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Objective: Computer-assisted diagnostic and prognostic systems of the future should be capable of simultaneously
processing multimodal data. Multimodal deep learning (MDL), which involves the integration of multiple sources
of data, such as images and text, has the potential to revolutionize the analysis and interpretation of biomedical
data. However, it only caught researchers’ attention recently. To this end, there is a critical need to conduct a
systematic review on this topic, identify the limitations of current work, and explore future directions.
Methods: In this scoping review, we aim to provide a comprehensive overview of the current state of the field and
identify key concepts, types of studies, and research gaps with a focus on biomedical images and texts joint
learning, mainly because these two were the most commonly available data types in MDL research.

Result: This study reviewed the current uses of multimodal deep learning on five tasks: (1) Report generation, (2)
Visual question answering, (3) Cross-modal retrieval, (4) Computer-aided diagnosis, and (5) Semantic
segmentation.

Conclusion: Our results highlight the diverse applications and potential of MDL and suggest directions for future
research in the field. We hope our review will facilitate the collaboration of natural language processing (NLP)
and medical imaging communities and support the next generation of decision-making and computer-assisted
diagnostic system development.

1. Introduction

Multimodal deep learning (MDL), which involves the integration of
multiple modalities, such as medical images, unstructured text, and
structured Electronic Health Records (EHRs) has gained significant
attention in biomedical research [1]. This approach has been proven to
improve the accuracy and efficiency of various tasks in clinical decision-
making with imaging and structured EHR (i.e., -omics data, lab test data,
demographic data) [2-4]. The heterogeneous data available to clinicians
allows for multiple viewpoints to be considered when making decisions
and constructing computer-aided diagnosis and prognosis systems.
However, the application of MDL with medical imaging data and un-
structured free-text data (i.e., clinical reports) is still in its infancy. The
emergence of related research has only recently surfaced. For example,
in the field of natural language processing (NLP), pre-trained models,
such as Bidirectional Encoder Representations from Transformers

(BERT) [5] and Generative Pre-trained Transformer 3 (GPT- 3) [6], have
garnered world-renowned accomplishments in various downstream
tasks.

Furthermore, multimodal language models, including Contrastive
Language Image Pretraining (CLIP) [7] and the more recent KOSMOS-1
[8], have demonstrated remarkable performances in addressing general
domain tasks. This notable progress has simultaneously facilitated the
models’ applicability within the medical domain. As a result, we believe
it is imperative to comprehensively synthesize the past five years’
research on MDL in biomedical images and texts, including an overview
of research objectives and methodologies, elucidating development
trends, and exploring potential broader clinical applications in the
future.

Our review is inspired by several related review articles. Heiliger
et al. [9] provided a comprehensive overview of existing multimodal
learning methods and related databases in radiology, proposing a
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modality-based taxonomy based on the structural and design principles
of the model. However, it was method-oriented, which might not facil-
itate clinicians’ comprehension of the development of MDL in the
medical field from the standpoint of specific applications. Cui et al. [10]
explored the various fusion strategies employed in disease diagnosis and
prognosis. However, the multimodal fusion discussed in these articles
primarily included structured data from EHRs, with limited attention to
unstructured text. Similarly, numerous systematic reviews have syn-
thesized the employment of multimodal artificial intelligence (AI),
machine learning, and the Internet of Medical Things (IoMT) within the
realm of biomedicine [11-13]. Nonetheless, these investigations
exhibited a notable absence of detailed discussions on implementing
multimodal language models in the medical domain.

Additionally, the outstanding achievements of deep learning are
accompanied by increasing model complexity and a lack of interpret-
ability of Al models that prevents their applicability to clinical scenarios
[14]. Therefore, it becomes necessary to come up with solutions to
address this challenge and move toward more transparent Al. Compared
to single-model AI, MDL presents unique challenges as explanations of
multimodal data are often separated. For example, there are SHAP
values for the EHR and a heatmap for the brain images - a visualization
of the brain areas affected. But few visualization/explanation methods
integrate the data and results, especially with longitudinal data. While
many review studies organize and report challenges and opportunities of
explainable AI, however, they do not focus on MDL [15-17].

To our knowledge, our paper represents the first review of multi-
modal deep learning focusing on medical image and text data,
explainability, and human evaluation. Our motivation is to foster the
application of multimodal language models in the medical field in a
more comprehensible manner. Our target readers include clinicians and
computer scientists. Specifically, we aim to provide clinicians with in-
sights into the current performance of various pre-training models on
different clinical tasks, as well as opportunities to evaluate model
interpretability and contribute to developing new public datasets.
Meanwhile, we hope that computer scientists will advance the clinical
translation of models by focusing on clinical tasks, recognizing the sig-
nificance of external validation, and increasing model transparency in
the clinical translation process.

The review questions and objectives for this scoping review are as
follows: The primary research question is: What is the current state of
the literature on MDL in biomedical images and texts?

This question will be addressed by exploring the following sub-
questions: What databases were utilized in these studies? What were
multimodal fusion techniques employed in these studies? Which image
and text modalities were incorporated in these studies? What metrics
were utilized to evaluate the model’s performance in these studies? Did
these studies employ external validation? Did these studies explicate the
model’s interpretability?

The organization of the review is as follows: Section 2 describes the
protocol used in planning and executing this systematic review. Section
3 discusses the research directions of five tasks: report generation, visual
question answering, cross-modal retrieval, diagnostic classification, and
semantic segmentation. Section 4 summarizes the limitations and
challenges of the current approaches and highlights future research di-
rections. Lastly, Section 5 concludes the final remarks.

2. Methods

Our scoping review follows the Preferred Reporting Items for Sys-
tematic Reviews and Meta- Analyses (PRISMA) guidelines [18].

2.1. Eligibility criteria
Our scoping review focused on research on multimodal deep

learning techniques applied to medical images and unstructured text.
The inclusion criteria for our review consisted of English- language
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articles published between 2018 and 2022, including both conference
papers and journal articles. We chose this time frame to capture the most
up-to-date research in this rapidly evolving field. Additionally, we refer
to relevant preprint articles to ensure we can consider cutting-edge
research that has yet to be published in peer-reviewed venues.

