by the unsupervised learning algorithms can well represent the 

degradation mechanisms of the tested battery. These hidden features are used by the 

multiple linear regression model to predict the entire charge curve, as introduced in the 

Methods section.  

Figure 3 shows that the model based on PCA-extracted features can accurately 

predict the battery charge curve with limited input information. The averaged prediction 

errors of all the test data (2013 charge curves) are plotted in Fig. S3. The prediction 
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accuracy depends on the input data, which can be defined by the starting voltage (viz., 

starting position) and the voltage window (viz., length of the input data). The large 

prediction error at the bottom left corner in Fig. S3 is caused by the limited meaningful 

input information between 3.4 – 3.6 V, which feeds capacity value of zero into the model. 

In actual battery applications, the amount of input data depends on the charge time, which 

is directly related to the capacity rather than the voltage. No zero capacity values will be 

fed into the model, and the poor prediction performance at the bottom left region can be 

avoided. Fig. S4 further shows the evolution of the averaged prediction error with respect 

to the input length. The averaged prediction error reaches 6.5 mA h g-1 with only 20% of 

input length, corresponding to 3.0% of the relative error when normalized by the 

maximum specific capacity of 220 mA h g-1. 

Error! Reference source not found.a shows a selected input length from 40% to 

100% of the charge curve to highlight the prediction accuracy. The inset shows the 

average prediction error with different input lengths, and the error bars represent the 

standard deviation of the errors across different starting positions. The result reveals that 

the model based on PCA-extracted features generally has a better prediction performance 

when the input sequence starts at a medium voltage, which may depend on the 

investigated cathode and anode materials that determine the shape of the charge curve. 

The maximum relative error is 1.8% (4.0 mA h g-1) with 40% of input length, regardless 

of the starting position. The averaged relative error is only 1.3% (2.8 mA h g-1) with 40% 

of input, and it further reduces to less than 1.0% (2.2 mA h g-1) when the input goes 

beyond 50%. Moreover, the NMF-extracted features and AE-extracted features can also 

be used in the model for predicting the charge curves, and the performance of the model 
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is shown in Fig. S5 and Fig. S6. Both show high prediction accuracy, but slightly worse 

than the performance of the model based on the PCA-extracted features. Therefore, no 

further analysis was conducted on these two models.  

To visualize the performance of the model based on PCA-extracted features, we 

show in Error! Reference source not found.b the prediction of the charge curves with 

the largest charge capacity (equivalent to the first cycle) and 80% of the largest charge 

capacity (equivalent to the last cycle), where 40% of the charge curve is chosen as the 

input. As the prediction accuracy depends on the starting position, the starting positions 

of the best and worst prediction are marked in Error! Reference source not found.a. 

Error! Reference source not found.b displays both the best and the worst prediction 

results of the charge curve in the first and the last cycle. The overlap between the 

predicted charge curves and both tested charge curves suggests the outstanding 

performance of the model.  

Moreover, the corresponding dQ dV-1 curves derived from the charge curves are 

shown in Error! Reference source not found.c,d, which are calculated from the 

equation (11). The dQ dV-1 curve has been reported to be a versatile tool for diagnosing 

battery degradation mechanisms, such as loss of active materials, impedance increase, 

and lithium plating33. A good match among these dQ dV-1 curves highlights the 

significance of the prediction method. Thus, a full charge curve at a constant current is no 

longer needed to evaluate the health status of batteries, which is time-consuming to 

collect and, in certain cases, unrealistic. Instead, a partial charge curve is sufficient to 

construct the full dQ dV-1 curve for analyzing the degradation mechanisms of batteries.  
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ሺ𝑑𝑄 𝑑𝑉ିଵሻ௞ ൌ
஼௔௣ೖశభି஼௔௣ೖ
௏ೖశభି௏ೖ

, ሺ1 ൑ 𝑘 ൑ 𝑁 െ 1ሻ                    (11) 

where k is the calculated point location and N is the total number of data points in a 

charge curve. 

