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A B S T R A C T

Objective: Computer-assisted diagnostic and prognostic systems of the future should be capable of simultaneously 
processing multimodal data. Multimodal deep learning (MDL), which involves the integration of multiple sources 
of data, such as images and text, has the potential to revolutionize the analysis and interpretation of biomedical 
data. However, it only caught researchers’ attention recently. To this end, there is a critical need to conduct a 
systematic review on this topic, identify the limitations of current work, and explore future directions. 
Methods: In this scoping review, we aim to provide a comprehensive overview of the current state of the field and 
identify key concepts, types of studies, and research gaps with a focus on biomedical images and texts joint 
learning, mainly because these two were the most commonly available data types in MDL research. 
Result: This study reviewed the current uses of multimodal deep learning on five tasks: (1) Report generation, (2) 
Visual question answering, (3) Cross-modal retrieval, (4) Computer-aided diagnosis, and (5) Semantic 
segmentation. 
Conclusion: Our results highlight the diverse applications and potential of MDL and suggest directions for future 
research in the field. We hope our review will facilitate the collaboration of natural language processing (NLP) 
and medical imaging communities and support the next generation of decision-making and computer-assisted 
diagnostic system development.   

1. Introduction

Multimodal deep learning (MDL), which involves the integration of
multiple modalities, such as medical images, unstructured text, and 
structured Electronic Health Records (EHRs) has gained significant 
attention in biomedical research [1]. This approach has been proven to 
improve the accuracy and efficiency of various tasks in clinical decision- 
making with imaging and structured EHR (i.e., -omics data, lab test data, 
demographic data) [2–4]. The heterogeneous data available to clinicians 
allows for multiple viewpoints to be considered when making decisions 
and constructing computer-aided diagnosis and prognosis systems. 
However, the application of MDL with medical imaging data and un
structured free-text data (i.e., clinical reports) is still in its infancy. The 
emergence of related research has only recently surfaced. For example, 
in the field of natural language processing (NLP), pre-trained models, 
such as Bidirectional Encoder Representations from Transformers 

(BERT) [5] and Generative Pre-trained Transformer 3 (GPT- 3) [6], have 
garnered world-renowned accomplishments in various downstream 
tasks. 

Furthermore, multimodal language models, including Contrastive 
Language Image Pretraining (CLIP) [7] and the more recent KOSMOS-1 
[8], have demonstrated remarkable performances in addressing general 
domain tasks. This notable progress has simultaneously facilitated the 
models’ applicability within the medical domain. As a result, we believe 
it is imperative to comprehensively synthesize the past five years’ 
research on MDL in biomedical images and texts, including an overview 
of research objectives and methodologies, elucidating development 
trends, and exploring potential broader clinical applications in the 
future. 

Our review is inspired by several related review articles. Heiliger 
et al. [9] provided a comprehensive overview of existing multimodal 
learning methods and related databases in radiology, proposing a 
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modality-based taxonomy based on the structural and design principles 
of the model. However, it was method-oriented, which might not facil
itate clinicians’ comprehension of the development of MDL in the 
medical field from the standpoint of specific applications. Cui et al. [10] 
explored the various fusion strategies employed in disease diagnosis and 
prognosis. However, the multimodal fusion discussed in these articles 
primarily included structured data from EHRs, with limited attention to 
unstructured text. Similarly, numerous systematic reviews have syn
thesized the employment of multimodal artificial intelligence (AI), 
machine learning, and the Internet of Medical Things (IoMT) within the 
realm of biomedicine [11–13]. Nonetheless, these investigations 
exhibited a notable absence of detailed discussions on implementing 
multimodal language models in the medical domain. 

Additionally, the outstanding achievements of deep learning are 
accompanied by increasing model complexity and a lack of interpret
ability of AI models that prevents their applicability to clinical scenarios 
[14]. Therefore, it becomes necessary to come up with solutions to 
address this challenge and move toward more transparent AI. Compared 
to single-model AI, MDL presents unique challenges as explanations of 
multimodal data are often separated. For example, there are SHAP 
values for the EHR and a heatmap for the brain images - a visualization 
of the brain areas affected. But few visualization/explanation methods 
integrate the data and results, especially with longitudinal data. While 
many review studies organize and report challenges and opportunities of 
explainable AI, however, they do not focus on MDL [15–17]. 

To our knowledge, our paper represents the first review of multi
modal deep learning focusing on medical image and text data, 
explainability, and human evaluation. Our motivation is to foster the 
application of multimodal language models in the medical field in a 
more comprehensible manner. Our target readers include clinicians and 
computer scientists. Specifically, we aim to provide clinicians with in
sights into the current performance of various pre-training models on 
different clinical tasks, as well as opportunities to evaluate model 
interpretability and contribute to developing new public datasets. 
Meanwhile, we hope that computer scientists will advance the clinical 
translation of models by focusing on clinical tasks, recognizing the sig
nificance of external validation, and increasing model transparency in 
the clinical translation process. 

The review questions and objectives for this scoping review are as 
follows: The primary research question is: What is the current state of 
the literature on MDL in biomedical images and texts? 

This question will be addressed by exploring the following sub- 
questions: What databases were utilized in these studies? What were 
multimodal fusion techniques employed in these studies? Which image 
and text modalities were incorporated in these studies? What metrics 
were utilized to evaluate the model’s performance in these studies? Did 
these studies employ external validation? Did these studies explicate the 
model’s interpretability? 

The organization of the review is as follows: Section 2 describes the 
protocol used in planning and executing this systematic review. Section 
3 discusses the research directions of five tasks: report generation, visual 
question answering, cross-modal retrieval, diagnostic classification, and 
semantic segmentation. Section 4 summarizes the limitations and 
challenges of the current approaches and highlights future research di
rections. Lastly, Section 5 concludes the final remarks. 

2. Methods 

Our scoping review follows the Preferred Reporting Items for Sys
tematic Reviews and Meta- Analyses (PRISMA) guidelines [18]. 

2.1. Eligibility criteria 

Our scoping review focused on research on multimodal deep 
learning techniques applied to medical images and unstructured text. 
The inclusion criteria for our review consisted of English- language 

articles published between 2018 and 2022, including both conference 
papers and journal articles. We chose this time frame to capture the most 
up-to-date research in this rapidly evolving field. Additionally, we refer 
to relevant preprint articles to ensure we can consider cutting-edge 
research that has yet to be published in peer-reviewed venues. 

2.2. Information sources 

A search of multiple databases was carried out, including PubMed 
(https://pubmed.ncbi.nlm.nih.gov/), the Association for Computing 
Machinery (ACM) Digital Library (https://dl.acm.org/), the Institute of 
Electrical and Electronics Engineers (IEEE) Xplore Digital Library (http 
s://ieeexplore.ieee.org/Xplore/home.jsp), Google Scholar (https:// 
scholar.google.com/), and Semantic Scholar (https://www.semantics 
cholar.org/). The most recent search was executed on January 8, 2023. 

