
Simultaneous Learning of
Contact and Continuous Dynamics

Bibit Bianchini, Mathew Halm, and Michael Posa
GRASP Laboratory, University of Pennsylvania
{ b i b i t ,  mhalm, posa}@seas.upenn.edu

Abstract: Robotic manipulation can greatly benefit from the data efficiency, ro-
bustness, and predictability of model-based methods if robots can quickly gen-
erate models of novel objects they encounter. This is especially difficult when
effects like complex joint friction lack clear first-principles models and are usu-
ally ignored by physics simulators. Further, numerically-stiff contact dynamics
can make common model-building approaches struggle. We propose a method to
simultaneously learn contact and continuous dynamics of a novel, possibly multi-
link object by observing its motion through contact-rich trajectories. We formulate a
system identification process with a loss that infers unmeasured contact forces,
penalizing their violation of physical constraints and laws of motion given current
model parameters. Our loss is unlike prediction-based losses used in differen-
tiable simulation. Using a new dataset of real articulated object trajectories and an
existing cube toss dataset, our method outperforms differentiable simulation and
end-to-end alternatives with more data efficiency. See our project page for code,
datasets, and media: https://sites.google.com/view/continuous-contact-nets/home
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Figure 1: Our method for learning dynamics of an unknown object. Left: A  Franka Panda automates data col-
lection by tossing an object onto a table as the object’s configuration is recorded. Middle: Our violation-based
implicit loss without explicit simulation trains simulator parameters and a residual δ that augments the learned
continuous acceleration, encouraging the residual to learn smooth accelerations characteristic of continuous dy-
namics, while contact-related parameters implicitly define stiffer contact dynamics. Right: The trained model
can be used with any simulator (contact solver) during inference for performing dynamics predictions.

1 Introduction

In the future of robotic manipulation off the assembly line, robots will encounter new objects in their
environment and be expected to perform useful tasks with them, such as cooking with kitchen uten-
sils, using tools, opening doors, and packing items. Model-based control methods work increasingly
well in contact-rich scenarios [1, 2], but rely on models of the manipulated objects. Unlike factory
settings where everything can be precisely modeled, or locomotion where the robot itself is typically
the only dynamic agent, a challenge of manipulation in the wild lies in the unknown properties of the
objects to be manipulated. Model-free methods are viable, though potentially require prohibitive
amounts of data [3]. Building models on the fly could enable model-based control and result in more
generalizable and robust performance, but is only realistic if model-building is fast.

Manipulation is fundamentally contact-rich, and the resulting discontinuous dynamics can make
model construction particularly challenging [4]. Standard system identification methods work well
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for identifying smooth continuous dynamics parameters even in the presence of stiff contact [5, 6],
though assuming contact-related parameters are known. Pfrommer et al. [7] developed a physics-
based method which circumvented numerical difficulties directly by leveraging the physical struc-
ture to derive a smooth, violation-based loss, though assuming continuous dynamics are known. It is
the aim of this work to learn both continuous and contact dynamics simultaneously.

The challenge of jointly learning continuous and contact dynamics is that the overall dynamics in-
herit the stiffness of contact, whose impacts can overpower the smaller, smooth, albeit important
continuous accelerations. Thus, separating continuous dynamics from contact events, while de-
sirable, is not straightforward. We extend Pfrommer et al. [7] which handles the contact-related
portions, then combine optimization-friendly inertial parameterizations [8] with common deep neu-
ral network (DNN) practices of encouraging smoothness to handle the continuous dynamics via
residual physics, all while enjoying the data efficiency of an implicit model with suitable loss [9].

1.1     Contributions and Outline

We make the following contributions in this work:

• Present and make available a dataset of over 500 real toss trajectories of an articulated object,
whose state-dependent continuous dynamics are more complicated than single rigid bodies.

• Extend prior work on learning contact dynamics [7] by simultaneously learning continuous dy-
namics via a combination of model-based parameterization and DNN residual physics.

• Demonstrate effective performance of our method on two real datasets and two simulation sce-
narios with imposed actual-to-modeled continuous dynamics gaps. We provide comparisons with
differentiable simulation and end-to-end learning as alternatives.