2.2. Information sources

A search of multiple databases was carried out, including PubMed
(https://pubmed.ncbi.nlm.nih.gov/), the Association for Computing
Machinery (ACM) Digital Library (https://dl.acm.org/), the Institute of
Electrical and Electronics Engineers (IEEE) Xplore Digital Library (http
s://ieeexplore.ieee.org/Xplore/home.jsp), Google Scholar (https://
scholar.google.com/), and Semantic Scholar (https://www.semantics
cholar.org/). The most recent search was executed on January 8, 2023.

2.3. Search strategy

All the studies collected in this research were confined to the medical
field. Initially, our search comprised three keyword groups: image mo-
dality (e.g., medical images and radiology images), text modality (e.g.,
text and report), and multimodal fusion learning (e.g., multimodal
learning, joint fusion, and contrastive learning). We combined these
keywords to carry out the first round of collection across five databases.
To ensure the comprehensiveness of the articles collected, we conducted
a second round of collection on Google Scholar, by adding a fourth
application- oriented keyword group (i.e., report generation, visual
question answering, and cross-modal retrieval).

2.4. Study selection

Title and abstract screening were conducted independently by two
reviewers (ZS and ML). In cases of disagreement, studies were subjected
to full-text review, and a consensus was reached through discussions.
Subsequently, each article was reviewed and labeled according to the
tasks. These tasks encompassed report generation, visual question
answering, cross-modal retrieval, diagnostic classification, semantic
segmentation, and other related tasks, with the possibility for a single
article to correspond to multiple tasks. During the screening and the full-
text review stages, we excluded review articles, non-medical articles,
poor-quality articles, and unimodal studies (i.e., studies focusing solely
on images or text). Articles containing modalities without images or text
(e.g., omics data, lab test data, and demographic data) were also
excluded.

2.5. Data extraction and synthesis

In our study, we undertook a systematic analysis of each downstream
task. Firstly, we explored commonly used datasets for the task at hand,
as well as their primary contents. Secondly, we expounded on the
commonly employed multimodal frameworks and development trends
of the methodology (e.g., fusion embedding, transformer-based atten-
tion models, and contrastive language-image pre-training). Subse-
quently, we summarized the specific image and text modalities covered
in the articles, such as chest X-rays (CXR) and radiology reports. Lastly,
we sorted out commonly used evaluation metrics for each downstream
task, such as the area under the receiver operating characteristic curve
(AUCQ), F1-score, and bilingual evaluation understudy (BLEU) [19]. Of
particular note, we considered whether clinical experts were invited for
external validation and explanation of the model’s interpretability. We
believe this has significant implications for enhancing the accuracy of
computer-aided diagnosis and prognosis in the future.
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3. Results
3.1. Included studies and datasets

A total of 361 articles were retrieved from five databases, from which
77 articles were ultimately included in our review. Fig. 1 shows the
flowchart of our article screening process. During the screening process,
we excluded 137 articles based on their titles and abstracts, according to
our predetermined exclusion criteria (Section 2.4). Subsequently, a full-
text review was conducted on the remaining articles, which resulted in
an additional 13 articles being excluded. Specifically, these articles were
discarded based on evaluations of their full texts, including 3 non-
medical articles, 6 articles that lacked a text modality, 1 article that
lacked an imaging modality, 2 articles on unimodal learning, and 1 poor-
quality article.

Table 1 encapsulates the medical multimodal datasets employed in
the articles collected in this scoping review, encompassing the dataset
name, image type, text type, and the corresponding website for each
dataset.

3.2. Report generation

Report generation aims at generating descriptives from EHR and
medical images automatically. It could ease the work burden upon cli-
nicians and improve the quality of the reports themselves. Since the
training process of report generation typically requires both medical
images and text reports written by clinicians, it can be naturally
considered a multimodal learning process.

Table 2 provides an overview of the application of multimodal deep
learning on report generation. Common image data used in the medical
field include X-rays, computerized tomography (CT), magnetic reso-
nance imaging (MRI), and pathological images. A common dataset for
this task is the IU X-Ray [20] dataset, which comprises 7,470 frontal and
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lateral chest radiographs and 3,955 corresponding reports. Another
widely-used dataset is the MIMIC-CXR [21,22] dataset, including
377,110 images and 227,827 reports. Furthermore, there exist datasets
specifically designed for image classification and assistance in report
generation, such as the CheXpert dataset [23], which comprises 224,316
images and 14 labels marked as present, absent, or uncertain.

Most studies employ convolutional neural networks (CNNs) to pro-
cess medical images. Regarding text processing, Long Short-Term
Memory (LSTM) was previously a popular method. For example, Yuan
etal. [24] developed a CNN encoder and hierarchical LSTM decoder that
utilized a visual attention mechanism based on multi-view in radiology.
In the recent two years, the Transformer architecture has seen increasing
use in report generation. Chen et al. [25] proposed the VMEKNet model,
which combines the Transformer architecture with visual memory and
external knowledge, resulting in improved performance in both quali-
tative and quantitative experiments and clinical diagnosis. Another
notable contribution is the AlignTransformer proposed by You et al.
[26], which effectively addresses data bias and is particularly well-
suited for long-sequence report generation. The use of self-supervised
learning techniques, such as CLIP, has also garnered attention for its
ability to retrieve reports for report generation purposes. The CXR-
RePaiR model proposed by Endo et al. [27] employed the CLIP
approach with retrieval-based mechanisms and achieved outstanding
metrics in language generation tasks. Similarly, the RepsNet model
proposed by Tanwani et al. [28] incorporates the principle of self-
supervised contrastive alignment. Recent research has focused on
improving the factual correctness and completeness of generated reports
through reward mechanisms. Miura et al. [29] developed a model that
applies a reward mechanism to reinforcement learning, resulting in
significant improvements in clinical performance. This approach was
further refined by Delbrouck et al. [30] and improved by 14.2% in
factual correctness and 25.3% in completeness.