2.3. Search strategy 

All the studies collected in this research were confined to the medical 
field. Initially, our search comprised three keyword groups: image mo
dality (e.g., medical images and radiology images), text modality (e.g., 
text and report), and multimodal fusion learning (e.g., multimodal 
learning, joint fusion, and contrastive learning). We combined these 
keywords to carry out the first round of collection across five databases. 
To ensure the comprehensiveness of the articles collected, we conducted 
a second round of collection on Google Scholar, by adding a fourth 
application- oriented keyword group (i.e., report generation, visual 
question answering, and cross-modal retrieval). 

2.4. Study selection 

Title and abstract screening were conducted independently by two 
reviewers (ZS and ML). In cases of disagreement, studies were subjected 
to full-text review, and a consensus was reached through discussions. 
Subsequently, each article was reviewed and labeled according to the 
tasks. These tasks encompassed report generation, visual question 
answering, cross-modal retrieval, diagnostic classification, semantic 
segmentation, and other related tasks, with the possibility for a single 
article to correspond to multiple tasks. During the screening and the full- 
text review stages, we excluded review articles, non-medical articles, 
poor-quality articles, and unimodal studies (i.e., studies focusing solely 
on images or text). Articles containing modalities without images or text 
(e.g., omics data, lab test data, and demographic data) were also 
excluded. 

2.5. Data extraction and synthesis 

In our study, we undertook a systematic analysis of each downstream 
task. Firstly, we explored commonly used datasets for the task at hand, 
as well as their primary contents. Secondly, we expounded on the 
commonly employed multimodal frameworks and development trends 
of the methodology (e.g., fusion embedding, transformer-based atten
tion models, and contrastive language-image pre-training). Subse
quently, we summarized the specific image and text modalities covered 
in the articles, such as chest X-rays (CXR) and radiology reports. Lastly, 
we sorted out commonly used evaluation metrics for each downstream 
task, such as the area under the receiver operating characteristic curve 
(AUC), F1-score, and bilingual evaluation understudy (BLEU) [19]. Of 
particular note, we considered whether clinical experts were invited for 
external validation and explanation of the model’s interpretability. We 
believe this has significant implications for enhancing the accuracy of 
computer-aided diagnosis and prognosis in the future. 
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3. Results 

3.1. Included studies and datasets 

A total of 361 articles were retrieved from five databases, from which 
77 articles were ultimately included in our review. Fig. 1 shows the 
flowchart of our article screening process. During the screening process, 
we excluded 137 articles based on their titles and abstracts, according to 
our predetermined exclusion criteria (Section 2.4). Subsequently, a full- 
text review was conducted on the remaining articles, which resulted in 
an additional 13 articles being excluded. Specifically, these articles were 
discarded based on evaluations of their full texts, including 3 non- 
medical articles, 6 articles that lacked a text modality, 1 article that 
lacked an imaging modality, 2 articles on unimodal learning, and 1 poor- 
quality article. 

Table 1 encapsulates the medical multimodal datasets employed in 
the articles collected in this scoping review, encompassing the dataset 
name, image type, text type, and the corresponding website for each 
dataset. 

3.2. Report generation 

Report generation aims at generating descriptives from EHR and 
medical images automatically. It could ease the work burden upon cli
nicians and improve the quality of the reports themselves. Since the 
training process of report generation typically requires both medical 
images and text reports written by clinicians, it can be naturally 
considered a multimodal learning process. 

Table 2 provides an overview of the application of multimodal deep 
learning on report generation. Common image data used in the medical 
field include X-rays, computerized tomography (CT), magnetic reso
nance imaging (MRI), and pathological images. A common dataset for 
this task is the IU X-Ray [20] dataset, which comprises 7,470 frontal and 

lateral chest radiographs and 3,955 corresponding reports. Another 
widely-used dataset is the MIMIC-CXR [21,22] dataset, including 
377,110 images and 227,827 reports. Furthermore, there exist datasets 
specifically designed for image classification and assistance in report 
generation, such as the CheXpert dataset [23], which comprises 224,316 
images and 14 labels marked as present, absent, or uncertain. 

Most studies employ convolutional neural networks (CNNs) to pro
cess medical images. Regarding text processing, Long Short-Term 
Memory (LSTM) was previously a popular method. For example, Yuan 
et al. [24] developed a CNN encoder and hierarchical LSTM decoder that 
utilized a visual attention mechanism based on multi-view in radiology. 
In the recent two years, the Transformer architecture has seen increasing 
use in report generation. Chen et al. [25] proposed the VMEKNet model, 
which combines the Transformer architecture with visual memory and 
external knowledge, resulting in improved performance in both quali
tative and quantitative experiments and clinical diagnosis. Another 
notable contribution is the AlignTransformer proposed by You et al. 
[26], which effectively addresses data bias and is particularly well- 
suited for long-sequence report generation. The use of self-supervised 
learning techniques, such as CLIP, has also garnered attention for its 
ability to retrieve reports for report generation purposes. The CXR- 
RePaiR model proposed by Endo et al. [27] employed the CLIP 
approach with retrieval-based mechanisms and achieved outstanding 
metrics in language generation tasks. Similarly, the RepsNet model 
proposed by Tanwani et al. [28] incorporates the principle of self- 
supervised contrastive alignment. Recent research has focused on 
improving the factual correctness and completeness of generated reports 
through reward mechanisms. Miura et al. [29] developed a model that 
applies a reward mechanism to reinforcement learning, resulting in 
significant improvements in clinical performance. This approach was 
further refined by Delbrouck et al. [30] and improved by 14.2% in 
factual correctness and 25.3% in completeness. 

Evaluation metrics for report generation can be classified into three 

Fig. 1. Flowchart of article selection.  
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categories: text quality, medical correctness, and explainability [49]. 
These metrics are typically intended to be generated automatically, 
rather than manually, to facilitate automation of the report generation 
process. The text quality is commonly evaluated using metrics such as 
BLEU [19], METEOR [50], and ROUGE-L [51]. Medical correctness is 
evaluated using metrics such as AUC, precision, recall, and F1 [41,46]. 
Yu et al. introduced a composite metric, RadCliQ, aimed at quantifying 
the similarity between model-generated reports and those produced by 
radiologists, and the percentage of decreased errors [52]. Additionally, 
the explainability-related metrics factENT and factENTNLI, proposed by 
Miura et al. [29], have been shown to effectively evaluate the factual 
correctness and completeness of the model. In the reviewed literature, 
10 articles sought external validation through the involvement of radi
ologists or other clinical experts. Furthermore, 14 articles provided 
validation of the interpretability of the models through various methods. 

