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Reward Teaching for Federated Multiarmed Bandits

Chengshuai Shi ®, Wei Xiong, Cong Shen

Abstract—Most of the existing federated multi-armed bandits
(FMAB) designs are based on the presumption that clients will
implement the specified design to collaborate with the server. In
reality, however, it may not be possible to modify the clients’
existing protocols. To address this challenge, this work focuses
on clients who always maximize their individual cumulative
rewards, and introduces a novel idea of “reward teaching”, where
the server guides the clients towards global optimality through
implicit local reward adjustments. Under this framework, the
server faces two tightly coupled tasks of bandit learning and
target teaching, whose combination is non-trivial and challenging.
A phased approach, called Teaching-After-Learning (TAL), is
first designed to encourage and discourage clients’ explorations
separately. General performance analyses of TAL are established
when the clients’ strategies satisfy certain mild requirements.
With novel technical approaches developed to analyze the warm-
start behaviors of bandit algorithms, particularized guarantees
of TAL with clients running UCB or e-greedy strategies are
then obtained. These results demonstrate that TAL achieves
logarithmic regrets while only incurring logarithmic adjustment
costs, which is order-optimal w.r.t. a natural lower bound. As a
further extension, the Teaching-While-Learning (TWL) algorithm
is developed with the idea of successive arm elimination to break
the non-adaptive phase separation in TAL. Rigorous analyses
demonstrate that when facing clients with UCB1, TWL outper-
forms TAL in terms of the dependencies on sub-optimality gaps
thanks to its adaptive design. Experimental results demonstrate
the effectiveness and generality of the proposed algorithms.

Index Terms—Federated learning, multi-armed bandits,
reward teaching, upper confidence bound.

I. INTRODUCTION

FEDERATED multi-armed bandits (FMAB) [2], [3], [4],
[51, [6], [7] is a recently proposed framework that
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introduces the core principles of federated learning (FL) [8],
[9] into multi-armed bandits (MAB) [10], [11], [12]. In partic-
ular, FMAB often considers a system of one global server and
multiple heterogeneous local clients with the goal of having
the clients converge to the global optimality. Since proposed
by [2], [3], FMAB has found applications in cognitive radio,
recommender systems, and beyond.

One practical difficulty of realizing FMAB is that the existing
designs have to implement new protocols for both the server
and clients [3], [4], [13]. Specifically, the server and clients
must strictly follow the design collaboratively. In real-world
applications, it is relatively easy to update the server’s proto-
cols for FMAB. However, given the typically large number of
clients, it is often not realistic to assume that all of their proto-
cols can be updated due to infrastructure cost and complicated
agent behaviors.

We first use the example of cognitive radio systems, a com-
mon motivating application for FMAB [3], [14], [15], for a
more concrete illustration. Specifically, the base station (i.e.,
the central server) wants to find a good channel to broad-
cast information to mobile devices in its coverage area. How-
ever, different mobile devices, which are modeled as clients
in FMAB, typically have different local channel availabilities
due to their different geographic locations. As aforementioned,
previous designs (e.g., [2], [3]) typically require mobile devices
(i.e., clients) to follow the new FMAB protocols to collaborate
with the base station. However, in reality, mobile devices are
often configured to optimize their individual communication
qualities following their built-in protocols. It is typically hard
and expensive to update all mobile devices to follow the new
FMAB designs, especially since such changes are often needed
for both software and hardware.

Moreover, in the recommender system, another well-
accepted application of FMAB [3], [4], [16], [17], [18], the
online sellers (i.e., clients) often need to select items (i.e.,
actions) for promotions on the shopping platform (i.e., the
server). However, these sellers typically follow their own
strategies to optimize profits and often ignore other social
influences, such as environmental effects and health concerns
(e.g., for cigarettes). It is thus unrealistic to assume that the
selfish sellers would strictly perform the previously proposed
FMAB designs.

This work removes this limitation for FMAB by designing
mechanisms only at the server side. Especially, the clients
can still follow the original routines to optimize their indi-
vidual performances (as in the aforementioned examples of
cognitive radio and recommender systems) and no change of
their protocols is required. Towards this end, a novel “reward
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teaching” approach is proposed: the server implicitly adjusts
the local rewards perceived by the clients to influence their
decision-making indirectly. We note that this idea is practical
for the aforementioned applications. For cognitive radio, it is
widely adopted in standard communication protocols for the
base station to measure rewards (e.g., throughput) and send
designed signals to mobile devices. In recommender systems,
the bonuses received by the sellers are commonly designed and
distributed by the shopping platform.

From a different perspective, this work can also be viewed
as breaking the barrier of naive clients in the previous FMAB
designs, where the clients unconditionally follow the server’s
instructions. Such naive behaviors are often unrealistic, while
a more reasonable scenario (as in this work) is that the clients
take actions to optimize their local performances, which may
not always align with the server’s global objective.

Note that the seemingly simple idea of reward adjustment
brings considerable challenges for the server strategy. In par-
ticular, the server needs to determine how to adjust rewards to
handle the following two tasks simultaneously: bandit learning
and target teaching. On one hand, the server has to learn the
unknown global model through the clients’ actions, which are
based on local observations and may not align with the server’s
global objective. Thus, reward adjustments should be carefully
placed to have the clients explore with respect to (w.r.t.) the
global information (instead of their local ones). On the other
hand, even if the global model is learned successfully, the cor-
responding learning history has a cumulative effect on guiding
the clients towards the learned target, as all historical (adjusted)
rewards are considered by the client in her future decision-
making. As a result, while having been studied individually
(e.g., learning in MAB and teaching in data-poisoning MAB),
the combination of these two tasks is novel and challenging as
they are tightly coupled, which is detailed in Sec. IV.

The contributions of this work are summarized as follows.

o A reward-teaching framework. A novel idea of reward
teaching is proposed to let the server design reward signals
to guide clients with their own local strategies. This idea
is practically appealing for FMAB systems as existing
client protocols do not have to be modified — only the
reward signals they receive are adjusted. From another
perspective, it also provides a method to handle non-naive
FMAB clients.

o Client strategy-agnostic algorithm designs. A phased
approach, coined “Teaching-After-Learning” (TAL), is
proposed. It addresses the challenge of teaching in an
unknown environment by separately encouraging and dis-
couraging explorations in two phases. A more adaptive
“Teaching-While-Learning” (TWL) algorithm is then de-
veloped to break the strict two-phased structure via the
idea of successive arm elimination. It is worth noting
that both TAL and TWL are agnostic to the clients’ local
strategies.

o Client strategy-dependent analysis. When the clients’
local strategies satisfy some general properties, theoretical
regret and cost guarantees of TAL are established. Par-
ticularizing these properties to UCB1 and e-greedy [19]
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strategies at clients reveals that TAL can achieve a loga-
rithmic regret while only incurring a logarithmic adjust-
ment cost, which is order-optimal w.r.t. a natural lower
bound. Regarding TWL, its advantage is rigorously estab-
lished with clients running UCB1, where TWL achieves an
improved performance dependency on the sub-optimality
gaps than TAL due to its adaptive design. Moreover, one
key ingredient to obtain these results is the novel technical
approaches developed to analyze the warm-start behaviors
of bandit algorithms, which may be of independent merit.

« Experimental results. The performance of the proposed
designs is verified empirically. Especially, their effective-
ness and generality are corroborated with different client
strategies (i.e., UCB1, e-greedy, Thompson sampling [20],
and their mixtures), where the advantage of TWL is
also evidenced.

II. RELATED WORKS

FMAB. FMAB can be viewed as a variant of the general
problem of multi-agent bandits [11], [12], [21], [22], [23],
where global rewards instead of local ones measure the per-
formance. Recent studies have investigated its robustness [24],
personalization [16] and privacy protection [13], and extended
the studies to contextual bandits [5], [6], [7]. However, almost
all of the previous studies assume the clients follow updated
local protocols, which either require clients to directly follow
the server’s instructions or have them work collaboratively.
Instead, the designs in this work are purely on the server’s side
and no change is needed on the client side, which broadens the
applicability of FMAB.

Reward adjustments in MAB and RL. One line of re-
search on reward adjustments focuses on the malicious poison-
ing attacks [25], [26], [27]. The most relevant works are under
the “strong attack” model [28], [29], [30], [31], where the at-
tacker perturbs the rewards after observing the player’s actions
and tricks her into converging to a pre-selected sub-optimal
arm (see Sec. IV). Other forms of attacks are also studied [32],
[33], [34], [35], [36], including the “weak attack” model [37],
[38], [39] where attacks are performed before observing actions.
Note that the attackers in all these works have no desire to
explore the environment, while the reward-teaching server has
to actively learn the global model.