Evaluation metrics for report generation can be classified into three

Identification of articles

Articles identified from PubMed, ACM Digital Articles removed before
c Library, IEEE Xplore, Google Scholar, Semantic - screer_nng. )
2 Scholar »|  Review articles
& (n=361) Before 2018
& Non-medical
g Image only
2 Text only
- Other modalities
Duplicates
P A 4
Title and abstract screened Articles excluded
(n=227) "1 (n=137)
g Articles excluded
s Fu!—text screened Non-medical (n=3)
(n=90) No text (n=6)
No imaging (n=1)
Not multi-modality (n=2)
Poor quality (n=1)
[} . . . .
S Articles included in review
T:: (n=77)

Fig. 1. Flowchart of article selection.
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Table 1
Multimodal medical image-text datasets.
Dataset Image type Text type URL
MURA Bone X-rays Annotations https://stanfordmlgroup.
github.io/competitio
ns/mura/
DeepLesion CT Annotations https://nihcc.app.box.
com/v/DeepLesion
COV-CTR CT Radiology https://github.
reports com/mlii0117/COV-CTR
COVID-19 CT CT Radiology https://covid19ct.github.io
reports
COVID Rural CT, CXR Annotations https://wiki.cancerimaging
archive.net/pages/vie
wpage.action?page
1d=70226443
COVID-19 CT, CXR Annotations https://github.com/ieee
Image Data 8023/covid-chestxray-data
Collection set
COVIDx CXR Annotations https://github.com/li
ndawangg/COVID-Net
MS-CXR CXR Annotations https://aka.ms/ms-cxr
QaTa-COV19 CXR Annotations https://www.kaggle.com/
datasets/aysendegerli/qata
cov19-dataset
Shenzhen CXR Annotations https://www.kaggle.com/
Tuberculosis datasets/raddar/tuberculos
is-chest-xrays-shenzhen
SIIM-ACR CXR Annotations https://www.kaggle.com/
competitions/siim-acr-p
neumothorax-segmenta
tion/data
VinBigData CXR Annotations https://www.kaggle.com/c
Chest X-ray ompetitions/vinbigdata-ch
est-xray-abnormalities-
detection/data
RSNA CXR Image https://rsna.org/challen
captions ge-datasets/2018
CheXpert CXR Radiology https://stanfordmlgroup.gi
reports thub.io/competitions/ch
expert
1U X-Ray CXR Radiology https://openi.nlm.nih.gov
reports
MIMIC-CXR CXR Radiology https://physionet.
reports org/content/mimic-
cxr/2.0.0
MIMIC-CXR- CXR Radiology https://physionet.org/
JPG reports content/mimic-cxr-jpg/
2.0.0
NIH-CXR CXR Radiology https://nihcc.app.box.co
reports m/v/ChestXray-NIHCC
PadChest CXR Radiology https://bimev.cipf.es/bime
reports v-projects/padchest
RadGraph CXR Radiology https://physionet.org/con
reports tent/radgraph/1.0.0
MoNuSeg Pathology Annotations https://monuseg.grand-ch
images allenge.org/Data
ARCH Pathology Image https://warwick.ac.uk/fac/
images captions cross_fac/tia/data/arch
PathVQA Pathology Medical https://github.com/
images questions UCSD-AI4H/PathVQA
TCGA Pathology Pathology https://portal.gdc.cancer.
images reports gov/repository
PEIR Pathology Image https://peir.path.uab.ed
images, captions u/library
radiology
images
MedICaT Radiology Image https://github.com/allena
images captions i/medicat
ROCO Radiology Image https://github.com/ra
images captions zorx89/roco-dataset
ImageCLEF Radiology Medical https://www.imageclef.org
VQA-Med images questions
SLAKE Radiology Medical https://www.med-vqa.
images questions com/slake
VQA-RAD Radiology Medical https://osf.io/89%kps
images questions
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categories: text quality, medical correctness, and explainability [49].
These metrics are typically intended to be generated automatically,
rather than manually, to facilitate automation of the report generation
process. The text quality is commonly evaluated using metrics such as
BLEU [19], METEOR [50], and ROUGE-L [51]. Medical correctness is
evaluated using metrics such as AUC, precision, recall, and F1 [41,46].
Yu et al. introduced a composite metric, RadCliQ, aimed at quantifying
the similarity between model-generated reports and those produced by
radiologists, and the percentage of decreased errors [52]. Additionally,
the explainability-related metrics factENT and factENTNLI, proposed by
Miura et al. [29], have been shown to effectively evaluate the factual
correctness and completeness of the model. In the reviewed literature,
10 articles sought external validation through the involvement of radi-
ologists or other clinical experts. Furthermore, 14 articles provided
validation of the interpretability of the models through various methods.

3.3. Visual question answering

In the clinical domain, Visual Question Answering (VQA) represents
a computer-assisted diagnostic technique that offers clinical decision-
making support for image analysis [53].

Table 3 is an overview of the application of MDL on VQA.
Commencing in 2018, ImageCLEF has been conducting an annual
challenge for medical VQA, evaluating and ranking the performance of
participating models. The mainstream VQA datasets in the medical
domain include VQA-MED-2018 [54], VQA-MED-2019 [55], and VQA-
MED-2020 [56], which were proposed by the challenge tasks. These
datasets encompass radiographic images along with corresponding
question-answer pairs. For instance, VQA-MED-2020 comprises 4,500
radiographic images and 4,500 question-answer pairs [56]. Addition-
ally, VQA-RAD consists of 315 radiological images and 3,500 ques-
tion-answer pairs [57]. The PathVQA dataset contains 1,670
pathological images and 32,799 question-answer pairs [58]. Liu et al.
[59] introduced the SLAKE, a bilingual dataset that encompasses se-
mantic labels and structural medical knowledge, incorporating more
modalities and body parts. The SLAKE includes 642 images, 14,028
question-answer pairs, and 5,232 medical knowledge triplets.

A typical VQA model consists of four essential components: an image
feature extractor, a question feature extractor, a multimodal fusion
component, and a classifier or generator. For the image feature
extractor, CNN-based pre-trained models such as ResNet [60] or
VGGNet [61] are often employed to extract high-dimensional features
from medical images. Liu et al. [62] introduced a bi-branch model that
leverages both ResNet152 and VGG16 to extract sequence/spatial fea-
tures and retrieve the similarity of image features, thereby enhancing
the semantic understanding of images. For question feature extraction,
recurrent neural networks (RNNs) such as Long-Short-Term Memory
(LSTM) [63] and Gated Recurrent Unit (GRU) [64] are commonly uti-
lized. Additionally, BERT-based models [5] have seen increasing use for
extracting textual features. With regards to multimodal fusion, models
from general domain VQA such as Stacked Attention Networks (SAN)
[65], Bilinear Attention Networks (BAN) [66], Multimodal factorized
bilinear (MFB) [67], and Multimodal Factorized High-order (MFH) [68]
are often adopted. Sharma et al. [69] utilized MFB as a feature fusion
technique to design an attention-based model that maximizes learning
while minimizing complexity. Liu et al. [70] proposed a pre-training
model called the Contrastive Pre-training and Representation process
(CPRD), which effectively resolves the issue of limited MED-VQA data
and demonstrates excellent performance.

