
Neurocomputing 562 (2023) 126879

A
0

a

b

c
t
f
a
t
i
p
a
(
g
i
i

p
s

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Computationally efficient neural hybrid automaton framework for learning
complex dynamics
Tao Wang a, Yejiang Yang a,b, Weiming Xiang b,∗
School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China
School of Computer and Cyber Sciences, Augusta University, Augusta GA 30912, USA

A R T I C L E I N F O

Communicated by J. Cao

Keywords:
Neural networks
Hybrid automaton
Extreme learning machine
Data-driven modeling
Reachability analysis

A B S T R A C T

This paper proposes a computationally efficient and effective data-driven modeling framework for dynamical
systems. The proposed modeling framework employs a collection of shallow neural networks known as Extreme
Learning Machines (ELMs) to model local system behaviors along with data-driven inferred transitions among
local models to establish a neural hybrid automaton model. First, the sampled system inputs are mapped to
the corresponding feature spaces to obtain data-driven partitions, which subsequently define the transitions
and invariants of the neural hybrid automaton model through a novel data-driven mode clustering process.
Then, a collection of ELMs are trained to approximate the local dynamics. The learning processes integrate
a segmented data merging procedure for location identification and a local dynamics modeling process. The
proposed neural hybrid automaton models can capture behaviors of complex dynamical systems with high
modeling precision but significantly lower computational complexities in computationally expensive tasks such
as training and verification, which are traditionally considered to be computationally expensive tasks for neural
network models. A computationally efficient set-valued reachability analysis method which is commonly used
in safety verification is then developed based on interval analysis and a novel Split and Combine process.
Finally, applications to modeling the limit cycle and human handwritten motions are presented to show the
effectiveness and efficiency of our approach.
1. Introduction

The success of neural networks are well documented, such as
learning-based control for hybrid systems [1,2] and nonlinear dynam-
ics [3,4], studying the speech enhancement in [5], predicting the
umulative COVID-19 incidence rate in [6], etc. Among these applica-
ions, Deep Neural Networks (DNN) have received particular attention
or their accuracy and ability to handle complex training samples such
s studying the recommender systems in [7], predicting and elucidating
he optical chirality of two-dimensional diffractive chiral metamaterials
n [8], etc. Compared with DNN, Shallow Neural Networks (SNN) are
rone to getting overfitted when modeling the system, which leads to
bad-performance model. Based on Universal Approximation Theory
UAT), and thanks to recent works on Broad Learning System [9], the
uaranteed distance between a function and its SNN approximation
n [10], modeling with SNN will be competitive when the training error
s tolerable.
When it comes to modeling a dynamical system in real-life ap-

lications, some requirements such as safety and stability must be
atisfied in practice. Works on adding safety constrains in training

∗ Corresponding author.
E-mail address: wxiang@augusta.edu (W. Xiang).

and verification of the learning models provide great tools to meet
the requirements, but might become an extra computational burden in
training and verification. Besides, the scale of the neural network model
can affect the time consumption and computational complexity of the
verification and validation of the model, which makes the DNN model
may be difficult to verify due to its large scale. On the other hand,
modeling with the SNN will reduce the computational complexity for
training and verification and improve scalability.

Neural networks are often viewed as black boxes. In most cases
of data-driven modeling, a neural network model, especially a DNN
model, may represent significant computation challenges in the train-
ing and verification due to their complex structures. When it comes
to safety-critical scenarios, the time consumption for verification of
the neural network model will be unacceptable. The computational
bottleneck exists considering the complex structure of the model. Com-
pared with DNN models for complex applications such as graphics
and language, modeling the dynamic system with multiple SNNs to
approximate the local information of the system makes the model
vailable online 6 October 2023
925-2312/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.neucom.2023.126879
Received 16 November 2022; Received in revised form 26 June 2023; Accepted 3
 October 2023

https://www.elsevier.com/locate/neucom
http://www.elsevier.com/locate/neucom
mailto:wxiang@augusta.edu
https://doi.org/10.1016/j.neucom.2023.126879
https://doi.org/10.1016/j.neucom.2023.126879
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126879&domain=pdf

Neurocomputing 562 (2023) 126879T. Wang et al.

s

t

2

f
c
a
m
f

u
B

𝑥

w
n
n

f

D

𝛩

i
a

R
m
s
h
l
i
𝑥
t
s

s
c
a
f

more competitive (e.g., reducing computational complexity) to train
and verify.

A dynamical system can be modeled by a hybrid automaton with a
finite number of partitions, including transitions between them. When
modeling and verifying, the hybrid automaton will be parallel-trained
and partially verified under various partitions, which will reduce the
computational complexity. Previous works are focusing on modeling
the hybrid system with the hybrid model based on the sample col-
lected. In this paper, we propose a neural hybrid automaton modeling
framework that aims to model general dynamical systems to reduce the
computational complexity of training and verification of the learning-
based model. Each subsystem of our proposed model is trained by
an SNN called Extreme Learning Machine (ELM) [11], and the ELMs
will be trained and verified under partitions that are generated from
the feature space of samples. Our proposed modeling framework will
reduce the time consumption and improve the scalability of the neu-
ral network model without sacrificing no accuracy compared with
traditional modeling methods.

1.1. Motivation and related works

This work is majorly inspired by the research on learning-based
modeling for hybrid systems; safety verification for learning models;
distributed neural network learning; development of ELM such as

• Various studies have been conducted on modeling the hybrid
systems with learning models, such as modeling the DC-DC con-
verter in [12], focusing on modeling the hybrid system on jump
detection in [13], studying the modeling of the hybrid and Cyber–
physical Systems in [14], etc. The idea of modeling with a hybrid
system allows distributed training and verification and therefore
improves the model’s scalability.

• A variety of research has been conducted on adding constraints in
training neural networks and leading to a computational burden
in training and verification, such as certifying the data-driven
model from a safety perspective in [15,16], training robust neural
networks in [17], providing guaranteed distance between the
neural network model and the system in [10], utilizing control
contraction metrics in training neural networks in [18,19], adding
the Lyapunov constraints in training neural networks in [20],
focusing on the Lipschitz constant of neural networks in [21],
developing a bound verifier for neural networks in [22], approxi-
mating the reachable set of the neural network model in [23], etc.
The verification tools presented in [22,24–27] provide powerful
solutions to verify the neural network model and also become a
computational bottleneck.

• The effectiveness of distributed learning is well demonstrated
by many works, e.g., studying distributed reduced convolution
neural networks in [28], solving forward and inverse problems in
nonlinear partial differential equations using distributed learning
machines in [29], promoting a distributed deep reinforcement
learning method for traffic light control in [30], studying the
quantum distributed deep learning architectures in [31], promot-
ing wide and deep graph neural network with distributed on-
line learning in [32]. The recently proposed Pathways Language
Model [33] developed from the Mixture of Experts Model [34]
shines a new light on DNN modeling by reducing the compu-
tational complexity through multiple small-size neural networks
which are activated by a sparse gating system.

• As a computationally efficient neural network, ELM has received
particular attention such as investigating multilayer ELM in [35,
36], proposing variational quantum extreme learning machine
in [37], and studying the residual compensation ELM for regres-
sion problems in [38]. Therefore, we employ multiple simple
ELMs as the dynamical description of the proposed neural hybrid
automaton in this work.
2

s

1.2. Contributions

The main contributions of this paper include:

• A novel data-driven neural hybrid automaton modeling frame-
work is proposed to learn complex dynamical systems, which aims
to advance the state-of-the-art of dynamical system modeling
techniques with a focus on improving the model scalability.

• Novel data-driven modeling and verification methods are devel-
oped to enrich the neural hybrid automaton modeling framework,
which aims to efficiently handle computationally expensive tasks
such as training and verification while sacrificing no accuracy in
modeling.

This paper is organized as follows: Preliminaries and Problem For-
mulation, challenges in modeling the dynamical system with a neural
hybrid automaton via ELMs are given in Section 2. The main result,
a detailed neural hybrid automaton modeling framework is given in
Section 3. Then, the applications to modeling complex dynamics with
our proposed framework is presented in Section 4. The conclusions are
given in Section 5.

Notations: In the rest of the paper, N denotes the natural number
ets, R is the field of real numbers, N+ refers to the positive integer set;
R𝑛 stands for the vector space of 𝑛-tuples of real number; 𝑋 and 𝑋 are
he lower bound and upper bound of an interval 𝑋, respectively.