Another line is more conceptually related to this work: per-
forming adjustments for positive purposes, such as reward shap-
ing [40], [41], [42]. Especially, in reward shaping, the goal is
to accelerate learning using a newly designed set of rewards;
thus the optimal policy is kept the same. However, for reward
teaching, the goal is to use modified rewards to guide clients
to a different optimal policy (i.e., the optimal global arm).
The recent work by [43] shares a similar idea of “teaching”
the player via certain adjustments in reinforcement learning
(RL); however, the target is still pre-selected. While differences
exist between these previous attempts and this work, they all
demonstrate the potential of “teaching” in MAB and RL.

In addition, the reward-teaching idea shares similarities with
the design of implicit rewards in hierarchical RL [44], [45].
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TABLE I
A SUMMARY OF KEY NOTATIONS USED IN THIS WORK
Notations Explanations
M The number of clients and local models
K The number of available arms
Xi,m (1) The reward of arm k& on local model m at time ¢
Y (t) The reward of arm k on the global model at time ¢
Hk,m The expected reward of arm k on local model m
Vi Th expected reward of arm k£ on the global model
ks,m The optimal arm for local model m
ke The optimal arm for the global model
s ,m The expected reward of the locally optimal arm k. ., on
local model m
Him The expected reward of the globally optimal arm k; on

local model m
Vi The expected reward of the globally optimal arm k; on
the global model
The modified observation for client m’s action 7, (¢) at
time ¢

om(t) The adjustment amount performed on client m’s obser-
vation at time ¢

R (T) The cumulative global regret caused by client m

Rp(T) The cumulative global regret caused by all clients

Ci(T) The cumulative cost for adjusting client m’s observations

Cr(T) The cumulative cost for adjusting all clients’ observations

Ay The suboptimality gap of arm k, i.e., vy — v, Vk # ki
The minimal suboptimality gap, i.e., mink-;ekT Ag
The maximal suboptimality gap, i.e., maxy g + Ay

Thus, the designs in this work may contribute to improving the
theoretical understanding of hierarchical RL, which is currently
lacking. In particular, our work may be useful in demonstrating
that client behaviors can be guided via a small number of
modifications on their original rewards.

Incentivized explorations in MAB and RL. Another re-
lated research domain is the incentivized explorations in MAB
and RL. Especially, a principal leverages either strategically
designed signals [46], [47], [48] or additional compensations
[49], [50], [51] to motivate the agent to perform certain actions.
In particular, [52] leverages additional bonuses to motivate non-
naive FMAB clients to perform certain explorations. However,
comparing incentivized explorations with this work, we note
that major differences exist: the incentivizing principal’s signals
or compensations are explicit to the agent, who then takes cor-
responding actions; however, the reward adjustment used by the
server in this work is implicit to the clients, who autonomously
perform their own local strategies.

III. PROBLEM FORMULATION
A. Federated Multiarmed Bandits

Local and global models. Following [2], [3], [4], a stan-
dard FMAB system of M local models and one global model
is considered. With the same set of K arms shared by all
the models, at each time step ¢ € [T], each arm k € [K] is
associated with a local reward Xy ,,,(¢) € [0,1] for each lo-
cal model m € [M] and a global reward Y} (¢) € [0, 1] for the
global model. These rewards of each arm % are all indepen-
dently sampled with unknown expectations denoted as (i, ,, 1=
E[X) m(t)], Ym € [M] and v, := E[Y;(t)]. In general, the lo-
cal arm utilities are model-dependent, i.e., fi 1, 7 fti,, for all
n # m. The optimal local arm for each local model m is denoted
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as ki = arg maxyc (g fk,m With fam := pg, ,, m, and the
optimal global arm as ky := arg max, ¢ Vg With v4 := vy,

As in [2], [3], [4], we consider the setting where each arm
k’s mean reward on the global model is the average of its mean
rewards on the local models', i.e.,

1
v =E[Yi(t)] = M ZmE[M] b

As a result, a global-local misalignment may occur as the
global optimality may not align with each local optimality, i.e.,
ki # ks m for all or part of m € [M].

Clients and server. In FMAB, there exist M clients and
one server. At time ¢, each client m € [M] selects an arm 7y, (¢)
(referred to as “local actions”) and then observes its local reward
X, (t),m(t) on local model m. Additionally, each client m’s
action ,,, (t) would also generate a reward Y, () (t) from the
global model. It would be helpful to interpret the local and
global rewards as the individual-level and system-level impact
of the clients’ actions.

The server in FMAB does not perform any arm-pulling
action herself. Instead, she focuses on guiding the local ac-
tions to optimize their incurred global rewards. However, the
global rewards are not directly observable by the server and
the clients, which is often a result of practical measurement
limitations [3]. Instead, the server is assumed to be able to
observe the local actions and the corresponding local rewards,
ie, {mm(t), Xx, (t),m(t) :m e [M]}.

To better optimize global performance, previous FMAB stud-
ies require that all clients work collaboratively following the up-
dated local protocols. On the contrary, this work considers that
clients are fully committed to interacting with their own local
models (i.e., client m with local model m). Then, the clients
would naturally adopt their own MAB policies to maximize
their local rewards. This setting is practically appealing as in
many applications (e.g., the examples of cognitive radio and
recommender systems in Sec. I), the local clients are inherently
configured to perform local policies to optimize their local
performance (e.g., [oT devices maximizing their own data rate
and selfish sellers optimizing their profits). Specifically, at time
t, each client m individually makes an arm-pulling decision
Tm(t) based on her own history observed on local model m,
ie., Hy(t —1) :={mn(7), Xn,, (r)m(7) : 1 <7 <t — 15,

B. Reward Teaching

As mentioned, each client m would select suitable actions
w.r.t. her own local model, which however may not necessar-
ily meet the server’s preference due to the global-local model
misalignment. To address this challenge, the following reward-
teaching mechanism is introduced for the server to indirectly
influence the clients’ action selections.

Specifically, after observing { X, (1) m(t) :m € [M]}, the
server can adjust each client m’s local reward X (4 n(t) to

o (£),m (1) Dy an amount of o, (1), ie.,

/ —
7rm(t),m(t) = Xﬂ—m,(t)77n(t) +om (t)a

1Other global-local model relationships can also be considered, e.g., the
weighted sum in [16]. To better convey the key idea of reward teaching, the
exact average, which is simple while representative, is adopted in this work.
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Fig. 1. The reward-teaching process with client m (among the overall M
clients) and action 7, (t) = k.

which is then revealed to the client (instead of X ;) (1))
Note that one implicit constraint is that the adjusted rewards
must still be in [0, 1], which is the system limitation.> If this
constraint is satisfied, the clients are assumed to be unable to de-
tect the reward adjustments by any means. The adjusted rewards
lead to an adjusted history of Hy, (t) := {mn(7), X} () ,,(7)
1 <7 <t} for client m, which ideally can shape her future
actions in favor of the server.

It is worth emphasizing that such reward adjustments are
practical for FMAB applications. In the cognitive radio exam-
ple, it is common for the base station to first measure the com-
munication quality (via pilot signals) and then send designed
feedback to the devices; this is the case in both cellular and
WiFi. Adjusting rewards can be achieved via either sending
modified feedback signals or modifying the allocated resources
(e.g., retransmission bandwidth [53]) to boost or reduce client
performance, which is standard in modern communication pro-
tocols. The devices, on the other hand, are oblivious to such
adjustments thanks to their built-in protocols. In the application
of recommender systems, the shopping platform can implicitly
leverage extra or decreased bonuses to guide the decisions of the
selfish sellers, e.g., to promote more environmentally friendly
and healthier items.

The reward-teaching process is summarized as the following
steps, which is also illustrated in Fig. 1:

o Each client m chooses m,,(t) using history H/ (t —1);

o The server observes {7, (t), X (1),m(t) :m € [M]};

o The server adjusts X, () m(t) into X;m(t%m(t) by the

amount of o, (t) for each client m € [M];
o Each client m observes the adjusted X7 ) (t).

C. Learning Objectives

Following previous FMAB studies, the global view by the
server is the focus of our design, which leads to a two-fold
objective. First, the server’s main goal is to maximize the cumu-
lative global rewards and can be characterized by minimizing
the global regret, defined as

Re(T)i= 3" Ru(D),

’In fact, if there is no restriction on the adjustment range, the server is
more powerful and the algorithm design is thus easier.
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where R, (T) is the regret incurred by client m’s actions w.r.t.
the global model (instead of her local model) defined as

Ry (T):=Tv; —E {Ztem Yw(t)(t)] :

The expectation is w.r.t. both the reward generations and
the client-system interactions. Second, the server’s adjust-
ments on local rewards are often costly. For example, in the
aforementioned application of cognitive radio, the base sta-
tion naturally needs to make additional efforts when modify-
ing the originally allocated resources, e.g., infrastructure costs
for deviating from the default transmission bandwidth. This
work, thus, further introduces the objective of cumulative cost,
defined as

Cr(T) =3 1y D)

where C,,,(T") denotes the overall cost spent on client m and is

further defined as
e om0

The subscripts F' in Rp(T') and Cp(T) refer to the global
model (i.e., the federation).