The issue of data scarcity and lack of multilevel reasoning ability in
Med-VQA has prompted the development of the Mixture of Enhanced
Visual Features (MEVF) [87]. MEVF is a meta- learning-based approach
that utilizes Model-Agnostic Meta-Learning (MAML) [88] and Con-
volutional Denoising Auto-Encoder (CDAE) [89] to effectively address
the problem of insufficient data during image feature extraction. The
proposed method has gained widespread use in subsequent studies and
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Table 2
Overview of MDL models for report generation.
Ref. Method Dataset Image type Text type Metrics External Explainability
validation
Yuan et al. CNN, LSTM CheXpert, IU X- CXR Radiology reports BLEU, METEOR, ROUGE-L - \/
[24] Ray
Ni et al. [31] CNN, LSTM MIMIC-CXR CXR Radiology reports ~ BLEU, METEOR, ROUGE-L v v/
Nishino et al. CNN, GRU, BERT JCT, MIMIC-CXR CXR Radiology reports BLEU, ROUGE, CRS - -
[32]
Miura et al. CNN, Transformer 1U X-Ray, MIMIC- CXR Radiology reports BLEU, CIDEr, BERTScore, \/ \/
[29] CXR factENT, factENTNLI
Chen et al. CNN, Transformer 1U X-Ray, MIMIC- CXR Radiology reports BLEU, METEOR, ROUGE-L - \/
[331] CXR
You et al. [26] CNN, Transformer, 1U X-Ray, MIMIC- CXR Radiology reports BLEU, METEOR, ROUGE-L \/ -
multi-head attention CXR
Alfarghaly CNN, word2vec, GPT-2 U X-Ray CXR Radiology reports ~ BLEU, METEOR, ROUGE-L, v v
etal. [34] CIDEr
Delbrouck GRU, Fusion MIMIC-CXR CXR Radiology reports BLEU, METEOR, ROUGE - -
et al. [35]
Liu et al. [36] CNN, BERT, multi-head =~ COVID-19 CT, CX- CT, CXR Radiology reports BLEU, ROUGE-L, CIDEr v v
attention CHR
Pahwa et al. CNN, Transformer 1U X-Ray, PEIR CXR, pathology Radiology reports, BLEU, METEOR, ROUGE-L - -
[37] Gross images image captions
Zhou et al. CNN, BioSentVec, 1U X-Ray, MIMIC- CXR Radiology reports BLEU, METEOR, ROUGE-L, - \/
[38] LSTM CXR CIDEr, nKTD
Endo et al. CLIP CheXpert, MIMIC- CXR Radiology reports Semb, BLEU, F1 - -
[27] CXR
Chen et al. CNN, TF-IDF, 1U X-Ray CXR Radiology reports BLEU, METEOR, ROUGE-L - -
[25] Transformer
Wang et al. BLIP ImageCLEF 2020 Radiological Image captions BLEU, METEOR, ROUGE-L, - -
[39] images CIDEr, SPICE, BERTScore
Yan et al. [40] CNN, BERT COV-CTR, IU X- CT, CXR Radiology reports BLEU, METEOR, ROUGE-L - \/
Ray, MIMIC-CXR
Tanwani et al. CNN, BERT, BAN 1U X-Ray CXR Radiology reports BLEU - \/
[28]
Keicher et al. CLIP MIMIC-CXR CXR Radiology reports AUC - -
[41]
Chen et al. CNN, Transformer, IU X-Ray, MIMIC- CXR Radiology reports BLEU, METEOR, ROUGE-L - Vv
[42] cross-modal memory CXR
Qin et al. [43] CNN, Transformer, IU X-Ray, MIMIC- CXR Radiology reports BLEU, METEOR, ROUGE-L \/ \/
cross-modal memory CXR
Ma et al. [44] CNN, LSTM, CMCL IU X-Ray, MIMIC- CXR Radiology reports BLEU, METEOR, ROUGE-L Vv -
CXR
Hassan et al. CNN, BERT, GRU IU X-Ray CXR Radiology reports BLEU, ROUGE - -
[45]
Moon et al. CNN, BERT, attention IU X-Ray, MIMIC- CXR Radiology reports BLEU, Precision, Recall, F1 \/ \/
[46] masking CXR
You et al. [47] CNN, Transformer, IU X-Ray CXR Radiology reports BLEU, METEOR, ROUGE-L, - \/
GRU CIDEr, SPICE, BERTScore
Delbrouck CNN, BERT, semantic IU X-Ray, MIMIC- CXR Radiology reports ~ BLEU, ROUGE-L, F1cXb, YV v
et al. [30] graph- based reward CXR, RadGraph factENT, factENTNLI, RGE,
RGER, RGER
Serra et al. CNN, Transformer CheXpert, MIMIC- CXR Radiology reports BLEU, METEOR, ROUGE-L \/ -
[48] CXR

has been further improved by the introduction of the Question Condi-
tioned Reasoning (QCR) and Type Conditioned Reasoning (TCR) mod-
ules by Zhan et al. [73], which enhance the model’s reasoning ability.
Do et al. [74] have proposed a Multiple Meta- model Quantifying
(MMQ) model that achieves remarkable accuracy with the addition of
metadata. The latest trends indicate that BERT and attention-based
models are currently the most effective and are expected to be the
future of VQA models. The RespsNet-10 proposed by Tanwani et al. [28]
achieved an accuracy of 0.804 on the ImageCLEF 2018 and ImageCLEF
2019 datasets. Meanwhile, the study by Zhan et al. investigated the
contrastive representation learning model UnICLAM with adversarial
masking and obtained an accuracy of 0.831 on the SLAKE dataset [86].

Accuracy is the most widely used evaluation metric for VQA, typi-
cally associated with classification models and closed-ended questions.
Meanwhile, some generation models designed to tackle open-ended
problems may also employ alternative metrics, such as BLEU or WBSS
[90], for evaluation purposes. While 12 articles have demonstrated the
interpretability of the models, there has been a lack of studies that have
sought to evaluate the results of VQA models from clinicians.

