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Abstract
A human decision-maker benefits the most from an AI assistant that corrects for their biases. 
For problems such as generating interpretation of a radiology report given findings, a system 
predicting only highly likely outcomes may be less useful, where such outcomes are already 
obvious to the user. To alleviate biases in human decision-making, it is worth considering a broad 
differential diagnosis, going beyond the most likely options. We introduce a new task, “less likely 
brainstorming,” that asks a model to generate outputs that humans think are relevant but less 
likely to happen. We explore the task in two settings: a brain MRI interpretation generation setting 
and an everyday commonsense reasoning setting. We found that a baseline approach of training 
with less likely hypotheses as targets generates outputs that humans evaluate as either likely or 
irrelevant nearly half of the time; standard MLE training is not effective. To tackle this problem, 
we propose a controlled text generation method that uses a novel contrastive learning strategy to 
encourage models to differentiate between generating likely and less likely outputs according to 
humans. We compare our method with several state-of-the-art controlled text generation models 
via automatic and human evaluations and show that our models’ capability of generating less 
likely outputs is improved.1

1 Introduction
Cognitive errors occur when an abnormality is identified, but its importance is incorrectly 
understood, resulting in an incorrect final diagnosis (Onder et al., 2021; Bruno et al., 
2015). For example, radiologists may look for confirmatory evidence to support a diagnostic 
hypothesis and ignore or discount evidence that refutes the hypothesis (confirmation bias; 
Busby et al. (2018); Onder et al. (2021)). One way to reduce the likelihood of such cognitive 
errors is to provide cognitive “help” by having a devil’s advocate (Seah et al., 2021; Waite 
et al., 2017). For this purpose, we propose a new text generation task called “less likely 
brainstorming” to produce less likely but relevant consultations to bring fresh eyes to 
examine a case—a powerful way to correct diagnostic errors.

1Code is available at https://github.com/Liyan06/Brainstorm.
lytang@utexas.edu . 
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Here, we consider less likely hypotheses in two scenarios. First, they can be hypotheses 
that humans think are likely but not among the most likely to happen. These hypotheses 
are critical to providing second opinion of a prior clinical study but are often difficult 
to generate by traditional decoding techniques. Second, they can be hypotheses that are 
indeed impossible according to humans, but are close to being true if certain counterfactual 
assumptions about the input hold. These hypotheses are also helpful as they are often 
ignored by clinicians. There is a tendency for clinicians to look for a confirmatory diagnostic 
hypothesis but ignore a refutable one. Note that a less likely hypothesis reflects the 
likelihood of a potential diagnosis from the human perspective, not from the probability 
of model output.

We propose BRAINSTORM, a novel contrastive learning strategy to generate “less likely” 
hypotheses. We treat this problem as a text generation task as text generation models are 
the most flexible for providing predictions and explanations for complex tasks; they can 
generalize to new examples and produce complex, structured diagnoses in many formats. 
Generation of the “less likely hypotheses” is conditioned on an indicator variable set to 
trigger the model to prefer outputs are less likely according to humans. For this purpose, 
we propose two additional loss objectives to effectively learn the relationship between input 
context, the indicator, and outputs. Without our training strategy, using naive controlled 
generation training, we find that conditioning on the indicator often leads to generating 
“highly likely” or irrelevant outputs.

We explore this task in two settings: everyday commonsense reasoning and brain magnetic 
resonance imaging (MRI) interpretation generation (more details in Section 5). In the 
everyday commonsense reasoning setting, we adapt ART (Bhagavatula et al., 2020) and 
E-CARE (Du et al., 2022), which both contain “less plausible” or “implausible” hypotheses 
that fit our definition of less likely. An illustrative example asking for less likely hypotheses 
can be found in Figure 1. We show that our approach can generate more “less likely” 
hypotheses than baselines, including models directly fine-tuned on this set, past controllable 
generation approaches (Lu et al., 2022), or models with alternate decoding (Li et al., 2022; 
Liu et al., 2021). In the brain MRI interpretation setting, we experiment with predicting 
diagnoses from brain MRI reports (see Figure 1). Assessment by a neurologist reveals that 
our model successfully shifts the distribution of generated diagnoses further toward the tail 
while still generating relevant diagnoses.