3.3. Visual question answering 

In the clinical domain, Visual Question Answering (VQA) represents 
a computer-assisted diagnostic technique that offers clinical decision- 
making support for image analysis [53]. 

Table 3 is an overview of the application of MDL on VQA. 
Commencing in 2018, ImageCLEF has been conducting an annual 
challenge for medical VQA, evaluating and ranking the performance of 
participating models. The mainstream VQA datasets in the medical 
domain include VQA-MED-2018 [54], VQA-MED-2019 [55], and VQA- 
MED-2020 [56], which were proposed by the challenge tasks. These 
datasets encompass radiographic images along with corresponding 
question–answer pairs. For instance, VQA-MED-2020 comprises 4,500 
radiographic images and 4,500 question–answer pairs [56]. Addition
ally, VQA-RAD consists of 315 radiological images and 3,500 ques
tion–answer pairs [57]. The PathVQA dataset contains 1,670 
pathological images and 32,799 question–answer pairs [58]. Liu et al. 
[59] introduced the SLAKE, a bilingual dataset that encompasses se
mantic labels and structural medical knowledge, incorporating more 
modalities and body parts. The SLAKE includes 642 images, 14,028 
question–answer pairs, and 5,232 medical knowledge triplets. 

A typical VQA model consists of four essential components: an image 
feature extractor, a question feature extractor, a multimodal fusion 
component, and a classifier or generator. For the image feature 
extractor, CNN-based pre-trained models such as ResNet [60] or 
VGGNet [61] are often employed to extract high-dimensional features 
from medical images. Liu et al. [62] introduced a bi-branch model that 
leverages both ResNet152 and VGG16 to extract sequence/spatial fea
tures and retrieve the similarity of image features, thereby enhancing 
the semantic understanding of images. For question feature extraction, 
recurrent neural networks (RNNs) such as Long-Short-Term Memory 
(LSTM) [63] and Gated Recurrent Unit (GRU) [64] are commonly uti
lized. Additionally, BERT-based models [5] have seen increasing use for 
extracting textual features. With regards to multimodal fusion, models 
from general domain VQA such as Stacked Attention Networks (SAN) 
[65], Bilinear Attention Networks (BAN) [66], Multimodal factorized 
bilinear (MFB) [67], and Multimodal Factorized High-order (MFH) [68] 
are often adopted. Sharma et al. [69] utilized MFB as a feature fusion 
technique to design an attention-based model that maximizes learning 
while minimizing complexity. Liu et al. [70] proposed a pre-training 
model called the Contrastive Pre-training and Representation process 
(CPRD), which effectively resolves the issue of limited MED-VQA data 
and demonstrates excellent performance. 

The issue of data scarcity and lack of multilevel reasoning ability in 
Med-VQA has prompted the development of the Mixture of Enhanced 
Visual Features (MEVF) [87]. MEVF is a meta- learning-based approach 
that utilizes Model-Agnostic Meta-Learning (MAML) [88] and Con
volutional Denoising Auto-Encoder (CDAE) [89] to effectively address 
the problem of insufficient data during image feature extraction. The 
proposed method has gained widespread use in subsequent studies and 

Table 1 
Multimodal medical image-text datasets.  

Dataset Image type Text type URL 

MURA Bone X-rays Annotations https://stanfordmlgroup. 
github.io/competitio 
ns/mura/ 

DeepLesion CT Annotations https://nihcc.app.box. 
com/v/DeepLesion 

COV-CTR CT Radiology 
reports 

https://github. 
com/mlii0117/COV-CTR 

COVID-19 CT CT Radiology 
reports 

https://covid19ct.github.io 

COVID Rural CT, CXR Annotations https://wiki.cancerimaging 
archive.net/pages/vie 
wpage.action?page 
Id=70226443 

COVID-19 
Image Data 
Collection 

CT, CXR Annotations https://github.com/ieee 
8023/covid-chestxray-data 
set 

COVIDx CXR Annotations https://github.com/li 
ndawangg/COVID-Net 

MS-CXR CXR Annotations https://aka.ms/ms-cxr 
QaTa-COV19 CXR Annotations https://www.kaggle.com/ 

datasets/aysendegerli/qata 
cov19-dataset 

Shenzhen 
Tuberculosis 

CXR Annotations https://www.kaggle.com/ 
datasets/raddar/tuberculos 
is-chest-xrays-shenzhen 

SIIM-ACR CXR Annotations https://www.kaggle.com/ 
competitions/siim-acr-p 
neumothorax-segmenta 
tion/data 

VinBigData 
Chest X-ray 

CXR Annotations https://www.kaggle.com/c 
ompetitions/vinbigdata-ch 
est-xray-abnormalities- 
detection/data 

RSNA CXR Image 
captions 

https://rsna.org/challen 
ge-datasets/2018 

CheXpert CXR Radiology 
reports 

https://stanfordmlgroup.gi 
thub.io/competitions/ch 
expert 

IU X-Ray CXR Radiology 
reports 

https://openi.nlm.nih.gov 

MIMIC-CXR CXR Radiology 
reports 

https://physionet. 
org/content/mimic- 
cxr/2.0.0 

MIMIC-CXR- 
JPG 

CXR Radiology 
reports 

https://physionet.org/ 
content/mimic-cxr-jpg/ 
2.0.0 

NIH-CXR CXR Radiology 
reports 

https://nihcc.app.box.co 
m/v/ChestXray-NIHCC 

PadChest CXR Radiology 
reports 

https://bimcv.cipf.es/bimc 
v-projects/padchest 

RadGraph CXR Radiology 
reports 

https://physionet.org/con 
tent/radgraph/1.0.0 

MoNuSeg Pathology 
images 

Annotations https://monuseg.grand-ch 
allenge.org/Data 

ARCH Pathology 
images 

Image 
captions 

https://warwick.ac.uk/fac/ 
cross_fac/tia/data/arch 

PathVQA Pathology 
images 

Medical 
questions 

https://github.com/ 
UCSD-AI4H/PathVQA 

TCGA Pathology 
images 

Pathology 
reports 

https://portal.gdc.cancer. 
gov/repository 

PEIR Pathology 
images, 
radiology 
images 

Image 
captions 

https://peir.path.uab.ed 
u/library 

MedICaT Radiology 
images 

Image 
captions 

https://github.com/allena 
i/medicat 

ROCO Radiology 
images 

Image 
captions 

https://github.com/ra 
zorx89/roco-dataset 

ImageCLEF 
VQA-Med 

Radiology 
images 

Medical 
questions 

https://www.imageclef.org 

SLAKE Radiology 
images 

Medical 
questions 

https://www.med-vqa. 
com/slake 

VQA-RAD Radiology 
images 

Medical 
questions 

https://osf.io/89kps  
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has been further improved by the introduction of the Question Condi
tioned Reasoning (QCR) and Type Conditioned Reasoning (TCR) mod
ules by Zhan et al. [73], which enhance the model’s reasoning ability. 
Do et al. [74] have proposed a Multiple Meta- model Quantifying 
(MMQ) model that achieves remarkable accuracy with the addition of 
metadata. The latest trends indicate that BERT and attention-based 
models are currently the most effective and are expected to be the 
future of VQA models. The RespsNet-10 proposed by Tanwani et al. [28] 
achieved an accuracy of 0.804 on the ImageCLEF 2018 and ImageCLEF 
2019 datasets. Meanwhile, the study by Zhan et al. investigated the 
contrastive representation learning model UnICLAM with adversarial 
masking and obtained an accuracy of 0.831 on the SLAKE dataset [86]. 

