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Abstract—Most of the existing federated multi-armed bandits
(FMAB) designs are based on the presumption that clients will
implement the specified design to collaborate with the server. In
reality, however, it may not be possible to modify the clients’
existing protocols. To address this challenge, this work focuses
on clients who always maximize their individual cumulative
rewards, and introduces a novel idea of “reward teaching”, where
the server guides the clients towards global optimality through
implicit local reward adjustments. Under this framework, the
server faces two tightly coupled tasks of bandit learning and
target teaching, whose combination is non-trivial and challenging.
A phased approach, called Teaching-After-Learning (TAL), is
first designed to encourage and discourage clients’ explorations
separately. General performance analyses of TAL are established
when the clients’ strategies satisfy certain mild requirements.
With novel technical approaches developed to analyze the warm-
start behaviors of bandit algorithms, particularized guarantees
of TAL with clients running UCB or ε-greedy strategies are
then obtained. These results demonstrate that TAL achieves
logarithmic regrets while only incurring logarithmic adjustment
costs, which is order-optimal w.r.t. a natural lower bound. As a
further extension, the Teaching-While-Learning (TWL) algorithm
is developed with the idea of successive arm elimination to break
the non-adaptive phase separation in TAL. Rigorous analyses
demonstrate that when facing clients with UCB1, TWL outper-
forms TAL in terms of the dependencies on sub-optimality gaps
thanks to its adaptive design. Experimental results demonstrate
the effectiveness and generality of the proposed algorithms.

Index Terms—Federated learning, multi-armed bandits,
reward teaching, upper confidence bound.

I. INTRODUCTION

F
EDERATED multi-armed bandits (FMAB) [2], [3], [4],

[5], [6], [7] is a recently proposed framework that
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introduces the core principles of federated learning (FL) [8],

[9] into multi-armed bandits (MAB) [10], [11], [12]. In partic-

ular, FMAB often considers a system of one global server and

multiple heterogeneous local clients with the goal of having

the clients converge to the global optimality. Since proposed

by [2], [3], FMAB has found applications in cognitive radio,

recommender systems, and beyond.

One practical difficulty of realizing FMAB is that the existing

designs have to implement new protocols for both the server

and clients [3], [4], [13]. Specifically, the server and clients

must strictly follow the design collaboratively. In real-world

applications, it is relatively easy to update the server’s proto-

cols for FMAB. However, given the typically large number of

clients, it is often not realistic to assume that all of their proto-

cols can be updated due to infrastructure cost and complicated

agent behaviors.

We first use the example of cognitive radio systems, a com-

mon motivating application for FMAB [3], [14], [15], for a

more concrete illustration. Specifically, the base station (i.e.,

the central server) wants to find a good channel to broad-

cast information to mobile devices in its coverage area. How-

ever, different mobile devices, which are modeled as clients

in FMAB, typically have different local channel availabilities

due to their different geographic locations. As aforementioned,

previous designs (e.g., [2], [3]) typically require mobile devices

(i.e., clients) to follow the new FMAB protocols to collaborate

with the base station. However, in reality, mobile devices are

often configured to optimize their individual communication

qualities following their built-in protocols. It is typically hard

and expensive to update all mobile devices to follow the new

FMAB designs, especially since such changes are often needed

for both software and hardware.

Moreover, in the recommender system, another well-

accepted application of FMAB [3], [4], [16], [17], [18], the

online sellers (i.e., clients) often need to select items (i.e.,

actions) for promotions on the shopping platform (i.e., the

server). However, these sellers typically follow their own

strategies to optimize profits and often ignore other social

influences, such as environmental effects and health concerns

(e.g., for cigarettes). It is thus unrealistic to assume that the

selfish sellers would strictly perform the previously proposed

FMAB designs.

This work removes this limitation for FMAB by designing

mechanisms only at the server side. Especially, the clients

can still follow the original routines to optimize their indi-

vidual performances (as in the aforementioned examples of

cognitive radio and recommender systems) and no change of

their protocols is required. Towards this end, a novel “reward
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teaching” approach is proposed: the server implicitly adjusts

the local rewards perceived by the clients to influence their

decision-making indirectly. We note that this idea is practical

for the aforementioned applications. For cognitive radio, it is

widely adopted in standard communication protocols for the

base station to measure rewards (e.g., throughput) and send

designed signals to mobile devices. In recommender systems,

the bonuses received by the sellers are commonly designed and

distributed by the shopping platform.

From a different perspective, this work can also be viewed

as breaking the barrier of naive clients in the previous FMAB

designs, where the clients unconditionally follow the server’s

instructions. Such naive behaviors are often unrealistic, while

a more reasonable scenario (as in this work) is that the clients

take actions to optimize their local performances, which may

not always align with the server’s global objective.

Note that the seemingly simple idea of reward adjustment

brings considerable challenges for the server strategy. In par-

ticular, the server needs to determine how to adjust rewards to

handle the following two tasks simultaneously: bandit learning

and target teaching. On one hand, the server has to learn the

unknown global model through the clients’ actions, which are

based on local observations and may not align with the server’s

global objective. Thus, reward adjustments should be carefully

placed to have the clients explore with respect to (w.r.t.) the

global information (instead of their local ones). On the other

hand, even if the global model is learned successfully, the cor-

responding learning history has a cumulative effect on guiding

the clients towards the learned target, as all historical (adjusted)

rewards are considered by the client in her future decision-

making. As a result, while having been studied individually

(e.g., learning in MAB and teaching in data-poisoning MAB),

the combination of these two tasks is novel and challenging as

they are tightly coupled, which is detailed in Sec. IV.

The contributions of this work are summarized as follows.

• A reward-teaching framework. A novel idea of reward

teaching is proposed to let the server design reward signals

to guide clients with their own local strategies. This idea

is practically appealing for FMAB systems as existing

client protocols do not have to be modified – only the

reward signals they receive are adjusted. From another

perspective, it also provides a method to handle non-naive

FMAB clients.

• Client strategy-agnostic algorithm designs. A phased

approach, coined “Teaching-After-Learning” (TAL), is

proposed. It addresses the challenge of teaching in an

unknown environment by separately encouraging and dis-

couraging explorations in two phases. A more adaptive

“Teaching-While-Learning” (TWL) algorithm is then de-

veloped to break the strict two-phased structure via the

idea of successive arm elimination. It is worth noting

that both TAL and TWL are agnostic to the clients’ local

strategies.

• Client strategy-dependent analysis. When the clients’

local strategies satisfy some general properties, theoretical

regret and cost guarantees of TAL are established. Par-

ticularizing these properties to UCB1 and ε-greedy [19]

strategies at clients reveals that TAL can achieve a loga-

rithmic regret while only incurring a logarithmic adjust-

ment cost, which is order-optimal w.r.t. a natural lower

bound. Regarding TWL, its advantage is rigorously estab-

lished with clients running UCB1, where TWL achieves an

improved performance dependency on the sub-optimality

gaps than TAL due to its adaptive design. Moreover, one

key ingredient to obtain these results is the novel technical

approaches developed to analyze the warm-start behaviors

of bandit algorithms, which may be of independent merit.

• Experimental results. The performance of the proposed

designs is verified empirically. Especially, their effective-

ness and generality are corroborated with different client

strategies (i.e., UCB1, ε-greedy, Thompson sampling [20],

and their mixtures), where the advantage of TWL is

also evidenced.

II. RELATED WORKS

FMAB. FMAB can be viewed as a variant of the general

problem of multi-agent bandits [11], [12], [21], [22], [23],

where global rewards instead of local ones measure the per-

formance. Recent studies have investigated its robustness [24],

personalization [16] and privacy protection [13], and extended

the studies to contextual bandits [5], [6], [7]. However, almost

all of the previous studies assume the clients follow updated

local protocols, which either require clients to directly follow

the server’s instructions or have them work collaboratively.

Instead, the designs in this work are purely on the server’s side

and no change is needed on the client side, which broadens the

applicability of FMAB.

Reward adjustments in MAB and RL. One line of re-

search on reward adjustments focuses on the malicious poison-

ing attacks [25], [26], [27]. The most relevant works are under

the “strong attack” model [28], [29], [30], [31], where the at-

tacker perturbs the rewards after observing the player’s actions

and tricks her into converging to a pre-selected sub-optimal

arm (see Sec. IV). Other forms of attacks are also studied [32],

[33], [34], [35], [36], including the “weak attack” model [37],

[38], [39] where attacks are performed before observing actions.

Note that the attackers in all these works have no desire to

explore the environment, while the reward-teaching server has

to actively learn the global model.

Another line is more conceptually related to this work: per-

forming adjustments for positive purposes, such as reward shap-

ing [40], [41], [42]. Especially, in reward shaping, the goal is

to accelerate learning using a newly designed set of rewards;

thus the optimal policy is kept the same. However, for reward

teaching, the goal is to use modified rewards to guide clients

to a different optimal policy (i.e., the optimal global arm).

The recent work by [43] shares a similar idea of “teaching”

the player via certain adjustments in reinforcement learning

(RL); however, the target is still pre-selected. While differences

exist between these previous attempts and this work, they all

demonstrate the potential of “teaching” in MAB and RL.