3.4. Cross-modal retrieval

Cross-modal retrieval encompasses two primary types of retrieval:
image-to-text retrieval, which involves retrieving associated text for a
given image, and text-to-image retrieval, which involves retrieving the
associated image for a given text.

Table 4 summarizes an overview of the application of MDL on cross-
modal retrieval. In the medical field, cross-modal retrieval tasks
frequently involve radiological images and reports, such as those found
in MIMIC-CXR [22] and CheXpert [23] datasets. The ROCO dataset,
comprising over 81,000 radiology image-text pairs, is also widely
employed in cross-modal retrieval tasks [91]. In addition, a small
number of pathological captioning datasets exist. One is the ARCH
dataset proposed by Gamper et al [92]. It comprises 7,579 image and
description pairs extracted from medical articles on PubMed and pa-
thology textbooks.

Most cross-modal retrieval tasks rely on matching image and text
features through contrastive learning. This process involves both global
and local feature matching, together with attention mechanisms. For
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Table 3
Overview of MDL models for VQA.
Ref. Method Dataset Image type Text type Metrics External Explainability
validation
Liu et al. CNN, ETM, MFH ImageCLEF 2018 Radiology images Medical WBSS, BLEU, - -
[71] questions CBSS
Ren et al. CNN, Transformer ImageCLEF 2019 Radiology images Medical Accuracy, BLEU, - -
[72] questions WBSS
Zhan et al. QCR, TCR, MEVF, LSTM, BAN VQA-RAD Radiology images Medical Accuracy - -
[73] questions
Liu et al. CPRD, LSTM, BAN SLAKE, VQA- RAD Radiology images Medical Accuracy - \/
[70] questions
Do et al. MMQ, LSTM, SAN/BAN PathVQA, VQA- RAD Radiology images, Medical Accuracy - -
[74] pathology images questions
Khare et al. CNN, BERT, self-attention ImageCLEF 2019, VQA-RAD  Radiology images Medical Accuracy - \/
[75] questions
Pan et al. MAML and CDAE, GRU, multi-  VQA-RAD, VQA- RADPh Radiology images Medical Accuracy - \/
[76] view attention questions
Gong et al. CNN, LSTM, cross- modal self- VQA-RAD Radiology images Medical Accuracy - -
[77]1 attention questions
Sharma etal.  CNN, BERT, MFB ImageCLEF 2019 Radiology images Medical Accuracy, AUC- - \/
[69] questions ROC, AUC-PRC
Eslami et al. CLIP, MEVF, QCR ROCO, SLAKE, VQA-RAD Radiology images Medical Accuracy - -
[78] questions
Tanwani CNN, BERT, BAN VQA-RAD Radiology images Medical Accuracy - \/
et al. [28] questions
Chen et al. Vision Transformer, BERT, co- ImageCLEF 2019, MedICaT, Radiology images Medical Accuracy - -
[79] attention ROCO, SLAKE, VQA- RAD questions
Wang et al. CDAE, LSTM, attention-based VQA-RAD Radiology images Medical Accuracy - v
[80] multi- granularity fusion questions
Naseemetal.  CNN, LSTM, Transformer PathVQA Radiology images Medical Accuracy - \/
[81] questions
Liu et al. CNN, Transformer ImageCLEF 2018, Radiology images Medical Accuracy, BLEU - -
[62] ImageCLEF 2019, VQA-RAD questions
Haridas etal. ~ CNN, BERT, ViLBERT SLAKE Radiology images Medical Accuracy - -
[82] questions
Moon et al. CNN, BERT, attention masking ~ VQA-RAD Radiology images Medical Accuracy - \/
[46] questions
Chen et al. Vision Transformer, BERT, co- ImageCLEF 2019, SLACK, Radiology images Medical Accuracy - v
[83] attention VQA- RAD questions
Pan et al. MAML, CDAE, GRU, attention- PathVQA, VQA- RAD Radiology images, Medical Accuracy - \/
[84] based multimodal alignment pathology images questions
Lietal. [85] M2I2, Transformer, self- ImageCLEF 2022, PathVQA, Radiology images, Medical Accuracy - \/
supervised pretraining SLAKE, VQA-RAD pathology images questions
Zhan et al. Vision Transformer, BERT, ROCO, SLAKE, VQA-RAD Radiology images Medical Accuracy - v
[86] adversarial masking questions
Table 4
Overview of MDL models for cross-modal retrieval.
Ref. Method Dataset Image type Text type Metrics External Explainability
validation
Hsu et al. CNN, TF-IDF, DAN MIMIC-CXR CXR Radiology MRR, nDCG@K - -
[93] reports
Lara et al. CNN, TF-IDF TCGA-PRAD Pathology Pathology Precision, MAP, GM- MAP, - -
[94] images reports P@10, P@30
Ni et al. CNN, LSTM MIMIC-CXR CXR Radiology Accuracy, Precision, Recall, \/ \/
[31] reports BLEU , ROUGE-L, METEOR
Zhang etal.  CNN, CLIP CheXpert, MIMIC- CXR Radiology Precision@K v v/
[95] CXR reports
Wang et al. Unified transformer 1U X-Ray, MIMIC- CXR Radiology Precision@K - -
[96] CXR, NIH-CXR reports
Jietal CNN, Transformer IU X-Ray, MIMIC- CXR Radiology Recall@K - -
[97]1 CXR reports
Huangetal.  CNN, BERT, self-attention CheXpert CXR Radiology Precision@K - v
[98] reports
Chen et al. Vision Transformer, BERT, co- ROCO Radiology Image Recall@K - -
[79] attention images captions
Malekietal.  Vision Transformer, Text ARCH Pathology Image Recall@K - -
[99] Transformer, self-attention images captions
Moon et al. CNN, BERT, attention masking 1U X-Ray, MIMIC- CXR Radiology Hit@K, Recall@K, Precision@K, - \/
[46] CXR reports MRR
Chen et al. Vision Transformer, BERT, co- ROCO CXR Radiology Recall@K - \/
[83] attention reports
Wang et al. CLIP CheXpert, COVID, CXR Radiology Precision@K - v
[100] MIMIC-CXR, RSNA reports
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example, Huang et al. [98] introduced GLoRIA which enables cross-
modal retrieval through the averaging of global and local similarity
metrics. In a separate study, Chen et al. [79] developed self-supervised
multimodal masked autoencoders, achieving excellent performances
for image-to-text retrieval and text-to-image retrieval on the ROCO
dataset.

