Current Biology

Developmental remodeling repurposes larval neurons for sexual behaviors in adult *Drosophila*

Highlights

- DDAG_C/D neurons contribute to ovipositor extrusion in adult females
- The DDAG_C/D neurons are recycled embryonic-born larval neurons
- DSX-M and DSF regulate DDAG_C/D neuronal survival during metamorphosis

Authors

Julia A. Diamandi, Julia C. Duckhorn, Kara E. Miller, Mason Weinstock, Sofia Leone, Micaela R. Murphy, Troy R. Shirangi

Correspondence

troy.shirangi@villanova.edu

In brief

Diamandi et al. identify two femalespecific interneurons that contribute to a courtship rejection behavior performed by mated *Drosophila* females. These neurons are present in larvae as mature, sex-shared interneurons; gain sexual identity during metamorphosis; and are recycled for reproductive activities in adult females.

Current Biology

Article

Developmental remodeling repurposes larval neurons for sexual behaviors in adult *Drosophila*

Julia A. Diamandi, Julia C. Duckhorn, Kara E. Miller, Mason Weinstock, Sofia Leone, Micaela R. Murphy, and Troy R. Shirangi 1,2,*

¹Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA

*Correspondence: troy.shirangi@villanova.edu https://doi.org/10.1016/j.cub.2024.01.065

SUMMARY

Most larval neurons in *Drosophila* are repurposed during metamorphosis for functions in adult life, but their contribution to the neural circuits for sexually dimorphic behaviors is unknown. Here, we identify two interneurons in the nerve cord of adult *Drosophila* females that control ovipositor extrusion, a courtship rejection behavior performed by mated females. We show that these two neurons are present in the nerve cord of larvae as mature, sexually monomorphic interneurons. During pupal development, they acquire the expression of the sexual differentiation gene, *doublesex*; undergo *doublesex*-dependent programmed cell death in males; and are remodeled in females for functions in female mating behavior. Our results demonstrate that the neural circuits for courtship in *Drosophila* are built in part using neurons that are sexually reprogrammed from former sex-shared activities in larval life.

INTRODUCTION

Many behaviors of adult animals develop during a period of maturation, e.g., puberty, as juveniles transform into adults.

The central nervous system changes dramatically during this time, with such changes including the birth of new neurons that build adult circuits. However, in some animals like insects and worms, the adult nervous system is also assembled with reprogrammed neurons that were formerly active in the juvenile.

During *Drosophila* metamorphosis, most neurons of the larval central nervous system are recycled for use in adult circuits.⁵ The moonwalker descending neuron, for instance, triggers backward locomotion in crawling larvae and is remodeled during pupal life to regulate backward walking in adult flies.⁶ In addition, several input and output neurons of the larval mushroom body trans-differentiate during metamorphosis and contribute to entirely different circuits in the adult brain.³ Despite these cases, there are currently no examples of recycled larval neurons that contribute to sexually dimorphic behaviors of adult flies. Indeed, lineage analyses of adult neurons with sexual identity in *Drosophila* suggest that most are born post-embryonically and contribute exclusively to sexually dimorphic behaviors in adults.^{7,8}

We previously identified a small, sexually dimorphic population of interneurons in the abdominal ganglion of adult flies, the dsf- and dsx-co-expressing abdominal ganglion (DDAG) neurons, that co-express the tailless-like orphan nuclear receptor, dissatisfaction (dsf), and the sex differentiation gene, doublesex (dsx). Here, we identify two female-specific DDAG neurons that influence the extrusion of the ovipositor performed by mated females to reject courting males. These two DDAG neurons are

born during embryogenesis and exist as segmental homologs of a sexually monomorphic interneuron in the larval abdominal ganglion called A26g. During early pupal life, the A26g neuron at abdominal segments five and six acquire the expression of dsx, undergo dsx-dependent programmed cell death in males, and are remodeled in females for use in the circuitry for ovipositor extrusion (OE). Our results demonstrate that the neural circuits for sexually dimorphic behaviors in *Drosophila* include sexually reprogrammed neurons, with former activities in the juvenile larva of both sexes.

RESULTS

The DDAG neurons are anatomically diverse

Drosophila melanogaster females and males have eleven and three DDAG neurons, respectively, which contribute to several female- and male-specific mating behaviors (Figure 1A). As a first step toward associating specific courtship functions to specific DDAG neurons, we employed a stochastic labeling method to determine the anatomy of individual DDAG neurons in females and males.

The DDAG neurons are labeled by a genetic intersectional strategy whereby a Flp recombinase, driven in *dsx*-expressing cells by *dsx*^{LexA::p65}, ¹⁰ excises a transcriptional stop cassette from an upstream activating sequence (UAS)-regulated *myr::gfp* transgene. Expression of *myr::gfp* is activated in *dsf*-co-expressing cells by the *dsf*^{Gal4} allele. ⁹ To stochastically label individual DDAG neurons using a similar intersectional strategy, we utilized *FlpSwitch*, ¹¹ a Flp recombinase fused to the ligand binding domain of the human progesterone receptor (hPR). The activity of the FlpSwitch recombinase is dependent upon

²Lead contact

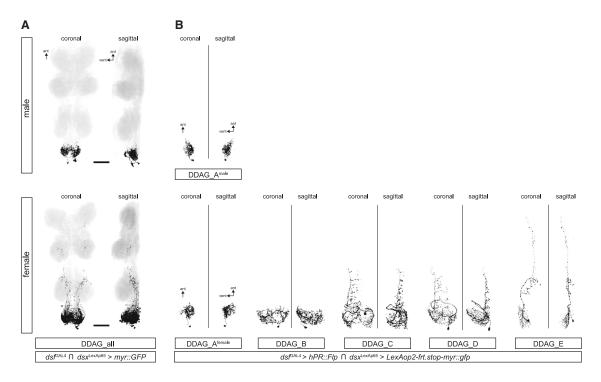


Figure 1. The DDAG neurons are anatomically diverse (A) Confocal images of $dsf^{Gal4} \cap dsx^{LexA::p65} > myr::gfp VNCs. GFP+ neurons are in black and DNCad (neuropil) in gray. Scale bar is 50 μm.$ (B) Images of individual DDAG neurons from dsf^{Gal4}/LexAop-frt.stop-myr::gfp; dsx^{LexA::p65}/UAS-hPR::Flp males and females that were fed mifepristone-containing food for \sim 2 h during adulthood.

the presence of the progesterone mimic, mifepristone. We constructed flies carrying the dsf^{Gal4} and dsx^{LexA::p65} alleles, a UAS-regulated FlpSwitch, and a LexAop-regulated myr::gfp transgene containing a transcriptional stop cassette that is conditionally excised by the FlpSwitch recombinase. When these flies were fed food containing mifepristone for a relatively short period of time, single DDAG neurons were often labeled in adult flies. We examined approximately 60 and 20 single-cell clones in female and male ventral nerve cords (VNCs), respectively, and identified five anatomically distinct DDAG subtypes (Figure 1B). One of these subtypes, DDAG_A, is present in both sexes, whereas the DDAG_B-E subtypes are specific to females. All DDAG neuronal subtypes arborize extensively in the abdominal ganglion, whereas the DDAG_C-E neurons also extend an anteriorly projecting branch that innervates thoracic neuropils. We conclude that the DDAG neuronal population consists minimally of five anatomical subtypes. Additional DDAG subtypes may exist that were not labeled in our experiments, and the number of neurons of each subtype is unclear.