Accuracy is the most widely used evaluation metric for VQA, typi
cally associated with classification models and closed-ended questions. 
Meanwhile, some generation models designed to tackle open-ended 
problems may also employ alternative metrics, such as BLEU or WBSS 
[90], for evaluation purposes. While 12 articles have demonstrated the 
interpretability of the models, there has been a lack of studies that have 
sought to evaluate the results of VQA models from clinicians. 

3.4. Cross-modal retrieval 

Cross-modal retrieval encompasses two primary types of retrieval: 
image-to-text retrieval, which involves retrieving associated text for a 
given image, and text-to-image retrieval, which involves retrieving the 
associated image for a given text. 

Table 4 summarizes an overview of the application of MDL on cross- 
modal retrieval. In the medical field, cross-modal retrieval tasks 
frequently involve radiological images and reports, such as those found 
in MIMIC-CXR [22] and CheXpert [23] datasets. The ROCO dataset, 
comprising over 81,000 radiology image-text pairs, is also widely 
employed in cross-modal retrieval tasks [91]. In addition, a small 
number of pathological captioning datasets exist. One is the ARCH 
dataset proposed by Gamper et al [92]. It comprises 7,579 image and 
description pairs extracted from medical articles on PubMed and pa
thology textbooks. 

Most cross-modal retrieval tasks rely on matching image and text 
features through contrastive learning. This process involves both global 
and local feature matching, together with attention mechanisms. For 

Table 2 
Overview of MDL models for report generation.  

Ref. Method Dataset Image type Text type Metrics External 
validation 

Explainability 

Yuan et al.  
[24] 

CNN, LSTM CheXpert, IU X- 
Ray 

CXR Radiology reports BLEU, METEOR, ROUGE-L – √ 

Ni et al. [31] CNN, LSTM MIMIC-CXR CXR Radiology reports BLEU, METEOR, ROUGE-L √ √ 
Nishino et al.  

[32] 
CNN, GRU, BERT JCT, MIMIC-CXR CXR Radiology reports BLEU, ROUGE, CRS – – 

Miura et al.  
[29] 

CNN, Transformer IU X-Ray, MIMIC- 
CXR 

CXR Radiology reports BLEU, CIDEr, BERTScore, 
factENT, factENTNLI 

√ √ 

Chen et al.  
[33] 

CNN, Transformer IU X-Ray, MIMIC- 
CXR 

CXR Radiology reports BLEU, METEOR, ROUGE-L – √ 

You et al. [26] CNN, Transformer, 
multi-head attention 

IU X-Ray, MIMIC- 
CXR 

CXR Radiology reports BLEU, METEOR, ROUGE-L √ – 

Alfarghaly 
et al. [34] 

CNN, word2vec, GPT-2 IU X-Ray CXR Radiology reports BLEU, METEOR, ROUGE-L, 
CIDEr 

√ √ 

Delbrouck 
et al. [35] 

GRU, Fusion MIMIC-CXR CXR Radiology reports BLEU, METEOR, ROUGE – – 

Liu et al. [36] CNN, BERT, multi- head 
attention 

COVID-19 CT, CX- 
CHR 

CT, CXR Radiology reports BLEU, ROUGE-L, CIDEr √ √ 

Pahwa et al.  
[37] 

CNN, Transformer IU X-Ray, PEIR 
Gross 

CXR, pathology 
images 

Radiology reports, 
image captions 

BLEU, METEOR, ROUGE-L – – 

Zhou et al.  
[38] 

CNN, BioSentVec, 
LSTM 

IU X-Ray, MIMIC- 
CXR 

CXR Radiology reports BLEU, METEOR, ROUGE-L, 
CIDEr, nKTD 

– √ 

Endo et al.  
[27] 

CLIP CheXpert, MIMIC- 
CXR 

CXR Radiology reports Semb, BLEU, F1 – – 

Chen et al.  
[25] 

CNN, TF-IDF, 
Transformer 

IU X-Ray CXR Radiology reports BLEU, METEOR, ROUGE-L – – 

Wang et al.  
[39] 

BLIP ImageCLEF 2020 Radiological 
images 

Image captions BLEU, METEOR, ROUGE-L, 
CIDEr, SPICE, BERTScore 

– – 

Yan et al. [40] CNN, BERT COV-CTR, IU X- 
Ray, MIMIC-CXR 

CT, CXR Radiology reports BLEU, METEOR, ROUGE-L – √ 

Tanwani et al. 
[28] 

CNN, BERT, BAN IU X-Ray CXR Radiology reports BLEU – √ 

Keicher et al.  
[41] 

CLIP MIMIC-CXR CXR Radiology reports AUC – – 

Chen et al.  
[42] 

CNN, Transformer, 
cross-modal memory 

IU X-Ray, MIMIC- 
CXR 

CXR Radiology reports BLEU, METEOR, ROUGE-L – √ 

Qin et al. [43] CNN, Transformer, 
cross-modal memory 

IU X-Ray, MIMIC- 
CXR 

CXR Radiology reports BLEU, METEOR, ROUGE-L √ √ 

Ma et al. [44] CNN, LSTM, CMCL IU X-Ray, MIMIC- 
CXR 

CXR Radiology reports BLEU, METEOR, ROUGE-L √ – 

Hassan et al.  
[45] 

CNN, BERT, GRU IU X-Ray CXR Radiology reports BLEU, ROUGE – – 

Moon et al.  
[46] 

CNN, BERT, attention 
masking 

IU X-Ray, MIMIC- 
CXR 

CXR Radiology reports BLEU, Precision, Recall, F1 √ √ 

You et al. [47] CNN, Transformer, 
GRU 

IU X-Ray CXR Radiology reports BLEU, METEOR, ROUGE-L, 
CIDEr, SPICE, BERTScore 

– √ 

Delbrouck 
et al. [30] 

CNN, BERT, semantic 
graph- based reward 

IU X-Ray, MIMIC- 
CXR, RadGraph 

CXR Radiology reports BLEU, ROUGE-L, F1cXb, 
factENT, factENTNLI, RGE, 
RGER, RGER 

√ √ 

Serra et al.  
[48] 

CNN, Transformer CheXpert, MIMIC- 
CXR 

CXR Radiology reports BLEU, METEOR, ROUGE-L √ –  
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Table 3 
Overview of MDL models for VQA.  