It is worth noting that dQ dV-1 curves are generally plotted at low rates (C/10 or 

below) to investigate the thermodynamical aspects of the battery. The accuracy of the dQ 

dV-1 analysis also depends on the quality of the measurement data33. For example, it is 

important to ensure environmental consistency during the test (temperatures and contacts), 

and the sampling rate should be reasonable to ensure enough data points for analysis and 

avoid large data files. Best practices for testing have been introduced in the literature34. In 

our study, the charging rate was C/2 for the batteries. The prediction accuracy of the dQ 

dV-1 curves is expected to increase with a slower charging rate, which warrants further 

investigation.  
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Figure 3 Charge curve prediction based on PCA-extracted features. (a) The average 
prediction error of the charge curves using the features captured by PCA. The x axis is 
the ratio between the voltage window of (𝑉௦௧௔௥௧ െ 3.4 𝑉) and the total voltage window 
(4.4 𝑉 െ 3.4 𝑉), and the y axis is ratio between the voltage window of (𝑉௘௡ௗ െ 𝑉௦௧௔௥௧) 
and the total voltage window (4.4 𝑉 െ 3.4 𝑉). The inset shows the average prediction 
error across different starting positions with respect to the input length. (b) The best and 
worst prediction results of the first charge curve and the last charge curve. The locations 
of the best and worst predictions are marked in (a). (c-d) The corresponding best and 
worst predictions of dQ dV-1 curves of the two charge curves shown in (b). 

 

Charge curve prediction with multiple separated input segments 

Regenerative braking has been widely adopted in electric or hybrid vehicles27, 

during which many separated charge segments can be obtained. These separated 

segments can be used as the input in the developed model to predict the entire charge 

curve, providing an online tool to monitor the health status of the battery system. 

Moreover, the charge information at different times can also be combined as the input of 

the model to predict the entire charge curve, assuming little or no changes in the battery 

health status in the period.  
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Figure 4 shows the performance of the model using multiple separated input 

segments based on AE-extracted features. The segments were randomly selected on a 

charge curve, and the error is averaged throughout all the test data. The performance of 

the model based on PCA-extracted features and NMF-extracted features is shown in Fig. 

S7. As the model based on AE-extracted features shows the best prediction performance, 

the other two models are not further analyzed. However, the best feature extraction 

algorithms depend on the shape of the charge curve, which is determined by the materials 

of the two electrodes in a battery. Thus, other feature extraction algorithms may be 

applied for batteries with different types of electrodes to achieve optimal prediction 

performance.  

 Figure 4a suggests that the prediction error decreases with the increase in the 

number of segments and the total input length in the model. The model achieves high 

prediction accuracy when the number of segments is more than 15, even with a small 

input length. For example, the prediction error can be as low as 4.1 mA h g-1 (the relative 

error is 1.9%) with only 10% of input length when the number of segments reaches 20, 

which corresponds to around 12 mins of charge data collected at a C/2 rate. It should be 

mentioned that dQ dV-1 curves were predicted first when applying the multiple separated 

input segments, which were then used to calculate the charge curves by integrating the 

dQ dV-1 curves on voltage. We also examined the performance of the model by 

predicting the charge curves directly from the separated charge curve segments, but the 

prediction accuracy is not as good, as shown in Fig. S8. 

Figure 4b,c compares the tested and predicted dQ dV-1 curves with the maximum 

capacity (Figure 4b, first cycle) and 80% of the maximum capacity (Figure 4c, last cycle). 
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Two types of inputs are selected for the model: a total input length of 20% with 10 

segments and a total input length of 10% with 20 segments, which are marked in Figure 

4a. Increasing the number of segments is more effective in improving the prediction 

accuracy than increasing the input length. For example, Figure 4a shows the prediction 

error of the model with 10% input and 20 segments (4.0 mA h g-1) is smaller than that 

with 20% input and 10 segments (5.1 mA h g-1). Figure 4b,c further shows that the peak 

positions and intensities of the dQ dV-1 curves are accurately predicted by the model that 

uses 20 segments and 10% of input length as the input. By comparison, there is a slight 

mismatch of peak intensities at 4.15 V (Figure 4b) and 3.65 V (Figure 4c) between the 

tested curves and the predicted ones with 10 segments and 20% of input length as the 

input. Such a mismatch can lead to over- or under-estimation of the total charge capacity, 

as shown in Figure 4d.  