DDAG_C and DDAG_D neurons contribute to ovipositor extrusion

The five DDAG subtypes that we identified in females may contribute to different reproductive behaviors. To develop driver lines that target subsets of DDAG neurons, CRISPR/Cas9-mediated homology-directed repair was used to create new alleles of dsf that express LexA::p65, or the Split-Gal4 hemi-drivers, p65AD::Zp and Zp::GAL4DBD, in dsf-expressing cells. In a search for Split-Gal4 drivers that target subsets of DDAG

neurons, we found that intersecting dsf^{p65AD::Zp} with the enhancer line VT026005-Zp::GDBD labeled four female-specific DDAG neurons per hemisphere of the adult VNC (Figures 2A and 2B). Two cell bodies are located at the posterior tip of the nerve cord, and the other two are at the dorsal side of the abdominal ganglion. Labeling of individual neurons by the multicolor Flpout technique¹² identified the two neurons at the tip as a local interneuron corresponding to the DDAG_B subtype, whereas the two dorsally located cell bodies are the DDAG_C and DDAG_D neurons (Figure 2C). The DDAG_C and DDAG_D neurons are segmental homologs (see below) with several anatomical similarities (Video S1). Both neurons extend a primary branch off the cell body forming a "ventral arch" that projects across the midline and then anteriorly on the contralateral dorsal side. Unlike the DDAG_D neuron, the DDAG_C neuron extends a dorsally projecting medial branch off the ventral arch that gives rise to arbors within the abdominal ganglion. The DDAG_D neuron is located anterior to the DDAG_C neuron. We were unable to differentiate the two DDAG_B neurons; however, they may exhibit subtle anatomical differences that were undetected in our analysis and may contribute to female behavior differently.

We asked how the neurons labeled by $\textit{dsf}^{\text{p65AD::Zp}}$ \cap VT026005-Zp::GDBD influence female behavior. During courtship, unmated *D. melanogaster* females signal their willingness to mate by opening their vaginal plates and partially exposing the tube-like ovipositor, a behavior called "vaginal plate opening" (VPO). 13,14 Mated females, however, reject courting males by fully extruding their ovipositor, which may block copulation or male courtship drive. 14,15 The length of the abdomen

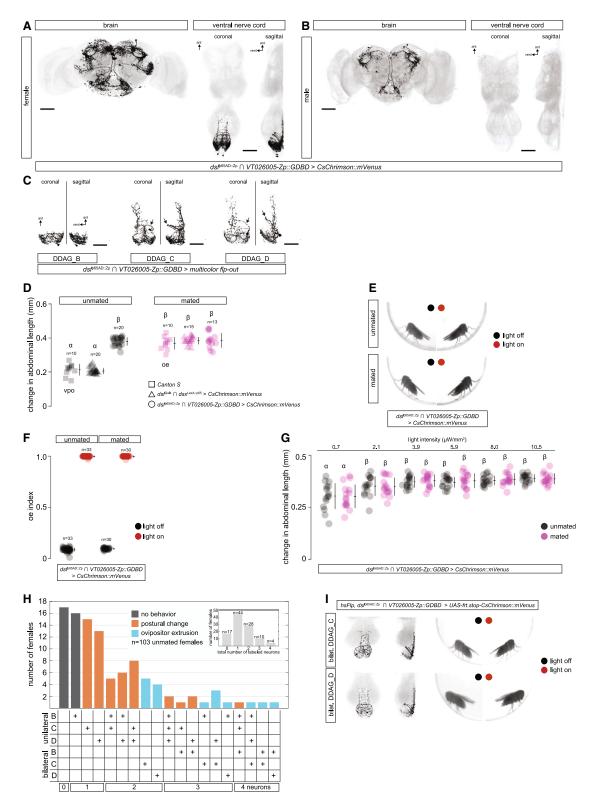


Figure 2. The DDAG_C and DDAG_D neurons contribute to ovipositor extrusion in unmated and mated females

(A and B) Confocal images of $dsr^{P65AD::Zp} \cap VT026005$ -ZP::GDBD > CsChrimson::mVenus CNSs probed with GFP antibodies. Four neurons are labeled per VNC hemisphere. Scale bars are 50 μ m.

(C) Images of individual DDAG_B, DDAG_C, and DDAG_D neurons from $dst^{P65AD::Zp} \cap VT026005-ZP::GDBD >$ multicolor Flp-out females. Arrows point to the ventral arch of the DDAG_C and _D neurons. Scale bars are 50 μ m.

increases when unmated females open their vaginal plates and mated females extrude their ovipositor, but the change in abdominal length is greater during an OE than during an opening of the vaginal plates (Figure 2D). We previously showed that transient photoactivation of all DDAG neurons using the mVenus-tagged, red-light-gated cation channelrhodopsin, *CsChrimson::mVenus*, ¹⁶ caused unmated females to open their vaginal plates and mated females to extrude their ovipositors (Figure 2D). Upon photoactivation, *dsf* ^{p65AD::Zp} \(\text{VTO26005-}\)\(\text{Zp::GDBD} > \text{CsChrimson::mVenus}\) females fully extruded their ovipositor regardless of their mating status (Figures 2D and 2E; Video S2). Extrusion of the ovipositor was penetrant and occurred largely during the photoactivation period (Figure 2F), and quantitatively similar behaviors were observed across a range of stimulus intensities (Figure 2G).

We next tested whether the activity of the DDAG_B-D neurons was required for OE in mated females. In addition to labeling a subset of female-specific DDAG neurons, the intersection of $\textit{dsf}^{\text{p65AD::Zp}}$ and VT026005-Zp::GDBD labels neurons in the brain (Figure 2A). To target the DDAG B-D neurons specifically, we intersected dsf^{p65AD::Zp} ∩ VT026005-Zp::GDBD with dsx^{LexA::p65} (Figure 3A) and used the three-way intersection to suppress the activity of the DDAG_B-D neurons by driving the expression of a GFP-tagged version of the inwardly rectifying K+ channel, Kir2.1¹⁷ (Figure 3B). Unmated females expressing Kir2.1::gfp in the DDAG B-D neurons copulated with males at a rate that was similar to control unmated females (Figure 3C) and opened their vaginal plates during courtship at a frequency comparable to control females (Figure 3D). However, mated $\textit{dsf}^{\text{p65AD::Zp}}$ \cap VT026005- $Zp::GDBD \cap dsx^{LexA::p65} > Kir2.1::qfp$ females extruded their ovipositor during courtship with a modest reduction in frequency (Figure 3E) and laid fewer eggs (Figure 3F) compared with controls. Thus, the activity of one or more DDAG subtypes labeled by the dsf^{p65AD::Zp} \cap VT026005-Zp::GDBD intersection contributes to OE and egg laying in mated females. The modest effects on OE and egg laving frequency from silencing these neurons may suggest the involvement of additional neural circuit elements.

To determine the specific DDAG neuronal subtype that influences OE, we randomly expressed CsChrimson::mVenus in one or more neurons labeled by the $dst^{P65AD::Zp} \cap VT026005$ -Zp::GDBD intersection using a Flp-based approach. By

stochastically expressing a Flp recombinase under the control of a heat-inducible promoter, we randomly excised a transcriptional stop cassette from a UAS-regulated CsChrimson::mVenus transgene, whose expression was driven by $dsf^{P65AD::Zp} \cap VT026005-Zp::GDBD$. Using this strategy, we generated a population of mosaic females (n = 103) that randomly expressed CsChrimson::mVenus in one or more of the DDAG neurons labeled by $dsf^{P65AD::Zp} \cap VT026005-Zp::GDBD$, producing 18 distinct groups of mosaic females (Figure 2H). Most of these females expressed CsChrimson::mVenus in one or two DDAG neurons (Figure 2H, inset). Females were tested in an optogenetic activation experiment before their VNCs were dissected and stained with antibodies to GFP to reveal the identity of DDAG neurons that expressed the CsChrimson::mVenus in each female.