Ref. Method Dataset Image type Text type Metrics External 
validation 

Explainability 

Liu et al.  
[71] 

CNN, ETM, MFH ImageCLEF 2018 Radiology images Medical 
questions 

WBSS, BLEU, 
CBSS 

– – 

Ren et al.  
[72] 

CNN, Transformer ImageCLEF 2019 Radiology images Medical 
questions 

Accuracy, BLEU, 
WBSS 

– – 

Zhan et al.  
[73] 

QCR, TCR, MEVF, LSTM, BAN VQA-RAD Radiology images Medical 
questions 

Accuracy – – 

Liu et al.  
[70] 

CPRD, LSTM, BAN SLAKE, VQA- RAD Radiology images Medical 
questions 

Accuracy – √ 

Do et al.  
[74] 

MMQ, LSTM, SAN/BAN PathVQA, VQA- RAD Radiology images, 
pathology images 

Medical 
questions 

Accuracy – – 

Khare et al.  
[75] 

CNN, BERT, self-attention ImageCLEF 2019, VQA-RAD Radiology images Medical 
questions 

Accuracy – √ 

Pan et al.  
[76] 

MAML and CDAE, GRU, multi- 
view attention 

VQA-RAD, VQA- RADPh Radiology images Medical 
questions 

Accuracy – √ 

Gong et al.  
[77] 

CNN, LSTM, cross- modal self- 
attention 

VQA-RAD Radiology images Medical 
questions 

Accuracy – – 

Sharma et al. 
[69] 

CNN, BERT, MFB ImageCLEF 2019 Radiology images Medical 
questions 

Accuracy, AUC- 
ROC, AUC-PRC 

– √ 

Eslami et al.  
[78] 

CLIP, MEVF, QCR ROCO, SLAKE, VQA-RAD Radiology images Medical 
questions 

Accuracy – – 

Tanwani 
et al. [28] 

CNN, BERT, BAN VQA-RAD Radiology images Medical 
questions 

Accuracy – √ 

Chen et al.  
[79] 

Vision Transformer, BERT, co- 
attention 

ImageCLEF 2019, MedICaT, 
ROCO, SLAKE, VQA- RAD 

Radiology images Medical 
questions 

Accuracy – – 

Wang et al.  
[80] 

CDAE, LSTM, attention-based 
multi- granularity fusion 

VQA-RAD Radiology images Medical 
questions 

Accuracy – √ 

Naseem et al. 
[81] 

CNN, LSTM, Transformer PathVQA Radiology images Medical 
questions 

Accuracy – √ 

Liu et al.  
[62] 

CNN, Transformer ImageCLEF 2018, 
ImageCLEF 2019, VQA-RAD 

Radiology images Medical 
questions 

Accuracy, BLEU – – 

Haridas et al. 
[82] 

CNN, BERT, ViLBERT SLAKE Radiology images Medical 
questions 

Accuracy – – 

Moon et al.  
[46] 

CNN, BERT, attention masking VQA-RAD Radiology images Medical 
questions 

Accuracy – √ 

Chen et al.  
[83] 

Vision Transformer, BERT, co- 
attention 

ImageCLEF 2019, SLACK, 
VQA- RAD 

Radiology images Medical 
questions 

Accuracy – √ 

Pan et al.  
[84] 

MAML, CDAE, GRU, attention- 
based multimodal alignment 

PathVQA, VQA- RAD Radiology images, 
pathology images 

Medical 
questions 

Accuracy – √ 

Li et al. [85] M2I2, Transformer, self- 
supervised pretraining 

ImageCLEF 2022, PathVQA, 
SLAKE, VQA-RAD 

Radiology images, 
pathology images 

Medical 
questions 

Accuracy – √ 

Zhan et al.  
[86] 

Vision Transformer, BERT, 
adversarial masking 

ROCO, SLAKE, VQA-RAD Radiology images Medical 
questions 

Accuracy – √  

Table 4 
Overview of MDL models for cross-modal retrieval.  

Ref. Method Dataset Image type Text type Metrics External 
validation 

Explainability 

Hsu et al.  
[93] 

CNN, TF-IDF, DAN MIMIC-CXR CXR Radiology 
reports 

MRR, nDCG@K – – 

Lara et al.  
[94] 

CNN, TF-IDF TCGA-PRAD Pathology 
images 

Pathology 
reports 

Precision, MAP, GM- MAP, 
P@10, P@30 

– – 

Ni et al.  
[31] 

CNN, LSTM MIMIC-CXR CXR Radiology 
reports 

Accuracy, Precision, Recall, 
BLEU， ROUGE-L, METEOR 

√ √ 

Zhang et al. 
[95] 

CNN, CLIP CheXpert, MIMIC- 
CXR 

CXR Radiology 
reports 

Precision@K √ √ 

Wang et al.  
[96] 

Unified transformer IU X-Ray, MIMIC- 
CXR, NIH-CXR 

CXR Radiology 
reports 

Precision@K – – 

Ji et al.  
[97] 

CNN, Transformer IU X-Ray, MIMIC- 
CXR 

CXR Radiology 
reports 

Recall@K – – 

Huang et al. 
[98] 

CNN, BERT, self-attention CheXpert CXR Radiology 
reports 

Precision@K – √ 

Chen et al.  
[79] 

Vision Transformer, BERT, co- 
attention 

ROCO Radiology 
images 

Image 
captions 

Recall@K – – 

Maleki et al. 
[99] 

Vision Transformer, Text 
Transformer, self-attention 

ARCH Pathology 
images 

Image 
captions 

Recall@K – – 

Moon et al.  
[46] 

CNN, BERT, attention masking IU X-Ray, MIMIC- 
CXR 

CXR Radiology 
reports 

Hit@K, Recall@K, Precision@K, 
MRR 

– √ 

Chen et al.  
[83] 

Vision Transformer, BERT, co- 
attention 

ROCO CXR Radiology 
reports 

Recall@K – √ 

Wang et al.  
[100] 

CLIP CheXpert, COVID, 
MIMIC-CXR, RSNA 

CXR Radiology 
reports 

Precision@K – √  
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example, Huang et al. [98] introduced GLoRIA which enables cross- 
modal retrieval through the averaging of global and local similarity 
metrics. In a separate study, Chen et al. [79] developed self-supervised 
multimodal masked autoencoders, achieving excellent performances 
for image-to-text retrieval and text-to-image retrieval on the ROCO 
dataset. 