. Preliminaries and problem formulation

In this section, we attempt to form formal definitions for the general
ramework. This is useful for future development of this framework
onsisting of different components such as feature, set-valued reach-
bility analysis for the neural networks, etc. The main problems of the
odeling framework with multiple ELMs will be formed based on these
ormal definitions.
Our goal is to build a hybrid automaton with learning capabilities

sing samples of states and external inputs from a dynamical system.
ased on the samples, we will model the system in the form of

(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘)), (1)

here the states 𝑥(𝑘) ∈ R𝑑 , external inputs 𝑢(𝑘) ∈ R𝑛, while the
onlinear function 𝑓 needs to be approximated by training neural
etworks.
Our proposed framework will be based on feature functions and

eature spaces in [39] defined as follows.

efinition 1. A feature is a function

∶ 𝛺 → ̂ , (2)

n which 𝛺 ⊂ R𝑑 is the input region where all sample states 𝑥(𝑘) ∈ 𝛺
nd ̂ ⊂ R𝑚 is the feature space.

emark 1. The states of the dynamical system in this study will be
apped to a feature space that reflects the intrinsic dynamics of the
ystem with 𝛩. The feature is helpful when the states of the system are
igh-dimensional and we need to abstract the intrinsic dynamics to a
ow-dimensional space [40], namely, 𝑚 ≤ 𝑑. An example of a feature
s when modeling a time-depended switching system, the feature maps
(𝑘) to a one-dimensional space [41], i.e., 𝛩 ∶ R3 → R, which suggests
he feature should capture the key characteristics of the dynamics from
tates of the system.

In this work, features are for analyzing the states from a dynamical
ystem in a low-dimensional feature space. On the other hand, when
onsidering a dynamical system with low-dimensional states, such
s [42], the states may be low-dimensional, which implies that the
eature may be a function that maps the states to themselves. Feature

pace can be divided into subspaces called partitions defined as follows.

Neurocomputing 562 (2023) 126879T. Wang et al.
Fig. 1. An illustration of a neural hybrid automaton model with 2 partitions 1 , 2, where the initial condition is denoted by 𝐼𝑛𝑖𝑡 ∶ (𝑥0 , 𝑢0) starting at 1. The guard functions
that define the transitions between 1 and 2 are specified based on feature space 𝛩, while the invariants determine whether the next time step is within a specific partition, the
set of ELMs 𝛷 = {𝛷1 , 𝛷2} is as the dynamical descriptions for its corresponding partitions.
Definition 2. Feature space ̂ can be divided to a collection of 𝑁
subspaces, which satisfies ̂ ⊆

⋃𝑁
𝑖=1 𝑖 and 𝑖

⋂

𝑗 = ∅, ∀𝑖 ≠ 𝑗, in
which the collection of sets  = {1,… ,𝑁}, is called partitions.

Remark 2. By classifying the system dynamics into different modes
in the feature space, the neural network will perform better in ap-
proximating the local dynamics. Hence the feature function that maps
the states to the feature space is very important, it should be noted
that for our following detailed algorithms, the feature is rough (by
mapping the low-dimensional state to itself in the modeling of the limit
cycle and the Human handwritten motions), there is plenty of room
for future updates by applying the power function such as Lyapunov
candidates, etc., as the feature function. However, the obtaining of
partitions from feature space should be a data-driven process when
there is no prior knowledge of the dynamical system. Partitions are
useful when we classify the system dynamics from samples and they
pave the way for parallel training of neural networks in approximating
the dynamics, namely, neural networks can approximate the dynamics
from the samples within their corresponding partitions.

2.1. Neural hybrid automata

A neural hybrid automaton model consists of variable components
describing both dynamics and the transition logic. To demonstrate this
concept, an illustration is given in Fig. 1. Specifically, the neural hybrid
automaton can be formally defined as follows.

Definition 3. A neural hybrid automaton is defined by a tuple

 ≜ ⟨ , , 𝑖𝑛𝑖𝑡,  , 𝑔,, 𝑖𝑛𝑣,𝛷⟩ (3)

in which the components are defined by

• Partitions:  = {1,… ,𝑁} is a finite set of feature space parti-
tions where 𝑖 ⊂ ̂ denotes the 𝑖th partition.

• State Variables:  ⊂ R𝑑 is the state region which contains the
state variable 𝑥(𝑘) ∈ 𝛺. For a 𝑘th time step state variable at 𝑖th
partitions, it is denoted by 𝑥(𝑘) which satisfies 𝛩(𝑥(𝑘)) ∈ 𝑖.

• Initial conditions: 𝑖𝑛𝑖𝑡 = (𝑥(0), 𝑢) where 𝑥(0) ∈ (0), and 𝑢 ∈  are
the initial states and external inputs, in which (0) is the initial
set of states and  is the input set for the external input 𝑢.

• Transitions:  ⊂  ×  is the set of transitions where a discrete
transition from 𝑖th partition to 𝑗th partition is taking place,
i.e., 𝑖 → 𝑗 , 𝑒𝑖𝑗 = (𝑖,𝑗) ∈  .

• Guard functions: 𝑔 ∶  →  is the guard function mapping each
transition element 𝑒𝑖𝑗 to its guard 𝑔(𝑒𝑖𝑗) ∈ .

• Guards:  ⊆ 2 is the guard set which satisfies ∀𝑒𝑖𝑗 ∈  , 𝑔(𝑒𝑖𝑗) ∈
. The guard is satisfied by the state variable when the neural
hybrid automaton model takes a transition from current partition
to another given partition, i.e., 𝑥𝑘 ⊨ 𝑔(𝑒𝑖𝑗) if and only if 𝑘 = 𝑖
and 𝑥 ∈ 𝑔(𝑒).
3

𝑘 𝑖𝑗
• Invariants: 𝑖𝑛𝑣 ∶  → 2 is a mapping that assigns an invariant
𝑖𝑛𝑣(𝑖) ⊆  for each partition 𝑖 ∈  . An invariant is satisfied by
all the states of a hybrid automaton model for a given partition
𝑖, i.e., (𝑖, 𝑥) ⊨ 𝑖𝑛𝑣(𝑖) if and only if 𝑥 ∈ 𝑖𝑛𝑣(𝑖).

• Set of ELMs: 𝛷 = {𝛷1, 𝛷2,… , 𝛷𝑁} is the set of ELMs in which each
𝛷𝑖 describes the dynamical behaviors for each given partition
𝑖 ∈  .

Remark 3. The feature partitions in  play an important role in
implementing the idea of using multiple neural networks to model
complex dynamics. With a finite number of partitions in  , i.e.,𝑁 = ||

where || is the cardinal of  , implies the number of subsystems
in neural hybrid automaton model , and the subsystem 𝑖 ∈  =
{1,… , 𝑁} is associated to partition 𝑖. Based on feature partition  ,
the partitions for state space  , i.e., invariants, can be also defined as
𝑖 in the form of

𝑖 = {𝑥 ∣ 𝑥 = 𝛩−1(𝑧), ∀𝑧 ∈ 𝑖}. (4)

Remark 4. It is noted that, in the description for the system dynamics,
the inputs of ELMs consider both the state variables 𝑥(𝑘) as well as
external inputs 𝑢(𝑘), e.g., control input, or external disturbances, while
the outputs of ELMs are the state variables at next time step, i.e.,

𝑥(𝑘 + 1) = 𝛷𝑖(𝑥(𝑘), 𝑢(𝑘)). (5)

The transitions, guards, and invariants can be subsequently defined as
long as the partitions are obtained and as a result, a neural hybrid
automaton model can be established. For example, the guard function,
denoted as 𝑔(𝑒𝑖𝑗) ∶  → , is responsible for determining the transition
between feature space partitions in the neural hybrid automaton model.
It takes the current state or event 𝑒𝑖𝑗 as input and maps it to the
corresponding guard . The guard function is defined based on the
specific problem requirements and the characteristics of the system
under study. It encapsulates the decision boundaries or conditions that
trigger a transition between partitions. Investigating the guard function
of the neural hybrid automaton will give us a chance to discover the
transition relationship within the neural hybrid automaton.