All mosaic females expressing CsChrimson::mVenus specifically in a bilateral pair of DDAG_C (n = 5) or DDAG_D (n = 4) neurons extruded their ovipositor during bouts of photoactivation (Figures 2H and 2I; Videos S3 and S4). Unilateral activation of the DDAG_C (n = 15) or DDAG_D (n = 13) neurons caused a change in abdominal posture, with no extrusion of the ovipositor (Figure 2H; Videos S5 and S6). It is unclear whether the postural change is associated with any displacement of the vaginal plates. Photoactivation of a unilateral DDAG_B neuron (n = 16) failed to evoke any obvious behavior (Figure 2H; Video S7). We did not obtain mosaic females that expressed CsChrimson::mVenus specifically in a bilateral pair of DDAG_B neurons (Figure 2H). However, bilateral activation of the DDAG_B neurons did not modify the postural change induced by the photoactivation of a single DDAG_C or DDAG_D neuron (Figure 2H; Video S8). Taken together, these results demonstrate that the DDAG C and DDAG D neurons contribute to OE in mated females. A functional difference between the DDAG_C and DDAG_D neurons was not detected in our experiments. The contribution of the DDAG_B neurons to female behavior is currently unclear.

The DDAG neurons originate as embryonic-born neurons in the larval ventral nerve cord

In each hemisphere of the late third-instar larval abdominal ganglion, the *dsf*^{Gal4} allele labels two segmentally repeating interneurons from A1 to A8 and four interneurons at the terminal segments (Figure 4A). The number and gross anatomy of these twenty neurons is similar in female and male larvae, in newly

⁽D) Photoactivation of DDAG_B–D neurons induces OE in unmated and mated females. The change in abdominal length when an unmated (black squares) or mated (magenta squares) Canton S female performs VPO or OE, respectively, during courtship is shown. Photoactivation of all DDAG neurons in unmated (black triangles) and mated (magenta triangles) females induces a similar change in abdominal length to Canton S females performing a VPO or OE, respectively. Photoactivation of DDAG_B–D neurons in unmated (black circles) and mated (magenta circles) females induces a similar change in abdominal length to Canton S mated females extruding their ovipositor. n = number of females.

⁽E) Still-frames of decapitated $dst^{\rho e5AD::Zp}$ ∩ VT026005-ZP::GDBD > CsChrimson::mVenus unmated (top) and mated (bottom) females before (left) and during (right) a bout of red light (10.5 μW/mm²).

⁽F) Average fraction of time females extrude their ovipositor during (red) and between (black) three sequential 15-s photoactivation bouts (i.e., OE index). Lights are off for 45 s between bouts. Because females take a few seconds to retract the ovipositor, indices are above zero during lights off. n = number of females. (G) The change in abdominal length upon dsf^{p65AD::ZP} ∩ VT026005-ZP::GDBD > CsChrimson::mVenus photoactivation in unmated (black) and mated (magenta) females is similar across light intensities. n = 15 females for each genotype.

⁽H) Number of unmated mosaic females with *CsChrimson::mVenus* either not expressed (first bar) or expressed randomly in DDAG_B–D neurons (bars 2–19) via a heat-inducible Flp recombinase. Most females expressed *CsChrimson::mVenus* in two or fewer DDAG neurons (inset histogram). Upon photoactivation, females performed no behavior (black), an abdominal postural change (orange), or an OE (blue). All females within each expression category performed similar behaviors. (I) Bilateral activation of only DDAG_C or DDAG_D neurons induces OE. (Right) Still-frames of unmated females before (left) and during (right) a bout of bilateral photoactivation of DDAG_C or DDAG_D neurons. (Left) *CsChrimson::mVenus* expression in the females' posterior VNC. (D, F, and G) Individual points, mean, and SD. A one-way ANOVA Turkey-Kramer multiple comparison test measured significance. Same letter indicates no significant difference. All scale bars are 50 μm. See also Videos S1, S2, S3, S4, S5, S6, S7, and S8.

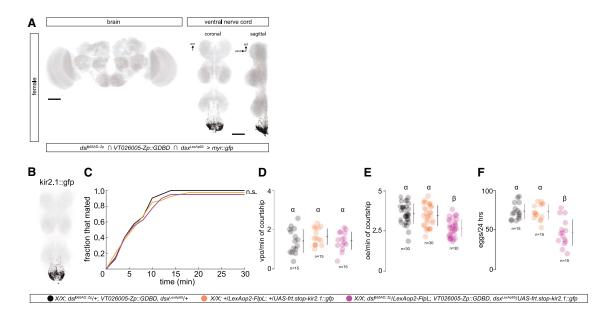


Figure 3. Activity of neurons labeled by dsf^{965AD::Zp} ∩ VT026005-ZP::GDBD is necessary for OE and egg laying in mated females (A) Confocal images of a dsf^{65AD::Zp} ∩ VT026005-ZP::GDBD ∩ dsx^{LexA::p65} > myr::gfp female CNS. Scale bars are 50 μm. (B) Image of a $dsf^{e65AD::Zp}$ ∩ VT026005-ZP::GDBD ∩ $dsx^{LexA::p65} > kir2.1::gfp$ female VNC. Kir2.1::GFP-expressing neurons are in black. (C and D) Unmated females with inhibited DDAG_B-D neurons are similarly receptive to male courtship as control genotypes.

(C) Fraction of unmated females that mated with naive Canton S males in 30 min. Log rank test for significance (p < 0.05). n.s. = not significant. n = 40 females for each genotype.

(D) Number of VPOs an unmated female performed per minute of active courtship.

(E and F) OE and egg laying are reduced in DDAG_B-D-inhibited mated females. (E) Number of OEs a mated female performed per minute of active courtship. (F) Number of eggs laid 24-h post-mating. (D-F) Individual points, mean, and SD. n = number of females. A one-way ANOVA Tukey-Kramer multiple comparison test measured significance (p < 0.05). Same letter indicates no significant difference.

hatched larvae, and in larvae aged 24 and 48 h after hatching (Figure 4A), indicating that the neurons are born during embryogenesis and that the expression of the dsf^{Gal4} allele is stable through larval life. We posited that a subset of these twenty dsf-expressing neurons in each hemisphere of the larval abdominal ganglion become the DDAG neurons of adult females and males. We tested this by visualizing dsf^{Gal4} and $dsx^{LexA::p65}$ expression in the abdominal ganglion of pupae staged several times during pupal development. From 0 to 18 h after puparium formation (APF), the twenty dsf-expressing neurons that we observed in the abdominal ganglion of larvae were identifiable in the VNC of female and male pupae (Figures 4B and 4C). By 18 h APF, approximately eleven of these neurons had gained dsx^{LexA::p65} expression in both sexes (Figures 4B and 4C). In neuromeres A3-A7, one of the two dsf-expressing neurons in each hemisegment was labeled by dsxLexA::p65, and all six dsf-expressing neurons in A8 and the terminal segments co-expressed dsx^{LexA::p65} (Figure 4B). The gain of dsx^{LexA::p65} expression in dsfexpressing neurons occurred gradually and monomorphically in both sexes from 0 to 18 h APF, but by 36 h APF, approximately eight dsf^{Gal4}- and dsx^{LexA::p65}-co-expressing neurons were absent in males (Figure 4C). We previously demonstrated that the difference in DDAG neuron number between adult females and males was due to dsx-dependent apoptosis in males, indicating that the loss of dsf^{Gal4}- and dsx^{LexA::p65}-co-expressing neurons in male pupae aged 36 h APF is due to cell death. At 48 h APF, approximately eleven and three dsf^{Gal4}- and dsx^{LexA::p65}-co-expressing neurons were present in the abdominal ganglion of females and males, respectively, corresponding to the number of DDAG neurons in adults (Figure 4C).