Maleki et al. [99] proposed LILE, a dual attention network that uses 
Transformers and an additional self-attention loss term to enhance in
ternal features for text retrieval and image retrieval on the ARCH 
dataset. 

Widely used measurements for assessing the performance of cross- 
modal retrieval are precision@K [46,94,98] and Recall@K 
[46,79,97,99], which quantify the accuracy of the first K retrieval re
sults. Another commonly used metric is the mean reciprocal rank (MRR) 
[46,93]. Out of the 12 studies in our collection, only 2 works incorpo
rated external validation, while 6 studies assessed the interpretability of 
their model. 

3.5. Computer-aided diagnosis 

MDL-based computer-aided diagnosis (CAD) is the use of generated 
output from multimodal data as an assisting tool for a clinician to make a 
diagnosis. Incorporating text modality in this context has been shown to 
provide supplementary features that can enhance performance in image 
classification. Currently, research in CAD mainly focuses on utilizing 
chest X-ray images in conjunction with corresponding radiological re
ports. It is expected that future pathological datasets will expand this 
field of research. 

Table 5 summarizes the application of multimodal deep learning on 
CAD. There exist several commonly employed multimodal fusion stra
tegies, including image-text embedding and contrastive learning. Image- 
text embedding refers to merging image and text features, which are 
then trained using supervised learning. For example, Wang et al. [101] 
introduced a Text-Image Embedding network (TieNet), which utilized a 
multi-task CNN-RNN framework and achieved an AUC of over 0.9 in 
thorax disease classification. In contrast, contrastive learning often in
volves image-text alignment and self-supervised learning. Tiu et al. 

Table 5 
Overview of MDL models for computer-aided diagnosis.  

Ref. Method Dataset Image type Text type Metrics External 
validation 

Explainability 

Wang et al.  
[101] 

CNN, LSTM IU X-Ray, NIH-CXR CXR Radiology 
reports 

AUC – – 

Daniels et al.  
[106] 

DNN IU X-Ray, NIH-CXR CXR Radiology 
reports 

AUC, Precision – – 

Yan et al. [107] CNN DeepLesion CT Annotations AUC, F1 – √ 
Weng et al.  

[108] 
CNN, BERT, Early 
fusion 

TCGA, TTH Pathology 
images 

Pathology 
reports 

AUC – – 

Lara et al. [94] CNN, TF-IDF TCGA-PRAD Pathology 
images 

Pathology 
reports 

Accuracy – – 

Chauhan et al.  
[109] 

CNN, BERT MIMIC-CXR CXR Radiology 
reports 

AUC, F1 √ √ 

Zhang et al. [95] CNN, CLIP CheXpert, COVIDx, MURA, RSNA X-rays Annotations, 
radiology report 

AUC, Accuracy √ √ 

Sonsbeek et al.  
[110] 

CNN, BERT IU X-Ray, MIMIC-CXR CXR Radiology 
reports 

AUC – √ 

Wang et al. [96] Unified transformer IU X-Ray, MIMIC-CXR, NIH-CXR CXR Radiology 
reports 

AUC – – 

Ji et al. [97] CNN, Transformer IU X-Ray, MIMIC-CXR CXR Radiology 
reports 

AUC – – 

Liao et al. [111] CNN, BERT CheXpert, MIMIC-CXR CXR Radiology 
reports 

AUC – – 

Huang et al.  
[98] 

CNN, BERT, self- 
attention 

CheXpert, RSNA CXR Radiology 
reports 

AUC, F1 – √ 

Zheng et al.  
[112] 

CNN, BERT, self- 
attention 

Multimodal COVID-19 Pneumonia 
Dataset 

CT, CXR, 
ultrasound 

Doctor-patient 
dialogues 

AUC, Accuracy, 
Precision, Sensitivity, 
Specificity, F1 

– – 

Zhou et al. [113] Vision Transformer, 
BERT 

COVID-19 Image Data Collection, 
MIMIC-CXR, NIH-CXR, Shenzhen 
Tuberculosis, VinBigData Chest X- 
ray 

CXR Radiology 
reports 

AUC √ √ 

Yan et al. [40] CNN, BERT COV-CTR, IU X-Ray, MIMIC-CXR CT, CXR Radiology 
reports 

AUC – √ 

Monajatipoor 
et al. [103] 

Vision Transformer, 
BERT 

IU X-Ray CXR Radiology 
reports 

AUC – – 

Jacenków et al.  
[114] 

CNN, BERT MIMIC-CXR CXR Radiology 
reports 

AUC √ – 

Hassan et al.  
[45] 

CNN, BERT, GRU IU X-Ray CXR Radiology 
reports 

AUC – – 

Moon et al. [46] CNN, BERT, 
attention masking 

IU X-Ray, MIMIC-CXR CXR Radiology 
reports 

AUC, F1 – √ 

You et al. [47] CNN, Transformer, 
GRU 

IU X-Ray CXR Radiology 
reports 

Accuracy – √ 

Chen et al. [83] Vision Transformer, 
BERT, co-attention 

MedICaT, MELINDA, MIMIC-CXR, 
ROCO 

CXR Radiology 
reports 

Accuracy – √ 

Wang et al.  
[115] 

Vision Transformer, 
BERT 

CheXpert, COVIDx, MIMIC-CXR, 
RSNA 

CXR Radiology 
reports 

AUC – – 

Wang et al.  
[100] 

CLIP CheXpert, COVID, MIMIC- CXR, 
RSNA 

CXR Radiology 
reports 

Accuracy – √ 

Tiu et al. [102] Vision Transformer, 
CLIP 

CheXpert, MIMIC-CXR CXR Radiology 
reports 

AUC, MCC, F1 √ √  
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[102] proposed a self-supervised learning framework, CheXzero, which 
achieved expert-level performance in zero- shot thoracic disease classi
fication without requiring manual labeling. Monajatipoor et al. [103] 
developed BERTHop, which leverages PixelHop++ [104] and Visual
BERT [105] to enable the learning of associations between clinical im
ages and notes. This model achieved an AUC of 0.98 on the IU X-Ray 
dataset [20]. 

Studies on COVID-19 diagnosis have recently been another popular 
trend. Zheng et al. [112] designed a multimodal knowledge graph 
attention embedding framework for diagnosing COVID-19, based on 
clinical images and doctor-patient dialogues. The proposed model per
formed better than single modality approaches, with an AUC of 0.99. In 
addition, the MedCLIP proposed by Wang et al. [100] achieved better 
performance than supervised models for the zero-shot classification task 
of COVID-related datasets. 