We ground our motivations and methods in §2 with related background. §3 details model represen-
tations, followed by loss formulations in §4. With experimental setup in §5, we present and discuss
the results in §6, followed by a conclusion in §7 and discussion of limitations and future work in §8.

2 Background and Related Work

Challenges of contact-rich dynamics.     Detecting contact events is extremely difficult in many
practical scenarios. Many model building works solve simpler variations, e.g. utilizing a contact
detection oracle [10], assuming knowledge of contact distances [5, 6, 11], or operating on simple
geometries like spheres or 2D interactions [6]. Our work builds off [7]’s contact-related parameter
learning that performs automatic segmentation of contact/non-contact effects, without access to an
oracle to identify contact events. Our work extends this contact-implicit model building beyond con-
tact dynamics, to building full dynamics models, without impractical contact detection assumptions.

Implicit representations for discontinuous functions.     Recent works have employed implicit ap-
proaches to represent sharp functions smoothly, whether those functions represent discontinuous
control policies [12] or contact models [13]. Other works demonstrating differentiation through
these implicit representations make them viable for use in learning [14, 15]. These techniques rely on
smooth parameters to implicitly encode signals for discontinuous or extremely stiff events, which
accurately characterizes contact dynamics. However, the implicit model representation can be data
inefficient to optimize when combined with explicit losses [9]. Implicit model representations in
combination with an informative loss can successfully learn contact parameters [7].

Differentiable simulation.     Widely used for policy learning and control, differentiable simulators
are also useful for system identification [5, 16, 17]. Differentiable simulators use governing dy-
namics that can be explicitly differentiated, and often compare simulated predictions with observed
motion, using the difference to supervise model training. However because they use prediction-
based losses, differentiable simulators notoriously can have difficult to optimize loss landscapes
when identifying contact-related parameters [18]. Differentiable simulation can be combined with
artificially soft contact models to improve optimization [19], at the cost of model accuracy [4].

2



λ�Λ

θ

θ T i t , ih (k) =  λ  (k) ,

θ

p
θ

Inertial parameterizations.     The inertia of a rigid body is completely described by 10 parameters:
the mass, center of mass (3), and moments/products of inertia (6). Learning these directly can be
problematic since many members of R10 are physically infeasible inertia vectors. There are several
previously developed mappings from θinertia � R10 to physically feasible sets of inertial parameters [8,
20, 21], and thus learning θinertia to indirectly yield inertial properties becomes a well posed
optimization problem. We use the Rucker and Wensing [8] parameterization in this work.

Residual physics.     While model-based structures typically boast data efficiency compared to
model-free approaches [3], they fundamentally suffer from inaccuracies of the model on which they
are based. Residual physics [22, 23, 24, 25, 26] mitigates this by learning an expressive residual that
fills a data efficient but possibly insufficient structured model’s sim-to-real gap. We use a residual
physics DNN in this work to specifically augment the continuous dynamics of our structured model.

3 Model Representations

We consider a discrete dynamics model f  parameterized by a set of learnable parameters θ that takes
in some state x(k) and set of control inputs u(k) and performs a single simulation step,

x(k +  1) =  f θ (x(k), u(k)). (1)

This makes no assumptions about the structure of f  or what the learned parameters θ represent. In an
unstructured case, f  could be learned as a DNN where θ is the weights and biases of the network. In a
more structured case (e.g. rigid body dynamics), θ represents physical parameters of the system.
Numerical methods commonly simulate contact by introducing an optimization problem to search
for contact impulses λ(k) from a feasible set of contact impulses Λ  over the time step,

x(k +  1) =  gθ (x(k), u(k), λ(k)), (2a)

where λ(k) =  arg min hθ (x(k), u(k), x(k +  1), λ) , (2b)

where hθ measures violation of contact constraints. This generic formulation underpins many com-
mon simulators, where the embedded optimization problem may be a linear complementarity prob-
lem (LCP) [27, 28], a second-order cone program [29], or some more generic structure [30].