In addition, the reward-teaching idea shares similarities with

the design of implicit rewards in hierarchical RL [44], [45].
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TABLE I
A SUMMARY OF KEY NOTATIONS USED IN THIS WORK

Notations Explanations

M The number of clients and local models
K The number of available arms

Xk,m(t) The reward of arm k on local model m at time t
Yk(t) The reward of arm k on the global model at time t
µk,m The expected reward of arm k on local model m
νk Th expected reward of arm k on the global model

k∗,m The optimal arm for local model m
k The optimal arm for the global model

µ∗,m The expected reward of the locally optimal arm k∗,m on
local model m

µ ,m The expected reward of the globally optimal arm k on
local model m

ν The expected reward of the globally optimal arm k on
the global model

X′
πm(t),m

(t) The modified observation for client m’s action πm(t) at
time t

σm(t) The adjustment amount performed on client m’s obser-
vation at time t

Rm(T ) The cumulative global regret caused by client m
RF (T ) The cumulative global regret caused by all clients
Cm(T ) The cumulative cost for adjusting client m’s observations
CF (T ) The cumulative cost for adjusting all clients’ observations
∆k The suboptimality gap of arm k, i.e., ν − νk, ∀k �= k 

∆min The minimal suboptimality gap, i.e., mink �=k 
∆k

∆max The maximal suboptimality gap, i.e., maxk �=k 
∆k

Thus, the designs in this work may contribute to improving the

theoretical understanding of hierarchical RL, which is currently

lacking. In particular, our work may be useful in demonstrating

that client behaviors can be guided via a small number of

modifications on their original rewards.

Incentivized explorations in MAB and RL. Another re-

lated research domain is the incentivized explorations in MAB

and RL. Especially, a principal leverages either strategically

designed signals [46], [47], [48] or additional compensations

[49], [50], [51] to motivate the agent to perform certain actions.

In particular, [52] leverages additional bonuses to motivate non-

naive FMAB clients to perform certain explorations. However,

comparing incentivized explorations with this work, we note

that major differences exist: the incentivizing principal’s signals

or compensations are explicit to the agent, who then takes cor-

responding actions; however, the reward adjustment used by the

server in this work is implicit to the clients, who autonomously

perform their own local strategies.

III. PROBLEM FORMULATION

A. Federated Multiarmed Bandits

Local and global models. Following [2], [3], [4], a stan-

dard FMAB system of M local models and one global model

is considered. With the same set of K arms shared by all

the models, at each time step t ∈ [T ], each arm k ∈ [K] is

associated with a local reward Xk,m(t) ∈ [0, 1] for each lo-

cal model m ∈ [M ] and a global reward Yk(t) ∈ [0, 1] for the

global model. These rewards of each arm k are all indepen-

dently sampled with unknown expectations denoted as µk,m :=
E[Xk,m(t)], ∀m ∈ [M ] and νk := E[Yk(t)]. In general, the lo-

cal arm utilities are model-dependent, i.e., µk,m �= µk,n for all

n �=m. The optimal local arm for each local modelm is denoted

as k∗,m := argmaxk∈[K] µk,m with µ∗,m := µk∗,m,m, and the

optimal global arm as k := argmaxk∈[K] νk with ν := νk .

As in [2], [3], [4], we consider the setting where each arm

k’s mean reward on the global model is the average of its mean

rewards on the local models1, i.e.,

νk := E [Yk(t)] =
1

M

∑

m∈[M ]
µk,m.

As a result, a global-local misalignment may occur as the

global optimality may not align with each local optimality, i.e.,

k �= k∗,m for all or part of m ∈ [M ].
Clients and server. In FMAB, there exist M clients and

one server. At time t, each client m ∈ [M ] selects an arm πm(t)
(referred to as “local actions”) and then observes its local reward

Xπm(t),m(t) on local model m. Additionally, each client m’s

action πm(t) would also generate a reward Yπm(t)(t) from the

global model. It would be helpful to interpret the local and

global rewards as the individual-level and system-level impact

of the clients’ actions.

The server in FMAB does not perform any arm-pulling

action herself. Instead, she focuses on guiding the local ac-

tions to optimize their incurred global rewards. However, the

global rewards are not directly observable by the server and

the clients, which is often a result of practical measurement

limitations [3]. Instead, the server is assumed to be able to

observe the local actions and the corresponding local rewards,

i.e., {πm(t), Xπm(t),m(t) :m ∈ [M ]}.

To better optimize global performance, previous FMAB stud-

ies require that all clients work collaboratively following the up-

dated local protocols. On the contrary, this work considers that

clients are fully committed to interacting with their own local

models (i.e., client m with local model m). Then, the clients

would naturally adopt their own MAB policies to maximize

their local rewards. This setting is practically appealing as in

many applications (e.g., the examples of cognitive radio and

recommender systems in Sec. I), the local clients are inherently

configured to perform local policies to optimize their local

performance (e.g., IoT devices maximizing their own data rate

and selfish sellers optimizing their profits). Specifically, at time

t, each client m individually makes an arm-pulling decision

πm(t) based on her own history observed on local model m,

i.e., Hm(t− 1) := {πm(τ), Xπm(τ),m(τ) : 1≤ τ ≤ t− 1}.

B. Reward Teaching

As mentioned, each client m would select suitable actions

w.r.t. her own local model, which however may not necessar-

ily meet the server’s preference due to the global-local model

misalignment. To address this challenge, the following reward-

teaching mechanism is introduced for the server to indirectly

influence the clients’ action selections.

Specifically, after observing {Xπm(t),m(t) :m ∈ [M ]}, the

server can adjust each client m’s local reward Xπm(t),m(t) to

X ′
πm(t),m(t) by an amount of σm(t), i.e.,

X ′
πm(t),m(t) :=Xπm(t),m(t) + σm(t),

1Other global-local model relationships can also be considered, e.g., the
weighted sum in [16]. To better convey the key idea of reward teaching, the
exact average, which is simple while representative, is adopted in this work.
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Fig. 1. The reward-teaching process with client m (among the overall M
clients) and action πm(t) = k.

which is then revealed to the client (instead of Xπm(t),m(t)).
Note that one implicit constraint is that the adjusted rewards

must still be in [0, 1], which is the system limitation.2 If this

constraint is satisfied, the clients are assumed to be unable to de-

tect the reward adjustments by any means. The adjusted rewards

lead to an adjusted history of H ′
m(t) := {πm(τ), X ′

πm(τ),m(τ) :
1≤ τ ≤ t} for client m, which ideally can shape her future

actions in favor of the server.

It is worth emphasizing that such reward adjustments are

practical for FMAB applications. In the cognitive radio exam-

ple, it is common for the base station to first measure the com-

munication quality (via pilot signals) and then send designed

feedback to the devices; this is the case in both cellular and

WiFi. Adjusting rewards can be achieved via either sending

modified feedback signals or modifying the allocated resources

(e.g., retransmission bandwidth [53]) to boost or reduce client

performance, which is standard in modern communication pro-

tocols. The devices, on the other hand, are oblivious to such

adjustments thanks to their built-in protocols. In the application

of recommender systems, the shopping platform can implicitly

leverage extra or decreased bonuses to guide the decisions of the

selfish sellers, e.g., to promote more environmentally friendly

and healthier items.

The reward-teaching process is summarized as the following

steps, which is also illustrated in Fig. 1:

• Each client m chooses πm(t) using history H ′
m(t− 1);

• The server observes {πm(t), Xπm(t),m(t) :m ∈ [M ]};

• The server adjusts Xπm(t),m(t) into X ′
πm(t),m(t) by the

amount of σm(t) for each client m ∈ [M ];
• Each client m observes the adjusted X ′

πm(t),m(t).

C. Learning Objectives

Following previous FMAB studies, the global view by the

server is the focus of our design, which leads to a two-fold

objective. First, the server’s main goal is to maximize the cumu-

lative global rewards and can be characterized by minimizing

the global regret, defined as

RF (T ) :=
∑

m∈[M ]
Rm(T ),

2In fact, if there is no restriction on the adjustment range, the server is
more powerful and the algorithm design is thus easier.

where Rm(T ) is the regret incurred by client m’s actions w.r.t.

the global model (instead of her local model) defined as

Rm(T ) := Tν − E

[

∑

t∈[T ]
Yπm(t)(t)

]

.

The expectation is w.r.t. both the reward generations and

the client-system interactions. Second, the server’s adjust-

ments on local rewards are often costly. For example, in the

aforementioned application of cognitive radio, the base sta-

tion naturally needs to make additional efforts when modify-

ing the originally allocated resources, e.g., infrastructure costs

for deviating from the default transmission bandwidth. This

work, thus, further introduces the objective of cumulative cost,

defined as

CF (T ) :=
∑

m∈[M ]
Cm(T ),

where Cm(T ) denotes the overall cost spent on client m and is

further defined as

Cm(T ) := E

[

∑

t∈[T ]
|σm(t)|

]

.

The subscripts F in RF (T ) and CF (T ) refer to the global

model (i.e., the federation).

Intuitively, there exists a trade-off between these two objec-

tives: with more adjustments on rewards, i.e., larger CF (T ), the

server can have a bigger impact on the clients’ decisions, which

ideally would decrease the regret RF (T ). It is thus important

to strike a balance between these two objectives, which is the

focus of the remainder of this paper.

D. Client Strategies

To facilitate discussion, we denote client m’s local bandit

policy as Πm. Note that while performing their own policies,

the clients are assumed not to be strategically against the server,

which is reasonable for most of the real-world applications of

FMAB, e.g., autonomous but not fully flexible mobile devices

in cognitive radio [3]. In addition, we denote Nk,m(t) as the

number of pulls by client m on arm k by time t, and N−1
k,m(τ)

refers to the time step t such that Nk,m(t) = τ .

The proposed designs are general and agnostic to clients’

strategies, which will be evident in Sections V and VII. For

the theoretical analysis, general performance bounds are first

provided without specifying the clients’ strategies. This is ac-

complished by identifying the properties of client strategies

that lead to the desired theoretical results. More specifically,

client-strategy-dependent bounds are then derived (i.e., clients

with UCB1 or ε-greedy). Finally, experiments with varying (and

even mixing) strategies for clients are reported.