2 Related Work
Uncertainty in Radiology Interpretation

Uncertainty plays a significant role in the process of clinical decision making (Croskerry, 
2013). When facing uncertainty, physicians may resort to various erroneous strategies, 
such as denying the presence of uncertainty resulting in various interpretation biases. 
These biases could lead to unexpected consequences (Kim and Lee, 2018; Eddy, 1984), 
including missed diagnoses, misdiagnoses, unnecessary diagnostic examinations and even 
life-threatening situations (Farnan et al., 2008). Recent work (Seah et al., 2021; Waite et al., 
2017) have provided deep-learning based methods and suggestions in reducing errors from 
interpretation bias on medical imaging. To the best of our knowledge, we are the first to 
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explore reducing bias from interpreting radiology reports via our less likely text generation 
framework.

Controllable text generation and decoding methods

Controllable text generation is the task of generating text that adheres certain attributes, 
such as language detoxification (Zhang and Song, 2022; Liu et al., 2021; Dathathri et 
al., 2020), formality modification (Mireshghallah et al., 2022; Yang and Klein, 2021) and 
open-ended story generation (Mori et al., 2022; Lin and Riedl, 2021; Fan et al., 2018). 
The task of controllable text generation encompasses both training-time and decoding-time 
methods. Training-time approaches include CTRL (Keskar et al., 2019), which learns to 
utilize control codes to govern attributes in order to generate the desired text, and QUARK 

(Lu et al., 2022), which leverages a strong attribute classifier as a reward function to unlearn 
unwanted attributes. These methods typically rely on training data that contains both the 
desired and undesired attributes to be effective in the supervised setting. Our method falls 
into this category.

On the other hand, decoding-time methods utilize off-the-shelf pre-trained LMs (PLMs) 
and aim to re-rank the probability of generated text based on specific constraints. PPLM 
(Dathathri et al., 2020) and FUDGE (Yang and Klein, 2021) are typical methods in this 
category that train an attribute classifier to guide PLMs to generating desired text. DEXPERTS 

(Liu et al., 2021) and Contrastive Decoding (Li et al., 2022) are more recent methods that 
re-weight generation probabilities by contrasting the output distributions between different 
LMs. We select those two as strong baselines for comparison against our proposed model.

Contrastive Learning in NLP

Contrastive learning (CL) has been applied to a wide range of representation learning 
tasks in NLP, such as learning task-agnostic sentence representation (Gao et al., 2021) and 
improving natural language understanding (Jaiswal et al., 2021; Qu et al., 2021). It has 
recently been applied to text generation tasks as well (An et al., 2022; Cao and Wang, 2021; 
Lee et al., 2021) where additional hard positive or negative examples are created through 
techniques such as back-translation or perturbation.

3 Problem Setting
The problem we tackle in this work can be viewed as a controllable text generation task. Let 
x be a premise or a brain MRI report findings, we want a model to generate a likely/less 
likely hypothesis or interpretation y given an indicator i by drawing from the distribution 
P y ∣ x, i . The indicator i can take two values: + to indicate generating likely outputs and ~ 
to generate less likely outputs.

For example, given a premise x = “Tom goes to the gym every day.” in Figure 1 from the 
E-CARE dataset (more details in Section 5), we want a model to generate a hypothesis y
that is less likely to happen i =  after x, such as “He gets a promotion from his manager 
who saw him in the gym.”. Although this hypothesis fits into the same scenario as the 
premise as it directly connects to the premise involving Tom’s daily gym attendance, it is 
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less likely to happen since the causal relationship between going to the gym and receiving 
a promotion is not common. The understanding of what is “less likely” can be based on the 
concept of bounded rationality (Simon, 1955), where likely hypotheses are those that are 
likely given known premises, but less likely hypotheses may stem from additional unknown 
premises.

It is important to note that when we refer to an output as “less likely/likely”, we mean that 
it is less likely/likely based on human understanding of x. All models we experiment with in 
this work generate outputs that have high probability according to the model, regardless of 
whether they are likely or less likely to happen according to humans.

4 Methodology
In this section, we present our method as well as baseline models we compare against. 
Requirements for these models can be found in Table 1. We use BART (Lewis et al., 2020) 
as the backbone LM for all experimental settings.

4.1 BRAINSTORM

Our encoder-decoder system takes the concatenation of a pair x, i  as input and returns one 
or multiple generated output sequences y. At decoding time t, our model iteratively decodes 
the next token conditioned on the left-hand context, i.e., y < t:

PLM y =
t

T
PLM yt ∣ x, i, y< t (1)

where PLM yt ∣ x, i, y < t  is the next token distribution given the context. The task inputs are 
described in Section 5.

Besides the standard maximum likelihood training with human reference, we incorporate 
two additional loss objectives to guide models to associate the context, indicators, and target 
sequences. The training approach is illustrated in Figure 2.