The metrics employed to assess the performance of diagnostic clas
sification primarily comprise the AUC and the F1-score. Additionally, 
the Matthews correlation coefficient (MCC) is utilized to assess the 
dissimilarity between model and expert classifications [102]. Out of the 
24 studies gathered, 4 incorporated external validation, while 11 studies 
focused on elucidating the interpretability of the model. 

3.6. Semantic segmentation 

This group of studies investigates the effectiveness of image-text 
contrastive learning, which involves utilizing semantic segmentation 
to extract visual features that can be juxtaposed with textual features to 
facilitate the comprehension of the relationship between images and 
their corresponding textual descriptions (Table 6). Additionally, local 
alignment assessment in contrastive learning is evaluated using se
mantic segmentation techniques. 

Typical datasets employed for semantic segmentation include SIIM 
[116] and RNSA [117]. The SIIM dataset consists of 12,047 chest ra
diographs, along with corresponding manual annotations. Similarly, the 
RNSA dataset includes 29,700 frontal view radiographs for evaluating 
evidence of pneumonia. Boecking et al. have recently proposed the MS- 
CXR [118] dataset, which comprises 1153 image-sentence pairs with 
annotated bounding boxes and corresponding phrases validated by ra
diologists. This dataset covers eight distinct cardiopulmonary radiology 
findings. 

Image-text alignment and local representation learning are 
commonly used in MDL for semantic segmentation. These techniques 
can help improve the model’s accuracy by enabling it to better under
stand the spatial relationships between different regions in the image 
and the relationship between visual and textual information [119]. Li 
et al. [120] proposed LViT, which used medical text annotations to 
improve the quality of image data and guide the generation of pseudo 
labels, leading to better segmentation performance. Müller et al. [121] 
devised a novel pre-training approach, LoVT, which aimed to specif
ically address localized medical imaging tasks. Their method exhibited 
superior performance on 10 out of 18 localized tasks in comparison to 

commonly employed pre-training techniques. 
In all the research studies that we have gathered, Dice [122] has been 

utilized as a metric for measuring the similarity between predicted 
segmentation and ground truth. Additionally, mean intersection over 
union (mIoU) and contrast-to-noise ratio (CNR) have also been 
employed. Out of the 5 studies in our collection, no work incorporated 
external validation, while 2 studies assessed the interpretability of their 
model. 

3.7. Other related tasks 

During our article collection, we identified several works that, while 
not fitting into the aforementioned categories, are of considerable 
importance. These works include studies centered on medical image 
generation, object detection, multimodal predictive modeling, MDL- 
related databases, and libraries of pre-training models. Chambon et al. 
[123] fine-tuned the Stable Diffusion model to generate CXR images 
with realistic-looking abnormalities by employing domain-specific text 
prompts. In a separate publication, they introduced RoentGen, a model 
adept at synthesizing CXR images predicated upon text prompts present 
in radiological reports, resulting in a 25% enhancement in the repre
sentation capabilities of pneumothorax [124]. Qin et al. [125] scruti
nized the implementation of pre-trained vision language models (VLM) 
for medical object detection and devised an approach to incorporate 
expert medical knowledge and image-specific information within the 
prompt, thereby augmenting the performance of zero-shot learning. Lin 
et al. [126] developed a survival prediction model using radiation re
ports and images to forecast ICU mortality. This model outperformed 
traditional single-modal machine learning methods with a higher C- 
index. Bai et al. [127] designed an interactive VQA system that em
powers patients to upload their own multimodal data, choose the 
appropriate model in the library, and communicate with an AI robot for 
model evaluation. Delbrouck et al. [128] presented ViLMedic, a Vision- 
and-Language medical library, consisting of over 20 pre-trained models 
for various downstream tasks. This resource facilitates the real-world 
clinical translation of these models. Kovaleva et al. [129] released the 
first publicly available visual dialog datasets for radiology, highlighting 
the belief that integrating patients’ medical history information would 
enhance the performance of traditional VQA models. Li et al. [130] 
summarized the performance of four pre-trained models for multimodal 
vision-and-language feature learning and visualized their attention 
mechanism. Evidenced by these studies, we believe multimodal vision- 
and- language learning will continue to expand its range of applica
tions in the future, with more related databases and model libraries 
being established to promote its clinical use. 

4. Discussion 

Our scoping review identifies research related to MDL in biomedical 
images and texts on different downstream tasks, with specific attention 
to the datasets employed, model methodology, evaluation metrics, 

Table 6 
Overview of MDL models for semantic segmentation.  

Ref. Method Dataset Image type Text type Metrics External 
validation 

Explainability 

Huang et al.  
[98] 

CNN, BERT, self- 
attention 

CheXpert, SIIM-ACR CXR Annotations Dice – √ 

Müller et al.  
[121] 

CNN, BERT, CLIP COVID Rural, NIH-CXR, Object CXR, 
RSNA, SIIM-ACR 

CXR Annotations Dice – – 

Boecking et al.  
[118] 

CNN, BERT MIMIC-CXR, MS-CXR, RSNA CXR Annotations Dice, mIoU, 
CNR 

– – 

Li et al. [120] CNN, Vision 
Transformer, BERT 

MoNuSeg, QaTa-COV19 CXR, Pathology 
images 

Annotations Dice, mIoU – √ 

Wang et al.  
[115] 

Vision Transformer, 
BERT 

RNSA, SIIM-ACR CXR Annotations Dice – –  
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external validation, and interpretability. Overall, the evidence suggests 
that deep learning models on multimodal medical image and text data 
can potentially improve diagnostic accuracy and clinical decision- 
making, showing promising results in several medical fields, including 
oncology, radiology, and pathology. However, our review also reveals 
challenges related to data imbalance, clinical knowledge, model fair
ness, and human evaluation. These findings are highly relevant to cli
nicians, researchers, and computer scientists interested in leveraging 
recent advances in artificial intelligence and deep learning to improve 
patient care and health outcomes. 

In the realm of MDL, acquiring high-quality annotated data is crucial 
for the development and evaluation of models, yet several challenges 
persist in obtaining such datasets like MIMIC-CXR. First, the annotation 
of medical data is a laborious and time-consuming task that requires 
domain expertise and specialized tools to ensure accuracy and consis
tency, particularly when annotating both image and text data. This can 
result in insufficient annotated samples for certain modalities, leading to 
imbalanced datasets that adversely affect model performance. To 
address data scarcity and reduce the burden of expert annotation, 
multimodal meta-learning, and few-shot learning are poised to remain 
popular research topics in the medical field [41,80]. Second, the current 
trend in medical datasets predominantly features radiology images and 
their accompanying reports, with a limited representation of other im
aging modalities such as pathological images, ultrasound, endoscopy, 
and text modalities such as clinical notes. This limits the broader clinical 
application of multimodal models. Future work should construct more 
multimodal datasets for different medical scenarios, and integrate these 
heterogeneous data into a system to realize multimodal cross-scenario 
learning. Thirdly, data privacy concerns are pronounced in the medi
cal domain, necessitating the protection of sensitive patient information. 
However, this often leads to a lack of publicly available datasets, exac
erbating the issue of insufficient and unbalanced data. 