To further test that the DDAG neurons are derived from dsf-expressing neurons in the abdominal ganglion of larvae, we repeated the Flp-based genetic intersection between dsf^{Gal4} and dsx^{LexA::p65}, but this time we used UAS-FlpSwitch to conditionally activate the recombinase in dsf^{Gal4}-expressing cells only during larval life. Larvae were fed mifepristone, causing the FlpSwitch to excise a transcriptional stop cassette from a LexAop-controlled myr::gfp transgene in larval cells labeled by the dsf^{Gal4}. The dsx^{LexA::p65} allele was used to drive the expression of the myr::gfp in dsx-expressing neurons of adults. GFP expression was observed in the DDAG neurons of adults of both sexes (Figure S1), consistent with the notion that the DDAG neurons originate as dsf-expressing neurons in the larval abdominal ganglion. We conclude that the entire population of DDAG neurons are embryonic-born dsf-expressing neurons that are present in larvae of both sexes. During pupal life, approximately eleven dsf-expressing neurons in the abdominal ganglion of both sexes gain dsx expression (Figures 4B and 4C), eight of which are subsequently lost in males due to dsxmediated apoptosis.9

Two segmental homologs of the A26g neuron in larvae become the DDAG_C and DDAG_D neurons of adult **females**

We next sought to identify the larval counterparts of specific DDAG neuronal subtypes. We found that the intersection of

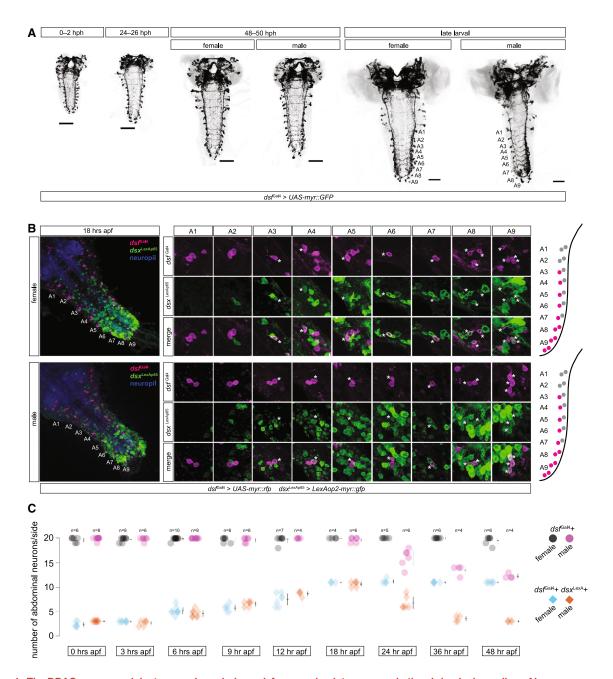


Figure 4. The DDAG neurons originate as embryonic-born dsf-expressing interneurons in the abdominal ganglion of larvae
(A) Confocal images of dsf^{Gal4} > myr::gfp larval CNSs at various hours post-hatching (hph). Larval sex was not determined at 0–2 and 24–26 hph. Scale bars are

(B) A subset of *dsf*-expressing larval abdominal ganglion neurons acquire *dsx* expression as pupae. (Left) Images of sexed *dsf*^{Gal4} > myr::rfp, *dsx*^{LexA::p65} > myr::rgfp pupal VNCs at 18 h APF. RFP+ neurons are in magenta, GFP+ neurons in green, and DNCad in blue. (Right) *dsf*^{Gal4}+ and *dsx*^{LexA::p65}+ neurons at each abdominal neuromere. Co-expressing neurons are asterisked. From A3–A7, one of two *dsf*^{Gal4}-expressing neurons are *dsx*^{LexA::p65}+. All *dsf*^{Gal4}+ neurons posterior to A7 are *dsx*^{LexA::p65}+. An illustration summarizing *dsf*^{Gal4} and *dsx*^{LexA::p65} abdominal ganglion expression at 18 h APF is shown to the right. Co-expressing cells are in magenta.

(C) Number of dsf^{Gal4} + neurons (circles) and dsf^{Gal4} -, $dsx^{LexA::p65}$ -co-expressing (i.e., DDAG) neurons (diamonds) of females and males per hemisphere. Individual points, mean, and SD are shown. n = number of VNC hemispheres. See also Figure S1.

dsf^{965AD::Zp} and VT026005-Zp::GDBD that were used above to target the DDAG_B-D subtypes labeled a single, bilateral, and segmentally repeating dsf-expressing interneuron in segments A4-A6 of the larval abdominal ganglion of both sexes

(Figures 5A and 5B). Stochastic labeling of individual neurons labeled by the Split-Gal4 demonstrated that these neurons correspond to the A26g interneuron (Figure 5C; J. Truman, personal communication).

50 μm.

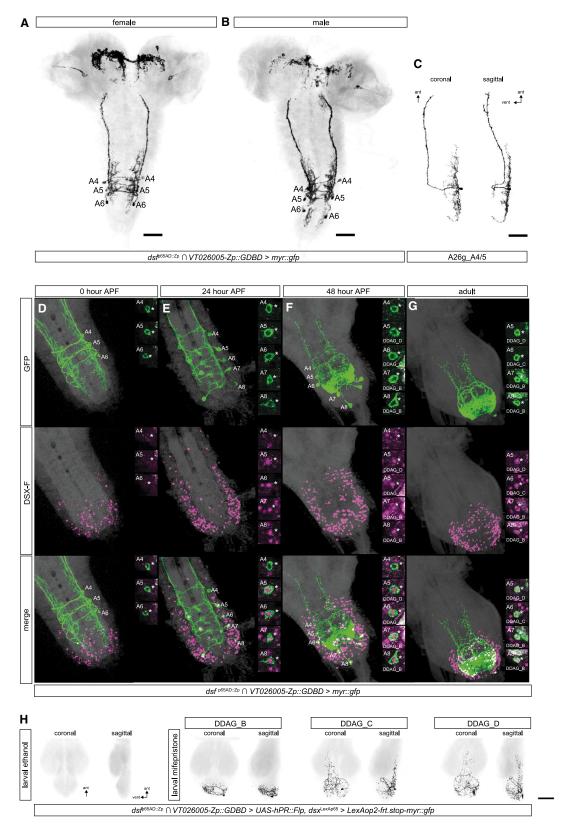


Figure 5. Two A26g neurons in the larval abdominal ganglion become the DDAG_C and DDAG_D neurons of adult females (A and B) Confocal images of dsf^{p65AD::Zp} ∩ VT026005-ZP::GDBD > myr::gfp larval CNSs. The A26g neuron is labeled in segments A4–A6. (C) An image of an A26g neuron at A4 or A5 using multicolor Flp-out.