3.1     Measuring Violation of Rigid Body Contact Dynamics

Inspired by the LCP formulation from Stewart and Trinkle [28], we follow standard methods for
conversion to an equivalent optimization problem form in (2), introduced by Pfrommer et al. [7].
First, we let Λ  describe a Coulomb friction cone,

λ  � Λ ⇔ �λt, i� ≤  µ i λn , i �i =  1, . . . p, (3)

for a system with p contacts. Then we use penalty terms to describe violation of force complemen-
tarity, energy dissipation, and geometric penetration for each contact i,

hcomp,i (k) =  λn, i (k )ϕ i (k +  1),
µ �J  (k)v(k +  1)�

diss,i i Jt , i (k )v(k +  1)

hpen,i (k) =  min (0, ϕi (k +  1))2 ,

(4a)

(4b)

(4c)

where ϕ is the set of signed distances, µ is set of friction coefficients, J  =  [Jn ; J t ]  is the normal and
tangential contact Jacobians, and x  =  [q; v] is the state of system configuration and velocity. Thus,
with relative weighting between the terms, hθ becomes

hθ (k) =  
X X

wj hj, i (k). (5)
i = 1  j�{comp,diss,pen}
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With the contact dynamics described by h in (5) and the constraint in (3), the function g is a dis-
cretized version of Newton’s third law to update system velocities, and an implicit Euler step to
update the configuration. This g is a function of the implicit variable λ, and can be written as

v(k +  1) =  v(k) +  acontinuous∆t +  M − 1 J T  λ(k),                                      (6a)
q(k +  1) =  q(k) +  Γv(k +  1)∆t,                                                                (6b)

where acontinuous is the acceleration of the system due to continuous dynamics, and Γ  maps velocity-
space to configuration-space (e.g. mapping angular velocity to the time-derivative of an orientation
quaternion). See Appendix A.1 for the selection of the introduced hyperparameter weights in hθ.

3.2     Learnable Parameters

With the above model structure, the learnable parameters include the following. Geometry deter-
mines J  and ϕ, both functions of the system configuration, i.e. J (q(k)), ϕ(q(k)). We parameterize J
and ϕ by a set of vertices whose 3D locations are learnable. Friction, via µ, determines the
permissible set of contact impulses per contact point. In this work, the friction is parameterized by a
single scalar µ. Inertia affects the model’s forward predictions in (6), where M and acontinuous

appear. With articulation, M is a function of the system configuration, i.e. M (q(k)), and acontinuous of
the full state, acontinuous(x(k)). We map learnable parameters in R10 to a physically feasible set of 10
inertia parameters, per Rucker and Wensing [8]. Under autonomous dynamics, the mass of a system
is unobservable if contact forces are not measured [6]. Thus, we keep the total system mass fixed, then
learn the remaining moments and products proportionally as well as the center of mass.

3.3     Residual Network

In this work, we use a residual physics DNN to compensate for inaccuracies in the model structure in
(2). Since rigid body contact solvers like [28] work reasonably well to capture real inelastic
contact dynamics [31], we encourage the residual to fill gaps in the continuous dynamics. We add
components to the continuous acceleration of the system,

acontinuous (x(k )) =  acontinuous, model (x(k )) +  δθ (x(k)) , (7)
where δθ � Rnv e l  is the output of a residual network whose input is the state of the system. See
Appendix A.2 for network architecture details.

Adding costs on the norm of the network’s output and on its weights encourages the residual to be
small and smooth, respectively, as continuous dynamics are in comparison to contact dynamics. For
end-to-end alternatives which aim to capture both continuous and contact dynamics in one network,
weight regularization is no longer beneficial since it leads to unrealistically soft contact dynamics. To
capture the stiffness of contact, the result is an end-to-end network with extreme input sensitivity. In
contrast, incorporating our residual into the continuous acceleration allows the inherent stiffness of
contact to be implicitly learned via geometric and frictional properties, leaving the residual in a
smooth domain better suited for standard DNN approaches [4].

4 Loss Formulation

Our specific model structure alone does not affect the generalization capabilities of a model, and the
choice of loss function is also of vital importance for stiff function classes [9]. Fig. 2 diagrammat-
ically illustrates the differences between the losses presented in this section and how they relate to
explicit versus implicit model usage for simulation.