IV. TWO COUPLED TASKS AND DESIGN OBJECTIVES

In this section, two tightly coupled tasks faced by the reward-

teaching server, bandit learning, and target teaching, are elab-

orated. A system design objective is also proposed.

Bandit learning. One major distinction between learning

in FMAB and in classical MAB [10], [54] is the server can

only gather information through clients’ local actions. Previous
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FMAB studies tackled this challenge by implementing new

protocols for clients to naively follow [2], [3], [4], [13]. In

contrast, in this work, such information collection can only be

indirectly guided via carefully designed rewards.

Target teaching. To understand teaching, a special case is

first considered where the optimal arm k is known by the

server. Then, the goal is to assign adjustments to have the clients

pull the pre-specified arm k as much as possible, which is

mathematically the same as the data-poisoning MAB prob-

lem [26], [28], [29], [55], where adjustments are phrased as

“attacks”. In such scenarios, the server can achieve Rm(T ) =
O(log(T )) and Cm(T ) =O(log(T )) for each m ∈ [M ] by ad-

justing rewards from all arms except arm k to 0’s [30]. The

underlying philosophy is to “discourage explorations” with the

adjusted reward 0’s.

Combination leads to a tight coupling. While both tasks

have been separately investigated (to some extent), the reward-

teaching server faces a combination of them. On one hand,

even if the server can perfectly learn the global model, she still

needs to teach it to the clients. On the other hand, to teach

correctly, sufficient information must be learned by the server.

The resulted tight coupling is the main challenge of the design.

Specifically, the learning attempt has a cumulative effect on

teaching, which in return relies on the learned target. Techni-

cally, the main resultant difficulty is the analysis of the “warm-

start” behaviors of bandit algorithms, which is elaborated in

Sec. VI.

Design objective. For the cost, with a known target arm,

[30], [31] prove lower bounds that with UCB1 and ε-greedy

clients (defined in Sec. VI), it is necessary to spend

a cost Cm(T ) = Ω(log(T )) to obtain a regret Rm(T ) =
O(log(T )). Thus, with M independent FMAB clients, a cost

of CF (T ) = Ω(M log(T )) is required to obtain a regret of

RF (T ) =O(M log(T )) while knowing arm k , which natu-

rally holds for the more stringent case of not knowing the

target k . For the regret, UCB1 and ε-greedy clients can be

shown to be conservative [30] as each client m would pull each

arm at least Ω(log(T )) times regardless of the rewards; thus

Rm(T ) = Ω(log(T )) and RF (T ) = Ω(M log(T )).
With these results, the following system design goal is estab-

lished, which is order-wise tight w.r.t. both criteria:

Goal: Design algorithms to achieve both

RF (T ) =O(M log(T )) and CF (T ) =O(M log(T )).

To verify that this goal is non-trivial, two intuitive baseline

policies, NG and NA, are discussed as follows, whose limita-

tions are further illustrated experimentally in Sec. VIII.

• “Naively-Guess” (NG). The server may randomly ini-

tialize one arm k′ as the target to adopt the aforemen-

tioned approach from [30]. However, the regret would

be RNG
F (T ) = Ω(MT ) if k′ �= k , although achieving

CNG
F (T ) =O(M log(T )).

• “Naively-Align” (NA). Another natural idea is to

have the server align X ′
πm(t),m(t) with Yπm(t)(t) via

σm(t) = Yπm(t)(t)−Xπm(t),m(t).3 While achieving

RNA
F (T ) =O(M log(T )), adjustments would be needed

nearly all the time steps, i.e., CNA
F (T ) = Ω(MT ).

Remark 1: A refined lower bound beyond Ω(M log(T )) can

be instructive, especially for determining the optimal dependen-

cies on parameters other than M and T . However, such lower

bounds are also challenging, even with a known target [30],

[31]; thus it is left as an open question for future works.

V. TAL: ALGORITHM DESIGN

To address the coupled tasks of bandit learning and target

teaching, one idea is to first learn the server’s target and then

teach the clients to converge to it, which leads to the proposed

“Teaching-After-Learning” (TAL) algorithm (presented in Alg.

1). Specifically, TAL starts with the learning phase where the

goal is to identify the optimal global arm. Then, in the teaching

phase, the server guides the clients toward the learned global

optimality. Note that although there is a separation of phases,

the teaching phase must handle clients that accumulate observa-

tions from the learning phase (i.e., “warm-start” clients), whose

effect will be more evident in the analysis.

In the learning phase, TAL uniformly adjusts each client m’s

observed rewards to γ1, i.e., σm(t)← γ1 −Xπm(t),m(t), where

γ1 ∈ [0, 1] is a to-be-specified input parameter. Intuitively, this

uniform reward adjustment encourages sufficient (or ideally,

uniform) explorations among all arms, since their rewards are

all at the same value γ1. If clients are indeed sufficiently ex-

ploring, the server can collect enough information on each arm

to identify her optimal arm k .

This identification is designed to proceed in epochs indexed

by counterψ to ensure statistical independence. If at time t, each

client m has pulled each arm k at least F (ψ) :=
∑

τ∈[ψ] f(τ)

times, where f(ψ) := 1
M

· 22ψ+3 log(2KT 2), the server up-

dates upper and lower confidence bounds (UCB and LCB)

for each arm k ∈ [K] using its rewards collected between its

F (ψ − 1) + 1 and F (ψ) pulls (i.e., overall f(ψ) pulls) by each

client as follows:

UCBk(ψ),LCBk(ψ) :=
1

M

∑

m∈[M ]
µ̂k,m(ψ)± CB(ψ),

(1)

where

µ̂k,m(ψ) :=
∑F (ψ)

τ=F (ψ−1)+1
Xk,m(N−1

k,m(τ))/f(ψ),

CB(ψ) :=
√

log(2KT 2)/(2Mf(ψ)) = 2−ψ−2.

Note that with the estimation of µk,m from local samples,

the first term in Eqn. (1) is essentially an estimation ν̂k(ψ) of

νk. The confidence bound CB(ψ) is specifically designed such

that LCB(ψ)≤ νk ≤ UCB(ψ) holds for each arm k and each

epoch ψ in the learning phase with high probability.

The learning phase ends in epoch ψ if the confidence in-

terval of one arm k! dominates that of all other arms, i.e.,

LCBk!(ψ)≥ UCBk(ψ), ∀k �= k!, which is recognized as the

3Yπm(t)(t) is assumed to be observable here for the baseline, which is not
the case in our design.
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Algorithm 1 TAL

Input: Parameter γ1, γ2 ∈ [0, 1]; Time Horizon T
1: Initialize: F ← 1 (i.e., the learning phase); ψ ← 1; k! ← 0
2: for tf T do
3: Observe {πm(t), Xπm(t),m(t) :m ∈ [M ]}
4: if F = 1 & Nk,m(t)g F (ψ), ∀m ∈ [M ], k ∈ [K] then
5: Update {UCBk(ψ),LCBk(ψ) : k ∈ [K]} as Eqn. (1)
6: if ∃j ∈ [K],LCBj(ψ)g UCBk(ψ), ∀k �= j then
7: Set k! ← j; F ← 2 (i.e., the teaching phase)
8: else Set ψ ← ψ + 1
9: end if

10: end if
11: if F = 1 then σm(t)← γ1 −Xπm(t),m(t), ∀m ∈ [M ]
12: else if F = 2 then Set σm(t) as Eqn. (2), ∀m ∈ [M ]
13: end if
14: Set X ′

πm(t),m(t)←Xπm(t),m(t) + σm(t), ∀m ∈ [M ]
15: Reveal X ′

πm(t),m(t) to each client m ∈ [M ]
16: end for

optimal arm. Otherwise, a new epoch ψ + 1 begins. With the

designed confidence bound, this identification is guaranteed to

be correct with high probability.

With the identified arm k!, the server utilizes the following

adjustments to guide the clients in the teaching phase:

σm(t)←

{

γ2 −Xπm(t),m(t) ifπm(t) �= k!

0 ifπm(t) = k!
, (2)

where γ2 is another to-be-specified input parameter and typi-

cally should be small. In other words, if the client does not pull

arm k!, her reward is adjusted to a small value γ2 to discourage

explorations; otherwise, the original reward of arm k! is kept

unchanged to save adjustments.

From Alg. 1, it can be observed that TAL is a pure server

protocol and agnostic to the clients’ local strategies – the only

interaction with the clients is the adjusted rewards.

VI. TAL: THEORETICAL ANALYSIS

In this section, we first provide a general analysis of TAL

(Theorem 5) under some abstract characterizations of clients’

strategies (i.e., sufficient-exploring and warm-starting in Defi-

nitions 1 and 3, respectively). Then, we consider clients with

UCB1 or ε-greedy in the following two subsections, respec-

tively. In particular, the adopted abstract characterizations are

particularized (Lemmas 6, 7, 9 and 10), and then specific per-

formance guarantees are obtained (Theorems 8 and 11), which

show that TAL achieves the design goals in Section IV with

these clients. Detailed proofs are deferred to Appendix A.

Some useful notations are introduced as follows: ∆k :=
ν − νk, ∀k �= k , ∆min =∆k := mink �=k ∆k, ∆max :=
maxk∈[K] ∆k, and µ ,m := µk ,m. Moreover, δk,m(γ) :=
E[|γ −Xk,m(t)|] and ψmax := �log2(1/∆min)	. Also, without

loss of generality, it is assumed that K,M 
 T .