As a class of SNN, an ELM is a single-hidden-layer neural network
that offers a strong generalization performance as well as a quick train-
ing speed. Due to its simple structure and easy training mechanism, we
employ ELMs in our modeling framework as dynamical system behavior
approximators. For an ELM 𝛷 with 𝐿 hidden nodes, it is in the form of

𝛷(𝑥) =
𝐿
∑

𝑖=1
𝛽𝑖ℎ𝑖(𝑥) = ℎ(𝑥)𝛽, (6)

where the output nodes are linear and 𝛽 = [𝛽1,… , 𝛽𝐿]𝑇 is the output
weight vector. ℎ(𝑥) = [ℎ1(𝑥),… , ℎ𝐿(𝑥)] is the activation functions for
hidden layer neurons. In particular, ℎ𝑖(𝑥) is defined by

ℎ (𝑥) = 𝐺(𝑥, 𝑎 , 𝑏) = 𝑔(𝑎T𝑥 + 𝑏), 𝑎 ∈ R𝑑 , 𝑏 ∈ R (7)
𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖

Neurocomputing 562 (2023) 126879T. Wang et al.

a
l

a
o
L

where 𝑔(⋅) is the activation function for hidden layer neurons, and 𝑎𝑖
nd 𝑏𝑖 are the input weight and the bias of the 𝑖th neuron in the hidden
ayer.
Given𝑁 arbitrary distinct input–output samples {𝑥𝑖, 𝑡𝑖} with 𝑥𝑖 ∈ R𝑛

nd 𝑡𝑖 ∈ R𝑑 , the objective of training ELM, i.e, by approximating its
utput matrix with the target matrix 𝐓 in locating the minimal norm
east-Squares (LS) solution for a set of 𝑁 input–output sample pairs
written in

min
𝛽∈R𝐿×𝑑

‖𝐇𝛽 − 𝐓‖ , (8)

in which 𝐇 is the randomized hidden layer output matrix as

𝐇 =
⎡

⎢

⎢

⎣

ℎ(𝑥1)
⋮

ℎ(𝑥𝑁)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

ℎ1(𝑥1) … ℎ𝐿(𝑥1)
⋮ ⋱ ⋮

ℎ1(𝑥𝑁) … ℎ𝐿(𝑥𝑁)

⎤

⎥

⎥

⎦

,

and 𝐓 is the target output matrix, in this case, is the sample output in
the form of

𝐓 =
⎡

⎢

⎢

⎣

𝑡T1
⋮
𝑡T𝑁

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑡1,1 ⋯ 𝑡1,𝑑
⋮ ⋱ ⋮

𝑡𝑁,1 ⋯ 𝑡𝑁,𝑑

⎤

⎥

⎥

⎦

.

The following Mean Square Error (MSE) is used as a metric for
performance assessment, using 𝑁 sets of input and output samples as

𝑀𝑆𝐸 = 1
𝑁

‖

‖

‖

‖

‖

‖

𝑁
∑

𝑖=1
(𝛷(𝑥𝑖) − 𝑡𝑖)

‖

‖

‖

‖

‖

‖

, (9)

in which 𝑥𝑖, 𝑡𝑖 are the input and output of 𝑖th sample pair in the 𝑁
sample data set, respectively.

Different from using one single neural network for modeling dy-
namical systems, a neural hybrid automaton model  resorts to ap-
proximating the local dynamics in each individual. The complexity
of learning will be reduced compared with globalized methods with
neural networks of smaller sizes. Additionally, the distributed modeling
framework allows for parallel training, which reduces training time.

2.2. Set-valued reachability analysis

In this paper, we aim at reducing the computational cost of reacha-
bility analysis of data-driven neural network models of complex dynam-
ical systems. A family of necessary definitions regarding reachability
analysis is introduced.

Definition 4. Given a neural network 𝛷 and an input set  , the
following set

 =
{

𝑦 ∈ R𝑑 ∣ 𝑦 = 𝛷(𝑢), 𝑢 ∈ 
}

, (10)

is called the output set of neural network 𝛷. Furthermore, we use [𝛷]
to denote the set-valued reachability computation procedure for neural
network 𝛷, i.e.,

 = [𝛷](). (11)

Remark 5. There are a number of tools available to implement set-
valued reachability computation [𝛷] for neural networks such as those
tools mentioned in [16,22], and [25].

For a dynamical system (1), the reachable set is defined by the
following definition.

Definition 5. Given dynamical system (1) with initial set (0) and
input set  , the reachable set at time 𝑘 is

(𝑘) =
{

𝑥(𝑘; 𝑥0, 𝑢(⋅)) ∈ R𝑑 ∣ 𝑥0 ∈ (0), 𝑢(𝑘) ∈ 
}

, (12)

and the union of (𝑘) over [0, 𝐾] defined by

(𝐾) =
𝐾
⋃

𝑘=0
(𝑘), (13)
4

is the reachable set over time interval [0, 𝐾].
When modeling with a single neural-network model 𝛷 to approxi-
mate 𝑓 in (1), the reachable set for model 𝛷 during time interval [0, 𝐾]
can be expressed by

(𝑘+1) = [𝛷]((𝑘),), (14)

(𝐾) =
𝐾
⋃

𝑘=0
(𝑘). (15)

However, this reachable computation process usually represents
high computational complexity due to the large size of the single neural
network model 𝛷. In this paper, we intend to use a collection of
small-size neural networks 𝛷𝑖, namely ELMs, in neural hybrid automa-
ton model  to circumvent high computational cost in reachable set
computation while maintaining modeling accuracy.

It is worth noting that this study makes use of reachable set com-
putation to demonstrate the computational efficiency of neural hy-
brid automata. This benefit can be extended to other computationally
expensive tasks.

2.3. Problem formulation

Our proposed modeling framework aims to model complex dy-
namical systems with neural hybrid automaton and provide set-valued
reachability analysis. Particularly, by reducing the computational com-
plexity in computationally expensive tasks such as training and veri-
fication, this framework will be competitive with conventional neural
network modeling methods. However, applying the framework of neu-
ral hybrid automaton in modeling is challenging for the following
problems.

Problem 1. Given samples of system trajectories and feature 𝛩 of the
system, how does one model the dynamical system with a neural hybrid
automaton under Definition 3 through a data-driven process?

Since the multiple ELMs are trained to approximate the system
dynamics, when it comes to the analysis of set-valued reachability, we
need to handle the relationships between the input set and different
partitions.

Problem 2. Given an initial set (0) and input  and neural hybrid
automaton model , how does one develop a scalable reachable set
computation method for neural hybrid automaton, especially for situ-
ations when the input set intersect multiple partitions in the feature
space?

The above two problems are the main concerns of this paper. The
remainder of this paper will aim to solve the above two problems in
detail.

3. Neural hybrid automaton modeling

The detailed neural hybrid automaton modeling framework focus-
ing on solving Problems 1 and 2 will be presented in this section.
The details include mode clustering and dynamics learning, as well as
the Split and Combine processes for reachability analysis, as shown in
Fig. 2.

To begin with, the training data is segmented according to partition
 for the subsequent learning procedures.

Definition 6. Given a training set ̂ = {𝐗,𝐓} in which 𝐗 ∈
R(𝑑+𝑛)×𝑞 , 𝐓 ∈ R𝑑×𝑞 are the input, output matrices for 𝑞 samples, and
pre-specified partitions ̃ = {1,… ,𝑀} under feature function 𝛩, a
collection of𝑀 segmented input–output data pair set can be defined
as

 = {1,2,… ,𝑀}, (16)

where any input–output pair {𝑥𝑖, 𝑡𝑖} ∈ 𝑖 satisfies

𝛩(𝑥) ∈  , ∀{𝑥 , 𝑡 } ∈  . (17)
𝑖 𝑖 𝑖 𝑖 𝑖

Neurocomputing 562 (2023) 126879T. Wang et al.

d

R

f

t

A
{
w

Fig. 2. Proposed framework for neural hybrid automaton modeling via ELM, including dynamics learning and reachability analysis. Specifically, the automaton approximates the
ynamics through samples, while we analyze the reachable set with given initial set input and external set input via Split and Combine.
t
i

i
w
𝑖

i

t

𝐓

e

𝑀

R
u
t
g
t

emark 6. It is noted that the pre-specified partitions ̃ = {1,… ,𝑀}
such as the initial lattices of feature space are not the partitions in
 = {1,… ,𝑁} in a neural hybrid automaton model. There is a mode
clustering process developed to generate an optimized partition  out
of ̃ in the modeling framework, and normally 𝑁 ≪ 𝑀 .

By the definition of segmented training data sets  = {1,
2,… ,𝑀}, we are ready to use the proposed neural hybrid automa-
ton model to learn complex dynamics.