Margin Loss—First, given the indicator i, we want the model to assign a higher estimated 
probability to human reference y than its opposite indicator ¬i. Therefore, we apply a 
margin-based loss:

ℒmargin  = max 0,P y ∣ x, ¬i − P y ∣ x, i + m (2)

where m is the margin value. This loss objective tells models that if the indicator is modified, 
then the target sequence should have lower probability. Margin loss does not require both 
likely and less likely outputs y+ and y .

Similarity Loss—We propose two versions of a contrastive similarity loss based on the 
availability of examples that can be used in CL. When both positive and negative examples 
are available in the same batch, we define the similarity loss as
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ℒ si m  = − l o g
e x p si m z x , i, z y /τ

∑ y ∈ b at c h e x p si m z x , i, z y /τ
( 3)

H er e, z x , i, z y , a n d z ŷ  r e pr es e nt t h e hi d d e n r e pr es e nt ati o ns of i n p ut x , i , h u m a n r ef er e n c e y , 

a n d a n o ut p ut ŷ  i n t h e s a m e b at c h. ℒ si m  e n c o ur a g es t h e m o d el t o m a xi mi z e t h e a gr e e m e nt 

b et w e e n z x , i a n d its c orr es p o n di n g o ut p ut z y . T his l oss o bj e cti v e e n c o ur a g es a m o d el t o l e ar n 

t h e r el ati o n b et w e e n c ert ai n i n di c at ors a n d t h e t ar g et s e q u e n c e b y c o ntr asti n g t h e t ar g et 

s e q u e n c e wit h all n e g ati v e o ut p uts i n t h e b at c h.

T his o bj e cti v e t er m r es e m bl es t h at i n C o N T ( A n et al., 2 0 2 2 ) w hi c h t a k es s elf- g e n er at e d 

o ut p uts as n e g ati v e s a m pl es; h er e, w e c o n diti o n e d t h e i n p ut o n s p e ci al i n di c at ors. N ot e t h at 

at t h e tr ai ni n g ti m e, t h e i n di c at or i c o ul d b e eit h er + or . W h e n t h e i n di c at or i = + , t h e 

h ar d n e g ati v e is t h e h u m a n r ef er e n c e of y , a n d vi c e v ers a. We s et t h e w ei g ht of t h e t er m i n 

E q u ati o n ( 3) ass o ci at e d wit h t h e h ar d n e g ati v e t o 1 0 t hr o u g h o ut t h e e x p eri m e nt t o i n cr e as e 

its i m p ort a n c e r el ati v e t o i n- b at c h n e g ati v es.

W h e n p ositi v e a n d n e g ati v e e x a m pl es ar e n ot a v ail a bl e at t h e s a m e ti m e ( d e n ot e d b y a l a c k 

of a “ p air ” c h e c k i n Ta bl e 1), w e pr o p os e a n alt er n ati v e si mil arit y l oss o bj e cti v e ℒ si m 
′  t h at 

mi ni mi z es t h e si mil arit y of e n c o d er r e pr es e nt ati o n z x , i a n d z x , ¬i, wit h o ut c o m p ari n g t o o ut p uts 

i n t h e b at c h:

ℒ si m 
′ = si m z x , i, z x , ¬i . ( 4)

We us e c osi n e si mil arit y f or b ot h v ersi o ns.

Fi n al L o s s — T h e o v er all tr ai ni n g o bj e cti v e of B R AI N S T O R M  is t h e c o m bi n ati o n of t h e 

st a n d ar d m a xi m u m li k eli h o o d esti m ati o n ( M L E) ℒ M L E , m ar gi n l oss, a n d si mil arit y l oss:

ℒ fi n al  = ℒ C E + w s ℒ si m  + w m ℒ m ar gi n  ( 5)

w h er e w s a n d w m  ar e h y p er p ar a m et ers. BR AI N S T O R M ′  r e pl a c es ℒ si m  b y ℒ si m 
′ .

4. 2 B a s eli n e s

4. 2. 1 Tr ai ni n g- Ti m e B a s eli n e s

M L E  a n d M L E - L L:  ML E  is tr ai n e d o n all d at a. It is a c o n diti o n al m o d el p y ∣ x , i  t h at l e ar ns 

t o g e n er at e b ot h y +  a n d y  d e p e n di n g o n i. ML E - L L l e ar ns t o g e n er at e l ess li k el y o ut p uts y

b y o nl y tr ai ni n g o n x , y . B ot h m o d els ar e tr ai n e d wit h st a n d ar d M L E.