Maleki et al. [99] proposed LILE, a dual attention network that uses
Transformers and an additional self-attention loss term to enhance in-
ternal features for text retrieval and image retrieval on the ARCH
dataset.

Widely used measurements for assessing the performance of cross-
modal retrieval are precision@K [46,94,98] and Recall@K
[46,79,97,99], which quantify the accuracy of the first K retrieval re-
sults. Another commonly used metric is the mean reciprocal rank (MRR)
[46,93]. Out of the 12 studies in our collection, only 2 works incorpo-
rated external validation, while 6 studies assessed the interpretability of
their model.
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3.5. Computer-aided diagnosis

MDL-based computer-aided diagnosis (CAD) is the use of generated
output from multimodal data as an assisting tool for a clinician to make a
diagnosis. Incorporating text modality in this context has been shown to
provide supplementary features that can enhance performance in image
classification. Currently, research in CAD mainly focuses on utilizing
chest X-ray images in conjunction with corresponding radiological re-
ports. It is expected that future pathological datasets will expand this
field of research.

Table 5 summarizes the application of multimodal deep learning on
CAD. There exist several commonly employed multimodal fusion stra-
tegies, including image-text embedding and contrastive learning. Image-
text embedding refers to merging image and text features, which are
then trained using supervised learning. For example, Wang et al. [101]
introduced a Text-Image Embedding network (TieNet), which utilized a
multi-task CNN-RNN framework and achieved an AUC of over 0.9 in
thorax disease classification. In contrast, contrastive learning often in-
volves image-text alignment and self-supervised learning. Tiu et al.

Table 5
Overview of MDL models for computer-aided diagnosis.
Ref. Method Dataset Image type Text type Metrics External Explainability
validation
Wang et al. CNN, LSTM 1U X-Ray, NIH-CXR CXR Radiology AUC - -
[101] reports
Daniels et al. DNN 1U X-Ray, NIH-CXR CXR Radiology AUC, Precision - -
[106] reports
Yan et al. [107] CNN DeepLesion CT Annotations AUC, F1 - \/
Weng et al. CNN, BERT, Early TCGA, TTH Pathology Pathology AUC - -
[108] fusion images reports
Lara et al. [94] CNN, TF-IDF TCGA-PRAD Pathology Pathology Accuracy - -
images reports
Chauhan et al. CNN, BERT MIMIC-CXR CXR Radiology AUG, F1 v v
[109] reports
Zhang et al. [95] CNN, CLIP CheXpert, COVIDx, MURA, RSNA X-rays Annotations, AUG, Accuracy \/ \/
radiology report
Sonsbeek et al. CNN, BERT U X-Ray, MIMIC-CXR CXR Radiology AUC - \/
[110] reports
Wang et al. [96] Unified transformer IU X-Ray, MIMIC-CXR, NIH-CXR CXR Radiology AUC - -
reports
Jietal. [97] CNN, Transformer U X-Ray, MIMIC-CXR CXR Radiology AUC - -
reports
Liaoetal. [111] CNN, BERT CheXpert, MIMIC-CXR CXR Radiology AUC - -
reports
Huang et al. CNN, BERT, self- CheXpert, RSNA CXR Radiology AUC, F1 - \/
[98] attention reports
Zheng et al. CNN, BERT, self- Multimodal COVID-19 Pneumonia CT, CXR, Doctor-patient AUC, Accuracy, - -
[112] attention Dataset ultrasound dialogues Precision, Sensitivity,
Specificity, F1
Zhouetal. [113]  Vision Transformer, =~ COVID-19 Image Data Collection, CXR Radiology AUC \/ \/
BERT MIMIC-CXR, NIH-CXR, Shenzhen reports
Tuberculosis, VinBigData Chest X-
ray
Yan et al. [40] CNN, BERT COV-CTR, IU X-Ray, MIMIC-CXR CT, CXR Radiology AUC - \/
reports
Monajatipoor Vision Transformer, U X-Ray CXR Radiology AUC - -
etal. [103] BERT reports
Jacenkéw et al. CNN, BERT MIMIC-CXR CXR Radiology AUC v -
[114] reports
Hassan et al. CNN, BERT, GRU IU X-Ray CXR Radiology AUC - -
[45] reports
Moon et al. [46] CNN, BERT, IU X-Ray, MIMIC-CXR CXR Radiology AUC, F1 - \/
attention masking reports
You et al. [47] CNN, Transformer, IU X-Ray CXR Radiology Accuracy - Vv
GRU reports
Chen et al. [83] Vision Transformer, MedICaT, MELINDA, MIMIC-CXR, CXR Radiology Accuracy - \/
BERT, co-attention ROCO reports
Wang et al. Vision Transformer, CheXpert, COVIDx, MIMIC-CXR, CXR Radiology AUC - -
[115] BERT RSNA reports
Wang et al. CLIP CheXpert, COVID, MIMIC- CXR, CXR Radiology Accuracy - \/
[100] RSNA reports
Tiu et al. [102] Vision Transformer,  CheXpert, MIMIC-CXR CXR Radiology AUC, MCC, F1 \/
CLIP reports
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[102] proposed a self-supervised learning framework, CheXzero, which
achieved expert-level performance in zero- shot thoracic disease classi-
fication without requiring manual labeling. Monajatipoor et al. [103]
developed BERTHop, which leverages PixelHop++ [104] and Visual-
BERT [105] to enable the learning of associations between clinical im-
ages and notes. This model achieved an AUC of 0.98 on the IU X-Ray
dataset [20].

Studies on COVID-19 diagnosis have recently been another popular
trend. Zheng et al. [112] designed a multimodal knowledge graph
attention embedding framework for diagnosing COVID-19, based on
clinical images and doctor-patient dialogues. The proposed model per-
formed better than single modality approaches, with an AUC of 0.99. In
addition, the MedCLIP proposed by Wang et al. [100] achieved better
performance than supervised models for the zero-shot classification task
of COVID-related datasets.

The metrics employed to assess the performance of diagnostic clas-
sification primarily comprise the AUC and the F1-score. Additionally,
the Matthews correlation coefficient (MCC) is utilized to assess the
dissimilarity between model and expert classifications [102]. Out of the
24 studies gathered, 4 incorporated external validation, while 11 studies
focused on elucidating the interpretability of the model.