Intuitively, there exists a trade-off between these two objec-
tives: with more adjustments on rewards, i.e., larger C'w(T), the
server can have a bigger impact on the clients’ decisions, which
ideally would decrease the regret Ry (7). It is thus important
to strike a balance between these two objectives, which is the
focus of the remainder of this paper.

Cn(T):=E

D. Client Strategies

To facilitate discussion, we denote client m’s local bandit
policy as II,,,. Note that while performing their own policies,
the clients are assumed not to be strategically against the server,
which is reasonable for most of the real-world applications of
FMAB, e.g., autonomous but not fully flexible mobile devices
in cognitive radio [3]. In addition, we denote Ny ,,(t) as the
number of pulls by client m on arm k by time ¢, and N, L7
refers to the time step ¢ such that Ny, ,,, (t) = 7.

The proposed designs are general and agnostic to clients’
strategies, which will be evident in Sections V and VII. For
the theoretical analysis, general performance bounds are first
provided without specifying the clients’ strategies. This is ac-
complished by identifying the properties of client strategies
that lead to the desired theoretical results. More specifically,
client-strategy-dependent bounds are then derived (i.e., clients
with UCB1 or e-greedy). Finally, experiments with varying (and
even mixing) strategies for clients are reported.

IV. TwO COUPLED TASKS AND DESIGN OBJECTIVES

In this section, two tightly coupled tasks faced by the reward-
teaching server, bandit learning, and target teaching, are elab-
orated. A system design objective is also proposed.

Bandit learning. One major distinction between learning
in FMAB and in classical MAB [10], [54] is the server can
only gather information through clients’ local actions. Previous
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FMAB studies tackled this challenge by implementing new
protocols for clients to naively follow [2], [3], [4], [13]. In
contrast, in this work, such information collection can only be
indirectly guided via carefully designed rewards.

Target teaching. To understand teaching, a special case is
first considered where the optimal arm k; is known by the
server. Then, the goal is to assign adjustments to have the clients
pull the pre-specified arm ki as much as possible, which is
mathematically the same as the data-poisoning MAB prob-
lem [26], [28], [29], [55], where adjustments are phrased as
“attacks”. In such scenarios, the server can achieve R,,(T) =
O(log(T)) and C,,,(T) = O(log(T')) for each m € [M] by ad-
justing rewards from all arms except arm k¢ to 0’s [30]. The
underlying philosophy is to “discourage explorations” with the
adjusted reward 0’s.

Combination leads to a tight coupling. While both tasks
have been separately investigated (to some extent), the reward-
teaching server faces a combination of them. On one hand,
even if the server can perfectly learn the global model, she still
needs to teach it to the clients. On the other hand, to teach
correctly, sufficient information must be learned by the server.
The resulted tight coupling is the main challenge of the design.
Specifically, the learning attempt has a cumulative effect on
teaching, which in return relies on the learned target. Techni-
cally, the main resultant difficulty is the analysis of the “warm-
start” behaviors of bandit algorithms, which is elaborated in
Sec. VL.

Design objective. For the cost, with a known target arm,
[30], [31] prove lower bounds that with UCBI and c-greedy
clients (defined in Sec. VI), it is necessary to spend
a cost Cpp(T)=Q(og(T)) to obtain a regret R,,(T)=
O(log(T)). Thus, with M independent FMAB clients, a cost
of Cp(T)=Q(Mlog(T)) is required to obtain a regret of
Rp(T)=O(Mlog(T)) while knowing arm k;, which natu-
rally holds for the more stringent case of not knowing the
target k. For the regret, UCB1 and e-greedy clients can be
shown to be conservative [30] as each client m would pull each
arm at least (log(T")) times regardless of the rewards; thus
R, (T) =Qlog(T)) and Rp(T) = Q(M log(T)).

With these results, the following system design goal is estab-
lished, which is order-wise tight w.r.t. both criteria:

Goal: Design algorithms to achieve both
Rp(T)=0(M1log(T)) and Cr(T) = O(M log(T)).

To verify that this goal is non-trivial, two intuitive baseline
policies, NG and NA, are discussed as follows, whose limita-
tions are further illustrated experimentally in Sec. VIIL.

o “Naively-Guess” (NG). The server may randomly ini-
tialize one arm k' as the target to adopt the aforemen-
tioned approach from [30]. However, the regret would
be RYS(T)=Q(MT) if k' k;, although achieving
CNO(T) = O(M log(T)).

o “Naively-Align” (NA). Another natural idea is to
have the server align X' (t) with Yo ()(t) via

m(t),m
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om(t) =Y 1)(t) = Xz ().m(t).>  While achieving
RYA(T) = O(M log(T)), adjustments would be needed
nearly all the time steps, i.e., C¥(T) = Q(MT).
Remark 1: A refined lower bound beyond Q(M log(T')) can
be instructive, especially for determining the optimal dependen-
cies on parameters other than M and 7. However, such lower
bounds are also challenging, even with a known target [30],
[31]; thus it is left as an open question for future works.

V. TAL: ALGORITHM DESIGN

To address the coupled tasks of bandit learning and target
teaching, one idea is to first learn the server’s target and then
teach the clients to converge to it, which leads to the proposed
“Teaching-After-Learning” (TAL) algorithm (presented in Alg.
1). Specifically, TAL starts with the learning phase where the
goal is to identify the optimal global arm. Then, in the teaching
phase, the server guides the clients toward the learned global
optimality. Note that although there is a separation of phases,
the teaching phase must handle clients that accumulate observa-
tions from the learning phase (i.e., “warm-start” clients), whose
effect will be more evident in the analysis.

In the learning phase, TAL uniformly adjusts each client m’s
observed rewards to vy, i.e., o (t) <= 71 — X7, (1),m (), Where
~1 € [0, 1] is a to-be-specified input parameter. Intuitively, this
uniform reward adjustment encourages sufficient (or ideally,
uniform) explorations among all arms, since their rewards are
all at the same value ;. If clients are indeed sufficiently ex-
ploring, the server can collect enough information on each arm
to identify her optimal arm k.

This identification is designed to proceed in epochs indexed
by counter ¢ to ensure statistical independence. If at time ¢, each
client m has pulled each arm k at least F'(¢) := 3, f(7)
times, where f(1)):= 4 - 22¥"3log(2KT?), the server up-
dates upper and lower confidence bounds (UCB and LCB)
for each arm k € [K] using its rewards collected between its
F(¢— 1)+ 1and F(¢) pulls (i.e., overall f(¢) pulls) by each
client as follows:

UCB(8),LOBL(0) 1= 2 37 ik (1) % CB(Y),
(D

where

(@)= S X (NI W)

CB(¢) := \/10g(2KT?)/(2M f()) = 2772,

Note that with the estimation of fi ,, from local samples,
the first term in Eqn. (1) is essentially an estimation (1)) of
i The confidence bound CB(4)) is specifically designed such
that LCB(v)) < v, < UCB(#) holds for each arm & and each
epoch % in the learning phase with high probability.

The learning phase ends in epoch ) if the confidence in-
terval of one arm k; dominates that of all other arms, i.e.,
LCBy, () > UCBy(v), Yk # ki, which is recognized as the

3Y7Tm (t) (t) is assumed to be observable here for the baseline, which is not
the case in our design.
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Algorithm 1 TAL

Input: Parameter 1,72 € [0, 1]; Time Horizon T
1: Initialize: F' <1 (i.e., the learning phase); ¢ <— 1; k3 <= 0
2: for t <T do

3: Observe {mm (t), Xr,. 1),m(t) :m € [M]}

4: if F=1& Nin(t) > F@), Vme[ |, k € [K] then
5: Update {UCB(¢), LCB,(v) : k € [K]} as Eqn. (1)
6: if 35 € [K],LCB;(v) > UCBy(v),Vk # j then

7: Set ki < j; F' < 2 (i.e., the teaching phase)

8: else Set 1 < + 1

9: end if

10: end if

11: if /' =1 then O'm(t)<—’)/1 —Xﬂm(t)ym(t),Vme[M]
12: else if ' =2 then Set 0,,(t) as Eqn. (2), Vm € [M]
13: end if

14: Set X7 (1).m (1) < Xe(1),m (t) + o (1), Ym € [M]
15: Reveal X/ ) ..(t) to each client m € [M]

16: end for

optimal arm. Otherwise, a new epoch ) + 1 begins. With the
designed confidence bound, this identification is guaranteed to
be correct with high probability.