Advocating for open-access initiatives can help address this chal
lenge by enabling researchers to access larger and more diverse datasets 
for model training and evaluation. In addition, implementing advanced 
privacy-preserving techniques, such as differential privacy and feder
ated learning, can further alleviate privacy concerns while allowing 
researchers to utilize medical data (paper: Federated learning and dif
ferential privacy for medical image analysis). 

Incorporating clinical knowledge into medical NLP has been identi
fied as a major research direction that can enhance the model’s per
formance and broaden its application in clinical practice [131–133]. 
However, the current research is limited in terms of the integration of 
clinical knowledge into MDL models. Incorporating clinical knowledge 
into the encoding stage can help learn useful visual features, leading to 
more accurate predictions. Specifically, clinical knowledge can provide 
insights into specific image features that are more clinically relevant, 
such as lesions or abnormalities, and guide the model to focus on these 
features during the encoding process. Chen et al. [25] integrated 
external knowledge into the features of TF-IDF and achieved improved 
performance in both report generation and diagnostic tasks. Further
more, clinical knowledge can be particularly beneficial in scenarios with 
limited or new data, such as COVID-19-related datasets, where over
fitting is more likely to occur. Liu et al. [36] incorporated external 
knowledge into the COVID-19 CT report generation task, generating 
fewer irrelevant words and higher BLEU scores. In addition, Chen et al. 
[83] demonstrated that aligning, reasoning, and learning using clinical 
knowledge could achieve higher accuracy than each approach individ
ually in VQA. Future research could explore more sophisticated ways to 
integrate clinical knowledge into models, such as knowledge graphs and 
ontologies. Moreover, researchers could examine how clinical knowl
edge from diverse sources, such as electronic health records, medical 
literature, or expert opinions, can be integrated to enhance the models’ 
performance and adaptability. It is also important to assess the clinical 
relevance and impact of models in real-world clinical settings by con
ducting clinical trials and involving clinicians and patients in the 

development and validation process. 
Human evaluation is essential for assessing the practicality of the 

model in real-world clinical scenarios and providing insights into the 
model’s decision-making process. However, human evaluation was not 
widely employed in the studies we collected. Out of the five downstream 
tasks covered in this review, report generation incorporated more 
external validation, as observed in 10 of 25 articles. Notably, no studies 
were found to introduce external validation for VQA or semantic seg
mentation tasks. The observed phenomenon could be attributed to the 
fact that human evaluation is time-consuming and costly [134]. Addi
tionally, the absence of standardized protocols for human evaluation of 
MDL models in medical settings poses a significant challenge to the 
comparison and generalization of findings across studies [135]. 
Furthermore, the interdisciplinary collaboration between clinicians and 
computer scientists can be a formidable obstacle, owing to differences in 
their respective backgrounds and training that can hinder effective 
communication and seamless teamwork. Besides, clinicians often have 
limited availability to engage in such collaborative efforts, while com
puter scientists may face stringent deadlines for developing and testing 
models. In the future, there is a need to develop and adopt standardized 
protocols for the human evaluation of MDL models in medical 
applications. 

Moreover, interdisciplinary workshops can help bridge the gap be
tween clinicians and computer scientists and facilitate effective collab
oration. Finally, effective automated metrics could provide a more 
objective and efficient approach to evaluating MDL models. 

The fairness and explainability of MDL models also exhibit de
ficiencies. The absence of interpretability of the models engenders 
challenges in fostering trust in their predictions, thereby limiting their 
adoption in clinical practice. The lack of transparency in these“black 
boxes” further compounds the issue as it hinders the detection of errors 
and biases, thereby resulting in potential harm to patients [136]. Out of 
the 77 articles we collected, only 35 provided an exposition of the 
interpretability of the model, leveraging techniques such as heat maps 
and factual metrics. 

Among them, the visual interpretation of CNN models, which are 
based on attention mechanisms, has gained increasing traction in the 
medical field [137]. However, it is worth noting that a significant 
number of articles do not explicitly consider the inclusion of interpret
ability as an improvement, and only a few employ a formal counter
factual evaluation [49]. Future MDL research endeavors must prioritize 
the development of interpretable models. Standardized methods are 
needed for evaluating and quantifying the interpretability of these 
models. Additionally, it is essential to engage in a continuous dialogue 
between clinicians, researchers, and computer scientists to ensure that 
the development of MDL models aligns with the values and needs of the 
medical community. 

While our scoping review provides a comprehensive overview of the 
current state of MDL in biomedical images and texts, several limitations 
must be considered. First, our search strategy may have missed some 
relevant studies, as we focused on a limited set of databases and search 
terms. Second, we tried to understand the current state of the literature 
from their downstream tasks and applications. Still, there was a lack of a 
systematic summary of the methodology, particularly regarding the 
multimodal fusion strategy. Third, the heterogeneity of the included 
studies makes it difficult to compare and synthesize the evidence across 
different domains and contexts. Finally, our scoping review did not 
include a formal quality assessment of the studies, which may have 
affected the reliability and validity of the evidence. However, we believe 
the breadth and depth of the evidence we gathered will provide a robust 
foundation for future research and improvement. 

5. Conclusion 

In this scoping review, we systematically examined the current state 
of research on MDL in biomedical images and texts based on various 
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downstream tasks, including report generation, visual question 
answering, cross-modal retrieval, computer-aided diagnosis, and se
mantic segmentation. Our findings suggest that MDL can potentially 
improve diagnostic accuracy and clinical decision-making, but it also 
poses challenges related to data imbalance, clinical knowledge, human 
evaluation, and model fairness. We also discussed several areas for 
further investigation and improvement, such as developing more robust 
evaluation standards, collaborating with interdisciplinary institutions or 
individuals, and exploring new data sources and modalities. Our review 
has important implications for clinicians, researchers, and computer 
scientists interested in leveraging the latest advances in MDL to improve 
patient care and health outcomes. 

6. Statement of Significance  

Problems Multimodal deep learning (MDL) in biomedical images and 
structured EHR data improves clinical decision-making, but the 
application of MDL methods with medical images and texts is 
still in its infancy, and explaining MDL methods remains a 
challenge. 

What is Already 
Known 

Previous review articles have focused on MDL methods, and 
MDL with medical images and structured EHR data. 

What this Paper 
Adds 

This scoping review provides a comprehensive synthesis of 
MDL research in biomedical images and texts over the past five 
years, focusing on 5 clinical tasks, explainability, and human 
evaluation to foster the application of multimodal language 
models in the medical field.  
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