3.6. Semantic segmentation

This group of studies investigates the effectiveness of image-text
contrastive learning, which involves utilizing semantic segmentation
to extract visual features that can be juxtaposed with textual features to
facilitate the comprehension of the relationship between images and
their corresponding textual descriptions (Table 6). Additionally, local
alignment assessment in contrastive learning is evaluated using se-
mantic segmentation techniques.

Typical datasets employed for semantic segmentation include SIIM
[116] and RNSA [117]. The SIIM dataset consists of 12,047 chest ra-
diographs, along with corresponding manual annotations. Similarly, the
RNSA dataset includes 29,700 frontal view radiographs for evaluating
evidence of pneumonia. Boecking et al. have recently proposed the MS-
CXR [118] dataset, which comprises 1153 image-sentence pairs with
annotated bounding boxes and corresponding phrases validated by ra-
diologists. This dataset covers eight distinct cardiopulmonary radiology
findings.

Image-text alignment and local representation learning are
commonly used in MDL for semantic segmentation. These techniques
can help improve the model’s accuracy by enabling it to better under-
stand the spatial relationships between different regions in the image
and the relationship between visual and textual information [119]. Li
et al. [120] proposed LViT, which used medical text annotations to
improve the quality of image data and guide the generation of pseudo
labels, leading to better segmentation performance. Miiller et al. [121]
devised a novel pre-training approach, LoVT, which aimed to specif-
ically address localized medical imaging tasks. Their method exhibited
superior performance on 10 out of 18 localized tasks in comparison to
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commonly employed pre-training techniques.

In all the research studies that we have gathered, Dice [122] has been
utilized as a metric for measuring the similarity between predicted
segmentation and ground truth. Additionally, mean intersection over
union (mIoU) and contrast-to-noise ratio (CNR) have also been
employed. Out of the 5 studies in our collection, no work incorporated
external validation, while 2 studies assessed the interpretability of their
model.

3.7. Other related tasks

During our article collection, we identified several works that, while
not fitting into the aforementioned categories, are of considerable
importance. These works include studies centered on medical image
generation, object detection, multimodal predictive modeling, MDL-
related databases, and libraries of pre-training models. Chambon et al.
[123] fine-tuned the Stable Diffusion model to generate CXR images
with realistic-looking abnormalities by employing domain-specific text
prompts. In a separate publication, they introduced RoentGen, a model
adept at synthesizing CXR images predicated upon text prompts present
in radiological reports, resulting in a 25% enhancement in the repre-
sentation capabilities of pneumothorax [124]. Qin et al. [125] scruti-
nized the implementation of pre-trained vision language models (VLM)
for medical object detection and devised an approach to incorporate
expert medical knowledge and image-specific information within the
prompt, thereby augmenting the performance of zero-shot learning. Lin
et al. [126] developed a survival prediction model using radiation re-
ports and images to forecast ICU mortality. This model outperformed
traditional single-modal machine learning methods with a higher C-
index. Bai et al. [127] designed an interactive VQA system that em-
powers patients to upload their own multimodal data, choose the
appropriate model in the library, and communicate with an Al robot for
model evaluation. Delbrouck et al. [128] presented ViLMedic, a Vision-
and-Language medical library, consisting of over 20 pre-trained models
for various downstream tasks. This resource facilitates the real-world
clinical translation of these models. Kovaleva et al. [129] released the
first publicly available visual dialog datasets for radiology, highlighting
the belief that integrating patients’ medical history information would
enhance the performance of traditional VQA models. Li et al. [130]
summarized the performance of four pre-trained models for multimodal
vision-and-language feature learning and visualized their attention
mechanism. Evidenced by these studies, we believe multimodal vision-
and- language learning will continue to expand its range of applica-
tions in the future, with more related databases and model libraries
being established to promote its clinical use.

4. Discussion
Our scoping review identifies research related to MDL in biomedical

images and texts on different downstream tasks, with specific attention
to the datasets employed, model methodology, evaluation metrics,

Table 6
Overview of MDL models for semantic segmentation.
Ref. Method Dataset Image type Text type Metrics External Explainability
validation
Huang et al. CNN, BERT, self- CheXpert, SIIM-ACR CXR Annotations Dice - \/
[98] attention
Miiller et al. CNN, BERT, CLIP COVID Rural, NIH-CXR, Object CXR, = CXR Annotations ~ Dice - -
[121] RSNA, SIIM-ACR
Boecking et al. CNN, BERT MIMIC-CXR, MS-CXR, RSNA CXR Annotations Dice, mloU, - -
[118] CNR
Lietal. [120] CNN, Vision MoNuSeg, QaTa-COV19 CXR, Pathology Annotations Dice, mloU - \/
Transformer, BERT images
Wang et al. Vision Transformer, RNSA, SIIM-ACR CXR Annotations  Dice - -
[115] BERT
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external validation, and interpretability. Overall, the evidence suggests
that deep learning models on multimodal medical image and text data
can potentially improve diagnostic accuracy and clinical decision-
making, showing promising results in several medical fields, including
oncology, radiology, and pathology. However, our review also reveals
challenges related to data imbalance, clinical knowledge, model fair-
ness, and human evaluation. These findings are highly relevant to cli-
nicians, researchers, and computer scientists interested in leveraging
recent advances in artificial intelligence and deep learning to improve
patient care and health outcomes.

In the realm of MDL, acquiring high-quality annotated data is crucial
for the development and evaluation of models, yet several challenges
persist in obtaining such datasets like MIMIC-CXR. First, the annotation
of medical data is a laborious and time-consuming task that requires
domain expertise and specialized tools to ensure accuracy and consis-
tency, particularly when annotating both image and text data. This can
result in insufficient annotated samples for certain modalities, leading to
imbalanced datasets that adversely affect model performance. To
address data scarcity and reduce the burden of expert annotation,
multimodal meta-learning, and few-shot learning are poised to remain
popular research topics in the medical field [41,80]. Second, the current
trend in medical datasets predominantly features radiology images and
their accompanying reports, with a limited representation of other im-
aging modalities such as pathological images, ultrasound, endoscopy,
and text modalities such as clinical notes. This limits the broader clinical
application of multimodal models. Future work should construct more
multimodal datasets for different medical scenarios, and integrate these
heterogeneous data into a system to realize multimodal cross-scenario
learning. Thirdly, data privacy concerns are pronounced in the medi-
cal domain, necessitating the protection of sensitive patient information.
However, this often leads to a lack of publicly available datasets, exac-
erbating the issue of insufficient and unbalanced data.