4.1     Prediction Loss

Standard approaches in model-building or system identification [32, 17, 23] use a prediction-based
loss that penalizes the error in a candidate model’s predictions,

Lprediction =  x(k +  1) −  f θ  (x(k), u(k))2 . (8)
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Figure 2: Top row: Using an explicit model (left) versus an implicit model (right) for performing dynamics
predictions. Explicit models aim to predict next states directly from current states and inputs. Implicit models
instead parameterize and leverage contact solvers, which produce next states as a result of an optimization
problem. Bottom row: A  common way to train an explicit model is via a prediction-based loss (left). Implicit
models can also be trained with a prediction-based loss (middle), requiring performing and differentiating
through the contact solver. Our approach trains an implicit model with a violation-based loss (right), avoiding
simulation during training time and producing smoother, more informative gradients.

Differentiable simulators typically employ the implicit optimization problem as in (2) to solve for
contact impulses, so the loss becomes (equivalently)

Lprediction =  x(k +  1) −  gθ (x(k), u(k), λ(k))2 , (9a)

such that λ(k) =  arg min hθ (x(k), u(k), x(k +  1), λ) . (9b)

Both explicit approaches (8) and implicit approaches (9) functionally result in simulating a candidate
model and penalizing the difference between its prediction and the true dynamics observation.

4.2     Violation-Based Implicit Loss

Despite the increasing prevalence of implicit approaches, prediction-based losses inhibit the gener-
alization benefits of implicit models [9]. A  violation-based implicit loss of the form

Lviolation =  min
h

x(k +  1) −  gθ (x(k), u(k), λ)2 +  hθ (x(k), u(k), x(k +  1), λ)
i
, (10)

uses h as a soft constraint and, as a result, boasts greater data efficiency [9]. This loss itself is an
optimization problem that solves for the set of contact impulses λ  that balances 1) explaining the
observed motion and 2) matching the learned contact dynamics model. Thus minimizing this loss
function through the training process is a bilevel optimization problem. For full details, see [9, 7].
This loss performs inference over contact mode, a key enabling technique for contact-implicit planning
and control [1, 33].
The exact form of the prediction error term x(k +  1) −  gθ (x(k), u(k), λ)2 employed herein pe-
nalizes errors in velocity space, since configurations are an affine function of velocity predictions
(6b). A  natural way to combine mixed linear and angular terms is to convert all into energy units via

lpred, energy(k) =  M ∆v(k) +  J T  λ2 
− 1  ,                                               (11) where

∆v (k ) =  −v (k +  1) +  v(k) +  acontinuous∆t.                                (12)

5 Experimental Setup

For all experiments, we consider a system autonomously falling under gravity and colliding with a
flat plane. In addition to the cube toss dataset contributed by Pfrommer et al. [7], we contribute one
new real dataset and two simulated scenarios. We used a Franka Emika Panda 7 degree-of-freedom
robotic arm to automate the toss data collection of a two-link articulated object. Pose information
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Figure 3: Our experimental systems. Left: A  real two-link articulated object, with each link as 5cm by 5cm by
10cm. Left middle: A  real cube of width 10cm, whose dataset was contributed by [7]. Right: A  simulated 6-
vertex asymmetric object from two views. The volume of the asymmetric is similar to the volume of one of the
articulated object links.

of each link is tracked using TagSLAM [34]. These two body poses are combined into minimal
coordinates via an optimization problem that minimizes pose offset of both links. While we keep the
system mass fixed, our model can freely decide the mass distribution across the two links.

We add a vortex simulation of an asymmetric object example, simulating dynamics with a
spatially-varying force field pulling towards and swirling around a fixed vertical line. The initial-
ized model is unaware of this continuous dynamics augmentation. We test in this scenario with an
asymmetric object with 6 vertices. Lastly, we include a gravity simulation of the articulated
object. This scenario features simulated dynamics of the articulated object from our new dataset
with typical gravitational acceleration of 9.81m/s2. We test at a fixed training set size of 256 tosses
from poor initial guesses, at some fraction � [0, 2] of this simulated gravity. All simulation data was
generated using Drake [35] and features a significant gap between the model’s believed and the
simulator’s actual dynamics. See Fig. 3 for visuals of these systems.