We first define sufficiently exploring algorithms for the learn-

ing phase in TAL, which states that a bandit algorithm would

sufficiently explore when facing uniform rewards.

Definition 1: (Sufficiently Exploring Algorithms). Consider

a K-armed bandit environment where rewards from arms in

a set I ⊆ [K] are always a fixed constant γ ∈ [0, 1]. In this

environment, a bandit algorithm Π is said to be (I, γ, η, η)-
sufficiently exploring if it would pull each arm in the set I at

least η(τ ; γ, I) and at most η(τ ; γ, I) times when total τ pulls

have been performed on set I.

If local strategies are sufficiently exploring as in Definition 1,

enough information can be collected in the learning phase to

identify the global optimal arm, as stated in the following

lemma, where η−1(N ; γ, [K]) denotes the value τ such that

η(τ ; γ, [K]) =N .

Lemma 2: (Learning Phase in TAL). If Πm is

([K], γ1, ηm, ηm)-sufficiently exploring for all m ∈ [M ],
with probability (w.p.) at least 1− 1/T , the learning phase

ends with k! = k by time step T1, and the regret and cost in

the learning phase of TAL are bounded, respectively, as

RTAL
F,1 (T )≤

∑

m∈[M ]

∑

k �=k 
∆k · ηm (T1; γ1, [K]) ;

CTAL
F,1 (T )≤

∑

m∈[M ]

∑

k∈[K]
δk,m(γ1) · ηm (T1; γ1, [K]) ,

where T1 ≤maxm∈[M ]{η
−1
m

(F (ψmax); γ1, [K])}.

Note that the time step T1 bounded via the sufficiently explor-

ing lower bound (i.e., η) ensures sufficient information collec-

tion, while the corresponding upper bound (i.e., η) guarantees

performance, i.e., regret and adjustment cost.

Then, for the teaching phase, since the cumulative observa-

tions from the learning phase are inherited to the client strate-

gies, we can view the clients as “warm-started”. The following

notion of warm-start pulls is introduced, which measures the

warm-start behavior of an algorithm.

Definition 3: (Warm-start Pulls). In a K-armed bandit envi-

ronmentB, if a reward sequenceH = {Hk : k ∈ [K]} is input to

a bandit algorithm Π, where Hk is a reward sequence for arm

k, warm-start pulls on arm k is defined as ιk(T ;H,B,Π) :=
EΠ[
∑

t∈[T ] 1{π(t) = k}|H,B], which represents the expected

pulls performed by Π on each arm k during T steps in environ-

ment B with prior input H .

Using this notion of warm-start pulls, the following guarantee

on the teaching phase is established.

Lemma 4: (Teaching Phase in TAL). If the event in Lemma 2

occurs, the regret and cost in the teaching phase of TAL are

bounded, respectively, as

RTAL
F,2 (T )≤

∑

m∈[M ]

max
Hm∈Hm

∑

k �=k 

∆k · ιk(T ;Hm,Bm,Πm);

CTAL
F,2 (T )≤

∑

m∈[M ]

max
Hm∈Hm

∑

k �=k 

δk,m(γ2) · ιk(T ;Hm,Bm,Πm),

where Bm denotes an environment with constant rewards as γ2
for arm k �= k and stochastic rewards with expectation µ ,m

for arm k . The set Hm is defined with each element of it

as a reward sequence Hm = {Hk,m : k ∈ [K]} where Hk,m ∈
{{γ1}

τ : τ ∈ [η
m
(T1; γ1, [K]), ηm(T1; γ1, [K])]}.

Note that Bm characterizes the environment of client m in the

teaching phase while Hm represents the cumulative observation

inherited from the learning phase.

Finally, the overall performance guarantee can be obtained

by combining the regrets from two phases.
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Theorem 5: (Overall Performance of TAL). Under the as-

sumption in Lemma 2, with RTAL
F,1 (T ), C

TAL
F,1 (T ) defined in

Lemma 2 and RTAL
F,2 (T ), C

TAL
F,2 (T ) in Lemma 4, the regret and

cost of TAL are bounded, respectively, as

RTAL
F (T )≤RTAL

F,1 (T ) +RTAL
F,2 (T ) +O(M);

CTAL
F (T )≤ CTAL

F,1 (T ) + CTAL
F,2 (T ) +O(M).

The key difficulty behind this analysis resides in leveraging

the quantities in Definitions 1 and 3. In particular, how to spec-

ify η, η and ι is non-trivial, which is one of the main technical

challenges in proving Thm. 5. Furthermore, Thm. 5 implies

that the desired logarithmic regret and cost can be achieved by

TAL when RTAL
F,1 (T ), R

TAL
F,2 (T ), C

TAL
F,1 (T ) and CTAL

F,2 (T ) are all

bounded in logarithmic orders. The analyses of these terms are

further determined by the sufficiently exploring property and

the warm-start pulls of the specific clients’ strategies as stated

in Lemmas 2 and 4.

In the following, to particularize the general guarantee in

Thm. 5, we analyze several well-known bandit algorithms as

clients’ strategies (i.e., UCB and ε-greedy).

A. UCB Clients

The popular UCB-type algorithms are first considered. In

particular, we analyze the celebrated UCB1 algorithm [19]

while noting that the analysis generalizes to other UCB variants

[56], [57]. Especially, at time t, the UCB1 algorithm for client

m chooses arm as follows:

πm(t) = argmax
k∈[K]

{

µ̂′
k,m(t− 1) +

√

2 log(t)/Nk,m(t− 1)

}

,

which considers both the perceived sample mean

µ̂′
k,m(t) :=

∑

τ∈[Nk,m(t)]
X ′

k,m(N−1
k,m(τ))/Nk,m(t)

and the associated confidence bound.

First, the sufficiently exploring assumption in Lemma 2 is

verified for UCB1 in Lemma 6. This is intuitive as with constant

rewards, the sample means are the same while additional pulls

decrease the confidence bound in UCB1.

Lemma 6: For any γ ∈ [0, 1] and set I ⊆ [K], UCB1

is (I, γ, η, η)-sufficiently exploring with η(τ ; γ, I) = �τ/|I|

and η(τ ; γ, I) = �τ/|I|	.

Then, the performance of TAL in the learning

phase (in Lemma 2) can be bounded by recognizing

T1 =O(K log(T )/(M∆2
min)), which further specifies

the reward sequence set Hm in Lemma 4 and leads to the

following lemma on the warm-start pulls of UCB1.

Lemma 7: If γ1 ≥ µ ,m > γ2 and Πm is UCB1, for all

k �= k , it holds that maxHm∈Hm
{ιk(T ;Hm,Bm,Πm)}=

O
(

(γ1−γ2)T1

K(µ ,m−γ2)
+ log(T )

(µ ,m−γ2)2

)

.

Proving this lemma is non-trivial and may be of independent

interest in understanding the warm-start behavior of UCB1.

Essentially, the result can be interpreted as first offsetting the

“warm-start” history (the first term) and then converging to arm

k (the second term) in an environment Bm, whose rewards for

arm k �= k are constant γ2’s and rewards for arm k have an

expectation µ ,m (see Lemma 4).

It is noted that Lemma 7 requires γ1 ≥ µ ,m, which maintains

the optimism for the estimation of arm k on each local model

m. The other requirement µ ,m > γ2 is intuitive as otherwise,

the local client m would not converge to arm k . Since there

is no prior information about µ ,m, a feasible and sufficient

solution is to set γ1 = 1 while γ2 = 0, which leads to the follow-

ing theorem.

Theorem 8: (TAL with UCB1 clients). For TAL with γ1 = 1
and γ2 = 0, if all clients run UCB1 locally and µ ,m �= 0 for all

m ∈ [M ], it holds that

RTAL
F (T ) =O

(

∑

m∈[M ]

∑

k �=k 

[

∆k log(T )

µ ,mM∆2
min

+
∆k log(T )

µ2
 ,m

])

;

CTAL
F (T ) =O

(

∑

m∈[M ]

∑

k∈[K]

(1− µk,m) log(T )

M∆2
min

+
∑

m∈[M ]

∑

k �=k 

[

µk,m log(T )

µ ,mM∆2
min

+
µk,m log(T )

µ2
 ,m

])

.

We note that with a focus on the dependencies on M and

T , the regret and cost are both of order O(M log(T )); thus

TAL is order-optimal w.r.t. both criteria stated in Sec. IV, i.e.,

the general design goal is achieved. Moreover, the regret bound

shows two dominating terms, which are from Lemma 7, i.e., the

teaching phase. In fact, there is another non-dominating (thus

hidden) term from Lemma 2 for the learning phase; see more

details in section B of Appendix A. A similar three-part form

is shared by the cost. In particular, the first term is from the

learning phase (thus the sum is over all arms k ∈ [K] and each

term scales with 1− µk,m), and the last two terms are from the

teaching phase (thus the sum is over sub-optimal global arms

k �= k and scales with µk,m).

B. ε-Greedy Clients

The analysis is further extended to the clients running the

ε-greedy algorithm [58], another well-known bandit strategy.

Especially, the ε-greedy algorithm for client m is as follows:

πm(t)←

{

argmaxk∈[K] µ̂
′
k,m(t− 1) w.p.1− εm(t)

a random arm in [K] w.p.εm(t)
,

where the exploration probability εm(t) ∈ [0, 1] is taken as

εm(t) =O(K/t), following [19].

First, the following lemma states that ε-greedy is sufficiently

exploring, which is intuitive as the constant rewards lead to the

same sample mean for different arms.

Lemma 9: For any γ ∈ [0, 1], if ties among arms are broken

uniformly at random, with probability at least 1− 1/T , ε-

greedy is ([K], γ, η, η)-uniformly exploring with η(τ ; γ, [K])
and η(τ ; γ, [K]) =O(τ/K ± log(KT )).