3.1. Mode clustering and dynamics learning

First, a Pre-Processing procedure is then developed focusing on
obtaining an initial partition ̃ = {1,… ,𝑀} that are in the form
of lattices.

Definition 7. Given system state set  , a feature function 𝛩, and a
training set ̂ , a Pre-Processing procedure is to initialize the feature
space ̂ = [𝛩]() to a collection of lattices ̃ = {1,2,… ,𝑀} that
satisfies: (1) ̂ ⊆

⋃𝑀
𝑖=1 𝑖; (2) 𝑖

⋂

𝑗 = ∅, 𝑖 ≠ 𝑗, ∀𝑖, 𝑗 = 1, 2,… ,𝑀 ; (3)
The data set ̂ is segmented into  = {1,… ,𝑀}.

Remark 7. There are a variety of ways to implement the Pre-Processing
procedure. In this paper, we use a bisection-based method [43], where
the input space is in the form of interval set  = [ ,] ⊆ R𝑑 ,
we set a tolerance coefficient 𝜆 ≥ 1 to ensure at least 𝑞𝑖 samples
for 𝑖 are selected in segmented data. Pre-processing can be written
in pseudo code given in Algorithm 1 in [44], with respect to 𝑑(𝑖,𝑘)
denotes the length of 𝑘th dimension for 𝑖th lattice (interval), namely,
𝑑(𝑖,𝑘) =  𝑖,𝑘 −  𝑖,𝑘. This process is influenced by the dimensionality
of the feature space, namely, the higher the dimension of the feature
space, the more lattices will be divided, and the computation time will
be longer.

In neural hybrid automaton , we aim to train the ELMs while
mitigating over-fitting. To mitigate over-fitting [45] of trained neural
network in approximating complex dynamics, there is a tradeoff be-
tween the complexity of the neural network model namely, layers and
neurons, and the amount of training data. In this paper, since a simple
neural network may lead to worse modeling accuracy, we prefer to
assume that sufficient data is available for training ELM in each 𝑖
or ELMs with proper structure complexities.
Under Assumption 1, the segmented data will provide sufficient

raining samples for ELMs learning dynamics.

ssumption 1. Given a collection of segmented data sets  =
1,… ,𝑀}, we assume that each 𝑖 contains at least 𝑞𝑖 samples
5

hich are sufficient to avoid over-fitting for the ELM-based learning. a
After Pre-Processing and under Assumption 1, the next step is to
rain multiple ELMs to approximate the local system dynamical behav-
ors with segmented data set via the following optimization problem

min
𝛽𝑖∈R𝐿×𝑑

‖

‖

𝐇𝑖𝛽𝑖 − 𝐓𝑖
‖

‖

(18)

n which 𝐇𝑖 denotes the randomized hidden layer output matrix of 𝛷𝑖
ith the input as 𝐗𝑖, while 𝐓𝑖 is the target output matrix from 𝑖,
= 1, 2,… ,𝑀 . The training error can be obtained under (9).
The above training process will result in𝑀 ELMs trained as dynam-

cal descriptions for 𝑀 lattices, which is unacceptable for the majority
of  modeling cases since the number of lattices is big. Therefore,
merging or clustering obtained modes is the key to modeling a more
realistic . A mode clustering procedure will be developed to obtain
he appropriate partitions by merging the lattices.
Considering two segmented training set 𝑖, 𝑗 , 𝑖 ≠ 𝑗 for 𝑖th

and 𝑗th lattices, a given ELM structure 𝛷, namely the input weight
matrix, activation function, and bias are given, the training process is
formulated as

min
𝛽𝑖,𝑗∈R𝐿×𝑑

‖

‖

‖

𝐇𝑖,𝑗𝛽𝑖,𝑗 − 𝐓𝑖,𝑗
‖

‖

‖

, (19)

in which 𝐇𝑖,𝑗 , 𝐓𝑖,𝑗 are the combined hidden layer output matrix and
target output matrix, which are defined in the following form of

𝐇𝑖,𝑗 =
[

𝐇𝑖
𝐇𝑗

]

,

𝑖,𝑗 =
[

𝐓𝑖
𝐓𝑗

]

.

After we obtain the 𝛽𝑖,𝑗 , since the input weight matrix and the bias
vectors of the ELM are given, 𝛷𝑖,𝑗 will be obtained. Given a training
rror tolerance 𝛾 as the mode merge criterion such that if

𝑆𝐸(𝛷𝑖,𝑗 (𝐗𝑖,𝑗) − 𝐓𝑖,𝑗) ≤ 𝛾 (20)

holds, then the two lattices will be considered to have similar dynam-
ical behaviors that can be described by a common neural network
𝛷𝑖,𝑗 , hence their corresponding lattices 𝑖 and 𝑗 can be merged, and
expected to be governed by the same ELM. The process of merging dif-
ferent lattices is called Merging. After Merging, the number of partitions
will be reduced and the set of lattices will be the set of partitions of our
neural hybrid automaton model. The Merging and Learning process is
given in Algorithm 1.

emark 8. We merge the redundant lattices that are in a similar mode
nder training performances for their corresponding ELMs and obtain
he partitions  that subsequently define transitions, invariants, and
uards for the neural hybrid automaton model after Merging, i.e., the
ransition 𝑖 → 𝑗 can be abstracted if there exist system state 𝑥(𝑘) ∈ 𝑖

nd successive state 𝑥(𝑘 + 1) ∈ 𝑗 , as aforementioned in Remarks 3

Neurocomputing 562 (2023) 126879T. Wang et al.

h
h
s
f

i
b
i
c

D

w
t



T
S

r

D
n



Algorithm 1: Mode Merging and Dynamics Learning
Input : Set of Lattices {1,2,… ,𝑀}; Set of Samples

{1,2,… ,𝑀}; Training Error Tolerance 𝛾.
Output: Merged Partitions  = {1 … ,𝑁}; ELMs

𝛷 = {𝛷1,… , 𝛷𝑁}.
1 𝓁 ← 𝑀 , 𝑁 ← 1;
/* Segmented partitions merge */

2 while 𝑁 < 𝓁 do
3 𝑛 ← 1;
4 while 𝑛 ≤ 𝓁 do
5 𝑛 ← 𝑛 + 1;
6 Solve min𝛽𝑁,𝑛∈R𝐿×𝑑 ‖

‖

𝐇𝑁,𝑛𝛽𝑁,𝑛 − 𝐓𝑁,𝑛
‖

‖

;
7 if 𝑀𝑆𝐸(𝛷𝑁,𝑛(𝐗𝑁,𝑛) − 𝐓𝑁,𝑛) ≤ 𝛾 then
8 𝑁 ← {𝑁 ,𝑛};
9 𝓁 ← 𝓁 − 1;
10 end
11 end
12 𝑁 ← 𝑁 + 1;
13 end

/* Generate ELM models */
14 𝑖 ← 1;
15 while 𝑖 ≤ 𝑁 do
16 Solve min𝛽∈R𝐿×𝑑 ‖

‖

𝐇𝑖𝛽𝑖 − 𝐓𝑖
‖

‖

to obtain 𝛷𝑖
17 end
18 return  = {1 … ,𝑁}; 𝛷 = {𝛷1,…𝛷𝑁}.

and 4. After mode clustering and dynamics learning, we will be able to
obtain the explicit  for complex dynamics.

3.2. Reachability analysis via Split and Combine

In our neural hybrid automaton framework, a collection of ELMs
𝛷 = {𝛷1,… , 𝛷𝑁} are employed, and the state space  are partitioned
into a family of subsets 𝛤 = {1,… ,𝑁} in which 𝑖 is determined by
partition  and defined by (4). The reachable set computation of neural
ybrid automaton  can be reduced to the output set computation of
each ELM, which is summarized by the following theorem.