Q U A R K : (L u et al., 2 0 2 2 ) is a st at e- of-t h e- art c o ntr oll a bl e t e xt g e n er ati o n m et h o d t h at 

o ut p erf or ms m et h o ds s u c h as u nli k eli h o o d tr ai ni n g ( Well e c k et al., 2 0 2 0 ). QU A R K  tr ai ns 

a n L M t o g e n er at e t e xt wit h f e w er u n d esir a bl e pr o p erti es b y m a xi mi zi n g r e w ar ds assi g n e d 

b y a r e w ar d f u n cti o n. I n t his st u d y, w e us e t h e D e B E R Ta m o d el ( H e et al., 2 0 2 0 ) as t h e 

r e w ar d f u n cti o n t o h el p g e n er at e m or e y  ( m or e d et ails i n S e cti o n 6).
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4. 2. 2 D e c o di n g- Ti m e B a s eli n e s

M o difi e d D E X P E R T S :  D EX P E R T S  (Li u et al., 2 0 2 1 ) c o m bi n es a b as e L M M  al o n g wit h 

t w o l a n g u a g e m o d els c all e d “ e x p ert ” M e x p   a n d “ a nti e x p ert ” M a nti   t h at m o d el t e xt wit h 

d esir e d a n d u n d esir e d pr o p erti es, r es p e cti v el y . T h e n e xt t o k e n distri b uti o n is d et er mi n e d 

b y P D E x p erts  y t =  σ z t
′ + α z t

e x p − z t
a nti   w h er e z  is t h e l o gits f or t h e n e xt t o k e n y t a n d z t

′ is t h e 

tr u n c at e d l o gits fr o m M  u n d er a n y tr u n c ati o n s a m pli n g m et h o ds s u c h as t o p-k  s a m pli n g. 

F or si m pli cit y, w e o mit t h e pr e c e di n g c o nt e xt i n t h e n ot ati o n. T h e h y p er p ar a m et er α  c o ntr ols 

h o w f ar t h e fi n al t o k e n distri b uti o n d e vi at es fr o m m o d el M .

I n o ur s etti n g, w e m o dif y t his d efi niti o n t o b e

P D E x p erts′ y t = σ z t + α z t
n e u − z t

+
( 6)

H er e, z t
+  is fr o m t h e m o d el t h at l e ar ns t o g e n er at e ŷ +  b y o nl y tr ai ni n g o n x , y +  p airs. 

z t
n e u   is fr o m t h e m o d el t h at l e ar ns t o g e n er at e b ot h y +  a n d y  c o n diti o n e d o n t h e i n di c at or. 

U nli k e M L E , t his m o d el d o es n ot c o n diti o n o n i n di c at ors t o g e n er at e h y p ot h es es. I nst e a d, it 

l e v er a g es t e xt wit h b ot h d esir e d ( g e n er ati n g y ) a n d u n d esir e d pr o p erti es ( g e n er ati n g y + ). It 

is s h o w n t o eff e cti v el y m ai nt ai n t h e fl u e n c y of t h e g e n er at e d t e xt (Li u et al., 2 0 2 1 ). z t  is 

fr o m a b as e L M t h at g e n er at es y  o nl y. It c a n b e ML E  - L L or BR AI N S T O R M .

M o difi e d C o nt r asti v e D e c o di n g:  C o ntr asti v e D e c o di n g ( C D) c o m bi n es a l ar g er M e x p  a n d a 

s m all er “ a m at e ur ” m o d el ( M a m a   a n d s e ar c h es f or t e xt u n d er a c o nstr ai n e d s e ar c h s p a c e (Li 

et al., 2 0 2 2 ). T h e r es ulti n g o ut p uts ar e i nt e n d e d t o a m plif y t h e str e n gt hs of M e x p a n d r e m o v e 

u n d esir e d pr o p erti es t h at a p p e ar i n M a m a. A s c ali n g f a ct or τ C D  c o ntr ols t h e p e n alti es of t h e 

a m at e ur m o d el i n C D.

I n o ur s etti n g, t w o m o d els h a v e t h e s a m e si z e. M a m a  l e ar ns t o g e n er at e y + ; M e x p  c a n b e ML E -

L L or B R AI N S T O R M . I nt uiti v el y, t h e a bilit y t o g e n er at e y  is pr es er v e d, w hil e t h e t e n d e n c y t o 

g e n er at e y +  is f a ct or e d o ut.