Parameter Initializations.     All  experiments were run a minimum of 9 times each with a random
parameter initialization using a process described in Appendix A.4. Shaded regions in the results
plots indicate 5%/95% normal t-score confidence intervals.

Comparisons and Evaluation Metrics.     See Table 1 for the five approaches we tested. An-
itescu dynamics [36] were selected as a reasonable differentiable simulation baseline, as it forms
the basis of many widely-used, modern simulators, notably including MuJoCo [30] and Drake
[35].     We present prediction errors for all approaches and parameter errors for the structured
approaches. Prediction errors are the average norm error of all bodies’ position or orientation
over the course of a trajectory. Defining V as the set of points inside a body’s geometry and I  =
[m, px , py , pz , Ixx , Iy y , Iz z , Ix y , Ixz , Iy z ] as the set of body inertial parameters, parameter er-rors
for quantifying the geometry, friction, and inertial properties for a system with n bodies are

1 X  Vol ((Vi,actual \  Vi,learned) � (Vi,learned \  Vi,actual ))
volume n 

i = 1
Vol (Vi,actual )

efriction =  [µ1, . . . , µn]learned −  [µ1, . . . , µn]actual,
einertia =  [s · I1, . . . , s · In ]learned −  [s · I1, . . . , s · In ]actual .

(13a)

(13b)

(13c)
The vector s is akin to a “characteristic length” that is effectively normalized by the inertia of the true
object. See more details on the volume and inertia metrics in Appendices B.1 and B.2, respectively.

Name
CCN (ours)

CCN-R (ours)
DiffSim

DiffSim-R
End-to-end

Parameterization
Structured
Structured
Structured
Structured

DNN

Loss
Violation implicit
Violation implicit
Prediction error
Prediction error
Prediction error

Residual

✓

✓
N/A

Table 1: Tested approaches. CCN stands for our extension of Continuous dynamics learning plus the contact
dynamics learning in ContactNets [7]. DiffSim is Differentiable Simulation using differentiable contact dy-
namics defined in Anitescu [36]. The -R modifier indicates residual physics is included. DiffSim ablates our
violation implicit loss function, and the End-to-end baseline ablates the physical structure imposed by the rigid
body model-based parameterization. See Appendix A.3 for End-to-end network details.
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Figure 4: Results from the four experiments. Shaded regions indicate normal t-score 95% confidence inter-
vals. Left column: The real articulated object featured rotations that were difficult for any of the methods to
capture over a long time horizon (middle), yet our CCN approaches outperforms DiffSim on geometry er-ror
(bottom) and all alternatives on positional error (top). Left middle column: For every metric on the real cube
experiments, our CCN approaches outperform DiffSim and End-to-end. Right middle column: While every
method achieved low geometry error on the asymmetric object in simulated vortex dynamics, our CCN
approaches performed the best in rotational error, and only our approach with residual (CCN-R) was able to
achieve low positional error. Right column: The x-axis for the gravity experiments swept over an initial mod-
eled gravitational acceleration. Despite poor model discrepancy, only our approach with residual CCN-R is
able to maintain good performance across all metrics at different model discrepancies.

Figure 5: Friction (Left, Left middle) and inertia (Right middle, Right) parameter errors for the vortex and
gravity simulated experiments.