With the identified arm ky, the server utilizes the following
adjustments to guide the clients in the teaching phase:

O (t) “ {’72 - X‘n'm(t),m(t) %f’frm (t) 7& ki’ ’ 2)
0 ifm,,, (t) = ky

where 5 is another to-be-specified input parameter and typi-
cally should be small. In other words, if the client does not pull
arm k;, her reward is adjusted to a small value 5 to discourage
explorations; otherwise, the original reward of arm k; is kept
unchanged to save adjustments.

From Alg. 1, it can be observed that TAL is a pure server
protocol and agnostic to the clients’ local strategies — the only
interaction with the clients is the adjusted rewards.

VI. TAL: THEORETICAL ANALYSIS

In this section, we first provide a general analysis of TAL
(Theorem 5) under some abstract characterizations of clients’
strategies (i.e., sufficient-exploring and warm-starting in Defi-
nitions 1 and 3, respectively). Then, we consider clients with
UCBI or e-greedy in the following two subsections, respec-
tively. In particular, the adopted abstract characterizations are
particularized (Lemmas 6, 7, 9 and 10), and then specific per-
formance guarantees are obtained (Theorems 8 and 11), which
show that TAL achieves the design goals in Section IV with
these clients. Detailed proofs are deferred to Appendix A.

Some useful notations are introduced as follows: Ay :=
vy — l/k,V]{,‘ 7é kJT, Amin = A]ﬁ_ = min;wgw Ak, Amax =
maxye(g] Dk, and  fiy m = fig, m. Moreover, O () :=
E[ly — X m (t)]] and Ymax = [logs(1/Amin)]. Also, without
loss of generality, it is assumed that K, M < T'.

We first define sufficiently exploring algorithms for the learn-
ing phase in TAL, which states that a bandit algorithm would
sufficiently explore when facing uniform rewards.

Definition 1: (Sufficiently Exploring Algorithms). Consider
a K-armed bandit environment where rewards from arms in
a set Z C [K] are always a fixed constant « € [0, 1]. In this

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

environment, a bandit algorithm II is said to be (Z,~,n,7)-
sufficiently exploring if it would pull each arm in the set Z at
least 7)(7;~y,Z) and at most 7j(7; v, Z) times when total 7 pulls
have been performed on set 7.

If local strategies are sufficiently exploring as in Definition 1,
enough information can be collected in the learning phase to
identify the global optimal arm, as stated in the following
lemma, where 7~ *(N;~,[K]) denotes the value 7 such that
n(ri7,[K]) = N.

Lemma 2: (Learning Phase in TAL). If 1L, is
([K],71.m, s )-sufficiently  exploring for all m € [M],
with probability (w.p.) at least 1 — 1/T’, the learning phase
ends with k; = ky by time step 7', and the regret and cost in
the learning phase of TAL are bounded, respectively, as

Zme [M] Zk;ﬁ/ﬂ ke nm TI’VI’[K])7
_Zme[M] ZkE[K] k,m(’h) nm (Tl;lea[KD?

where 71 < max,,e{n, " (F(Ymax); 71, [K])}.

Note that the time step 7 bounded via the sufficiently explor-
ing lower bound (i.e., 1) ensures sufficient information collec-
tion, while the corresponding upper bound (i.e., 77) guarantees
performance, i.e., regret and adjustment cost.

Then, for the teaching phase, since the cumulative observa-
tions from the learning phase are inherited to the client strate-
gies, we can view the clients as “warm-started”. The following
notion of warm-start pulls is introduced, which measures the
warm-start behavior of an algorithm.

Definition 3: (Warm-start Pulls). In a K -armed bandit envi-
ronment /3, if areward sequence H = {H, : k € [K]} isinput to
a bandit algorithm II, where Hy, is a reward sequence for arm
k, warm-start pulls on arm k is defined as ¢y (7T; H, B,1I) :=
En[>_,epr 1{n(t) = k}|H, B], which represents the expected
pulls performed by II on each arm k during 7" steps in environ-
ment 3 with prior input H.

Using this notion of warm-start pulls, the following guarantee
on the teaching phase is established.

Lemma 4: (Teaching Phase in TAL). If the event in Lemma 2
occurs, the regret and cost in the teaching phase of TAL are
bounded, respectively, as

TAL

CTAL

TAL < . - .

RPS(T)< > G2 D Ap t(T5 Hon, By, i)
me[M] k#k;

TAL
<D max > okm(72) (T Hon, B, T),
me[M] k#k;

where B,,, denotes an environment with constant rewards as v
for arm k # k¢ and stochastic rewards with expectation g .,
for arm ky. The set H,, is defined with each element of it
as a reward sequence H,,, = {Hyj ,, : k € [K]} where Hy, ,, €
{n}7 7€, (Tism, [K]), 7, (Tas 71, [K])] -

Note that 3,,, characterizes the environment of client m in the
teaching phase while #,,, represents the cumulative observation
inherited from the learning phase.

Finally, the overall performance guarantee can be obtained
by combining the regrets from two phases.
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Theorem 5: (Overall Performance of TAL). Under the as-
sumption in Lemma 2, with RM:(T), CEA(T) defined in
Lemma 2 and RTAL( ), CF%(T) in Lemma 4, the regret and
cost of TAL are bounded, respectlvely, as

RpM(T) < Rp(T) + Rpy(T) + O(M);
CEH(T) < CRY(T) + CRy (T) + O(M).

The key difficulty behind this analysis resides in leveraging
the quantities in Definitions 1 and 3. In particular, how to spec-
ify n, 17 and ¢ is non-trivial, which is one of the main technical
challenges in proving Thm. 5. Furthermore, Thm. 5 implies
that the desired logarithmic regret and cost can be achieved by
TAL when R (T), Rp¥(T), CENA(T) and CF(T) are all
bounded in logarithmic orders. The analyses of these terms are
further determined by the sufficiently exploring property and
the warm-start pulls of the specific clients’ strategies as stated
in Lemmas 2 and 4.

In the following, to particularize the general guarantee in
Thm. 5, we analyze several well-known bandit algorithms as
clients’ strategies (i.e., UCB and e-greedy).

A. UCB Clients

The popular UCB-type algorithms are first considered. In
particular, we analyze the celebrated UCBI1 algorithm [19]
while noting that the analysis generalizes to other UCB variants
[56], [57]. Especially, at time ¢, the UCB1 algorithm for client
m chooses arm as follows:

Tm, ()—argmax{,ukm(t—l +\/210g /Nkm(t—l)}
ke[K]

which considers both the perceived sample mean
A1 L / —1
/“Lk:,’m(t) T ZTE[Nk,m(t)] Xk:,?n (Nk,m(T))/Nk‘fm (t)

and the associated confidence bound.

First, the sufficiently exploring assumption in Lemma 2 is
verified for UCB1 in Lemma 6. This is intuitive as with constant
rewards, the sample means are the same while additional pulls
decrease the confidence bound in UCBI.

Lemma 6: For any ~v€[0,1] and set Z C [K], UCBI

is (Z,v,n,7)-sufficiently exploring with n(7;v,Z) = |7/|Z|]
and 7(7;7,Z) = [7/|Z]].
Then, the performance of TAL in the learning

phase (in Lemma 2) can be bounded by recognizing
Ty =O0O(Klog(T)/(MA2,)), which further specifies
the reward sequence set H,, in Lemma 4 and leads to the
following lemma on the warm-start pulls of UCBI.

Lemma 7: If v1 > ity > 2 and IL,, is UCBI, for all
k# ki, it holds that maxp,, e, {te(T; Hum, By 1)} =

O( (v1=72)T1 + log(T')
Kpitm—72) " (pr,m=72)? )" .
Proving this lemma is non-trivial and may be of independent

interest in understanding the warm-start behavior of UCBI.
Essentially, the result can be interpreted as first offsetting the
“warm-start” history (the first term) and then converging to arm
K+ (the second term) in an environment B,,,, whose rewards for
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arm k # k; are constant 2’s and rewards for arm k; have an
expectation i+ ,, (see Lemma 4).

Itis noted that Lemma 7 requires y; > ft4 ., Which maintains
the optimism for the estimation of arm k+ on each local model
m. The other requirement ji1 ,,, > 72 is intuitive as otherwise,
the local client m would not converge to arm k;. Since there
is no prior information about /4 ,,, a feasible and sufficient
solution is to set y; = 1 while v, = 0, which leads to the follow-
ing theorem.