Due to the randomness in ε-greedy, it is complicated to

analyze its warm-start pulls in general. Instead, the following

lemma focuses on γ1 = γ2 = 0. Under this setting, the sample

means are all kept as zero in the learning phase. Thus, once a
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non-zero reward is collected in the teaching phase, that arm will

immediately have the highest sample mean.

Lemma 10: If Πm is ε-greedy and µ ,m > γ1 =
γ2 = 0, with probability at least 1− 1/T , it holds

that maxHm∈Hm
{
∑

k �=k 
ιk,m(T ;Hm,Bm,Πm)}=

O(K log(KT )/µ2
 ,m).

Combining these results with Thm. 5, the following perfor-

mance guarantees can be obtained.

Theorem 11: (TAL with ε-greedy clients). For TAL with

γ1 = γ2 = 0, if clients run ε-greedy and break ties uniformly

at random, and µ ,m �= 0, ∀m ∈ [M ], it holds that

RTAL
F (T ) =O

(

K∆max log(T )

∆2
min

+
∑

m∈[M ]

K∆max log(T )

µ2
 ,m

)

,

CTAL
F (T ) =O

(

∑

m∈[M ]

[

Kµ∗,m log(T )

M∆2
min

+
Kµ∗,m log(T )

µ2
 ,m

])

.

The two parts in regret and cost are from the learning and

teaching phases, respectively. It can be observed that TAL with

ε-greedy clients also achieves the goal illustrated in Section IV.

Moreover, compared with Theorem 8, dependencies on ∆max

and µ∗,m (instead of ∆k and µk,m) can be observed, which

is a worst-case consideration to capture the random actions

generated from the ε-greedy policy.

C. Discussions: Thompson Sampling and Beyond

Another popular bandit strategy is Thompson sampling (TS)

[20]. Experiment results in Sec. VIII verify the performance of

TAL with TS clients; however, the theoretical analysis remains

open. In particular, unlike the sufficiently exploring UCB and

ε-greedy, [59] indicates that when facing two arms with con-

stant reward 1’s, the pulls by TS can be arbitrarily imbalanced.

Instead, balanced pulls can be achieved with reward 0’s for

these two arms. This phenomenon motivates using γ1 = 0 to

encourage TS explorations in the learning phase, whose effec-

tiveness is verified empirically but not analytically. On the other

hand, the complicated warm-start behavior of TS also requires

further investigation.

Furthermore, in Secs. VI-A and VI-B, the hyper-parameter

γ1 is set to different values (i.e., 1 for UCB clients and 0 for

ε-greedy clients). These choices are made to facilitate the cor-

responding “warm-start” analyses required in Definition 3 (i.e.,

to maintain the optimism of estimations in UCB and to avoid

complicated analyses due to the randomness in ε-greedy). How-

ever, the capabilities of TAL extend beyond these theoretically

sound options. Especially, experiments in Sec. VIII show that

various other choices (e.g., γ1 = 0 for UCB clients and γ1 = 1
for ε-greedy clients) can also lead to reasonable performances.

Thus, it would be an interesting future direction to investigate

whether a unified hyper-parameter γ1 in TAL is sufficient for

certain classes of client strategies (e.g., UCB and ε-greedy). The

main difficulty along this direction is still to analyze the “warm-

start” behaviors, which are largely determined by the specific

strategy.

Moreover, Thm. 5 has established conditions on clients’

strategies to obtain performance guarantees of TAL, i.e.,

Algorithm 2 TWL

Input: Parameter γ1, γ2 ∈ [0, 1]; Time Horizon T
1: Initialize: active arm set Υ← [K]; iteration counter ψ ← 1
2: for tf T do
3: Observe {πm(t), Xπm(t),m(t) :m ∈ [M ]}
4: if |Υ|> 1 and Nk,m(t)g F (ψ), ∀k ∈Υ,m ∈ [M ] then
5: Update {UCBk(ψ),LCBk(ψ) : k ∈Υ} as in Eqn. (1)
6: Update Υ←{j ∈Υ : UCBj(ψ)g LCBk(ψ), ∀k ∈Υ}
7: Set ψ ← ψ + 1
8: end if
9: ∀m ∈ [M ], set

σm(t)←











γ2 −Xπm(t),m(t) if πm(t) /∈Υ

γ1 −Xπm(t),m(t) if πm(t) ∈Υ and |Υ|> 1

0 if πm(t) ∈Υ and |Υ|= 1

,

10: Set X ′
πm(t),m(t)←Xπm(t),m(t) + σm(t)

11: Reveal X ′
πm(t),m(t) to each client m ∈ [M ]

12: end for

sufficiently exploring and low sub-optimal warm-start pulls.

An interesting direction is to verify the client-strategy-agnostic

nature of TAL in an even broad sense, e.g., with any no-regret

client strategy. Experimental results are provided later to en-

lighten future works on this open problem.

VII. TWL: A MORE ADAPTIVE EXTENSION

A. Algorithm Design

To further optimize the performance, a more adaptive

“Teaching-While-Learning” (TWL) algorithm (presented in

Alg. 2) is proposed, which breaks the non-adaptive phased

structure of TAL by leveraging a different idea of successive

arm elimination [60], [61]. In TWL, the server maintains a set

Υ of active arms (on the global model), which is initialized

as [K]. If |Υ|> 1, the following update is performed after

each active arm k ∈Υ has been pulled at least F (ψ) times by

each client:

Υ←{j ∈Υ : UCBj(ψ)≥ LCBk(ψ), ∀k ∈Υ},

where UCBk(ψ) and LCBk(ψ) are defined in Eqn. (1) and ψ
is the epoch counter as in TAL. In this process, the arms that

do not satisfy the requirement are eliminated (i.e., marked as

inactive). Then, based on the set Υ, the following adjustment

is performed for client m:

σm(t)←

⎧

⎪

«

⎪

¬

γ2 −Xπm(t),m(t) if πm(t) /∈Υ

γ1 −Xπm(t),m(t) if πm(t) ∈Υ and |Υ|> 1

0 if πm(t) ∈Υ and |Υ|= 1

,

where γ1, γ2 ∈ [0, 1] are to-be-specified input parameters.

In other words, the local rewards of all inactive arms are

adjusted to γ2 (typically small) to discourage explorations. For

an active arm, when there are other active arms (i.e., |Υ|> 1),

the server uniformly adjusts its rewards to γ1 to encourage

explorations. When an arm is the only active one (which is

arm k with high probability), its original rewards are kept to

save server adjustments, which is sufficient as all other arms are

inactive with a small perceived reward γ2.
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Fig. 2. Experimental results on synthetic datasets with clients running UCB1, ε-greedy, TS, and mixed strategies. Evaluations of (a–h) are under a fixed
5-clients-5-arms instance, where the curves represent the empirically averaged values and the shadowed areas represent the upper and lower 80% confidence
intervals. Evaluations of (i–l) are with 100 randomly generated 5-clients-5-arms instances, where each dot reports the performance (in a log-log scale) under
one instance and plots of a few algorithms are omitted for a better presentation here. The mixed strategies are two UCB1, two ε-greedy, and one TS. All
time horizons are T = 50000.

TWL is more refined than TAL as it only encourages ex-

plorations on the active arms (instead of all arms), which is

important in two aspects. First, only necessary arm-dependent

explorations are encouraged. Second, fewer cumulative rewards

on the sub-optimal arms also alleviate the server’s burden of

teaching clients to converge to the optimal arm.

B. Theoretical Analysis

The general performance of TWL can be similarly analyzed

as that of TAL in Sec. VI. The following result establishes the

performance guarantee for UCB1 clients.

Theorem 12: (TWL with UCB1 clients). For TWL with γ1 =
1 and γ2 = 0, if all clients run UCB1 locally and µ ,m �= 0 for

all m �= [M ], it holds that

RTWL
F (T ) =O

(

∑

m∈[M ]

∑

k �=k 

[

log(T )

µ ,mM∆k

+
∆k log(T )

µ2
 ,m

])

,

CTWL
F (T ) =O

(

∑

m∈[M ]

∑

k∈[K]

(1− µk,m) log(T )

M∆2
k

+
∑

m∈[M ]

∑

k �=k 

[

µk,m log(T )

µ ,mM∆2
k

+
µk,m log(T )

µ2
 ,m

])

.

The proof can be found in Appendix B. The above guarantees

can be interpreted in similar ways as those of TAL in Thm. 8,

i.e., one part from learning the global optimal arm and the other

part from guiding agents towards it. More importantly, it is

noted that with UCB1 clients, TWL strictly outperforms TAL

w.r.t. both criteria since the dependency on the minimum gap

∆min is replaced by arm-dependent gaps ∆k ≥∆min, which

comes precisely from its adaptive design.

Remark 2: For ε-greedy clients, with γ1 = γ2 = 0, the same

performance guarantee as Thm. 11 can be established for TWL

because the active and non-active arms are not distinctly treated

under this specification, which degrades TWL to TAL. How-

ever, experimental results show that better empirical perfor-

mance is achieved with γ1 = 1 and γ2 = 0, whose theoretical

analyses are left open for future works.

Remark 3: While TWL improves the regret of TAL regarding

the dependency on ∆k, it is unclear whether its dependencies

on parameters other than M and T are tight. One the one hand,

as mentioned in Remark 1, a refined lower bound would be

instructive in evaluating such tightness. On the other hand, it

is equally worth exploring whether a refined upper bound can

be obtained, which is left for further investigations.