6 Results

We test the methods across challenging datasets featuring collisions through contact-rich trajecto-
ries. While the contact dynamics are prominent in all the example trajectories, we built the artic-
ulated system in particular for its continuous dynamics: non-trivial due to state-dependent Coriolis
and centrifugal effects and unmodeled joint friction, damping, or backlash.
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Observations.     Both real experiments (articulated object and cube in left and left middle columns in
Fig. 4, respectively) show separation between CCN, DiffSim, and End-to-end methods, with CCN
matching or outperforming alternatives along all metrics, especially with more data. On the cube
dataset, CCN and CCN-R consistently converge to <10% volume error while DiffSim struggles to
improve even with more data. The residual does not significantly help with real data but does in
simulated examples, where CCN-R in the vortex scenario (right middle column in Fig. 4) improves its
positional trajectory error significantly, achieving consistently 5x better performance than other
methods at the largest dataset size. On the same metric, DiffSim-R sees no improvement beyond
DiffSim. Fig. 5 shows CCN and CCN-R nearly always outperforms DiffSim and DiffSim-R, ex-
cept for the vortex scenario where all methods perform well. In the gravity scenario (right column in
Fig. 4), the residual helps CCN-R maintain good performance achieved at the correct gravita-tional
acceleration, across all initial models. In contrast, DiffSim-R outperforms DiffSim at every initial
gravitational acceleration model. Since this gravity scenario swept over different modeled
gravitational accelerations, End-to-end is unaffected since its representation is unstructured, and its
consistent performance over the x-axis of these plots are included for reference against CCN and
DiffSim. Parameter errors in Fig. 5 indicate DiffSim and DiffSim-R struggled to capture both the
friction and inertial terms in the gravity scenario to levels attained by CCN and CCN-R.

Implications.     The residual’s lack of effect on real data is in alignment with prior works that found the
rigid body model already performs well in contact-rich scenarios with simple systems [31]. The
residual shows the most merit in the more extreme simulation examples, though its effect isn’t
realized until larger dataset sizes – unsurprising for a DNN. The residual helps DiffSim to a much
lesser extent because our method better separates continuous and contact dynamics and allows the
residual to identify the smooth nature of the unmodeled vortex dynamics. Relatedly, there is better
performance for DiffSim and DiffSim-R at overestimated gravitational accelerations rather than
underestimated, where contact is less often predicted. Without contact, prediction losses experience a
lack of informative parameter gradients, in which case DiffSim-R outperforms DiffSim.

7 Conclusion

We demonstrate with real experiments that our violation implicit loss trains models that outperform
prediction loss-based structured and unstructured models. Our approach leverages the structure of
contact versus continuous dynamics to learn both simultaneously, with physically meaningful
parameters driving separate contact and continuous dynamics with a DNN residual to augment.

8 Limitations and Future Work.

The articulated object is the most challenging system presented herein for dynamics learning. While
our methods outperformed alternatives in all other metrics, there is still a significant gap between
ground truth and our models’ trajectory predictions, and the rotational error showed lackluster per-
formance from all methods. Further closing this gap remains for future exploration, and we are
open-sourcing our articulated object dataset for the community to contribute their own methods. The
scalability of the method in this paper has not yet been demonstrated on large-scale systems (e.g. a
robotic arm) or in multi-object settings. It remains to be seen whether the advantages demonstrated
here will extend as scope increases. While we tested one version of differentiable simulation using
Anitescu [36] dynamics, future studies will compare alternatives against each other and our viola-
tion implicit loss in performing system identification. Our approach encouraged the residual to fill
gaps in continuous dynamics while relying on a rigid body contact dynamics model to handle con-
tact. Other works have demonstrated improved prediction capability by learning the contact model
[37], though integrating this with system identification remains future work. While other works have
learned articulated structures from scratch [38, 39, 40], we assumed access to kinematic structure in
this paper, leaving joint kinematics/dynamics learning for future studies. Lastly, we relied on
AprilTags to estimate poses, which are more challenging to obtain via perception [41, 42, 43].
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A Learning Details

Hyperparameter CCN, real CCN, sim DiffSim, real DiffSim, sim
wcomp 0.001 0.001 N/A N/A
wdiss                                   0.1                   0.1 N/A N/A
wpen                                  100                  100 N/A N/A
wres                                     1 0.001                 1000                        1

wres, w 0.1 0 1 0
Table 2: Tuned hyperparameters. Rows for residual norm (wres) and weight (wres, w) regularization only apply for
-R variations. Real versus simulated experiments performed best with different residual regularization
weights since the simulations featured larger model-to-actual dynamics gaps.

A.1     Model-Based Parameter Learning

For our CCN and CCN-R method, we performed a hyperparameter search to determine the most
effective set of weights for balancing the loss terms in (5). See Table 2 for these sets of weights.