Theorem 1. Given a neural hybrid automaton  with an initial set
(0) ∈  and an input set  , the reachable set (𝑘) can be computed
recursively as

(𝑘+1) =
𝑁
⋃

𝑖=0
[𝛷𝑖](̂(𝑘),𝑖,), (21)

where ̂(𝑘),𝑖 is the intersection of (𝑘) and 𝑖, i.e.,

̂(𝑘),𝑖 = (𝑘) ∩ 𝑖, 𝑘 = 0, 1,… , 𝐾, (22)

and the reachable set of  over [0, 𝐾] is

(𝐾) =
𝐾
⋃

𝑘=0
(𝑘). (23)

Proof. Let us consider set (𝑘) at time instant 𝑘, the following result
can be obtained
𝑁
⋃

𝑖=0
̂(𝑘),𝑖 =

𝑁
⋃

𝑖=0

(

(𝑘) ∩ 𝑖
)

=

(𝑁
⋃

𝑖=0
𝑖

)

∩ (𝑘)

=  ∩ (𝑘),
6

which, due to (𝑘) ∈  , leads to
𝑁
⋃

𝑖=0
̂(𝑘),𝑖 = (𝑘). (24)

For each ̂𝑖, the ELM 𝛷𝑖 is associated with it for state evolution to
𝑘 + 1, therefore one has

(𝑘+1) =
𝑁
⋃

𝑖=0
[𝛷𝑖](̂(𝑘),𝑖,). (25)

As a result, reachable set (𝐾) can be obtained by (23) according to
Definition 5. The proof is completed. □

Remark 9. Two points concerned with computational complexity and
efficiency are addressed:

• From (21) in Theorem 1, it implies that it requires to compute
the output sets of a collection of ELMs 𝛷𝑖, 𝑖 = 1,… , 𝑁 because
the input sets of ELMs may intersect multiple partitions in the
state space. However, in practice, we only need to consider a very
small number of ̂(𝑘),𝑖 since the reachable set (𝑘) only intersects
with very few of state partitions 𝑖 and the majority of ̂(𝑘),𝑖
satisfy ̂(𝑘),𝑖 = ∅ in (22). Therefore, the employment of multiple
local models in proposed neural hybrid automata will not cause
a significant increase in computation complexity. On the other
hand, the employment of multiple small neural networks will
significantly enhance computational efficiency in reachable set
computation.

• Considering that the computational complexity of reachable set
computation heavily relies on the complexity of the neural net-
work, i.e., with a larger number of layers and neurons, the
computation for reachable sets will be more complex hence more
time will be consumed. Compared with modeling dynamical sys-
tems using one single large-scale neural network to approximate
the global system dynamics, a small number of neurons for each
ELM are used in our neural hybrid automaton framework, since
they are sufficient to approximate local system behaviors instead
of global dynamics. This core feature is the key to enable compu-
tational efficiency in set-valued reachability analysis for neural
hybrid automaton.

To implement Theorem 1 in reachable set computation for a neural
ybrid automaton , we need to split the current reachable set (𝑘) as
hown in (22) and combine the output reachable set of ELMs as in (21)
or solving Problem 2.
First, as discussed in Theorem 1, state space  are partitioned

nto a family of subsets 𝛤 = {1,… ,𝑁} in which 𝑖 is determined
y partition  and defined by (4). Then, the reachable set (𝑘) may
ntersect multiple partitions in 𝛤 , which means there will be a splitting
omputation of the reachable set for each intersection.

efinition 8. For a reachable set (𝑘) of a neural hybrid automaton
with a partition  , a family of subsets ̂(𝑘) = {̂(𝑘),1,… , ̂(𝑘),𝑁},
here ̂(𝑘),𝑖 = (𝑘) ∩ 𝑖 and

⋃𝑁
𝑖=1 ̂(𝑘),𝑖 = (𝑘). Given an input set  ,

he reachable set computation based on ̂(𝑘) can be performed as

(𝑘+1),𝑖 = [𝛷𝑖](̂(𝑘),𝑖,). (26)

he process of computing reachable set (𝑘+1),𝑖, 𝑖 = 1,… , 𝑁 , is called
plit.

After the Split, the Combine process is needed to obtain a complete
eachable set for the next step.

efinition 9. Given (𝑘+1),𝑖, 𝑖 = 1,… , 𝑁 , the reachable set (𝑘+1) of
eural hybrid automaton  at time step 𝑘 + 1 is computed by

(𝑘+1) =
𝑁
⋃

(𝑘+1),𝑖 (27)

𝑖=1

Neurocomputing 562 (2023) 126879T. Wang et al.

g

Fig. 3. The samples are segmented based on feature and partitions, in neural hybrid automaton modeling, neural networks only need to approximate {𝑓1 , 𝑓2 , 𝑓3 , 𝑓4} respectively,
instead of learning the global dynamics, this helps to simplify the configuration of sub-neural networks. As for reachability analysis from (𝑘) to (𝑘+1), Split process will serve as
uard function 𝑔(𝑒21) and the invariant function 𝑖𝑛𝑣(1).
i
r
C
f

f

a
R
t

w
𝑥
T

Algorithm 2: Pseudo Code for Split and Combine
Input : Reachable set (𝑘); Neural Hybrid Automaton .
Output: Output Reachable Set (𝑘+1).

1 𝑖 ← 1
/* Split by Definition 8 */

2 while 𝑖 ≤ 𝑁 do
3 if (𝑘) ∩ 𝑖 ≠ ∅ then
4 ̂(𝑘),𝑖 ← (𝑘) ∩ 𝑖
5 (𝑘+1),𝑖 ← [𝛷𝑖](̂(𝑘),𝑖,)
6 else
7 (𝑘+1),𝑖 ← ∅
8 end
9 𝑖 ← 𝑖 + 1
10 end

/* Combine by Definition 9 */
11 (𝑘+1) ←

⋃𝑁
𝑖=1 (𝑘+1),𝑖

12 return (𝑘+1)

by which the Combine process derives the reachable set at 𝑘 + 1 time
instant.

With the Split and Combine defined above, the reachable set of 
can be paralleling computed at time instance 𝑘 if (𝑘) intersects with
multiple partitions in state space. The Split and Combine process is
detailed in Algorithm 2.

In summary, neural hybrid automaton modeling has the advan-
tages of simplifying the learning model and mitigating overfitting via
learning the dynamics within localized subsystems. For example, the
configuration of sub-neural networks can be simplified due to the
idea that mapping within a specific partition contains less information,
i.e., in Fig. 3 instead of approximating 𝑓 neural hybrid automaton
model approximates {𝑓1, 𝑓2, 𝑓3, 𝑓4} through segmented input–output
data pair set  with a set of ELMs 𝛷. As for reachability analysis, the
Split process will work efficiently as the guard and invariant function
for reachable set computation, while the Combine process obtains the
complete reachable set.

4. Application to modeling of complex dynamics

In this section, modeling cases of classical limit cycle and the human
handwritten motions with our proposed neural hybrid automaton will
7

be given to illustrate our framework. We will show the advantage of our a
proposed modeling framework by verifying our neural hybrid system
model and the conventional neural network model through analysis of
set-valued reachability.

4.1. Modeling of limit cycle dynamics

A numerical example of the limit cycle borrowed from [46] is used
to validate our approach. The dynamical system model is given in the
form of

𝑟(𝑘 + 1) = (1 + 𝜏)𝑟(𝑘) − 𝜏𝑟3(𝑘) + 𝜏𝑢(𝑘)

𝜃(𝑘 + 1) = 𝜃(𝑘) + 𝜏𝜔 (28)
𝑢(𝑘) = 𝜇 + 𝛿𝜁 (𝑘)

where 𝜔 = 2𝜋∕3 and 𝜏 = 0.1 are the angular velocity and time step
width, respectively. The uniform random number 𝜁 (𝑘) ∼ 𝑈 (−1, 1).
Namely, the external input 𝑢(𝑘) ∼ 𝑈 (𝜇 − 𝛿, 𝜇 + 𝛿) (𝜇 = 0.2 and 𝛿 = 1.5)
in which 𝑈 denotes uniform distribution.

We generate the samples from the given model (28) with random
initial conditions when 𝑟(0) ∈ [−4, 4], 𝜃(0) ∈ [−𝜋, 𝜋] with (28). The
llustration of 150 trajectories is given in Fig. 4(a) which can be used as
eferences for training as well as evaluation of modeling performance.
onsidering the samples generated from the dynamics, the input region
or  in the form of interval is  = [ ,] where  = [4, 4, 1.7]𝑇 and
 = [−4,−4,−1.3]𝑇 . The modeling procedure of  is summarized as
ollows:

• Determine the structure of ELMs, which have 20 ReLU neurons
for each ELM.

• In the Pre-processing, it generates the initial partitions with 149
lattices for the successive modeling of .

• Then, by the mode clustering, i.e., the Merging process, the
number of partitions is reduced to 50 with a collection of 50 ELMs
𝛷 = {𝛷1,… , 𝛷9}.

• Determine the transitions among partitions based on the partition
Merging result.