Current Biology

The A26g neuron of larvae and the DDAG C and DDAG D neurons of adult females display several anatomical similarities (Video S1). All three neurons have a cell body on the dorsal side of the abdominal ganglion, a ventral arch, and a dorsally located contralateral branch that projects anteriorly. We therefore hypothesized that two segmental homologs of the A26g neuron, labeled in larvae by dsf^{p65AD::Zp} ∩ VT026005-Zp::GDBD, metamorphose into the DDAG_C and DDAG_D neurons of adult females. To test this, we first visualized the A26g neurons labeled by $\textit{dsf}^{\text{p65AD::Zp}} \cap \textit{VT026005-Zp::GDBD}$ over the course of pupal development in females and probed DSX-F protein expression. At the onset of pupariation, the A26g neurons at A4-A6 were labeled by dsf^{p65AD::Zp} ∩ VT026005-Zp::GDBD, but none of them co-expressed DSX-F (Figure 5D). By 24 h APF, however, the A26g neuron at A5 and A6, but not A4, had gained DSX-F expression (Figure 5E). Two additional neurons, one at A7 and one at A8, were labeled by the Split-Gal4, and both were also marked by DSX-F (Figure 5E). By 48 h APF, the gross morphology of the neurons labeled by $\textit{dsf}^{\text{p65AD::Zp}}$ \cap VT026005-Zp::GDBD had transformed into the likeness of the DDAG_B-D neurons of adult females (Figures 5F and 5G). The cell bodies of the DSX-F-expressing A5 and A6 neurons were positioned on the dorsal side of the abdominal ganglion where the soma of the DDAG_D and DDAG_C neurons are normally located, and the A7 and A8 cell bodies were at the tip of the nerve cord, where the DDAG_B neurons are found. By adulthood, the DSX-F-non-expressing A26g neuron at A4 had disappeared (Figure 5G). The DDAG_D neuron is anterior to the DDAG_C neuron, suggesting that the A26g neurons at segments A5 and A6 transform into the DDAG D and DDAG C neurons, respectively. The DDAG_B neurons are likely derived from dsf-expressing neurons at A7 and A8 that become marked by dsf^{p65AD::Zp} ∩ VT026005-Zp::GDBD during pupal development prior to 24 h APF. The larval counterparts of the DDAG_B neurons are currently not known.

To confirm that the A26g neurons in larvae become the DDAG_C and DDAG_D neurons, we repeated the FlpSwitchbased genetic intersection that we described above, but between $dsx^{LexA::p65}$ and $dsf^{p65AD::Zp} \cap VT026005-Zp::GDBD$. The Split-Gal4 was used to drive the expression of UAS-FlpSwitch in the A26g neurons, and the larvae were fed mifepristone to activate the FlpSwitch during larval life. The FlpSwitch then excised a transcriptional stop cassette from a LexAopcontrolled myr::gfp transgene driven by dsxLexA::p65. The DDAG_C and DDAG_D neurons of adult females were labeled by GFP (Figure 5H), further confirming that the DDAG_C and DDAG_D neurons are indeed derived from two segmental homologs of the A26g neurons in larvae.

DSF and DSX-M regulate the survival of the DDAG_C and DDAG_D neurons

We previously showed that DSF activity is required for the survival of a subset of DDAG neurons in females, whereas DSX-M

promotes the cell death of female-specific DDAG neurons in males.9 We sought to determine how DSF and DSX contribute to the development of the DDAG_C and DDAG_D neurons specifically. The dsf^{p65AD::Zp} ∩ VT026005-Zp::GDBD intersection was used to visualize the DDAG_C and DDAG_D neurons, while driving the expression of a validated UAS-regulated short hairpin/miRNA (ShmiR) targeting dsf or dsx transcripts. Dsx transcripts are sex-specifically spliced and translated to produce female- and male-specific isoforms of DSX proteins. 18 Knockdown of dsx transcripts in females did not cause any obvious change in DDAG_C or DDAG_D anatomy (Figures S2A and S2B), whereas depletion of male-specific dsx transcripts caused a gain of DDAG_C and DDAG_D neurons, with an arborization pattern like that of wild-type females (Figures S2A' and S2B'). Female-like DDAG neurons are resurrected in males with the ectopic expression of the cell death inhibitor, P35,9 suggesting that the gain of the DDAG_C and DDAG_D neurons in $dsf^{65\text{AD}::Zp} \cap VT026005\text{-}Zp::GDBD > UAS\text{-}dsx_ShmiR$ males is due to the loss of cell death. Optogenetic activation of the resurrected DDAG C and DDAG D neurons in dsf^{p65AD}::Zp ∩ VT026005-Zp::GDBD > UAS-dsx_ShmiR males induced an extrusion of the male's terminalia (Video S9), a behavior reminiscent of OE in mated females. Consistent with the absence of an anatomical phenotype in their DDAG_C and DDAG_D neurons, photoactivation of $\textit{dsf}^{\text{p65AD::Zp}}$ \cap VT026005-Zp::GDBD > UAS-dsx_ShmiR females caused an extrusion of the ovipositor (Figure S2G; Video S9).

In contrast, the DDAG_C and DDAG_D neurons were lost in $\textit{dsf}^{\text{p65AD::Zp}} \cap \textit{VT026005-Zp::GDBD} > \textit{UAS-dsf_ShmiR} \text{ females}$ (Figures S2A and S2C) and in females carrying loss-of-function mutations in dsf (Figures S2D and S2E). When dsf^{p65AD::Zp} ∩ VT026005-Zp::GDBD was used to drive the expression of UASdsf_ShmiR and UAS-CsChrimson::mVenus, females failed to extrude their ovipositor during bouts of photoactivation (Figure S2G; Video S10). To confirm that the loss of the DDAG_C and DDAG D neurons in dsf mutant females was due to cell death, we used dsf^{Gal4} to drive the expression of UAS-P35. Indeed, blockage of cell death by ectopic expression of P35 in dsf-expressing neurons of dsf mutant females rescued the DDAG_C and DDAG_D neurons (Figures S2D-S2F). The rescued DDAG_C and DDAG_D neurons appear to lack contralateral ascending projections, suggesting that dsf may contribute to neuronal development beyond acting as a pro-survival factor. Knockdown of dsf transcripts in dsf^{p65AD::Zp} ∩ VT026005-Zp::GDBD > UAS-dsf_ShmiR males had no effect on the survival of the DDAG_B-D neurons (Figures S2A' and S2C'). Taken together, these data suggest that DSF promotes the survival of the DDAG_C and DDAG_D neurons in females, whereas DSX-M promotes their cell death in males. Knockdown of dsf transcripts in dsf^{p65AD::Zp} ∩ VT026005-Zp::GDBD > UAS-dsf_ShmiR larvae had no obvious effect upon the development of the A26g neurons (Figure S2H), suggesting that DSF regulates the survival of the DDAG_C and DDAG_D neurons during pupal development.

(D–G) Images of $dsf^{965\text{AD}::Zp} \cap VT026005\text{-}ZP::GDBD > myr::gfp$ female abdominal ganglia at various times APF.

(H) Images of adult posterior VNCs from dsf^{e65AD::Zp} ∩ VT026005-ZP::GDBD > UAS-hPR::Flp, dsx^{LexAp65} > LexAop2-frt.stop-myr::gfp females that were fed ethanol- or mifepristone-containing food as larvae. GFP expression of DDAG_C-D neurons in adults indicates that they existed in larvae. Although the Split-Gal4 labels DDAG_B neurons between 0 and 24 h after larval life, these neurons were also labeled likely due to mifepristone perdurance. All scale bars are 50 µm. See also Figure S2 and Videos S9 and S10).

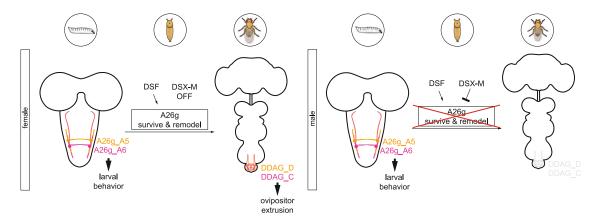


Figure 6. A26g neurons in larvae become the DDAG_D and DDAG_C neurons in females but undergo dsx-dependent cell death in males A model summarizing the results. See text for details.