A.2     Residual Network Architecture and Regularization

The residual network featured in both CCN-R and DiffSim-R has the same architecture. The first
layer takes in the full state of the system and converts the quaternion orientation representation into a
9-vector of the elements of the corresponding rotation matrix, letting the remaining state positions and
velocities pass through to layer 2. Beyond the first layer, the network is a fully-connected multi-layer
perceptron (MLP) with two hidden layers of size 128. The last layer outputs values in the
acceleration space of the system. All activations are ReLU.

We regularized the residual via both output norm regularization and weight regularization, with as-
sociated weight hyperparameters wres and wres, w, respectively. See Table 2 for the optimal values.
Since the simulation examples were specifically designed to test the capabilities of the residual net-
work, we found the optimal weights for the residual terms were much lower for simulated examples
than for the real data. We also note that the optimal residual weights were much higher for DiffSim
than for CCN. This is a direct result from the DiffSim residual’s attempts to explain some of the
contact dynamics, whose accelerations are orders of magnitude larger than the continuous accelera-
tions. Our CCN method avoids this by better containing its residual in the continuous domain, and
thus could use lower residual regularization weights.

A.3     End-to-End Network Architecture

The best performing network for the End-to-end baseline is an MLP with 4 hidden layers each of
size 256 with Tanh activation. Its input is the full state of the system, and its output is the next
velocity. The next configuration is obtained from predicted next velocity with an Euler step (6b).

A.4     Parameter Initializations

All learned parameters are randomly initialized within pre-specified ranges. Geometric parameters
are initialized between 0.5 and 1.5 times their true lengths, and friction coefficients between 0.5
and 1.5 times their approximate true values. Inertial parameters are initialized to a set of physically
feasible values via the following procedure for each link in the body:

1. A  virtual link is sized via a random set of three length scales lx , ly , lz , chosen between 0.5
and 1.5 times the link’s true dimensions.

2. The center of mass of the link is initialized to be somewhere within the inner half of this
virtual link’s geometry.

3. A  random mass mrand is selected from the range between 0.5murdf and 1.5murdf.
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4. Principal axis moments of inertia are computed using the assumption of uniform density
throughout the randomly-sized virtual link, via e.g. for I x x :

Ixx,principal axis =  
mrand  

ly  +  lz . (14)

5. Rotate the inertia matrix from its principal axis definition by a random rotation in SO(3).
The link’s initialized moments and products of inertia are derived from this rotated version.

B Evaluation Metric Details

B.1     Volume Evaluation Metric

The volume error metric defined in Equation (13a) is computed as the fraction of volume that the
learned geometry incorrectly included or incorrectly excluded. To compute this, we used the identity

Vol(A \  B )  =  Vol(A)  −  Vol(A ∩ B ) . (15)

The numerator of (13a) can therefore be computed as

Vol(Vi,actual ) +  Vol(Vi,learned) −  2Vol(Vi,actual ∩ Vi,learned). (16)

Vi,learned, Vi,actual , and their intersection are all convex hulls of a finite number of vertices. Therefore,
the interaction operation as well as volume calculation can be conducted with a standard convex hull or
halfspace intersection library, such as qhul l .

B.2     Inertia Evaluation Metric

A  body’s set of inertial parameters is I  =  [m, px , py , pz , Ix x , Iy y , Iz z , Ixy , Ixz , Iy z ].  Since true in-
ertia parameter vectors feature values at wildly different scales, the vector s is selected to normalize I
to more equally evaluate all inertial parameter errors. For example, the true inertial parameters for the
simulated asymmetric object used in the vortex example are

Iasym =  [0.25, 0, 0, 0, 0.00081, 0.00081, 0.00081, 0, 0, 0] . (17)

Choosing 3.5cm as a reasonable center of mass location distance, the associated sasym normalizer is

sasym =      
0.25

, 
0.035

, 
0.035

, 
0.035

, 
0.00081

, 
0.00081

, 
0.00081

, 
0.00081

, 
0.00081

, 
0.00081 

.

(18)
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