To compare our approach with a single neural network modeling
pproach, a single-ELM model 𝛷 which has 200 hidden neurons with
eLU as activation functions is also trained for comparison. The trajec-
ories with random initial conditions of the proposed hybrid automaton
and a single-ELM model are given in Fig. 5. There are 50 trajectories
ith 200 steps randomly generated from random initial states satisfying
1(0) ∈ [−4, 4], 𝑥2(0) ∈ [−4, 4], and 𝑢(𝑘) ∈ [−1.3, 1.7] in Fig. 6.
he average training times and MSE performances of twenty times
re given in Table 1. It can be explicitly observed that the neural

Neurocomputing 562 (2023) 126879T. Wang et al.

P

s

F
p
m
N
s
i
w

4

t
H
u
t

a

Fig. 4. (a) Trajectories of the limit cycle with random initial condition 𝑟(0) ∈ [−4, 4], 𝜃(0) ∈ [−𝜋, 𝜋] each of which contains 150 samples and the input 𝑢 ∼ 𝑈 (−1.3, 1.7) (b)
re-processing the limit cycle model (blue lattices) and merged partitions (green, red and blue squares, respectively).
Fig. 5. Comparison of trajectories given random initial conditions between a single-ELM-based model and our proposed hybrid automaton model, which indicates that both learning
ystems share a similar dynamical behavior given random initial conditions.
d
t
t
m
e

Table 1
Model performance and computation time comparison.
Method MSE Training Reachable set

Single neural network 0.0817 5.28 s 1.0062 × 104 s
Neural hybrid automaton 0.0519 0.36 s 956.0135 s

hybrid automaton model  with 20 neurons in each ELM can very
well approximate the original system behaviors with better accuracy
and much less training time other than the single neural network model
with 200 neurons.

The comparison of set-valued reachability analysis using NNV in
[25] between  and the single neural network model is shown in
ig. 6. It can be observed that the neural hybrid automaton model can
roduce a similar reachable set with a single neural network, which is
uch more preferable in safety verification for real-time applications.
otably, the computation time of reachable set computation has been
ignificantly reduced compared with the single neural network model,
.e.,  only needs 9.5% of time consumption of the single neural net-
ork model to perform the same 200-step reachable set computation.

.2. Modeling of human handwritten motions

Learning-based methods have been promoted as an effective way
o model motion dynamics [47,48]. Consider a modeling problem for
uman handwritten motions, i.e., modeling human writing behaviors
sing LASA data set1 [49] which contains 20 handwriting demonstra-
ions of humans. Each handwriting consists of 7 trajectories with 1000

1 The LASA dataset is a library of 2D human handwriting motions available
t: https://cs.stanford.edu/people/khansari/download.html.
8

s

Fig. 6. Set-valued reachability analysis for 200 steps of a single neural network model
(blue) and our proposed neural hybrid automaton model (red) given initial condition
𝑥1 ∈ [−3.02,−3], 𝑥2 ∈ [−2.603,−2.5].

discrete-time samples of human demonstrations, some examples are
shown in Fig. 7.

We assume that there exists a nonlinear function 𝑓 ∶  →  that
escribes the motions of different human handwriting patterns, and
hus 𝑓 can be approximated by one or several neural networks that are
rained based on the samples. This is a typical task in human behavior
odeling that relies on the data and requires no prior system knowl-
dge. However, approximating 𝑓 is challenging due to the following

pecifics:

https://cs.stanford.edu/people/khansari/download.html

Neurocomputing 562 (2023) 126879T. Wang et al.

1

t
p
b
s
i
s
m
n
f
m

f

Fig. 7. Human handwriting demonstrations of Angle, C shape, L shape, Spoon, P shape from LASA data set [49], demonstrations contain seven trajectories, each of which has
000 location samples.
Table 2
MSE and computation time of single neural network model.
Data set MSE Training Reachable set

Angle 2.739 × 10−4 4.50 × 10−2 s 3.6466 × 104 s
C Shape 2.375 × 10−4 4.79 × 10−2 s 9.0068 × 104 s
L Shape 1.972 × 10−4 4.37 × 10−2 s 9.7783 × 104 s
Spoon 1.767 × 10−4 4.30 × 10−2 s 8.4465 × 104 s
P Shape 2.301 × 10−4 4.50 × 10−2 s 8.5201 × 104 s

• Given the unpredictable behavior of humans, 𝑓 is difficult to
define mathematically, and therefore, learning-based methods
may be effective in approximating 𝑓 .

• 𝑓 depends on demonstrations with small sample sizes, a complex
neural network, such as DNN may not get well-trained.

• Trajectories of demonstrations are determined by humans with
sudden changes in some local area, which suggests that one
single generic model may not be able to capture these complex
dynamics.

After approximating 𝑓 with the help of neural networks, we need
o verify whether the model performs well when the initial condition is
erturbed, namely, by analyzing the dynamical behavior of the model
y giving an initial input set. The performance of a model from the per-
pective of verification, e.g., time consuming, accuracy, etc., is of great
mportance in set-valued reachability analysis. Based on [15,22], the
cale of a neural network can significantly influence the performance of
odel verification. In other words, choosing localized and small-scale
eural networks to approximate the dynamics will benefit the model
rom a verification point of view. Hence, our neural hybrid automaton
odeling framework will be applied to illustrate its effectiveness.
The modeling process and comparison results are summarized as

ollows:

• We will demonstrate our proposed framework using the LASA
data set, in which ELMs are with 20 ReLU-activated neurons with
randomized input weight matrix and bias vector as the structure
of the model. To demonstrate the effectiveness of our modeling
framework, an ELM with a single hidden layer that contains 200
ReLU-activated neurons are trained as a single-neural-network
reference model.

• Samples of different handwriting demonstrations will be modeled
by both a neural hybrid automaton and a single neural network.
9

The state space  for our neural hybrid automaton  will be
an interval determined by the maximum and minimum value
of training data. For the 2-dimensional state space, the feature
function will be a linear function with an identity matrix. Then
the Pre-processing and Merging will obtain partitions, which sub-
sequently define invariants and transitions. The local dynamics
are also learned and represented by a collection of ELMs. The
partitions after Pre-processing and Merging are given in the mid-
dle of Fig. 8. For example, there are three merged partitions of P
shape modeling with our proposed automaton, which are marked
in green, blue, and red squares, respectively.

• After training our proposed model under partitions, different ini-
tial conditions are given to compare the trajectories between the
single neural network model and neural hybrid automaton model.
In Fig. 8, a detailed illustration of the 1000-step-trajectories of
the single neural network models is given on the left, while
the trajectories of our proposed neural hybrid automaton models
are given on the right. The trajectories of the neural hybrid
automaton models and single neural network models are similar
by observing Fig. 8, which indicates the two models share similar
patterns, but it is noted that the neural hybrid automaton model
has much fewer neurons.

• Comparing with Fig. 7, both learning systems are able to reflect
the patterns of the system given random initial conditions. We
can perform a set-valued reachability analysis of  and the single
neural network models as given in Fig. 9. Our proposed modeling
framework has an advantage in reachability analysis compared
with a single neural network model, the average MSE perfor-
mance and the computation time of twenty times comparison are
given in Tables 2 and 3, respectively, indicating that their com-
putational costs of reachability analysis are significantly reduced
while maintaining similar training accuracy levels as single-ELM
models. The training time can be reduced as well when we use
neural hybrid automaton models.

• When modeling with our neural hybrid automaton, there will be
circumstances that the states of  in the feature space run out of
the partitions, namely, 𝑥(𝑘) ∉  . In these cases, we will be using
the single-ELM model as a backup model to handle the part of
trajectories that are outside the partitions as well as for the set-
valued reachability analysis for the reachable sets that are outside
the partitions.

Neurocomputing 562 (2023) 126879T. Wang et al.

t

Fig. 8. Simulations of Single-ELM models are on the left. Pre-processing and Merging process is in the middle. Simulations of hybrid models are on the right.
Table 3
MSE and computation time of neural hybrid automaton.
Data set MSE Training Reachable set

Angle 4.787 × 10−4 8.60 × 10−3 s 503.0428 s
C Shape 8.323 × 10−4 1.25 × 10−2 s 3308.2473 s
L Shape 4.175 × 10−4 7.05 × 10−3 s 1513.7453 s
Spoon 4.643 × 10−4 7.57 × 10−3 s 69.9705 s
P Shape 9.484 × 10−4 4.71 × 10−3 s 127.3636 s

In summary, the advantages of our proposed neural hybrid automa-
on framework are well-demonstrated by modeling examples in

• Mitigating overfitting: pre-processing procedure divides the state
space into multiple pre-specified lattices based on the localized
information in the form of sample numbers. According to UAT
10
and under Assumption 1, the training of ELMs is able to mitigate
overfitting. In practice, 𝑞𝑖 in Assumption 1 can be easily tuned
according to the configuration of ELMs.