Theorem 8: (TAL with UCBI clients). For TAL with v, =1
and 2 = 0, if all clients run UCB1 locally and p4 ,, # O for all

m € [M], it holds that
Ay log(1
k 2g( )})7

mpm=o( ¥ ¥

me[M] kks Hym
CTAL (

mg[l:ﬂ] kEX[I:(

[ Ay log(T
M, mMA

l_ﬂkm IOg( )

MA?HII]
ml o log(T
Y Y {uk oi L b, Qog( )D
me[M] k#£k; Fetm M Ay Hm

We note that with a focus on the dependencies on M and
T, the regret and cost are both of order O(M log(T)); thus
TAL is order-optimal w.r.t. both criteria stated in Sec. IV, i.e.,
the general design goal is achieved. Moreover, the regret bound
shows two dominating terms, which are from Lemma 7, i.e., the
teaching phase. In fact, there is another non-dominating (thus
hidden) term from Lemma 2 for the learning phase; see more
details in section B of Appendix A. A similar three-part form
is shared by the cost. In particular, the first term is from the
learning phase (thus the sum is over all arms k € [K| and each
term scales with 1 — pu, ,,,), and the last two terms are from the
teaching phase (thus the sum is over sub-optimal global arms
k # k; and scales with puy, ).

B. e-Greedy Clients

The analysis is further extended to the clients running the
e-greedy algorithm [58], another well-known bandit strategy.
Especially, the e-greedy algorithm for client m is as follows:

w.p.l —en(t)
w.p.em (%)

a random arm in [K] ’

T (£) {arg maXye|k) ﬂ;c,m(t -1
where the exploration probability &, () €
em(t) = O(K/t), following [19].

First, the following lemma states that e-greedy is sufficiently
exploring, which is intuitive as the constant rewards lead to the
same sample mean for different arms.

Lemma 9: For any ~ € [0, 1], if ties among arms are broken
uniformly at random, with probability at least 1 — 1/7, e-
greedy is ([K],~,n,7)-uniformly exploring with n(7;~, [K])
and 77(7; 7, [K]) = O(1/ K +log(KT)). ;

Due to the randomness in e-greedy, it is complicated to
analyze its warm-start pulls in general. Instead, the following
lemma focuses on y; = 2 = 0. Under this setting, the sample
means are all kept as zero in the learning phase. Thus, once a

[0,1] is taken as
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non-zero reward is collected in the teaching phase, that arm will
immediately have the highest sample mean.

Lemma 10: 1If 1L, is e-greedy and jpit,, > 71 =
v2 =0, with probability at least 1—1/7, it holds
that mauXHmeHm{Z:k;ékT oo (T3 Hyy Br I} =
O(K log(KT)/1i2,,,).

Combining these results with Thm. 5, the following perfor-
mance guarantees can be obtained.

Theorem 11: (TAL with e-greedy clients). For TAL with
Y1 =72 =0, if clients run e-greedy and break ties uniformly
at random, and ji4 ,,, # 0, Vm € [M], it holds that

R}AL(T):O<KAW1°‘5(T)+ T KAmaxlog(T))

2 2
Amm me([M] Him
Kpem log(T) K pis,m log(T)
cprm) =0 ¥ |Fmgl) B ~
me[M] min lu”[,m

The two parts in regret and cost are from the learning and
teaching phases, respectively. It can be observed that TAL with
e-greedy clients also achieves the goal illustrated in Section IV.
Moreover, compared with Theorem 8, dependencies on A,y
and /i, (instead of Ay and py ) can be observed, which
is a worst-case consideration to capture the random actions
generated from the e-greedy policy.

C. Discussions: Thompson Sampling and Beyond

Another popular bandit strategy is Thompson sampling (TS)
[20]. Experiment results in Sec. VIII verify the performance of
TAL with TS clients; however, the theoretical analysis remains
open. In particular, unlike the sufficiently exploring UCB and
e-greedy, [59] indicates that when facing two arms with con-
stant reward 1’s, the pulls by TS can be arbitrarily imbalanced.
Instead, balanced pulls can be achieved with reward 0’s for
these two arms. This phenomenon motivates using 7, =0 to
encourage TS explorations in the learning phase, whose effec-
tiveness is verified empirically but not analytically. On the other
hand, the complicated warm-start behavior of TS also requires
further investigation.

Furthermore, in Secs. VI-A and VI-B, the hyper-parameter
71 is set to different values (i.e., 1 for UCB clients and 0 for
e-greedy clients). These choices are made to facilitate the cor-
responding “warm-start” analyses required in Definition 3 (i.e.,
to maintain the optimism of estimations in UCB and to avoid
complicated analyses due to the randomness in e-greedy). How-
ever, the capabilities of TAL extend beyond these theoretically
sound options. Especially, experiments in Sec. VIII show that
various other choices (e.g., 71 = 0 for UCB clients and y; = 1
for e-greedy clients) can also lead to reasonable performances.
Thus, it would be an interesting future direction to investigate
whether a unified hyper-parameter v; in TAL is sufficient for
certain classes of client strategies (e.g., UCB and e-greedy). The
main difficulty along this direction is still to analyze the “warm-
start” behaviors, which are largely determined by the specific
strategy.

Moreover, Thm. 5 has established conditions on clients’
strategies to obtain performance guarantees of TAL, i.e.,
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Algorithm 2 TWL

Input: Parameter 1,2 € [0, 1]; Time Horizon T
1: Initialize: active arm set T <— [K|; iteration counter v <— 1
2: for t <T do

3 Observe {mm (t), Xr, . (1),m(t) :m € [M]}
4 lf|T|>1andem()2F(w), VEe T, mG[M] then
5 Update {UCB(v), CBk(w) ke T} as in Eqn. (1)
6: Update T <+ {j € T:UCB,(¢)) > LCBy(¢),Vk € T}
7 Setp«+— v +1
8 end if
9 Vm € [M], set
’}/2 — me(t),m(t) lf ﬂm(t) ¢ T
om(t) = — Xn 0),m(t) if mm(t) €Y and [T > 1,
0 if T (t) €T and Y| =1
10: Set Xm(t) (t) < Xr,t),m(t) + om(2)
11: Reveal X/ ) ..(t) to each client m € [M]
12: end for

sufficiently exploring and low sub-optimal warm-start pulls.
An interesting direction is to verify the client-strategy-agnostic
nature of TAL in an even broad sense, e.g., with any no-regret
client strategy. Experimental results are provided later to en-
lighten future works on this open problem.

VII. TWL: A MORE ADAPTIVE EXTENSION

A. Algorithm Design

To further optimize the performance, a more adaptive
“Teaching-While-Learning” (TWL) algorithm (presented in
Alg. 2) is proposed, which breaks the non-adaptive phased
structure of TAL by leveraging a different idea of successive
arm elimination [60], [61]. In TWL, the server maintains a set
T of active arms (on the global model), which is initialized
as [K]. If || > 1, the following update is performed after
each active arm k € T has been pulled at least F'(¢)) times by
each client:

Y « {j € T :UCB, () > LCB(¢),Vk € T},

where UCBy, (1)) and LCBy,(¢)) are defined in Eqn. (1) and 2
is the epoch counter as in TAL. In this process, the arms that
do not satisfy the requirement are eliminated (i.e., marked as
inactive). Then, based on the set T, the following adjustment
is performed for client m:

Y2 — Xﬂm(t),m(t) if T‘-m(t) ¢ T
om(t) <= 9 — X ()m(t)  if T (t) € T and [T > 1,
0 if mp(t) € T and [T =1

where 71, v2 € [0, 1] are to-be-specified input parameters.

In other words, the local rewards of all inactive arms are
adjusted to v, (typically small) to discourage explorations. For
an active arm, when there are other active arms (i.e., | Y| > 1),
the server uniformly adjusts its rewards to ; to encourage
explorations. When an arm is the only active one (which is
arm k; with high probability), its original rewards are kept to
save server adjustments, which is sufficient as all other arms are
inactive with a small perceived reward 5.
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(i) UCBI: random insts. (j) e-greedy: random insts.

Fig. 2.

(k) TS: random insts. (1) Mixed: random insts.

Experimental results on synthetic datasets with clients running UCBI1, e-greedy, TS, and mixed strategies. Evaluations of (a—h) are under a fixed

5-clients-5-arms instance, where the curves represent the empirically averaged values and the shadowed areas represent the upper and lower 80% confidence
intervals. Evaluations of (i-1) are with 100 randomly generated 5-clients-5-arms instances, where each dot reports the performance (in a log-log scale) under
one instance and plots of a few algorithms are omitted for a better presentation here. The mixed strategies are two UCBI1, two e-greedy, and one TS. All

time horizons are 7" = 50000.

TWL is more refined than TAL as it only encourages ex-
plorations on the active arms (instead of all arms), which is
important in two aspects. First, only necessary arm-dependent
explorations are encouraged. Second, fewer cumulative rewards
on the sub-optimal arms also alleviate the server’s burden of
teaching clients to converge to the optimal arm.