VIII. EXPERIMENTAL RESULTS

In this section, the proposed algorithms are empirically eval-

uated against two baselines, NG and NA from Sec. IV, to

demonstrate their superiority and generality.

A. Synthetic Dataset

First, experimental results with synthetic datasets are re-

ported in Fig. 2. In particular, two sets of experiments are
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performed: (1) the first environment is a fixed instance with

M = 5 clients and K = 5 arms, where each client’s local model

is specified (left to right: arm 1 to arm 5) with the following

mean rewards: Client 1–[0.2, 0.9, 0.1, 0.8, 0.6], Client 2–[0.4,

0.1, 0.9, 0.4, 0.8], Client 3–[0.2, 0.2, 0.5, 0.5, 0.9], Client

4–[0.4, 0.3, 0.8, 0.9, 0.4], Client 5–[0.3, 0.5, 0.2, 0.4, 0.8].

The corresponding global game then has the following mean

rewards with a gap of ∆min = 0.1 (left to right: arm 1 to

arm 5): [0.3, 0.4, 0.5, 0.6, 0.7]; (2) the second setting is 100
randomly generated instances with M = 5 clients and K =
5 arms. Especially, the mean reward of each local arm for

each client is sampled from a uniform distribution in [0, 1].
The obtained results from these two sets of environments

are reported with different client strategies in Fig. 2(a)–2(h)

and Fig. 2(i)–2(l), respectively, and discussed in the follow-

ing. To facilitate presentations, we denote TAL(γ1, γ2) (resp.

TWL(γ1, γ2)) as TAL (resp. TWL) with specific parameters

γ1 and γ2. We note that with the randomly generated instances

in the second environment, the reported observations are suffi-

ciently general.

UCB1 clients. First, with UCB1 clients, from Fig. 2(a)

and 2(b), it can be observed that the proposed algorithms

are capable of converging while the superiority of TWL over

TAL is verified. However, as claimed in Sec. IV, the base-

lines are at two extremes: NG (resp. NA) is almost linear in

regret (resp. cost) although performing well w.r.t. cost (resp.

regret). Fig. 2(i) further demonstrates that TAL and TWL strike

a balance between regret and cost, while the advantage of

TWL is evident again. In particular, their performance scat-

ter plots from 100 randomly generated instances are concen-

trated in the diagonal between the two axes. However, the

plots of the two baselines are near one axis but far from

the other.

ε-greedy clients. Fig. 2(c) and 2(d) report that TAL and

TWL can successfully teach ε-greedy clients with a reasonably

low regret and cost at the same time. Somewhat unexpectedly,

TWL(1, 0) has a better performance even over the theoretically

sound TAL(0, 0) (equivalently, TWL(0, 0)), which warrants

further investigations with ε-greedy clients. Fig. 2(j) verifies

that the above observations hold in general.

TS clients. Although not theoretically studied, Fig. 2(e),

2(f) and 2(k) report the performances of the proposed algo-

rithms with TS clients. While converging, the performance

of TAL(1, 0) and TWL(1, 0) are highly unstable, which ver-

ifies the imbalanced exploration of TS discussed in Sec.

VI-C. On the other hand, TAL(0, 0) has stable and competi-

tive behaviors.

Mixed clients. Beyond one single local strategy, TAL and

TWL are also tested with mixed strategies for clients. Espe-

cially, with two UCB1 clients, two ε-greedy clients, and one

TS client, the results are reported in Fig. 2(g), 2(h) and 2(l).

It can be observed that the proposed designs are capable of

effectively guiding the clients to the global optimal arm in the

face of mixed client strategies while achieving a good balance

between regret and cost. These results further demonstrate the

broad applicability of the designs and their appealing property

of being client-strategy-agnostic.

Fig. 3. Experimental results on the real-world MovieLens dataset with
clients running mixed strategies. Evaluations (a) and (b) are under a fixed 15-
clients-15-arms instance, which is extracted by grouping users and movies
in the MovieLens dataset. The curves represent the empirically averaged
values and the shadowed areas represent the upper and lower 80% confi-
dence intervals.

B. Real-World Dataset

To further complement the observations obtained from syn-

thetic datasets, the empirical performances of the proposed

designs are further evaluated on the MovieLens dataset [62].

The available users and movies in the dataset are both randomly

divided into 15 groups to form an FMAB environment with

15 clients and 15 arms. The average movie ratings from each

group of users are used to construct their local rewards. Also,

the clients are considered to adopt mixed bandit strategies: 5

clients using each choice of UCB1, ε, and TS, respectively.

From the results reported in Fig. 3, the aforementioned key

observation is further verified that the proposed designs, i.e.,

TAL and TWL, are capable of effectively guiding the clients

towards the global optimal arm with a reasonable amount

of adjustment cost, i.e., balancing between regret and cost.

These results further demonstrate the practicability of the pro-

posed designs.

IX. CONCLUSION

A novel idea of reward teaching was proposed to have the

server guide autonomous clients in an unknown FMAB en-

vironment via reward adjustments, which avoids any changes

to the clients’ protocols and removes the previous requirement

of naive clients in FMAB. Two client-strategy-agnostic algo-

rithms, TAL and TWL, were proposed. The TAL algorithm

was designed with two phases to separately encourage and dis-

courage explorations. The TWL algorithm further optimized the

performance by breaking the non-adaptive phased structure into

a flexible interleaving scheme. General performance analysis

was established for TAL when the clients’ strategies satisfy

certain requirements. Especially, for the representative UCB1

and ε-greedy clients, rigorous analyses showed that TAL strikes

a balance between regret and adjustment cost (logarithmic in

both metrics), which is order-optimal w.r.t. the natural lower

bound. Moreover, the analyses also demonstrated that TWL

achieves an improved dependency on the sub-optimality gap

than TAL due to its adaptive design. Experimental results fur-

ther demonstrated the effectiveness and efficiency of the pro-

posed algorithms. Under the reward teaching framework, many

interesting questions were left open for further investigations,

e.g., theoretical analysis on TAL and TWL with Thompson

sampling clients.
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APPENDIX A

TAL: PERFORMANCE ANALYSIS

A. General Analysis: Theorem 5

First, the following good event is established to demonstrate

the effectiveness of the proposed confidence bounds.

Lemma 13: Denoting event EF as

EF :=
{

∀ψ ≤ T, ∀k ∈ [K], |ν̂k(ψ)− νk| ≤ 2−ψ−2
}

where ν̂k(ψ) :=
1
M

∑M

m=1 µ̂k,m(ψ), it holds that P (EF )≥ 1−
1/T .

Proof: With Hoeffding’s inequality and the design that

ν̂k(ψ) =
∑M

m=1

∑F (ψ)

τ=F (ψ−1)+1
Xk,m(N−1

k,m(τ))/(Mf(ψ)),

at epoch ψ, for arm k, we have

P
(

|ν̂k(ψ)− νk|> 2−ψ−2
)

≤ 2 exp(−2Mf(ψ)2−2ψ−4)

= 1/(KT 2).

With a union bound over ψ ≤ T and k ∈ [K], the lemma can

be proved.

Lemma 14: (Learning Phase in TAL; Restatement of Lemma

2). If Πm is ([K], γ1, ηm, ηm)-sufficiently exploring for all m ∈
[M ], with probability (w.p.) at least 1− 1/T , the learning phase

ends with k! = k by time step T1, and the regret and cost in

the learning phase of TAL are bounded, respectively, as

RF,1(T )≤
∑

m∈[M ]

∑

k �=k 
∆k · ηm (T1; γ1, [K]) ;

CF,1(T )≤
∑

m∈[M ]

∑

k∈[K]
δk,m(γ1) · ηm (T1; γ1, [K]) ,

where T1 ≤maxm∈[M ]

{

η−1
m

(F (ψmax); γ1, [K])
}

.

Proof of Lemma 14: With event EF in Lemma 13 happening,

we assume the learning phases end at time step T1 such that

T1 ≥maxm∈[M ]

{

η−1
m

(F (ψmax); γ1, [K])
}

.

Since each local algorithm Πm is ([K], γ1, ηm, ηm)-
sufficiently exploring and the rewards on all arms are constant

γ1’s, it holds that Nk,m(T1)≥ F (ψmax), ∀k ∈ [K], ∀m ∈ [M ],
which means that epoch ψmax is reached. Thus, the confidence

bound can be bounded as CB(ψmax)≤
1
4 · 2−ψmax ≤ 1

4∆min,

which results in

LCB (ψmax) = ν̂ (ψmax)− CB(ψmax)

≥ ν − 2CB(ψmax)≥ ν −
∆min

2

≥ νk +
∆min

2
≥ νk + 2CB(ψmax)

≥ ν̂k(ψmax) + CB(ψmax)

= UCBk(ψmax), ∀k �= k .

Thus, the learning phase should already end. Similarly, it can

be obtained that arm k would not be dominated by any other

arm; thus k! = k . Then, with the observation that

Nk,m(T1)≤ ηm(T1; γ1, [K]), ∀k ∈ [K],m ∈ [M ],

the lemma can be proved.

Lemma 15: (Teaching Phase in TAL; Restatement of Lemma

4). If the event in Lemma 14 occurs, the regret and cost in the

teaching phase of TAL are bounded, respectively, as

RF,2(T )≤
∑

m∈[M ]

max
Hm∈Hm

∑

k �=k 

∆k · ιk(T ;Hm,Bm,Πm);

CF,2(T )≤
∑

m∈[M ]

max
Hm∈Hm

∑

k �=k 

δk,m(γ2) · ιk(T ;Hm,Bm,Πm),

where Bm denotes an environment with constant rewards as γ2
for arm k �= k and stochastic rewards with expectation µ ,m

for arm k . The set Hm is defined with each element of it

as a reward sequence Hm = {Hk,m : k ∈ [K]} where Hk,m ∈
{{γ1}

τ : τ ∈ [η
m
(T1; γ1, [K]), ηm(T1; γ1, [K])]}.