 
Figure 4 | Charge curve prediction based on multiple separated input segments. (a) 
The prediction error of the model based on AE-extracted features. The x axis is the 
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number of segments, and the y axis is the total length of the input sequence. (b, c) The 
comparison between measured and predicted dQ dV-1 curves of (b) the first cycle (with 
the maximum charge capacity) and (c) the last cycle (80% of the maximum charge 
capacity). Two different types of inputs are examined, which are marked in (a). (d) The 
corresponding charge curves calculated from the dQ dV-1 curves in (b) and (c). 

 

Charge curve prediction for different batteries 

To evaluate the applicability of the methodology developed in this work, we applied 

the workflow to open-source battery cycling data16. A total number of 4,522 charge 

curves were taken from the CALCE dataset. The CALCE dataset was tested from 

batteries with LiCoO2 as the cathode material, which is different from the LiNiO2 cathode, 

and thus, shows different shapes of the charge curves, as shown in Figure 5a. The 

accurate charge curve prediction of these batteries would illustrate the wide applicability 

of the developed methods.  

The batteries from the CALCE dataset show a maximum charge capacity of ~ 1 Ah 

and a minimum capacity of 0.6 Ah. Figure 5a displays all the charge curves with the 

same charging rate (C/2) and the corresponding normalized charge curves. Figure 5b 

shows the charge capacity distribution of the 4,522 curves. The decrease in the charge 

capacity could be attributed to the loss of active materials during cycling. Moreover, the 

normalized charge curve shifts upwards, indicating the growth of the resistance that leads 

to a large overpotential during charging. There might be other degradation mechanisms, 

which can hardly be extracted by experts based on the simple analysis of the charge 

curves. Therefore, the three unsupervised learning algorithms (PCA, NMF, and AE) were 

applied to extract hidden features to be fed into the multiple linear regression model for 

predicting the health status of the battery.  
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Figure 5c and Fig. S9 show the performance of the model for predicting the overall 

charge curve based on features extracted from the three different algorithms. Overall, the 

model based on the PCA-extracted features outperforms the model based on the other 

algorithms-extracted features. Thus, the PCA-extracted features were used to predict the 

charge curves of the CALCE battery. Figure 5c suggests that the prediction error depends 

on the starting position and the length of the input data. A relatively large error appears in 

the bottom left corner that corresponds to 0 – 15% of the starting position, which is also 

shown in Fig. S10 with a full range of the input length from 1% to 100%. This large error 

is caused by the sharp voltage increase between 3.5 – 3.7 V (Figure 5a). As the input 

length was defined by the voltage range rather than the charge capacity, the starting 

position at around 3.5 V would lead to much less meaningful input information compared 

to that started at a higher voltage. To account for this drastic increase in the voltage 

region, we avoid this specific region when calculating the average prediction error with 

respect to the input length, as shown in the inset of Figure 5c. The average prediction 

error is less than 0.01 Ah when the input length goes beyond 50%, which corresponds to 

a relative error < 1.0% after being normalized by the maximum capacity of 1 Ah. 

Figure 5d displays the prediction of the charge curves with the largest charge 

capacity (first cycle) and 80% of the largest charge capacity (last cycle). 50% of the 

charge curve was chosen as the input, and two different starting positions were selected 

as marked in Figure 5c to represent the best and worst performance of the model. The 

good agreement between the prediction curves and the tested curves indicates the 

outstanding performance of the model. Moreover, the corresponding dQ dV-1 curves 
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derived from the charge curves also match well between the prediction and the test data 

(Fig. S11), including the positions and intensities of all the peaks.  

Figure 5e shows the performance of the model with multiple separated input 

segments based on the PCA-extracted features. The results show that the prediction 

accuracy increases with the increase in the number of segments and the input length. 