• Scalability improved and computationally efficient: due to the dis-
tributed configuration of neural hybrid automaton, simple ELMs
instead of a general complex one will be activated and involved
in computing, which will significantly improve the model scala-
bility. The distributed learning framework allows parallel training
and verification of multiple simple ELMs will promote computa-
tion efficiency.

• Fast reachability verification: fast set-valued reachability analysis
for our neural hybrid automaton is possible for the Split and
Combine processes will activate simple ELMs based on invariants
and allow parallel computing.

Neurocomputing 562 (2023) 126879T. Wang et al.
Fig. 9. Set-valued reachability analysis of  (red) and the single-ELM model (blue) for 1000 time steps for the models of Angle, C shape, L shape, Spoon, and P shape.
5. Conclusion and future work

In this paper, a neural hybrid automaton modeling framework
including, pre-processing, mode clustering & dynamics learning via
ELM, and set-valued reachability analysis through Split and Combine is
developed to model complex dynamical systems. The proposed learning
framework is able to model the dynamics with multiple ELMs while
maintaining accuracy in approximating the dynamics compared with
the conventional neural network model. Besides, the scalability of
neural hybrid automaton will improve due to parallel computing in
training and verification.

This computationally efficient learning framework offers the advan-
tage of improving the scalability of the learning model while mitigating
overfitting. Further research is recommended to explore its potential in

• A novel feature function that can capture the key information
of the dynamics and improve the performance of neural hybrid
automaton in high-dimensional modeling.

• A novel partitioning method in pre-processing and mode cluster-
ing, to better approximate the dynamical system with a simple
neural network structure, subsystems can be divided according
to entropy or with prior information from the system.

• Neural hybrid automaton learning with other state-of-the-art
learning methods such as DNN, radial basis function neural
network, kernel ELM, etc.

CRediT authorship contribution statement

Tao Wang: Methodology. Yejiang Yang: Investigation, Writing –
original draft, Software. Weiming Xiang: Conceptualization, Formal
analysis, Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Weiming Xiang reports financial support was provided by National Sci-
ence Foundation. Weiming Xiang reports a relationship with National
Science Foundation that includes: funding grants.

Data availability
11

Data will be made available on request.
Acknowledgments

This work was partially supported by the National Science Foun-
dation, under NSF CAREER Award no. 2143351, NSF CNS Award no.
2223035, and NSF IIS Award no. 2331938.

References

[1] J.E. Sierra-García, M. Santos, Switched learning adaptive neuro-control strategy,
Neurocomputing 452 (2021) 450–464.

[2] Y. Qi, X. Zhao, J. Huang, Data-driven event-triggered control for switched
systems based on neural network disturbance compensation, Neurocomputing
490 (2022) 370–379.

[3] N. Kumar, M. Rani, Neural network-based hybrid force/position control of
constrained reconfigurable manipulators, Neurocomputing 420 (2021) 1–14.

[4] X. Li, X. Wang, X. Zheng, Y. Dai, Z. Yu, J.J. Zhang, G. Bu, F.-Y. Wang, Supervised
assisted deep reinforcement learning for emergency voltage control of power
systems, Neurocomputing 475 (2022) 69–79.

[5] S.-W. Fu, Y. Tsao, X. Lu, SNR-aware convolutional neural network modeling for
speech enhancement, in: Interspeech, 2016, pp. 3768–3772.

[6] A. Mollalo, K.M. Rivera, B. Vahedi, Artificial neural network modeling of novel
coronavirus (COVID-19) incidence rates across the continental United States, Int.
J. Environ. Res. Public Health 17 (12) (2020) 4204.

[7] M. Gridach, Hybrid deep neural networks for recommender systems,
Neurocomputing 413 (2020) 23–30.

[8] J. Zhang, Y. Luo, Z. Tao, J. You, Graphic-processable deep neural network for
the efficient prediction of 2D diffractive chiral metamaterials, Appl. Opt. 60 (19)
(2021) 5691–5698.

[9] C.P. Chen, Z. Liu, Broad learning system: An effective and efficient incremental
learning system without the need for deep architecture, IEEE Trans. Neural Netw.
Learn. Syst. 29 (1) (2017) 10–24.

[10] Y. Yang, T. Wang, J.P. Woolard, W. Xiang, Guaranteed approximation error
estimation of neural networks and model modification, Neural Netw. 151 (2022)
61–69.

[11] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and
applications, Neurocomputing 70 (1–3) (2006) 489–501.

[12] O.A. Beg, H. Abbas, T.T. Johnson, A. Davoudi, Model validation of PWM DC-DC
converters, IEEE Trans. Ind. Electron. 64 (9) (2017) 7049–7059.

[13] M. Poli, S. Massaroli, L. Scimeca, S. Chun, S.J. Oh, A. Yamashita, H. Asama, J.
Park, A. Garg, Neural hybrid automata: Learning dynamics with multiple modes
and stochastic transitions, Adv. Neural Inf. Process. Syst. 34 (2021).

[14] X. Yang, O.A. Beg, M. Kenigsberg, T.T. Johnson, A framework for identification
and validation of affine hybrid automata from input-output traces, ACM Trans.
Cyber-Phys. Syst. (TCPS) 6 (2) (2022) 1–24.

[15] W. Xiang, H.-D. Tran, X. Yang, T.T. Johnson, Reachable set estimation for neural
network control systems: A simulation-guided approach, IEEE Trans. Neural
Netw. Learn. Syst. 32 (5) (2020) 1821–1830.

[16] W. Xiang, H.-D. Tran, T.T. Johnson, Output reachable set estimation and
verification for multilayer neural networks, IEEE Trans. Neural Netw. Learn. Syst.

29 (11) (2018) 5777–5783.

http://refhub.elsevier.com/S0925-2312(23)01002-0/sb1
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb1
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb1
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb2
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb2
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb2
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb2
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb2
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb3
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb3
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb3
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb4
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb4
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb4
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb4
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb4
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb5
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb5
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb5
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb6
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb6
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb6
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb6
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb6
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb7
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb7
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb7
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb8
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb8
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb8
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb8
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb8
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb9
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb9
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb9
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb9
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb9
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb10
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb10
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb10
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb10
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb10
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb11
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb11
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb11
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb12
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb12
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb12
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb13
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb13
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb13
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb13
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb13
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb14
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb14
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb14
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb14
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb14
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb15
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb15
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb15
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb15
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb15
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb16
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb16
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb16
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb16
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb16

Neurocomputing 562 (2023) 126879T. Wang et al.
[17] Y. Yang, W. Xiang, Robust optimization framework for training shallow neural
networks using reachability method, in: 2021 60th IEEE Conference on Decision
and Control (CDC), 2021, pp. 3857–3862.

[18] S. Singh, V. Sindhwani, J.-J.E. Slotine, M. Pavone, Learning stabilizable dynam-
ical systems via control contraction metrics, in: International Workshop on the
Algorithmic Foundations of Robotics, Springer, 2018, pp. 179–195.

[19] H. Tsukamoto, S.-J. Chung, Neural contraction metrics for robust estimation and
control: A convex optimization approach, IEEE Control Syst. Lett. 5 (1) (2020)
211–216.

[20] K. Neumann, A. Lemme, J.J. Steil, Neural learning of stable dynamical systems
based on data-driven Lyapunov candidates, in: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2013, pp. 1216–1222.

[21] M. Fazlyab, A. Robey, H. Hassani, M. Morari, G. Pappas, Efficient and accurate
estimation of Lipschitz constants for deep neural networks, in: Advances in
Neural Information Processing Systems, 2019, pp. 11427–11438.

[22] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, J.Z. Kolter, Beta-crown:
Efficient bound propagation with per-neuron split constraints for complete and
incomplete neural network verification, 2021, arXiv.

[23] O. Thapliyal, I. Hwang, Approximating reachable sets for neural network-based
models in real time via optimal control, IEEE Trans. Control Syst. Technol. (2023)
1–8, http://dx.doi.org/10.1109/TCST.2023.3234248.