DISCUSSION

Many neurons of the Drosophila larval nervous system persist through metamorphosis and contribute to adult neural circuits; however, their contribution to sexually dimorphic adult behaviors is unclear. In this paper, we address this gap with two key findings. First, we identify two interneurons in the abdominal ganglion of adult females, the DDAG_C and DDAG_D neurons, that contribute to OE, a behavior performed primarily by mated and mature females to reject courting males. The neural circuitry that mediates OE in mated females has been partially delineated recently. 15 In response to the male's song, dsx-expressing pC2I neurons activate a descending neuron called DNp13 that triggers the motor circuits in the abdominal ganglion for OE.¹⁵ Interestingly, the ability of DNp13 to induce OE in mated but not unmated females depends upon mechanosensory input during ovulation. 15 The DDAG C/D neurons may function downstream of DNp13 and ovulation-sensing mechanosensory neurons, perhaps integrating their inputs, but upstream of motor circuits for OE.

Photoactivation of all DDAG neurons induces VPO in unmated females and OE in mated females. Activating the DDAG_B-D neurons, however, induces OE regardless of the mating status (Figure 2D). This suggests the possibility that the DDAG_A or the DDAG_E subtype or both integrate mating status to inhibit DDAG_C/D-driven OE in unmated females. Testing this will require the development of new genetic tools that provide access to the DDAG_A and DDAG_E subtypes.

Second, we find that the DDAG_C/D neurons are present in the larval abdominal ganglion as mature sexually monomorphic neurons, corresponding to two segmental homologs of the A26g neuron. The function of A26g in larvae is currently unknown. During metamorphosis, the A26g neurons at segments A5 and A6 acquire *dsx* expression in both sexes and are then remodeled in females to become the DDAG_D and DDAG_C neurons, respectively. In males, the expression of DSX-M promotes programmed cell death of the A26g neurons during pupal life, whereas DSF activity is necessary for the survival the A26g neurons in females. The mechanism by which DSF and DSX-M regulate A26g apoptosis is unknown. One possibility is that DSX-M

antagonizes DSF function in males, thereby allowing the neurons to die during pupal life.

Our results demonstrate that the neural circuits for courtship behavior in Drosophila are constructed, in part, from sex-nonspecific larval neurons that are sexually reprogrammed during metamorphosis for functions in adults (Figure 6). Similar observations have been made in C. elegans, where sex-specific patterns of synaptic connectivity in adults develop from neurons in juvenile worms with sexually monomorphic connections. 19 How much of the circuitry for dimorphic courtship behaviors in flies is built from reprogrammed larval neurons? Lineage analyses of neurons with sexual identity in the adult brain and thoracic ganglia have shown that most, if not all, are born during post-embryonic neurogenesis and function only in adults.^{7,8} However, this may differ in the abdominal nervous system. The abdominal ganglion of adult flies is largely specialized for functions in reproduction, and, indeed, the majority of dsx-expressing neurons are located in the abdominal ganglion.²⁰⁻²² Some of these neurons are specific to adults and are born during larval and pupal life from two terminal abdominal neural stem cells, i.e., neuroblasts, with sex-specific patterns of neurogenesis. 23-25 But many others, like the DDAG neurons, are likely to be derived from embryonic lineages. In contrast with the brain and thoracic nervous system, the vast majority of neuroblasts in the abdominal neuromeres (e.g., A2-A8) finish producing neurons by the end of embryonic life and add very few adult-specific neurons.²³ The contribution of remodeled larval neurons to the circuits for sexually dimorphic behaviors may thus be relatively greater in the abdominal ganglion than in other regions of the fly nervous system.

Insect neurons exhibit impressive plasticity as the central nervous system metamorphoses from its larval to adult form. Some larval neurons undergo programmed cell death, but most persist through pupal life to contribute to adult circuits. Larval neurons that persist remodel their axonal and dendritic arbors to regulate similar processes in adults 3,6,26-30 or trans-differentiate to obtain altogether different functions. Courtship and neuronal sexual identity are specific to adults, suggesting that the A26g-to-DDAG_C/D transformation may be a case of trans-differentiation. How the A26g neurons acquire sexual identity and become

Please cite this article in press as: Diamandi et al., Developmental remodeling repurposes larval neurons for sexual behaviors in adult *Drosophila*, Current Biology (2024), https://doi.org/10.1016/j.cub.2024.01.065

repurposed during metamorphosis may provide a system to study the regulatory mechanisms underlying developmental reprogramming of the nervous system.

STAR*METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY
 - Lead contact
 - Materials availability
 - Data and code availability
- EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
- METHOD DETAILS
 - Immunohistochemistry
 - Optogenetic assays
 - Behavioral assays
- QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cub.2024.01.065.

ACKNOWLEDGMENTS

We thank J. Truman (University of Washington) for identifying the A26g neuron and suggesting driver lines to target them in larvae; J. Cande and D. Stern (HHMI) for contributing dsf alleles; Y. Ding (University of Pennsylvania), J. Lillvis (HHMI), and E. Preger-Ben Noon (Technion) for helpful discussions and comments on the manuscript; and A. McStravog for administrative assistance. T.R.S. is supported by the National Science Foundation (IOS-1845673).

AUTHOR CONTRIBUTIONS

Conceptualization, T.R.S.; investigation, J.A.D., J.C.D., K.E.M., M.W., S.L., M.R.M., and T.R.S.; writing – original draft, T.R.S. and J.A.D.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: November 6, 2023 Revised: January 5, 2024 Accepted: January 26, 2024 Published: February 19, 2024

REFERENCES

- Sisk, C.L., and Zehr, J.L. (2005). Pubertal hormones organize the adolescent brain and behavior. Front. Neuroendocrinol. 26, 163–174.
- Ahmed, E.I., Zehr, J.L., Schulz, K.M., Lorenz, B.H., DonCarlos, L.L., and Sisk, C.L. (2008). Pubertal hormones modulate the addition of new cells to sexually dimorphic brain regions. Nat. Neurosci. 11, 995–997.
- Truman, J.W., Price, J., Miyares, R.L., and Lee, T. (2023). Metamorphosis
 of memory circuits in Drosophila reveals a strategy for evolving a larval
 brain. eLife 12, e80594.
- Witvliet, D., Mulcahy, B., Mitchell, J.K., Meirovitch, Y., Berger, D.R., Wu, Y., Liu, Y., Koh, W.X., Parvathala, R., Holmyard, D., et al. (2021). Connectomes across development reveal principles of brain maturation. Nature 596, 257–261.