H y p e r p a r a m et e rs:  We e x p eri m e nt wit h a wi d e r a n g e of v al u es f or α  i n D E x p erts a n d 

τ C D  i n C D a n d s h o w h o w t h e fr a cti o n c h a n g es a cr oss t h es e v al u es i n Fi g ur e 3. We k e e p 

t h e r e c o m m e n d e d v al u e f or t h e r e m ai ni n g h y p er p ar a m et ers. U nl ess s p e cifi e d ot h er wis e, w e 

g e n er at e o ut p uts usi n g di v ers e b e a m s e ar c h ( Vij a y a k u m ar et al., 2 0 1 6 ).

5 E x p eri m e nt al S etti n g s

We i n v esti g at e o ur m et h o ds i n b ot h br ai n M RI s etti n gs a n d e v er y d a y c o m m o ns e ns e 

r e as o ni n g s etti n gs ( Ta bl e 5).

5. 1 E v er y d a y C o m m o n s e n s e R e a s o ni n g

T w o d at as ets fr o m t h e c o m m o ns e ns e r e as o ni n g d o m ai n w er e a d a pt e d. S e e e x a m pl es i n 

Fi g ur e 4 fr o m A p p e n di x.
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ART—(Abductive Reasoning in narrative Text; Bhagavatula et al. (2020)) is a large-scale 
benchmark dataset that tests models’ language-based abductive reasoning skills over 
narrative contexts. Each instance in the dataset consists of two observations O1 and O2 O1

happened before O2 , as well as a likely and a less likely hypothesis event (happening in 
between O1 and O2) collected from crowd workers. Each “likely” hypothesis is causally 
related to two observations and each “less likely”; hypothesis is created by editing each 
“likely” hypothesis. The original task is to generate a likely hypothesis given the observation 
pair O1,O2 .

E-CARE—(Explainable CAusal REasoning; Du et al. (2022)) tests models’ causal 
reasoning skills. Each instance in the dataset consists of a premise, a “likely” and a “less 
likely” hypothesis, and a conceptual explanation of the causality. The likely hypothesis can 
form a valid causal fact with the premise. Two tasks are introduced: (1) causal reasoning: 
choosing the “likely” hypothesis given a premise and (2) explanation generation: generating 
an explanation for the causal fact.

Adapted Setting—In our adapted setting, we want a model F  to generate y  given either 
an observation pair (ART) or a premise (E-CARE) x. Formally, let E be a binary evaluator 
E x, y ∈ 1,0  that classifies an output y into either y+ or y  based on x. We want a model F
that generates ŷ = F x, i = , where E x, ŷ = 0.

Evaluation—For ART, we use the default training, validation and test sets to evaluate our 
models. For E-CARE, we randomly construct training and validation sets from the original 
training set and use the default validation set as the test set since the original test set is not 
available. All hyperparameters are determined on the validation set.

For each instance x in the test set, we ask a model F  to generate ŷ = F x, i = , then measure 
the fraction of less likely hypotheses according to an evaluator E.

To reduce ambiguity and encourage more consistent human evaluations, we formally 
define all relevancy categories from rounds of pilot studies. More detailed definitions and 
annotation instructions can be found in Appendix B and C. We measure both the (1) 
relevancy and (2) fluency of generated hypothesis in human evaluation.

5.2 MRIINTERPRET

We present a new dataset MRIINTERPRET based on the findings and impression sections of a 
set of de-identified radiology reports we collected from brain MRIs. Each instance consists 
of a findings x, an indicator i, and a likely/less likely interpretation y of the findings x
depending on i.

Dataset Construction—We first find phrases such as “likely represents”, “consistent 
with”, and “may be unrelated to” that represent uncertainty from each sentence of reports. 
We view these phrases as indicators of the presence of interpretations; denote them by 
s+ or s . A likely or less likely indicator (Appendix F) suggests a likely or less likely 
interpretation of a finding. For each likely indicator s+, we treat the sub-sentence preceding 
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s+ concatenated with prior 6 sentences as the findings x, and the completion of the sentence 
following s+ as the likely interpretation y+ of the findings x. We include prior sentences to 
provide more context for reaching interpretations. For less likely indicators s , we treat the 
sub-sentence either following or preceding s  as the less likely interpretation of the findings 
depending on how s  is stated. An example can be found in Figure 4.

Indicator Unification—We have collected a variety of indicators and decided to unify 
them into a minimum set for both likely and less likely indicators. More details of indicator 
unification can be found in Appendix F.

Evaluation—To ensure the human evaluation for MRIINTERPRET to be as reliable as 
possible, we carefully curate a thorough annotation instruction guideline with precise 
definitions for all relevancy labels in Section 7 and Appendix E.