[24] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, L. Daniel, Efficient neural
network robustness certification with general activation functions, Adv. Neural
Inf. Process. Syst. 31 (2018).

[25] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L.V. Nguyen, W. Xiang,
S. Bak, T.T. Johnson, NNV: the neural network verification tool for deep
neural networks and learning-enabled cyber-physical systems, in: International
Conference on Computer Aided Verification, Springer, 2020, pp. 3–17.

[26] M. Fazlyab, M. Morari, G.J. Pappas, Safety verification and robustness analysis of
neural networks via quadratic constraints and semidefinite programming, IEEE
Trans. Automat. Control (2020).

[27] Y. Wan, W. Zhou, J. Fan, Z. Wang, J. Li, X. Chen, C. Huang, W. Li,
Q. Zhu, POLAR-express: Efficient and precise formal reachability analysis of
neural-network controlled systems, 2023, arXiv preprint arXiv:2304.01218.

[28] M. Alajanbi, D. Malerba, H. Liu, Distributed reduced convolution neural
networks, Mesop. J. Big Data 2021 (2021) 26–29.

[29] V. Dwivedi, N. Parashar, B. Srinivasan, Distributed learning machines for solving
forward and inverse problems in partial differential equations, Neurocomputing
420 (2021) 299–316.

[30] B. Liu, Z. Ding, A distributed deep reinforcement learning method for traffic
light control, Neurocomputing 490 (2022) 390–399.

[31] Y. Kwak, W.J. Yun, J.P. Kim, H. Cho, J. Park, M. Choi, S. Jung, J. Kim, Quantum
distributed deep learning architectures: Models, discussions, and applications, ICT
Exp. (2022).

[32] Z. Gao, F. Gama, A. Ribeiro, Wide and deep graph neural network with
distributed online learning, IEEE Trans. Signal Process. 70 (2022) 3862–3877.

[33] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H.W. Chung, C. Sutton, S. Gehrmann, et al., Palm: Scaling language modeling
with pathways, 2022, arXiv preprint arXiv:2204.02311.

[34] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, G.E. Hinton, Adaptive mixtures of local
experts, Neural Comput. 3 (1) (1991) 79–87.

[35] J. Zhang, Y. Li, W. Xiao, Z. Zhang, Non-iterative and fast deep learning:
Multilayer extreme learning machines, J. Franklin Inst. B 357 (13) (2020)
8925–8955.

[36] G.A. Kale, C. Karakuzu, Multilayer extreme learning machines and their modeling
performance on dynamical systems, Appl. Soft Comput. 122 (2022) 108861.

[37] Y. Wang, K.-Y. Lin, S. Cheng, L. Li, Variational quantum extreme learning
machine, Neurocomputing 512 (2022) 83–99, URL https://www.sciencedirect.
com/science/article/pii/S0925231222011225.

[38] J. Zhang, W. Xiao, Y. Li, S. Zhang, Residual compensation extreme learning
machine for regression, Neurocomputing 311 (2018) 126–136.

[39] P. Mitra, C. Murthy, S.K. Pal, Unsupervised feature selection using feature
similarity, IEEE Trans. Pattern Anal. Mach. Intell. 24 (3) (2002) 301–312.
12
[40] M. Wang, C. Qi, H. Yan, H. Shi, Hybrid neural network predictor for distributed
parameter system based on nonlinear dimension reduction, Neurocomputing 171
(2016) 1591–1597.

[41] W. Xiang, Data-driven modeling of switched dynamical systems via extreme
learning machine, in: 2021 American Control Conference (ACC), IEEE, 2021,
pp. 852–857.

[42] M. Khansari, E. Klingbeil, O. Khatib, Adaptive human-inspired compliant contact
primitives to perform surface–surface contact under uncertainty, Int. J. Robot.
Res. 35 (13) (2016) 1651–1675.

[43] S. Skelboe, Computation of rational interval functions, BIT Numer. Math. 14 (1)
(1974) 87–95.

[44] W. Xiang, D.M. Lopez, P. Musau, T.T. Johnson, Reachable set estimation and
verification for neural network models of nonlinear dynamic systems, in: Safe,
Autonomous and Intelligent Vehicles, Springer, 2019, pp. 123–144.

[45] X. Ying, An overview of overfitting and its solutions, in: Journal of Physics
Conference Series, Vol. 1168, 2019, 022022.

[46] S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering, CRC Press, 2018.

[47] R.F. Reinhart, Z. Shareef, J.J. Steil, Hybrid analytical and data-driven modeling
for feed-forward robot control, Sensors 17 (2) (2017) 311.

[48] R.F. Reinhart, J.J. Steil, Neural learning and dynamical selection of redundant
solutions for inverse kinematic control, in: 2011 11th IEEE-RAS International
Conference on Humanoid Robots, IEEE, 2011, pp. 564–569.

[49] S.M. Khansari-Zadeh, A. Billard, Learning stable nonlinear dynamical systems
with gaussian mixture models, IEEE Trans. Robot. 27 (5) (2011) 943–957.

Tao Wang is currently a Professor of Electrical Engineer-
ing at Southwest Jiaotong University, Chengdu, Sichuan,
China. He received Ph.D. degree in Traffic Information En-
gineering and Control from Southwest Jiaotong University
in 2007. His research interests include: electric traction
control system; computer control system; control theory and
applications.

Yejiang Yang is a Ph.D. candidate in Control Science
and Engineering in the School Electrical Engineering at
Southwest Jiaotong University. He is also a visiting scholar
at the School of Computer and Cyber Sciences, Augusta
University. His research interests are in system dynamics
learning, hybrid systems.

Weiming Xiang received his B.S. degree in Automation
from East China Jiaotong University, China, in 2005, M.S.
degree in System Engineering from Nanjing University of
Science and Technology, China, in 2007, and Ph.D. degree
in Transportation Management and Planning from South-
west Jiaotong University, China, in 2014. He is currently
an Associate Professor in the School of Computer and Cyber
Sciences at Augusta University, USA. Dr. Xiang’s current
research centers on formal methods on safety, security and
reliability of learning-enabled cyber–physical systems. He
is the recipient of National Science Foundation CAREER
Award, 2022. Dr. Xiang is a Senior Member of IEEE.

http://refhub.elsevier.com/S0925-2312(23)01002-0/sb17
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb17
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb17
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb17
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb17
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb18
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb18
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb18
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb18
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb18
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb19
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb19
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb19
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb19
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb19
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb20
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb20
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb20
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb20
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb20
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb21
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb21
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb21
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb21
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb21
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb22
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb22
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb22
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb22
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb22
http://dx.doi.org/10.1109/TCST.2023.3234248
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb24
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb24
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb24
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb24
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb24
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb25
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb25
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb25
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb25
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb25
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb25
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb25
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb26
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb26
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb26
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb26
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb26
http://arxiv.org/abs/2304.01218
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb28
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb28
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb28
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb29
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb29
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb29
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb29
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb29
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb30
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb30
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb30
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb31
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb31
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb31
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb31
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb31
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb32
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb32
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb32
http://arxiv.org/abs/2204.02311
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb34
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb34
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb34
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb35
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb35
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb35
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb35
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb35
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb36
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb36
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb36
https://www.sciencedirect.com/science/article/pii/S0925231222011225
https://www.sciencedirect.com/science/article/pii/S0925231222011225
https://www.sciencedirect.com/science/article/pii/S0925231222011225
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb38
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb38
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb38
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb39
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb39
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb39
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb40
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb40
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb40
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb40
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb40
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb41
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb41
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb41
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb41
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb41
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb42
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb42
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb42
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb42
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb42
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb43
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb43
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb43
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb44
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb44
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb44
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb44
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb44
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb45
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb45
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb45
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb46
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb46
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb46
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb47
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb47
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb47
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb48
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb48
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb48
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb48
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb48
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb49
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb49
http://refhub.elsevier.com/S0925-2312(23)01002-0/sb49

	Computationally efficient neural hybrid automaton framework for learning complex dynamics
	Introduction
	Motivation and Related Works
	Contributions

	Preliminaries and Problem Formulation
	Neural Hybrid Automata
	Set-Valued Reachability Analysis
	Problem Formulation

	Neural Hybrid Automaton Modeling
	Mode Clustering and Dynamics Learning
	Reachability Analysis via Split and Combine

	Application to Modeling of Complex Dynamics
	Modeling of Limit Cycle Dynamics
	Modeling of Human Handwritten Motions

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