- Truman, J.W., and Riddiford, L.M. (2023). Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 223, iyac184.
- Carreira-Rosario, A., Zarin, A.A., Clark, M.Q., Manning, L., Fetter, R.D., Cardona, A., and Doe, C.Q. (2018). MDN brain descending neurons coordinately activate backward and inhibit forward locomotion. eLife 7, e38554
- Cachero, S., Ostrovsky, A.D., Yu, J.Y., Dickson, B.J., and Jefferis, G.S.X.E. (2010). Sexual dimorphism in the fly brain. Curr. Biol. 20, 1589–1601.
- Ren, Q., Awasaki, T., Huang, Y.F., Liu, Z., and Lee, T. (2016). Cell classlineage analysis reveals sexually dimorphic lineage compositions in the drosophila brain. Curr. Biol. 26, 2583–2593.
- Duckhorn, J.C., Cande, J., Metkus, M.C., Song, H., Altamirano, S., Stern, D.L., and Shirangi, T.R. (2022). Regulation of Drosophila courtship behavior by the Tlx/tailless-like nuclear receptor, dissatisfaction. Curr. Biol. 32, 1703–1714.e3.
- Pan, Y., Robinett, C.C., and Baker, B.S. (2011). Turning males on: activation of male courtship behavior in Drosophila melanogaster. PLOS One 6, e21144.
- Harris, R.M., Pfeiffer, B.D., Rubin, G.M., and Truman, J.W. (2015). Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. eLife 4, e04493.
- Nern, A., Pfeiffer, B.D., and Rubin, G.M. (2015). Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl. Acad. Sci. USA 112, E2967–E2976.
- Wang, K., Wang, F., Forknall, N., Yang, T., Patrick, C., Parekh, R., and Dickson, B.J. (2021). Neural circuit mechanisms of sexual receptivity in Drosophila females. Nature 589, 577–581.
- 14. Mezzera, C., Brotas, M., Gaspar, M., Pavlou, H.J., Goodwin, S.F., and Vasconcelos, M.L. (2020). Ovipositor extrusion promotes the transition from courtship to copulation and signals female acceptance in Drosophila melanogaster. Curr. Biol. 30, 3736–3748.e5.
- Wang, F., Wang, K., Forknall, N., Parekh, R., and Dickson, B.J. (2020). Circuit and behavioral mechanisms of sexual rejection by drosophila females. Curr. Biol. 30, 3749–3760.e3.
- Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto, T.K., Chuong, A.S., Carpenter, E.J., Tian, Z., et al. (2014). Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346.
- Baines, R.A., Uhler, J.P., Thompson, A., Sweeney, S.T., and Bate, M. (2001). Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523–1531.
- Burtis, K.C., and Baker, B.S. (1989). Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56, 997–1010.
- Oren-Suissa, M., Bayer, E.A., and Hobert, O. (2016). Sex-specific pruning of neuronal synapses in Caenorhabditis elegans. Nature 533, 206–211.
- Lee, G., Hall, J.C., and Park, J.H. (2002). Doublesex gene expression in the central nervous system of Drosophila melanogaster. J. Neurogenet. 16, 229–248.
- Robinett, C.C., Vaughan, A.G., Knapp, J.M., and Baker, B.S. (2010). Sex and the single cell. II. There is a time and place for sex. PLOS Biol. 8, e1000365.
- Rideout, E.J., Dornan, A.J., Neville, M.C., Eadie, S., and Goodwin, S.F. (2010). Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster. Nat. Neurosci. 13, 458–466.
- Truman, J.W., and Bate, M. (1988). Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol. 125, 145–157.

Please cite this article in press as: Diamandi et al., Developmental remodeling repurposes larval neurons for sexual behaviors in adult *Drosophila*, Current Biology (2024), https://doi.org/10.1016/j.cub.2024.01.065

Current Biology

Article

- Taylor, B.J., and Truman, J.W. (1992). Commitment of abdominal neuroblasts in Drosophila to a male or female fate is dependent on genes of the sex-determining hierarchy. Development 114, 625–642.
- Birkholz, O., Rickert, C., Berger, C., Urbach, R., and Technau, G.M. (2013).
 Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors. Development 140, 1830–1842.
- Truman, J.W., and Reiss, S.E. (1976). Dendritic reorganization of an identified motoneuron during metamorphosis of the tobacco hornworm moth. Science 192, 477–479.
- Technau, G., and Heisenberg, M. (1982). Neural reorganization during metamorphosis of the corpora pedunculata in Drosophila melanogaster. Nature 295, 405–407.
- 28. Williams, D.W., and Shepherd, D. (1999). Persistent larval sensory neurons in adult Drosophila melanogaster. J. Neurobiol. 39, 275–286.

- Lee, K., and Doe, C.Q. (2021). A locomotor neural circuit persists and functions similarly in larvae and adult Drosophila. eLife 10, e69767.
- Consoulas, C., Restifo, L.L., and Levine, R.B. (2002). Dendritic remodeling and growth of motoneurons during metamorphosis of Drosophila melanogaster. J. Neurosci. 22, 4906–4917.
- Sprecher, S.G., and Desplan, C. (2008). Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons. Nature 454, 533–537.
- Peng, Q., Chen, J., Su, X., Wang, R., Han, C., and Pan, Y. (2022). The sex determination gene doublesex is required during adulthood to maintain sexual orientation. J. Genet. Genomics 49, 165–168.
- Zhou, C., Pan, Y., Robinett, C.C., Meissner, G.W., and Baker, B.S. (2014).
 Central brain neurons expressing doublesex regulate female receptivity in Drosophila. Neuron 83, 149–163.

STAR***METHODS**

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
abbit anti-GFP	Invitrogen	Cat#A11122; RRID: AB_221569
at anti-DN-cadherin	Developmental Studies Hybridoma Bank	Cat#DN-Ex#8; RIDD: AB_528121
abbit anti-DSX-F	Peng et al. ³²	N/A
mouse anti-DSX-M	Peng et al. ³²	N/A
mouse anti-HA.11	BioLegend	Cat#MMS-101P; RRID: AB_291261
at anti-FLAG	Novus Biologicals	Cat#NBP1-06712; RRID: 1625981
Fluorescein (FITC)-conjugated donkey anti-rabbit	Jackson ImmunoResearch	Cat#711-095-152; RIDD: AB_2315776
oat anti-rat AlexaFluor 647	Invitrogen	Cat#A21247; RRID: AB_141778
lonkey anti-rat AlexaFluor 568	Invitrogen	Cat#A78946; RRID: AB_2910653
lonkey anti-mouse AlexaFluor 647	Invitrogen	Cat#A31571; RRID: AB_162542
goat anti-mouse AlexaFluor 488	Invitrogen	Cat#A32723; RRID: AB_2633275
Chemicals, peptides, and recombinant proteins		
)PX	Sigma-Aldrich	Cat#06522
all- <i>trans</i> -Retinal	Sigma-Aldrich	Cat#R2500
Mifepristone (RU-486)	Sigma-Aldrich	Cat#475838-50MG
Experimental models: Organisms/strains		
Canton S	Duckhorn et al. ⁹	N/A
V ¹¹¹⁸	Duckhorn et al.9	N/A
dsx ^{LexA::p65} /TM6B	Zhou et al. ³³	N/A
lsf ^{Gal4} /CyO	Duckhorn et al.9	N/A
JFRC29-10XUAS-IVS-myr::GFP-p10 (attP2)	Janelia Research Campus (JRC), HHMI	N/A
DJFRC12-10XUAS-IVS-myr::GFP (attP2)	JRC	N/A
JFRC79-8XLexAop-2-FlpL (attP40)	JRC	N/A
JFRC41-10XUAS-FRT-STOP-FRT-myr::gfp (su(Hw) ttP1)	JRC	N/A
JFRC108-20XUAS-IVS-hPR-Flp-p10 (attP2)	JRC	N/A
JFRC40-13XLexAop-FRT-STOP-FRT-myr::gfp attP40)	JRC	N/A
JFRC56-10XUAS-FRT-STOP-FRT-kir2.1::gfp (attP2)	JRC	N/A
BPhsFlp2::PEST (attP3)	JRC	N/A
DJFRC201-10XUAS-FRT-STOP-FRT-myr::smGFP- HA (VK0005)	JRC	N/A
DJFRC240-10XUAS-FRT>STOP>FRTmyr::smGFP- /5-THS-10XUAS-FRT>STOP>FRT-myr::smGFP- FLAG (su(Hw)attP1)	JRC	N/A
0XUAS-FRT>STOP>FRT-CsChrimson::mVenus VK5)	JRC	N/A
T026005-Zp::GDBD (attP2)	JRC	N/A
JAS-P35 ^{BH1}	BDSC	RRID:BDSC_5072
JAS-dsx_ShmiR (attP2)	Duckhorn et al. ⁹	RRID:BDSC_35645
JAS-dsf_ShmiR (attP2)	Duckhorn et al. ⁹	N/A
/sf ^{Del}	Duckhorn et al. ⁹	N/A
dsf ^{p65AD} :: ^{Zp} /CvO	This study	N/A

(Continued on next page)

Please cite this article in press as: Diamandi et al., Developmental remodeling repurposes larval neurons for sexual behaviors in adult *Drosophila*, Current Biology (2024), https://doi.org/10.1016/j.cub.2024.01.065

Current Biology

Continued		
REAGENT or RESOURCE	SOURCE	IDENTIFIER
dsf ^{DBD::Zp} /CyO	This study	N/A
dsf ^{LexA} :: ^{p65} /CyO	This study	N/A
Software and algorithms		
Fiji	NIH, USA	https://imagej.net/software/fiji/
MATLAB	Mathworks	https://www.mathworks.com/products/matlab.html

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Troy Shirangi (troy.shirangi@villanova.edu).