6 Evaluation on Commonsense Reasoning
6.1 Automatic Evaluation

Our first evaluation relies on automatically assessing whether system outputs are likely or 
less likely according to humans. We fine-tune DeBERTa models (He et al., 2020) for our 
automatic evaluation on two everyday commonsense datasets. They take the pair of x, y
as input and predict whether y is a likely or less likely hypothesis. In our settings, the 
fine-tuned DeBERTa model achieves 85% accuracy on the test set of ART and achieves 80%
on the original validation set of E-CARE.

Table 2 compares a number of methods on our commonsense reasoning datasets. We answer 
several questions based on these results. We perform a paired bootstrap test for each result 
by comparing to MLE-LL. We highlight results that are better at 0.05 level of significance.

Can we just train on x, y ?—Interestingly, the baseline model MLE-LL that only 
trained on x, y  pairs generates “likely” hypotheses approximately half of the time. This 
is possibly an effect of the pre-training regimen; furthermore, generating likely hypotheses 
may be easier and past work has shown that seq2seq models can amplify behaviors like 
copying that are easy to learn (Goyal et al., 2022).

Are the proposed two loss objectives effective?—We see that compared to MLE-
LL, our proposed BRAINSTORM method achieves substantially higher fractions of less likely 
hypotheses with no cost to quality in terms of perplexity. At the bottom of Table 2, we 
show that ablating either of the proposed loss objectives worsens performance (and note that 
ablating both yields MLE). BRAINSTORM′ is not as effective since it does not compare with 
outputs in the batch, but we can see its merits in MRIINTERPRET (Section 7).

Can decoding-time methods alleviate the problem of generating likely 
outputs?—We explore whether DEXPERTS and CD can further raise the fraction of less 
likely generations when combined with either MLE-LL or BRAINSTORM. These methods have 
hyperparameters that trade off how much of the “undesired” behavior each can remove 
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from the system. We compute several fraction-perplexity trade-off curves in Figure 3. 
Notably, although the fraction of less likely outputs can improve, both of these methods 
significantly increase the perplexity of generations, which corresponds with notably 
worse fluency of the text. Although these points apparently have high less likely fractions, 
we caution that the distribution of the text may deviate from the text that DeBERTa was 
fine-tuned on, meaning that our classifiers may not work well in these ranges. The green 
lines reflect thresholds where we observe serious degradation in output quality starting to 
occur. Below this perplexity threshold, the automatic evaluation suggests that both methods 
demonstrate some capability in alleviating the models’ tendency in generating “likely” 
hypotheses without too great a cost to perplexity. Note that DEXPERTS is more effective than 
CD in ART and vice versa in E-CARE.

Table 2 reports the settings where models achieve the minimum perplexities; at these 
points, perplexity is substantially increased but the fraction of less likely hypotheses is not 
substantially changed for the majority of results.

Can QUARK yield improvement?—In Table 2, the automatic evaluation results show that 
QUARK exceeds BRAINSTORM by generating 6% more “less likely” hypothesis in ART and 
10% more in E-CARE. It also has lower perplexity in ART. To further compare the two 
models, we conducted a human evaluation on the outputs from two models, and the result 
shows that QUARK generates lower-quality “less likely” hypotheses (Section 6.2).

6.2 Human Evaluation

To further validate the results, we conduct a finer-grained human evaluation on a sample 
of 100 examples from the test sets of both datasets along two axes – relevancy and 
fluency. We refined our relevancy evaluation by dividing the “relevancy” category into 
four subcategories, resulting in a total of five categories for evaluation.: (1) Likely; (2) 
Less likely; (3) Contradictory - the output is impossible if we assume the input is true; (4) 
Repetition - the output is describing the same meaning as the input; and (5) Irrelevant - the 
output has little connection with input. More thorough category definitions with examples, 
annotation instruction and quality checks for AMT annotators can be found in Appendix C. 
We compare the performance of three models: MLE-LL, BRAINSTORM, and QUARK (Table 3). 
As QUARK demonstrates better performance in automatic evaluation, we include its generated 
text in our human evaluation.

Our results show a high level of agreement between the automatic evaluation (Table 2) and 
human evaluation (Table 3) regarding the fraction of “likely” hypotheses on both datasets. 
On ART, QUARK and BRAINSTORM decrease the fraction of “likely” hypotheses by 60% and 
50%, respectively, compared to MLE-LL. However, on E-CARE, the human evaluation 
indicates that all three models generate an equivalent number of “likely” hypotheses. By 
further breaking down the “relevancy” category used in the automatic evaluation, we then 
have a clearer understanding of the distribution of categories among the models’ outputs.