Proof of Lemma 15: This lemma can be obtained by realizing

that if the event in Lemma 2 happens, at the beginning of the

teaching phase, i.e., time step T1, client m has observed con-

stant reward γ1 on each arm k ∈ [K] for at least η
m
(T1; γ1, [K])

and at most ηm(T1; γ1, [K]) times, which leads to the definition

of Hm.

Starting at time step T1, the local bandit algorithm

Πm can be viewed as interacting with environment Bm

with prior input Hm ∈Hm. By recognizing that with the

reward sequence Hm ∈Hm, E[Nk,m(T − T1)|Hm,Bm]≤
E[Nk,m(T )|Hm,Bm] = ιk,m(T ;Hm,Bm,Πm), the lemma

can be proved.

Theorem 16: (Overall Performance of TAL; Restatement

of Theorem 5). Under the assumption in Lemma 14, with

RF,1(T ), CF,1(T ) defined in Lemma 14 and RF,2(T ), CF,2(T )
in Lemma 15, the regret and cost of TAL are bounded,

respectively, as RF (T )≤RF,1(T ) +RF,2(T ) +O(M) and

CF (T )≤ CF,1(T ) + CF,2(T ) +O(M).
Proof of Theorem 5: When event EF happens, the regret and

cost can be obtained as the combination of Lemmas 14 and 15.

Otherwise, the regret and cost can be bounded linearly by MT .

The lemma can then be proved with the guarantee that P(EF )≥
1− 1/T as shown in Lemma 14.

B. UCB1 Clients: Theorem 8

Lemma 17: (Restatement of Lemma 6). For any γ ∈ [0, 1] and

set I ⊆ [K], UCB1 is (I, γ, η, η)-sufficiently exploring with

η(τ ; γ, I) = �τ/|I|
 and η(τ ; γ, I) = �τ/|I|	.

Proof: The UCB1 algorithm is defined in Sec. VI-A and the

subscript m is ignored in the following to denote a general

UCB1 algorithm. To prove the lemma, it is essential to obtain

that if at time step t,
∑

k∈I Nk(t) = τ , then maxk∈I Nk(t)−
mink∈I Nk(t)≤ 1. If this claim does not hold, there exist arms

k, k′ such that Nk(t)≥Nk′(t) + 2. Then, at the last time step

that the arm k is pulled, denoted as t′, it holds that

µ′
k(t

′) +

√

2 log(t′)

Nk(t′)

(a)

≤ γ +

√

2 log(t′)

Nk′(t) + 1
≤ γ +

√

2 log(t′)

Nk′(t)

≤ γ +

√

2 log(t′)

Nk′(t′)

(b)
= µ′

k′(t
′) +

√

2 log(t′)

Nk′(t′)
,
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where steps (a) and (b) leverages the fact that both arm k and

k′ receive reward γ’s. A contradiction is thus raised as arm k
would not be pulled, and the lemma is proved.

Then, with Lemma 17, we can observe that

T1 ≤KF (ψmax) =O

(

K log(KT )

M∆2
min

)

. (3)

Lemma 18: (Restatement of Lemma 7). If

γ1 ≥ µ ,m > γ2 and Πm is UCB1, for all k �= k ,

it holds that maxHm∈Hm
{ιk(T ;Hm,Bm,Πm)}=

O
(

(γ1−γ2)T1

K(µ ,m−γ2)
+ log(KT )

(µ ,m−γ2)2

)

.

Proof of Lemma 18: For Hm in the set Hm, it contains

τk,m times reward γ1 on each arm k ∈ [K], where τk,m ∈
[�T1/K
, �T1/K	]. We denote tH =

∑

k∈[K] τk,m ≤ T1 +K
as the length of reward sequence in Hm and

Lk,m :=
(γ1 − γ2)τk,m
4(µ− γ2)2

+
2 log(T + tH)

4(µ− γ2)2

≤
(γ1 − γ2)(T1/K + 1)

4(µ− γ2)2
+

2 log(T + T1 +K)

4(µ− γ2)2
.

It holds that

ιk,m(T ;Hm,Bm,Πm)≤ Lk,m(T )

+ E

⎡

£

∑

t∈[T ]

1 {πm(t) = k,Nk,m(t− 1)> Lk,m(T )}

¤

⎦

= Lk,m(T ) +
∑

t∈[T ]

P(πm(t)

= k,Nk,m(t− 1)> Lk,m(T )).

With UCB1 as Πm, it further holds that

P (πm(t) = k,Nk,m(t− 1)> Lk,m(T ))

≤ P

(

µ̂′
k,m(t− 1) +

√

2 log(t+ tH)

τk,m +Nk,m(t− 1)
≥ µ̂′

 ,m(t− 1)

+

√

2 log(t+ tH)

τ ,m +N ,m(t− 1)
, Nk,m(t− 1)> Lk,m(T )

)

where the last inequality is due to a union bound.

Let us separately consider Nk,m(t− 1) = nk,m ∈
[Lk,m(T ), t] and N ,m(t− 1) = nk,m ∈ [t]. It holds that

P

(

µ̂′
 ,m(t− 1) +

√

2 log(t+ tH)

τ ,m + n ,m

≤ µ ,m

)

= P

(

τ ,mγ1 +
∑n ,m

τ=1 Xτ
 ,m

τ ,m + n ,m

+

√

2 log(t+ tH)

τ ,m + n ,m

≤ µ ,m

)

(a)

≤ P

(

τ ,mµ ,m +
∑n ,m

τ=1 Xτ
 ,m

τ ,m + n ,m

+

√

2 log(t+ tH)

τ ,m + n ,m

≤ µ ,m

)

(b)

≤
1

(t+ tH)4
,

where inequality (a) is an essential step of “optimism” due

to γ1 ≥ µ ,m and inequality (b) holds is from Hoeffding’s

inequality. Also, it can be observed that with nk,m ≥ Lk,m(T ),

µ̂′
k,m(t− 1) +

√

2 log(t+ tH)

τk,m + nk,m

=
τk,m · γ1 + nk,m · γ2

τk,m + nk,m

+

√

2 log(t+ tH)

τk,m + nk,m

≤ µ ,m.

Thus, with a union bound, it holds that

P (πm(t) = k,Nk,m(t− 1)> Lk,m(T ))

≤
∑t

nk,m=Lk,m(T )

∑

n ,m∈[t]

1

(t+ tH)4
≤

1

t2

It is then indicated that

E [Nk,m(T )]≤ Lk,m(T ) +
∑T

t=1

1

t2
≤ Lk,m(T ) + 2,

which proves Lemma 18.

Theorem 19: (TAL with UCB1 clients; Restatement of Theo-

rem 8). For TAL with γ1 = 1 and γ2 = 0, if all clients run UCB1

locally and µ ,m �= 0 for all m ∈ [M ], it holds that

RF (T ) =O

(

∑

m∈[M ]

∑

k �=k 

[

∆k log(KT )

µ ,mM∆2
min

+
∆k log(KT )

µ2
 ,m

])

;

CF (T ) =O

(

∑

m∈[M ]

∑

k∈[K]

(1− µk,m) log(KT )

M∆2
min

+
∑

m∈[M ]

∑

k �=k 

[

µk,m log(KT )

µ ,mM∆2
min

+
µk,m log(KT )

µ2
 ,m

])

.

Proof of Theorem 19: From Eqn. (3), it holds that T1 =

O
(

K log(KT )
M∆2

min

)

. With Lemmas 14 and 17, it holds that

RF,1(T )≤
∑

m∈[M ]

∑

k �=k 
∆k · ηm (T1; γ1, [K])

=O

(

∑

m∈[M ]

∑

k �=k 

∆k log(KT )

M∆2
min

)

;

CF,1(T )≤
∑

m∈[M ]

∑

k∈[K]
δk,m(γ1) · ηm (T1; γ1, [K])

(a)
= O

(

∑

m∈[M ]

∑

k∈[K]

(1− µk,m) log(KT )

M∆2
min

)

,

where equation (a) also utilizes that with γ1 = 1, δk,m(γ1) =
1− µk,m.

Then, with Lemmas 15 and 18, it holds that

RF,2(T )≤
∑

m∈[M ]

max
Hm∈Hm

∑

k �=k 

∆k · ιk(T ;Hm,Bm,Πm)

=O

⎛

¿

∑

m∈[M ]

∑

k �=k 

∆k log(KMT )

µ ,mM∆2
min

+
∆k log(KMT )

µ2
 ,m

À

⎠ ;

CF,2(T )≤
∑

m∈[M ]

max
Hm∈Hm

∑

k �=k 

δk,m(γ2) · ιk(T ;Hm,Bm,Πm)

(a)
= O

⎛

¿

∑

m∈[M ]

∑

k �=k 

µk,m log(KT )

µ ,mM∆2
min

+
µk,m log(KT )

µ2
 ,m

À

⎠ ,

where equation (a) uses the fact that with γ2 = 0, δk,m(γ2) =
µk,m. The theorem is then proved.
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C. ε-Greedy Clients: Theorem 11

Lemma 20: For any γ ∈ [0, 1], if ties among arms are broken

uniformly at random, with probability at least 1− 1/T , ε-

greedy is ([K], γ, η, η)-sufficiently exploring with η(τ ; γ, [K])
and η(τ ; γ, [K]) =O(τ/K ± log(KT )).