B. Theoretical Analysis

The general performance of TWL can be similarly analyzed
as that of TAL in Sec. VI. The following result establishes the
performance guarantee for UCB1 clients.

Theorem 12: (TWL with UCBI clients). For TWL with v =
1 and 2 =0, if all clients run UCBI locally and 4 ,, # 0 for

all m # [M], it holds that
log(T Ay log(T)

RIWY(T ( >y [ + = ,

meln] hhy LT mMAk HE

17/~Lkm)10g( )

CIVL(T ( Z Z

me[M] ke[K]

Hk.m lOg T) Hikm 1Og<T)
t 22 [ TR VI BT '
me[M] k#k; m tm

The proof can be found in Appendix B. The above guarantees
can be interpreted in similar ways as those of TAL in Thm. 8§,
i.e., one part from learning the global optimal arm and the other
part from guiding agents towards it. More importantly, it is

noted that with UCB1 clients, TWL strictly outperforms TAL
w.r.t. both criteria since the dependency on the minimum gap
Anpin is replaced by arm-dependent gaps Ay > A, which
comes precisely from its adaptive design.

Remark 2: For e-greedy clients, with v; = 5 = 0, the same
performance guarantee as Thm. 11 can be established for TWL
because the active and non-active arms are not distinctly treated
under this specification, which degrades TWL to TAL. How-
ever, experimental results show that better empirical perfor-
mance is achieved with v; =1 and 5 = 0, whose theoretical
analyses are left open for future works.

Remark 3: While TWL improves the regret of TAL regarding
the dependency on Ay, it is unclear whether its dependencies
on parameters other than M and 7T are tight. One the one hand,
as mentioned in Remark 1, a refined lower bound would be
instructive in evaluating such tightness. On the other hand, it
is equally worth exploring whether a refined upper bound can
be obtained, which is left for further investigations.

VII. EXPERIMENTAL RESULTS

In this section, the proposed algorithms are empirically eval-
uated against two baselines, NG and NA from Sec. IV, to
demonstrate their superiority and generality.

A. Synthetic Dataset

First, experimental results with synthetic datasets are re-
ported in Fig. 2. In particular, two sets of experiments are
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performed: (1) the first environment is a fixed instance with
M = 5 clients and K = 5 arms, where each client’s local model
is specified (left to right: arm 1 to arm 5) with the following
mean rewards: Client 1-[0.2,0.9,0.1,0.8,0.6], Client 2-[0.4,
0.1, 0.9, 0.4, 0.8], Client 3-[0.2, 0.2, 0.5, 0.5, 0.9], Client
4-[0.4, 0.3, 0.8, 0.9, 0.4], Client 5-[0.3, 0.5, 0.2, 0.4, 0.8].
The corresponding global game then has the following mean
rewards with a gap of A, =0.1 (left to right: arm 1 to
arm 5): [0.3, 0.4, 0.5, 0.6, 0.7]; (2) the second setting is 100
randomly generated instances with M =5 clients and K =
5 arms. Especially, the mean reward of each local arm for
each client is sampled from a uniform distribution in [0, 1].
The obtained results from these two sets of environments
are reported with different client strategies in Fig. 2(a)-2(h)
and Fig. 2(i)-2(l), respectively, and discussed in the follow-
ing. To facilitate presentations, we denote TAL(7y1,72) (resp.
TWL(~1,72)) as TAL (resp. TWL) with specific parameters
71 and ~y2. We note that with the randomly generated instances
in the second environment, the reported observations are suffi-
ciently general.

UCB1 clients. First, with UCBI clients, from Fig. 2(a)
and 2(b), it can be observed that the proposed algorithms
are capable of converging while the superiority of TWL over
TAL is verified. However, as claimed in Sec. IV, the base-
lines are at two extremes: NG (resp. NA) is almost linear in
regret (resp. cost) although performing well w.r.t. cost (resp.
regret). Fig. 2(i) further demonstrates that TAL and TWL strike
a balance between regret and cost, while the advantage of
TWL is evident again. In particular, their performance scat-
ter plots from 100 randomly generated instances are concen-
trated in the diagonal between the two axes. However, the
plots of the two baselines are near one axis but far from
the other.

e-greedy clients. Fig. 2(c) and 2(d) report that TAL and
TWL can successfully teach e-greedy clients with a reasonably
low regret and cost at the same time. Somewhat unexpectedly,
TWL(1,0) has a better performance even over the theoretically
sound TAL(0,0) (equivalently, TWL(0,0)), which warrants
further investigations with e-greedy clients. Fig. 2(j) verifies
that the above observations hold in general.

TS clients. Although not theoretically studied, Fig. 2(e),
2(f) and 2(k) report the performances of the proposed algo-
rithms with TS clients. While converging, the performance
of TAL(1,0) and TWL(1,0) are highly unstable, which ver-
ifies the imbalanced exploration of TS discussed in Sec.
VI-C. On the other hand, TAL(0,0) has stable and competi-
tive behaviors.

Mixed clients. Beyond one single local strategy, TAL and
TWL are also tested with mixed strategies for clients. Espe-
cially, with two UCBI clients, two e-greedy clients, and one
TS client, the results are reported in Fig. 2(g), 2(h) and 2(1).
It can be observed that the proposed designs are capable of
effectively guiding the clients to the global optimal arm in the
face of mixed client strategies while achieving a good balance
between regret and cost. These results further demonstrate the
broad applicability of the designs and their appealing property
of being client-strategy-agnostic.
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(a) Mixed: regrets. (b) Mixed: costs.

Fig. 3. Experimental results on the real-world MovieLens dataset with
clients running mixed strategies. Evaluations (a) and (b) are under a fixed 15-
clients-15-arms instance, which is extracted by grouping users and movies
in the MovieLens dataset. The curves represent the empirically averaged
values and the shadowed areas represent the upper and lower 80% confi-
dence intervals.

B. Real-World Dataset

To further complement the observations obtained from syn-
thetic datasets, the empirical performances of the proposed
designs are further evaluated on the MovieLens dataset [62].
The available users and movies in the dataset are both randomly
divided into 15 groups to form an FMAB environment with
15 clients and 15 arms. The average movie ratings from each
group of users are used to construct their local rewards. Also,
the clients are considered to adopt mixed bandit strategies: 5
clients using each choice of UCBI, ¢, and TS, respectively.
From the results reported in Fig. 3, the aforementioned key
observation is further verified that the proposed designs, i.e.,
TAL and TWL, are capable of effectively guiding the clients
towards the global optimal arm with a reasonable amount
of adjustment cost, i.e., balancing between regret and cost.
These results further demonstrate the practicability of the pro-
posed designs.

IX. CONCLUSION

A novel idea of reward teaching was proposed to have the
server guide autonomous clients in an unknown FMAB en-
vironment via reward adjustments, which avoids any changes
to the clients’ protocols and removes the previous requirement
of naive clients in FMAB. Two client-strategy-agnostic algo-
rithms, TAL and TWL, were proposed. The TAL algorithm
was designed with two phases to separately encourage and dis-
courage explorations. The TWL algorithm further optimized the
performance by breaking the non-adaptive phased structure into
a flexible interleaving scheme. General performance analysis
was established for TAL when the clients’ strategies satisfy
certain requirements. Especially, for the representative UCB1
and e-greedy clients, rigorous analyses showed that TAL strikes
a balance between regret and adjustment cost (logarithmic in
both metrics), which is order-optimal w.r.t. the natural lower
bound. Moreover, the analyses also demonstrated that TWL
achieves an improved dependency on the sub-optimality gap
than TAL due to its adaptive design. Experimental results fur-
ther demonstrated the effectiveness and efficiency of the pro-
posed algorithms. Under the reward teaching framework, many
interesting questions were left open for further investigations,
e.g., theoretical analysis on TAL and TWL with Thompson
sampling clients.
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APPENDIX A
TAL: PERFORMANCE ANALYSIS

A. General Analysis: Theorem 5

First, the following good event is established to demonstrate
the effectiveness of the proposed confidence bounds.
Lemma 13: Denoting event £ as

Er = {Vy <T,Vk € [K], |0 () — vie| <2702}

where 0, (1) :=
1/T.
Proof: With Hoeffding’s inequality and the design that

= S XN L) (M),

T=F()p—1)+1

LS ik (), itholds that P () > 1 —

at epoch 1, for arm k, we have

P (|on(v) — vie| > 27%72) < 2exp(—2M f(1)272V74)
=1/(KT?).