Low-Quality Hypotheses—It is not desirable for models to generate outputs that are 
repetitions of the input (Repetition) or have little connection to the input (Irrelevant). On the 
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ART dataset, all models generate a small proportion of irrelevant outputs, with QUARK and 
BRAINSTORM reducing the fraction of “Repetition” hypotheses by half, compared to MLE-LL. 
However, we get more low-quality outputs on E-CARE. While BRAINSTORM is able to reduce 
the fraction of Repetition hypotheses by a large margin, it is not as effective as QUARK. 
One possible reason for this is that QUARK is trained to generate outputs that the DeBERTa 
classifier (the reward model) predicts as less likely; Repetition cases are rarely classified as 
less likely due to their similarity with the input, but Irrelevant outputs are more likely to be 
classified this way.

Less Likely versus Contradictory—While less likely hypotheses are desirable, 
contradictory hypotheses are less so. A typical way of generating a contradictory hypothesis 
is by simply adding negation: Lisa went laptop shopping yesterday  Lisa didn’t go laptop 
shopping yesterday. However, such examples have little value as the negation brings no new 
information to the input and is not a useful counterfactual for a user to see.

We evaluate the models’ outputs on the ART dataset, where a significant number of 
contradictory hypotheses are generated, and find that 43 out of 100 hypotheses generated 
by QUARK include the words “didn’t” or “not,” while only 10 hypotheses generated by 
BRAINSTORM and MLE-LL did so. We posit that this is likely due to the DeBERTa classifier 
assigning high rewards for hypotheses that include negation words, and QUARK effectively 
learning this shortcut.

7 Human Evaluation on MRIINTERPRET

To evaluate the models’ performance on the radiological interpretation generation setting, 
we select 30 findings from our validation set that ask for less likely interpretation. For each 
finding, we select the human reference and generate the top 5 less likely interpretations 
from 2 baselines (MLE-LL and MLE) and BRAINSTORM′, resulting in 30 × 5 × 3 + 1 = 480
interpretations. We randomized the order of these interpretations before evaluation.

Due to the structure of the indicators in this dataset, methods that require examples to have 
both y+ and y  for the same data (see “pair” in Table 1) are not able to be used. Since QUARK 

relies on a trained classifier, we choose not to use QUARK as well. A trained classifier on 
MRIINTERPRET is not reliable since the training set only consists of naturally occurring data, 
which is highly imbalanced (see Table 5 in Appendix). This leads the classifier to perform 
poorly on the “less likely” class, which is the minority class but is also the class of greatest 
interest in this study. We find that augmenting the training data with counterfactual cases is 
not easy. For example, “the lack of evidence of restricted diffusion makes it less likely to 
be” is a naturally occurring prompt from a less likely example, and attempting to change it 
to a sentence such as “the lack of evidence of restricted diffusion could represent” yields a 
statement that turns out to be out of distribution from the training data and models do not 
behave reliably in these counterfactual cases.

For each generated interpretation, we evaluate its (1) relevancy to the findings and (2) 
whether it contains any hallucinations about findings (Appendix E.2). For relevancy, we 
asked a neurologist to classify each interpretation into: (1) Relevant and likely; (2) Relevant 
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and less likely; and (3) Irrelevant. Further, for those classified as “Relevant and less likely”, 
we further evaluate how well the interpretation fits into the context of the findings by 
grading them on three levels: high, medium and low, ranging from high matches that 
represent the most obvious less likely interpretations to low matches that represent relevant 
but exceedingly rare diagnosis. We provide detailed definitions for these categories and 
include comprehensive annotation guidelines in Appendix E to facilitate consistency in 
future studies.

Results are shown in Table 4. Most human references (which the neurologist was blinded to) 
are annotated as either a high or medium match under the relevant but less likely category, 
suggesting the reliability of the neurologist’s annotation. We find that training on all data 
(MLE) instead of exclusively on less likely data (MLE-LL) would effectively help generate 
more relevant but less likely interpretations and reduce the amount of irrelevant ones. One 
possible reason is that MRIINTERPRET is a highly imbalanced dataset (Table 5).

By comparing the outcomes between human reference and BRAINSTORM, we find that 
BRAINSTORM tends to shift the distribution of generated interpretations towards generating 
lower matched interpretations, which effectively extends the beam of potential diagnoses 
that meet the criteria of “relevant but less likely” based on refuting findings. Anecdotally, 
interpretations in this medium category reflect the sort of alternative hypotheses and 
“outside-the-box” suggestions that represent the original goal of our approach.