Proof of Lemma 20: Since the rewards on each arm are all

γ (thus the sample means are all γ) and the ties among arms

are broken uniformly at random, the algorithm would pull each

arm k ∈ [K] with equal probability 1/K. Thus, denoting the

number of pulls on an arbitrary arm k by time τ as Nk(τ),
it holds that Nk(τ) =

∑

t∈[τ ] 1{π(t) = k}. Using Bernstein’s

inequality and P(π(t) = k) = 1/K, we can obtain that

P

(∣

∣

∣Nk(τ)−
τ

K

∣

∣

∣≥ x
)

≤ 2 exp

(

−
x2

2 τ
K

+ 2
3x

)

≤
1

KT
,

where x := τ
4K + 8

3 log(KT ).
With a union bound over k ∈ [K], we can obtain

that η(τ ; γ, [K]) = 3τ
4K − 8

3 log(KT ) and η(τ ; γ, [K]) =
5τ
4K + 8

3 log(KT ), which concludes the proof.

Using Lemmas 14 and 20, we can obtain that with probability

1− 1/T , the learning phase of TAL ends at T1 such that

T1 ≤ max
m∈[M ]

{

η−1
m

(F (ψmax); γ1, [K])
}

=
4K

3
F (ψmax) +

32K

9
log(KMT )

=O

(

K log(KT )

M∆2
min

+K log(KMT )

)

. (4)

Lemma 21: If Πm is ε-greedy and µ ,m > γ1 = γ2 = 0,

with probability at least 1− 1/T , it holds that

maxHm∈Hm

{

∑

k �=k 
ιk,m(T ;Hm,Bm,Πm)

}

=

O
(

K log(T )
µ2

 ,m

)

.

Proof of Lemma 21: Since γ1 = 0, the reward sequence

Hm ∈Hm are all zeros. Further with γ2 = 0, once a non-zero

reward is received on arm k , it will immediately have the

highest sample mean. First, if arm k has been played at least

n′ =
⌈

log(2T )
2µ2

 ,m

⌉

times, where Hoeffding’s inequality indicates

that with a probability of at least 1− 1
2T , there is at least one

non-zero reward collected from arm k .

Furthermore, when there are no non-zero rewards collected

on arm k , the arms are pulled with equal probabilities (since

they all have zero as sample means due to γ2 = 0). With Bern-

stein’s inequality, it further holds that

P

(

∑

t∈[τ ′]
1{πm(t) = k } −

τ ′

K
≤ n′ −

τ ′

K

)

≤ exp

(

−

(

τ ′

K
− n′

)2

/

(

2
τ ′

K
+

2

3

(

τ ′

K
− n′

))

)

≤
1

2T
,

where τ ′ = 4K log(2T )
3µ2

 ,m

+ 32K log(T )
9 =O

(

K log(T )
µ2

 ,m

)

.

Thus, with at most τ ′ steps, the arm k would have the highest

sample mean. Afterward, the other arms will only be pulled

during exploration, i.e., with probability ε(t) =O(K/t), which

would only result in O(K log(T )) pulls in expectation. The

lemma is then proved.

Theorem 22: (TAL with ε-greedy clients; Restatement

of Theorem 11). For TAL with γ1 = γ2 = 0, if

clients run ε-greedy and break ties uniformly at

random, and µ ,m �= 0, ∀m ∈ [M ], it holds that

RF (T ) =O
([

K∆max

∆2

min

+
∑

m∈[M ]
K∆max

µ2

 ,m

]

log(KMT )
)

and CF (T ) =O
(

∑

m∈[M ]

[

Kµ∗,m
M∆2

min

+
Kµ∗,m
µ2

 ,m

]

log(KMT )
)

.

Proof of Theorem 22: From Eqn. (4), with probability

1− 1/T , it holds that T1 =O
(

K log(KT )
M∆2

min

+K log(KMT )
)

.

Using η(T1; γ1, [K]) from Lemma 20, it holds that

RF,1(T )≤
∑

m∈[M ]

∑

k �=k 
∆k · ηm (T1; γ1, [K])

=O

(

K∆max log(KT )

∆2
min

+MK∆max log(KMT )

)

;

CF,1(T )≤
∑

m∈[M ]

∑

k∈[K]
δk,m(γ1) · ηm (T1; γ1, [K])

(a)
= O

(

Kµ∗,m log(KT )

∆2
min

+MKµ∗,m log(KMT )

)

,

where step (a) leverages the fact that with γ1 = 0, δk,m(γ1) =
µk,m ≤ µ∗,m.

Furthermore, combining Lemmas 15 and 21, with probability

1− 1/T , it holds that

RF,2(T ) =O

(

∑

m∈[M ]

K∆max log(MT )

µ2
 ,m

)

;

CF,2(T )
(a)
= O

(

∑

m∈[M ]

Kµ∗,m log(MT )

µ2
 ,m

)

,

where step (a) leverages the fact that with γ2 = 0, δk,m(γ2) =
µk,m ≤ µ∗,m. Putting these two observations into Theorem 16,

the theorem is then proved.

APPENDIX B

TWL: PERFORMANCE ANALYSIS

Lemma 23: (Arm Elimination in TWL). Denote event EG as

EG = {each armk �= k is eliminated from the active arm set

Υin TWL by the end of epoch ψk},

where ψk := �log2(1/∆k)	, it holds that P(EG)≥ 1− 1/T .

Proof of Lemma 23: First, similar to Lemma 13, we can

establish that with probability at least 1− 1/T , it holds that

|ν̂k(ψ)− νk| ≤ CB(ψ) = 2−ψ−2, ∀ψ ≤ T, ∀k ∈Υψ,

where Υψ denotes the active arm set in epoch ψ. Based on this

event, we can first observe that arm k would not be eliminated.

Furthermore, at the end of epoch ψk, if arm k �= k is not

eliminated, both arm k and arm k would be active. However,

we can observe that

LCB (ψk) = ν̂ (ψk)− CB(ψk)≥ ν − 2CB(ψk)

≥ ν −
∆k

2
≥ νk +

∆k

2
≥ νk + 2CB(ψk)

≥ ν̂k(ψk) + CB(ψk) = UCBk(ψk),

which means arm k should already be eliminated.
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Lemma 24: (Active Arms in TWL). If Πm is UCB1, for any

γ1 and γ2, with probability at least 1− 1/T , for all k �= k ,

it holds that N1
k,m(T ) :=

∑

t∈[T ] 1{πm(t) = k, k ∈Υ(t)}=

O
(

log(KT )
M∆2

k

)

, where Υ(t) denotes the active arm set at time

step t and ψ(t) denotes the epoch index at time step t.
Proof of Lemma 24: Using the same procedure in Lemma 17,

with constant reward γ1’s for active arms and constant reward

γ2’s for inactive arms, it can be observed that at the end of

epoch ψ, each client m pulls each active arm k ∈Υ(ψ) the

same F (ψ) times. As arm k �= k is eliminated from the active

arm set by the end of phase ψk based on event EG introduced

in Lemma 23, it holds that N1
k,m(T )≤ F (ψk) =O

(

log(KT )
M∆2

k

)

,

which concludes the proof.

Lemma 25: (Inactive Arms in TWL). If Πm is

UCB1, for any γ1 and γ2 such that γ1 ≥ µ ,m > γ2,

with probability at least 1− 1/T , for all k �= k , it

holds that N2
k,m(T ) :=

∑

t∈[T ] 1{πm(t) = k, k /∈Υ(t)}=

O
(

(γ1−γ2)N
1

k,m(T )

(µ ,m−γ2)
+ log(KT )

(µ ,m−γ2)2

)

.

Proof of Lemma 25: This lemma can be established following

the same procedure as Lemma 18.

Theorem 26: (TWL with UCB1 clients; Restatement of The-

orem 12). For TWL with γ1 = 1 and γ2 = 0, if all clients run

UCB1 locally and µ ,m �= 0 for all m �= [M ], it holds that

RTWL
F (T ) =O

(

∑

m∈[M ]

∑

k �=k 

[

log(T )

µ ,mM∆k

+
∆k log(KT )

µ2
 ,m

])

,

CTWL
F (T ) =O

(

∑

m∈[M ]

∑

k∈[K]

(1− µk,m) log(KT )

M∆2
k

+
∑

m∈[M ]

∑

k �=k 

[

µk,m log(KT )

µ ,mM∆2
k

+
µk,m log(KT )

µ2
 ,m

])

.

Proof of Theorem 26: From Lemma 24, with probability

at least 1− 1/T , it holds that N1
k,m(T ) =O

(

log(KT )
M∆2

k

)

, thus

we can specify N2
k,m(T ) =O

(

log(KT )
µ ,mM∆2

k

+ log(KT )
µ2

 ,m

)

with

Lemma 25. The overall regret and cost can then be bound as

RTWL
F (T )≤

∑

m∈[M ]

∑

k �=k 

(

N1
k,m(T ) +N2

k,m(T )
)

∆k +
MT

T

=O

(

∑

m∈[M ]

∑

k �=k 

log(KT )

µ ,mM∆k

+
∆k log(KT )

µ2
 ,m

)

;

CTWL
F,k,1(T )≤

∑

m∈[M ]

∑

k∈[K]
N1

k,m(T ) · δk,m(1)

+
∑

m∈[M ]

∑

k �=k 
N1

k,m(T ) · δk,m(0) +
MT

T

=O

(

∑

m∈[M ]

∑

k∈[K]

(1− µk,m) log(KT )

M∆2
k

+
∑

m∈[M ]

∑

k �=k 

[

µk,m log(KT )

µ ,mM∆2
k

+
µk,m log(KT )

µ2
 ,m

])

,

which concludes the proof.
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