With a union bound over ) < T and k € [K], the lemma can
be proved. 0

Lemma 14: (Learning Phase in TAL; Restatement of Lemma
2). If Iy, is ([K], 71,1, M )-sufficiently exploring for all m €
[M], with probability (w.p.) at least 1 — 1/T, the learning phase
ends with k; = k; by time step 7', and the regret and cost in
the learning phase of TAL are bounded, respectively, as

Rpa(T) SZmE[M] Zk#T Ag T (Tus 71, [K)) 5
Cra(T) < Zme[M] Zke[K] Or,m (V1) * My (T13 71, [K])

where T’ < maXmE[M]‘inml (F(wmax); 715 [K])}
Proof of Lemma 14: With event £ in Lemma 13 happening,
we assume the learning phases end at time step 7} such that

L ()i, [KD |
Since each local algorithm I, is ([K], 71,7, ,7m)-
sufficiently exploring and the rewards on all arms are constant
~1’s, it holds that Ny, ,,(T1) > F (¥max), Yk € [K],Vm € [M],
which means that epoch .« is reached. Thus, the confidence

bound can be bounded as CB(¢ax) < i C QT Ymax < iAmin’
which results in

LCB+ (¥max) = 74 (¢¥max) — CB(¢max)
> vy — QCB(wmax) > Vi —

T1 > maxX, e[ {Q

Amin
2
Amin
2 Vi + 2 2 Vi + QCB(wmax)
Z lA/k (qumax) + CB(wmax)
= UCB),(Ymax),  Vk # k.

Thus, the learning phase should already end. Similarly, it can
be obtained that arm k; would not be dominated by any other
arm; thus ky = k. Then, with the observation that

Nk,m(Tl)gﬁm(Tﬁ’Yla[K])a VkG[K],mG[M],

the lemma can be proved. O
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Lemma 15: (Teaching Phase in TAL; Restatement of Lemma
4). If the event in Lemma 14 occurs, the regret and cost in the
teaching phase of TAL are bounded, respectively, as

Rpa(T) < D max S g tx(T; Hon, By, Tlin);
me[M] Kkt
C
ra(T) < D0 max > b m(12) - ta(T5 Hons By, Tln),
me[M) kkt

where B,,, denotes an environment with constant rewards as -
for arm k # k+ and stochastic rewards with expectation g ,,
for arm k;. The set H,, is defined with each element of it
as a reward sequence H,, = {Hj n, : k € [K|} where Hy, ,, €
{{n}7meln, (T, [K]) 0 (Tas 71, [K])]}

Proof of Lemma 15: This lemma can be obtained by realizing
that if the event in Lemma 2 happens, at the beginning of the
teaching phase, i.e., time step 77, client m has observed con-
stant reward 7 oneach arm k € [K] foratleastn (71371, [K])
and at most 7,,, (T1; 71, [K]) times, which leads to the definition
of H.,

Starting at time step 7%, the local bandit algorithm
II,, can be viewed as interacting with environment 5,
with prior input H,, € H,,. By recognizing that with the
reward sequence H,, € Hy,, E[Np (T —T1)|Hp, Bn) <
E[Nk,m(T)|Hum, Bin] = tie.m (T Hyy By ILy,),  the  lemma
can be proved. 0

Theorem 16: (Overall Performance of TAL; Restatement
of Theorem 5). Under the assumption in Lemma 14, with
Rp1(T),Cr,1(T) defined in Lemma 14 and Rp »(T'), Cr2(T)
in Lemma 15, the regret and cost of TAL are bounded,
respectively, as Rp(T) < Rp1(T)+ Rpo2(T)+ O(M) and
Cp(T) < Cpa(T) + Cpa(T) + O(M).

Proof of Theorem 5: When event £x happens, the regret and
cost can be obtained as the combination of Lemmas 14 and 15.
Otherwise, the regret and cost can be bounded linearly by MT'.
The lemma can then be proved with the guarantee that P(Ep) >
1 —1/T as shown in Lemma 14. O

B. UCBI Clients: Theorem 8

Lemma 17: (Restatement of Lemma 6). For any v € [0, 1] and
set Z C [K], UCBI is (Z,~,n,n)-sufficiently exploring with
n(ri7.Z) = |/ /7)) and 7i(ri %, Z) = [7/|Z]].

Proof: The UCBI1 algorithm is defined in Sec. VI-A and the
subscript m is ignored in the following to denote a general
UCBI algorithm. To prove the lemma, it is essential to obtain
that if at time step ¢, >, .7 Ni(t) = 7, then maxyez Ny (t) —
minger Ni(t) < 1. If this claim does not hold, there exist arms
k, k" such that Ny (t) > Ny (t) + 2. Then, at the last time step
that the arm k is pulled, denoted as t', it holds that

2log(t') (@ 2log(t') 2log(t’)
") + <y |28
i () Ny =TT NG +1 =TT N
2log(t) ® , . 2log(t’)
< == 7 t
<7+ Ne (1) p () + Ne ()
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where steps (a) and (b) leverages the fact that both arm & and

k' receive reward +’s. A contradiction is thus raised as arm k

would not be pulled, and the lemma is proved. O
Then, with Lemma 17, we can observe that

VA2 3

min

Tt < KF(¢max) = O (ng(KT))

Lemma 18: (Restatement of Lemma 7). If
Y1 > pim >7v2 and 1, is UCBI, for all k##k;,
it holds that maxp, cn,, {te(T; Hp, By )} =
O ( (y1=72)Th log(KT)

K(pt,m—y2) * (p,m—72)?

Proof of Lemma 18: For H,, in the set H,,, it contains
Tr.m times reward ; on each arm k € [K], where 7y, €
([T /K],[T1/K]]. We denote ty =3¢ Thom < T1 + K
as the length of reward sequence in H,,, and

- (M —v2)Tem  2log(T +tw)
T A= 72)? A(p — 72)?
~ (=) (/K +1)  2log(T+Ti + K)
- 4(p —72)? d(p—2)?

It holds that

Llc,m(T§ H,,, Bma Hm) < Lk,m(T)

HE | D U {mm(t) =k, Nem (t —

te(T)
- Lk,m(T) + Z P(ﬂ-m(t)
te(T]
=k, Ngm(t —1) > Ly o (T)).

1) > L (T)}

With UCBI1 as II,,,, it further holds that

=k, Ng m(t — 1) > Ly, m(T))

2log(t +ty) "y
<P (t—1) > t—1
m \/Tk,m +Nk,m(t _ 1) - IU’T,m( )

\/ 2log(t + tx)

TTm+N mt,]_)

7Tm t

+ Nk7m(t — 1) > Lk,m(T)>

where the last inequality is due to a union bound.
Let us separately consider N ,(t —1)=ng.m, €
[Li,m (T),t] and Ni ,, (t — 1) = ng pm € [t]. It holds that

< ur,m>

2log(t +tm) - )
> Him

P (n;,m@ —1)+

Ti,m + ,m Tim + Ntm

@ [ Ttmm + D oml T XT

9 p [ Themb > fm 2log(t+tH)SMm
Tim + Nm Tim + Mm

(2) 1

T (t+tg)Y
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where inequality (a) is an essential step of “optimism” due
to 1 > ft4,n and inequality (b) holds is from Hoeffding’s
inequality. Also, it can be observed that with ny ,, > Ly o (T),

2log(t +tm)

~1
7 t—1)+
k,m( ) Tkym + Nk,m

~ Tk,m 71 + N+ V2

2log(t +ty
g( ) o o
Tk,m + Nkm

Tk,m + Nkm -

Thus, with a union bound, it holds that

P (ﬂ-m(t) = k; Nk,m<t - 1) > Lk?,m(T))
t 1 1
< — <
- an,m:Lk,nxT) Zm,mem (t+tg)t — t2

It is then indicated that

T 1
E [Nk:,?n(T)] S Lk,’m(T) + Zt:l ﬁ S Lkm(T) + 2a

which proves Lemma 18. |

Theorem 19: (TAL with UCBI1 clients; Restatement of Theo-
rem 8). For TAL with ; = 1 and 2 = 0, if all clients run UCB1
locally and 4, # 0 for all m € [M], it holds that

( 53 {Aklog KT) Aklog(KT)])

2
me[M] k£ky tam M AL, Hym

Z Z (1 — pk,m) log(KT)
MA2
me[M] ke (K] min
fe,m L0g(KT) - pk,m log(KT)
" Z Z {NT mMAL o4 .
me[M] k#k; min t,m

Proof of Theorem 19: From Eqn. (3), it holds that 7} =

@) (%(ZKT)). With Lemmas 14 and 17, it holds that

min

RFl Zme M] Zk;ﬁk k nm T1,717[K])
Ay log(KT)
(Zme[M] Zk?skf MA2 )
CF 1 ng [M)] Zke[K 'Yl T (Tl; 1, [K])