Advocating for open-access initiatives can help address this chal-
lenge by enabling researchers to access larger and more diverse datasets
for model training and evaluation. In addition, implementing advanced
privacy-preserving techniques, such as differential privacy and feder-
ated learning, can further alleviate privacy concerns while allowing
researchers to utilize medical data (paper: Federated learning and dif-
ferential privacy for medical image analysis).

Incorporating clinical knowledge into medical NLP has been identi-
fied as a major research direction that can enhance the model’s per-
formance and broaden its application in clinical practice [131-133].
However, the current research is limited in terms of the integration of
clinical knowledge into MDL models. Incorporating clinical knowledge
into the encoding stage can help learn useful visual features, leading to
more accurate predictions. Specifically, clinical knowledge can provide
insights into specific image features that are more clinically relevant,
such as lesions or abnormalities, and guide the model to focus on these
features during the encoding process. Chen et al. [25] integrated
external knowledge into the features of TF-IDF and achieved improved
performance in both report generation and diagnostic tasks. Further-
more, clinical knowledge can be particularly beneficial in scenarios with
limited or new data, such as COVID-19-related datasets, where over-
fitting is more likely to occur. Liu et al. [36] incorporated external
knowledge into the COVID-19 CT report generation task, generating
fewer irrelevant words and higher BLEU scores. In addition, Chen et al.
[83] demonstrated that aligning, reasoning, and learning using clinical
knowledge could achieve higher accuracy than each approach individ-
ually in VQA. Future research could explore more sophisticated ways to
integrate clinical knowledge into models, such as knowledge graphs and
ontologies. Moreover, researchers could examine how clinical knowl-
edge from diverse sources, such as electronic health records, medical
literature, or expert opinions, can be integrated to enhance the models’
performance and adaptability. It is also important to assess the clinical
relevance and impact of models in real-world clinical settings by con-
ducting clinical trials and involving clinicians and patients in the
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development and validation process.

Human evaluation is essential for assessing the practicality of the
model in real-world clinical scenarios and providing insights into the
model’s decision-making process. However, human evaluation was not
widely employed in the studies we collected. Out of the five downstream
tasks covered in this review, report generation incorporated more
external validation, as observed in 10 of 25 articles. Notably, no studies
were found to introduce external validation for VQA or semantic seg-
mentation tasks. The observed phenomenon could be attributed to the
fact that human evaluation is time-consuming and costly [134]. Addi-
tionally, the absence of standardized protocols for human evaluation of
MDL models in medical settings poses a significant challenge to the
comparison and generalization of findings across studies [135].
Furthermore, the interdisciplinary collaboration between clinicians and
computer scientists can be a formidable obstacle, owing to differences in
their respective backgrounds and training that can hinder effective
communication and seamless teamwork. Besides, clinicians often have
limited availability to engage in such collaborative efforts, while com-
puter scientists may face stringent deadlines for developing and testing
models. In the future, there is a need to develop and adopt standardized
protocols for the human evaluation of MDL models in medical
applications.

Moreover, interdisciplinary workshops can help bridge the gap be-
tween clinicians and computer scientists and facilitate effective collab-
oration. Finally, effective automated metrics could provide a more
objective and efficient approach to evaluating MDL models.

The fairness and explainability of MDL models also exhibit de-
ficiencies. The absence of interpretability of the models engenders
challenges in fostering trust in their predictions, thereby limiting their
adoption in clinical practice. The lack of transparency in these“black
boxes” further compounds the issue as it hinders the detection of errors
and biases, thereby resulting in potential harm to patients [136]. Out of
the 77 articles we collected, only 35 provided an exposition of the
interpretability of the model, leveraging techniques such as heat maps
and factual metrics.

Among them, the visual interpretation of CNN models, which are
based on attention mechanisms, has gained increasing traction in the
medical field [137]. However, it is worth noting that a significant
number of articles do not explicitly consider the inclusion of interpret-
ability as an improvement, and only a few employ a formal counter-
factual evaluation [49]. Future MDL research endeavors must prioritize
the development of interpretable models. Standardized methods are
needed for evaluating and quantifying the interpretability of these
models. Additionally, it is essential to engage in a continuous dialogue
between clinicians, researchers, and computer scientists to ensure that
the development of MDL models aligns with the values and needs of the
medical community.

While our scoping review provides a comprehensive overview of the
current state of MDL in biomedical images and texts, several limitations
must be considered. First, our search strategy may have missed some
relevant studies, as we focused on a limited set of databases and search
terms. Second, we tried to understand the current state of the literature
from their downstream tasks and applications. Still, there was a lack of a
systematic summary of the methodology, particularly regarding the
multimodal fusion strategy. Third, the heterogeneity of the included
studies makes it difficult to compare and synthesize the evidence across
different domains and contexts. Finally, our scoping review did not
include a formal quality assessment of the studies, which may have
affected the reliability and validity of the evidence. However, we believe
the breadth and depth of the evidence we gathered will provide a robust
foundation for future research and improvement.

5. Conclusion

In this scoping review, we systematically examined the current state
of research on MDL in biomedical images and texts based on various
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downstream tasks, including report generation, visual question
answering, cross-modal retrieval, computer-aided diagnosis, and se-
mantic segmentation. Our findings suggest that MDL can potentially
improve diagnostic accuracy and clinical decision-making, but it also
poses challenges related to data imbalance, clinical knowledge, human
evaluation, and model fairness. We also discussed several areas for
further investigation and improvement, such as developing more robust
evaluation standards, collaborating with interdisciplinary institutions or
individuals, and exploring new data sources and modalities. Our review
has important implications for clinicians, researchers, and computer
scientists interested in leveraging the latest advances in MDL to improve
patient care and health outcomes.

6. Statement of Significance

Problems Multimodal deep learning (MDL) in biomedical images and
structured EHR data improves clinical decision-making, but the
application of MDL methods with medical images and texts is
still in its infancy, and explaining MDL methods remains a
challenge.

What is Already Previous review articles have focused on MDL methods, and

Known MDL with medical images and structured EHR data.
What this Paper This scoping review provides a comprehensive synthesis of
Adds MDL research in biomedical images and texts over the past five

years, focusing on 5 clinical tasks, explainability, and human
evaluation to foster the application of multimodal language
models in the medical field.
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