Materials availability

All fly lines generated in this study are available from the lead contact.

Data and code availability

- All data reported in this paper will be shared by the lead contact upon request.
- This paper does not report original code.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Drosophila melanogaster stocks were maintained on standard cornmeal and molasses food at 25°C and ~50% humidity in a 12-hr light/dark cycle unless otherwise noted. Fly stocks used in this study are listed in the key resources table. *dsf*^{p65AD::Zp}, *dsf*^{Zp::GDBD}, and *dsf*^{LexA::p65} alleles were generated using the same strategy as that used to build the *dsf*^{Gal4} allele⁹ except the Gal4 sequence in the donor construct was replaced with sequences encoding *p65AD::Zp*, *Zp::GDBD*, or *LexA::p65*.

METHOD DETAILS

Immunohistochemistry

Nervous systems were dissected in 1X phosphate-buffered saline (PBS), fixed in 4% paraformaldehyde in PBS for 35 minutes, then rinsed and washed in PBT (PBS with 1% Triton X-100). If a blocking step was performed, nervous systems were incubated in 5% normal goat serum or 5% normal donkey serum in PBT for 30 minutes. Tissues were then incubated with primary antibodies diluted in PBT or PBT with block overnight at 4°C. The next day, three washes were performed over the course of several hours before nervous systems were incubated in secondary antibodies diluted in PBT or PBT with block overnight at 4°C. Tissues were then washed three times over the course of several hours and placed on cover slips coated in poly-lysine, dehydrated in an increasing ethanol concentration series, and cleared in a xylene series. Nervous systems were mounted onto slides using DPX mounting medium and imaged on a Leica TCS SP8 Confocal Microscope at 40X magnification. For MultiColor FlpOut experiments, vials containing larvae aged between first and second instars (or 3-4-day old adults) were placed in a 37°C water bath for 1-10 minutes then dissected 2 days later. To stochastically label the DDAG neurons, male and female adults (deprived of food overnight) were placed in vials with food containing 100mM mifepristone (RU-486; Sigma 475838-50MG) for 2 hours and kept in darkness. Flies were then transferred back to vials containing untreated food for 3 days before their VNCs were dissected for staining. For immortalization experiments using mifepristone, three days after crosses were set-up on normal food, 60 μL of 100mM RU-486 was added directly to the food and larvae were raised in darkness on RU-486-treated food until pupariation. Pupae were collected and transferred to vials containing untreated food before eclosure. Control groups were also kept in darkness but were treated with 60 µL of ethanol instead of RU-486. Adult nervous systems were dissected in PBS. The following primary antibodies were used: rabbit anti-GFP (Invitrogen #A11122; 1:1000), rat anti-DN-cadherin (DN-Ex#8, Developmental Studies Hybridoma Bank; 1:50), anti-DSX-F (1:200), ³² mouse anti-HA.11 (BioLegend #MMS-101P; 1:250), and rat anti-FLAG (Novus Biologicals #NBP1-06712; 1:200). The following secondary antibodies were used: Fluorescein (FITC) conjugated donkey anti-rabbit (Jackson ImmunoResearch #711-095-152; 1:500), AF-647 goat anti-rat (Invitrogen #A21247; 1:500), AF-568 donkey anti-rat (Invitrogen #A78946; 1:500), AF-647 donkey anti-mouse (Invitrogen #A31571; 1:500), AF-488 goat anti-mouse (Invitrogen #A32723), AF-647 goat anti-rat (Invitrogen #A21247; 1:500).

Please cite this article in press as: Diamandi et al., Developmental remodeling repurposes larval neurons for sexual behaviors in adult Drosophila, Current Biology (2024), https://doi.org/10.1016/j.cub.2024.01.065

Optogenetic assays

Unmated females used in optogenetic assays were raised in darkness and on food containing 0.2mM all-trans-retinal (sigma-Aldrich #R2500) and were incubated at 25°C and ∼50% humidity. Once collected, unmated females were grouped in vials consisting of 15–20 flies for 8–12 days before testing. Flies were anesthetized on ice for ~2 minutes, decapitated under low-intensity light, and were given 15-20 minutes to recover before being transferred to individual behavioral chambers (diameter: 10 mm, height: 3 mm). A FLIR Blackfly S USB3, BFS-U3-31S4M-C camera with a 800 nm long-pass filter (Thorlabs, FEL0800) was used to record optogenetic videos in SpinView. Upon testing, chambers were placed on top of an LED panel with continuous infrared (850 nm) light and recurring photoactivating red (635 nm) light using an Arduino script. To measure change in abdominal length before and during vaginal plate opening or ovipositor extrusion, a ruler (cm/mm) was included in the frame to set the scale. The change in abdominal length was calculated as the difference in the abdominal length from the base of the scutellum to the tip of the abdomen before and during photoactivation. Behavior indices were measured by calculating the average fraction of time spent preforming the behavior during the first three 15-second lights-on periods and the first three 45-second light-off periods. For stochastic optogenetic activation, unmated females carrying hs-Flp, UAS-frt.stop-CsChrimson::mVenus, and the Split-Gal4 were reared on retinal-containing food, grouped in vials consisting of 15–20 flies, and aged for ~3 days before being placed in a 37°C water bath for periods ranging from 20-60 minutes. Females were then transferred to new vials containing retinal food and aged for an additional 5 days before being tested in an optogenetic activation experiment as described above. Following optogenetics, the VNC of each female was dissected and placed singly in wells of a 60-well mini tray (Fischer Scientific #12-565-155) for staining. Each VNC was subsequently mapped to the female in the optogenetics experiment from which the VNC was obtained.

Behavioral assays

Unmated females and males were collected were under CO₂ and aged for 7–10 days in a 12-hour light/dark cycle and incubated at 25°C and ~50% humidity. Unmated females were group-housed in vials consisting of 15–20 flies, and Canton S males were individually housed. Courtship assays were done within the first two hours of the subjective day. Unmated females and Canton S males were transferred to individual behavioral chambers (diameter: 10 mm, height: 3 mm) and recorded for 30 minutes using a Sony Vixia HFR700 video camera at 25°C under white light. For experiments using mated females, unmated females were housed with males for 24 hours, anesthetized on ice for ~2 minutes, and mated females were collected into a new vial and given 30 minutes to recover. Mated females and Canton S males were loaded to chambers and recorded as described above. Courtship index was measured as the total time the male preformed courtship behaviors divided by the total recording time. Courtship index was measured as the total time the male performed courtship behaviors divided by the observation time which was usually about 5 minutes. Vaginal plate opening (vpo) and ovipositor extrusion (oe) frequency was measured as the total number of times a female performed a vpo or oe in a 6-min period of active male courtship. Egg laying was measured by allowing females to mate with males before transferring them to individual vials to for 24 hours. The total number of eggs laid in 24 hours by each female was then counted.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details can be found in the figures and figure legends. All data were analyzed using a one-way ANOVA with Tukey-Kramer tests for multiple comparisons, a Rank Sum test, or a Logrank test. All p-values were measured in MATLAB.