: O (ZmG[M] Zke[l{}

where equation (a) also utilizes that with v1 =1, 0p (v
1-— MKk, m-
Then, with Lemmas 15 and 18, it holds that

max ZA""' te(T; Hyny B, Iy

Rpa(T) < Z 0B

(1 — pg,m) log(KT)
MAZ, ’

min

1) =

me[M] ™ kstky
Aplog(KMT) — Aplog(KMT) |
=0 Z Z [ m MAZ 12 ;
me[M] k#kt D m min t,m
CF,Q(T) >~ Z ?a;{(m Z 6k,m(72) 2 (T, Hrru Bma Hm)
me[M] ktky
(@) fre,m Jog(KT) - pii,m log(KT)
=ol > X VAT T P ,
me[M] k#ks Fetm M A Hs,m
where equation (a) uses the fact that with y2 = 0, 0 (72) =
Lk, m- The theorem is then proved. O
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C. e-Greedy Clients: Theorem 11

Lemma 20: For any v € [0, 1], if ties among arms are broken
uniformly at random, with probability at least 1 — 1/7, -
greedy is ([K],~, n,7)-sufficiently exploring with n(7; v, [K])
and 7(7;7, [K]) = O(7/K 4+ 1og(KT)). ;

Proof of Lemma 20: Since the rewards on each arm are all
v (thus the sample means are all ) and the ties among arms
are broken uniformly at random, the algorithm would pull each
arm k € [K] with equal probability 1/K. Thus, denoting the
number of pulls on an arbitrary arm k by time 7 as Ny(7),
it holds that Ny (7) =>_,¢(,) 1{m(t) = k}. Using Bernstein’s
inequality and P(7(¢) = k) = 1/ K, we can obtain that

2

T x 1
IP(’N _7‘> )<2 T )<=
k) =g 27) <200 27 +2z) = KT

where 2 := - + $log(KT).

With a union bound over k€ [K], we can obtain
that (7, [K]) = ik — 5log(KT) and 7(7;7, [K]) =
27 + Zlog(KT), which concludes the proof. O

Usmg Lemmas 14 and 20, we can obtain that with probability
1 —1/T, the learning phase of TAL ends at 77 such that

<
T < "?é?j}] { - ( (wmax) V15 [K])}
4K 32K
7F(1/)max) log(KMT)
B Klog(KT)
Lemma 21: If 1L, is e-greedy and pit ,, >y =72 =0,
with  probability at least 1—1/7, it holds that

Maxmy, cx,, {Zk;ékf teom (T Hm,Bm,Hm)} =
o (LM))

/‘L’[ m
Proof of Lemma 21: Since y; =0, the reward sequence

H,, € H,, are all zeros. Further with v, = 0, once a non-zero
reward is received on arm k;, it will immediately have the
highest sample mean. First, if arm k; has been played at least

n = [w—‘ times, where Hoeffding’s inequality indicates

T,m

that with a probability of at least 1 — QT,
non-zero reward collected from arm k.

Furthermore, when there are no non-zero rewards collected
on arm ky, the arms are pulled with equal probabilities (since
they all have zero as sample means due to 2 = 0). With Bern-
stein’s inequality, it further holds that

g <Zt€h'1 W{mm (8) = ki) — 2= < n' — 2)

<e — T—/—n/ 2/ 2:/4_2 Ll_n’ <i
= &P K K "3\K =97

4K3102g,(2T) + -0 KllLog(T)

Thus, with at most 7/ steps, the arm k would have the highest
sample mean. Afterward, the other arms will only be pulled
during exploration, i.e., with probability £(t) = O(K/t), which
would only result in O(K log(T")) pulls in expectation. The
lemma is then proved. O

there is at least one

32K log(T

where 7/ =
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Theorem 22: (TAL with e-greedy clients; Restatement
of Theorem 11). For TAL with v =v=0, if
clients run e-greedy and break ties uniformly at
random,  and M,m;ﬁéo VYm e [M], it holds that

max KAnax
Rp(T) = O (|58 + % epan 53 log(KMT))
and CF( ) @) (Zme[M [152*27” + Klt* mi| 10g(KMT))

Proof of Theorem 22: From Eqn. (4) with probability

1= 1/T. it holds that Ty = O (X355 4 K log(KMT)).

Using 7j(T4; 71, [K]) from Lemma 20, it holds that

Rpa(T) < ZmG[M] Zk;ékf A T (T3 71, [K])

K Ao log(KT
=0 <A2() + MKAmax lOg(KMT)) s

min

CFl Zme[]\/f] Zke[}{ TN (Tla’yla[K])
(a) Kﬂ* m 10g KT
=0 (A?<) + MK j1, m log(KMT) ),

where step (a) leverages the fact that with y; =0, dx 1, (71) =

Hk,m < Hosc,m -
Furthermore, combining Lemmas 15 and 21, with probability

1 —1/T, it holds that

KA log(MT
Rpa(T) =0 (Zme[M] aMQ ( )> ;
t,m

(a) K i m log(MT)
OF,2<T>=0(ZMM]”Z@ 7

where step (a) leverages the fact that with v2 =0, 0p 1 (72) =
tk,m < [s,m. Putting these two observations into Theorem 16,
the theorem is then proved. 0

APPENDIX B
TWL: PERFORMANCE ANALYSIS

Lemma 23: (Arm Elimination in TWL). Denote event £ as

& = {each armk # k; is eliminated from the active arm set
Yin TWL by the end of epoch 1},

where ¥y, := [logy(1/A)], it holds that P(£g) > 1 — 1/T.
Proof of Lemma 23: First, similar to Lemma 13, we can
establish that with probability at least 1 — 1/7, it holds that

|0 () — vg] < CB(y) =27¥72, Vi) < T,Vk € Yy,

where T, denotes the active arm set in epoch 7). Based on this
event, we can first observe that arm k; would not be eliminated.
Furthermore, at the end of epoch 1y, if arm k # k¢ is not
eliminated, both arm k; and arm k would be active. However,
we can observe that

LCBy(vr) = o (Yr) —
Ay,
2

CB(¢x) > vy — 2CB(%)

>+ % > vy, + 2CB(¢Yy)

> (k) + CB(¥y) = UCBy (¢y),

k should already be eliminated. O

v

Vi =

which means arm
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Lemma 24: (Active Arms in TWL). If IT,,, is UCB1, for any
~1 and o, with probability at least 1 —1/T, for all k # ki,
it holds that N,%,m(T) = Zte[T] Hmp(t) =k, ke Y(t)} =

O % , where Y (t) denotes the active arm set at time
step ¢ and 1 (t) denotes the epoch index at time step t.

Proof of Lemma 24: Using the same procedure in Lemma 17,
with constant reward -y, ’s for active arms and constant reward
72’s for inactive arms, it can be observed that at the end of
epoch 1), each client m pulls each active arm k € Y(¢)) the
same F'(1)) times. As arm k # ky is eliminated from the active
arm set by the end of phase 15 based on event £ introduced
in Lemma 23, it holds that N}, (T) < F (i) = O (%)
which concludes the proof.

Lemma  25: (Inactive Arms in TWL). If II,, is
UCBI, for any 7, and 7 such that i > . > 7,
with probability at least 1—1/7, for all k#ky, it

holds that N7, (T) == Y ,cpry L (t) = k. k @ T(t)} =
(71*“/2)N11,m(T) log(KT)
0 ( (Bt,m—"2) + (t,m—2)?
Proof of Lemma 25: This lemma can be established following
the same procedure as Lemma 18. |

Theorem 26: (TWL with UCBI clients; Restatement of The-
orem 12). For TWL with v; = 1 and 7, =0, if all clients run
UCBI locally and jt4 ., # 0 for all m # [M], it holds that

RIVL(T ( Z Z [ log(T Ay log(KT)})
meM] ktky ST mMAk Him
C;WL < Z Z — Hi,m) log(KT)
2
me[M] kE[K] MAk
ke, 1og(KT) |, mlog(KT)
> 3| :
et iy b Pm MAL M m

Proof of Theorem 26: From Lemma 24, with probability
log(KT)

at least 1 1/T, it holds that N}, (T) =0 (“(572 ), thus
we can specify N7, (T)=0 (ulfg(fITA) + loi(KT)) with
¥.m

Lemma 25. The overall regret and cost can then be bound as

MT
RPMT) < >0 > (N (T) + NE (T ) Ak + =
me[M] k#ky
B log(KT) = Aplog(KT)\
=0 Zme[M Zk;&m fgm M A, + 1 '
TV (
CRD Y0 i 2 Vo (D) - O (1)

MT
Zme [M] Zk;ﬁk ’i (T) - 0k.m (0) + T
(1 = pie,m) log(KT)

=0 (ZmE[M] Zke[K] MA2
tiom L0g(KT)  pige.m log(KT)
JrZme[z\/f] Zk;ékf f4,m M AZ 12 ’
which concludes the proof. O
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