When the number of segments is more than 10, the prediction error is close to 0.02 Ah 

(relative error is 2.0%) with only 5% of the input length. Figure 5f displays the 

performance of the model to predict the charge curves in the first and the last cycle with 5% 

of the total input length and 10 separated segments. Fig. S12 further displays the 

corresponding dQ dV-1 curves derived from the charge curves. The almost perfect 

overlap between the predicted curves and the tested curves in both Figure 5f and Fig. S12 

highlights the significance of the prediction method to diagnose the health status of 

batteries. 

 
Figure 5 | Applying the methodology to other battery chemistries. (a) Charge curves 
and normalized charge curves of batteries taken from the Center for the CALCE dataset. 
A total number of 4,522 charge curves are taken in this study. (b) The distribution of the 
charge capacity of all the 4,522 charge curves. (c) The performance of the model based 
on PCA-extracted features and a single input segment. The inset shows the average 
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prediction error across different starting positions. (d) The best and worst prediction 
results of the first charge curve and last charge curve. The corresponding starting 
positions are marked in (c). (e) The performance of the model based on the PCA-
extracted features and multiple separated input segments. (f) The prediction results of the 
first and last charge curves based on only 5% of the input length and 10 segments. The 
corresponding input condition is marked in (e). 

 

Moving forwards to the real-world applications 

The proposed methodology for predicting battery cycle life includes two steps: 

hidden feature extraction and multiple linear regression. Different from the literature that 

treats the data-driven method as a “black box”7, the feature extraction step captures 

important information about the battery system that reflects the degradation mechanisms, 

such as loss of active materials, impedance growth, and increase of reaction heterogeneity. 

Moreover, the linear regression step provides the parameters that can be used to predict 

the health status of the battery, including remaining useful life, state of charge, and an 

entire charge curve. Therefore, the developed methodology has wide application in 

understanding the aging mechanisms, predicting health status, and providing advice to 

customers to optimizing the application of batteries in their devices. However, there are 

some gaps between this study and the real-world applications of the method in a BMS, 

which warrants further investigation.  

Firstly, the charge curves in the study were collected at a constant C-rate (C/2) and 

at room temperature. But the current and temperature vary in real-world battery 

applications. Collecting and selecting the appropriate information to be used as the input 

will be an important step to improve the robustness of the model. An alternative solution 

is to develop a more robust model that can take all these information (current, 
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temperature, voltage, capacity, etc.) as the inputs. Neural networks could be a candidate 

for solving the problem.  

Secondly, batteries with different types of chemistries (cathodes and anodes) have 

been widely used, which leads to different shapes of cycling curves. Although we 

examined two different batteries and demonstrated the applicability of the methodology 

in both cases, further evaluation of the model in other battery systems is needed. 

Moreover, the optimal feature extraction algorithms may differ from one battery system 

to another. More algorithms should be examined to obtain the model with the best 

prediction performance for a specific battery system.  

Finally, correlating the algorithms-extracted features with the degradation 

mechanisms of a battery is an important step to deepen our understanding of the system. 

As a battery is a complex nonlinear system, the evolution of the electrodes (cathode and 

anode), electrolytes, and the interface between them could lead to the change of the 

capacity and resistance, which will be reflected in the cycling curve. Uncovering the 

battery degradation mechanisms and quantifying their effect on the shape of the charge 

curve could help build physics-informed models to reach an optimal prediction of battery 

performance.  

Conclusion 

Data-driven methods have a superior ability to capture hidden features in cycling 

curves. The hidden features can be correlated to the aging mechanism of batteries, such 

as loss of active materials, growth of resistance, an increase of reaction heterogeneity, etc. 

Moreover, these hidden features can be combined with a multiple linear regression model 
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to predict a complete cycling curve based on a limited portion of it. We demonstrate that 

both single continuous segment and multiple separated segments can be used as the input 

to predict the complete cycling curve. The model achieves a 2% prediction error of an 

entire charge curve using only 10% of the curve as the input for the LiNiO2-based 

batteries and achieves the same accuracy with only 5% of the curve as the input for the 

LiCoO2-based batteries. The complete charge curve can be used to evaluate the health 

status of batteries, which can not only guide the use of batteries but prevent accidents and 

malfunctions.  

Data availability 

The data that support the plots within this paper are available from the 

corresponding author upon reasonable request. 
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