8 Conclusion
In this work, we propose a new text generation task “less likely brainstorming” for 
reducing cognitive errors in interpreting findings of MRI reports. We found that simply 
training on less likely data does not help with generating less likely interpretations and 
hence propose a novel CL method to tackle the problem. In two settings, we show that 
our proposed training technique can effectively generate more “less likely” hypotheses, 
producing interpretations that radiologists may not think of, outperforming past training- and 
decode-time modifications to generation models.

Limitations

Our brain MRI interpretations were evaluated by a single neurologist. Such annotations 
require deep expertise and are not easily carried out with high quality by trainees, which 
limited the amount of data we were able to collect. To ensure that the annotation would be 
as reliable as possible, we carefully thought of the dimensions in evaluating the generated 
interpretations and proposed a thorough annotation instruction guideline. We believe that 
future work can conduct more extensive studies using our annotation guidelines as a starting 
point. Further, the radiology reports we experiment with are from a single academic medical 
center, which makes the generalizability unclear. Future work is needed to evaluate the 
performance of our models on data from different medical centers. Finally, future work is 
needed to evaluate relevant and likely outputs from MRI interpretations to address different 
forms of interpretation bias and to expand the beam of potential likely diagnoses based on 
the findings.
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Beyond the brain MRI interpretation experiments, our generation experiments are limited 
to a set of pre-trained models optimized for carrying out generation tasks in English. It 
is possible that multilingual models generating in languages other than English will show 
different properties. We are limited by the availability of resources for automatic evaluation 
in these settings, but a more extensive multilingual evaluation with human users could be 
conducted in the future.

Ethical Risks

We are proposing better ways for incorporating systems into the radiological diagnostic 
process. This is aimed at helping improve human decision-making and mitigating the 
limitations of traditional fully-automatic approaches. However, we believe that it is 
imperative to rigorously test and evaluate these methods before they can be put into practical 
clinical settings. We are not claiming that these methods are ready for real-world adoption at 
this stage.
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A: Dataset statistics
Dataset statistics can be found in Table 5.

B: Definition of Relevancy Categories on Everyday Commonsense
To encourage more consistent human evaluations, we formally define all relevancy 
categories as the following. These definitions are refined from rounds of pilot studies 
to reduce ambiguity for human annotations. Example outputs and explanations for each 
relevancy category can be found in the annotation interface (Figure 5 and 7).

B.1 E-CARE
Relevant

A hypothesis is relevant if it fits with the same scenario as the premise. It should not 
introduce new people, places, or things that are not at least plausibly in the same source 
scenario.

Likely

For the hypothesis to be likely, it must also be causally related to the premise – either 
the premise causes the hypothesis or the hypothesis causes the premise (you will see both 
versions of the task below). There should not be clearly more likely hypotheses than it.
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Relevant and Less likely

The hypothesis is still the same scenario as the premise (relevant). However, it is less likely 
to be causally related to the premise. There could be other hypotheses that are superior to the 
given hypothesis.

Irrelevant

The generated hypothesis does not describe the same scenario as the premise or is not 
causally related to the premise.

Contradictory

The hypothesis contradicts the premise – it says something that is impossible if we assume 
the premise to be true (e.g., the premise states that something happened and the hypothesis 
states that that thing did not happen).

Repetition

The hypothesis is very similar to the premise – it either contains a text span that is a 
repetition of the premise, or it is expressing nearly the same meaning as the premise.

B.2 ART

Relevant

A hypothesis is relevant if it fits with the same scenario as the observation pair. It should 
not introduce new people, places, or things that are not at least plausibly in the same source 
scenario.

Likely

For the hypothesis to be likely, it must also be strongly related to O1 and O2 in a causal 
fashion – to the extent possible, the first observation O1 should cause the hypothesis and 
the hypothesis causes the second observation O2. There should not be clearly more likely 
hypotheses than it.

Relevant and Less likely

The hypothesis is still the same scenario as the observation pair (relevant). However, it is 
less likely to be causally related to the observation pair – maybe it could happen following 
O1, but not necessarily. There could be other hypotheses that are superior to the given 
hypothesis.

Irrelevant

The hypothesis does not describe the same scenario as the observation pair: it either involves 
different people, places, or things, or the events it describes have very little connection to O1

and O2.
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Contradictory

The hypothesis contradicts either observation O1 or observation O2 – it says something that is 
impossible if we assume O1 and O2 to be true (e.g., O2 states that something happened and the 
hypothesis states that that thing did not happen).

Repetition

The hypothesis is very similar to either O1 or O2 – it either contains a text span that is a 
repetition of O1 or O2, or it is expressing nearly the same meaning as O1 or O2.

C: Annotation on Everyday Commonsense
The human evaluation by crowdworkers has been judged to be IRB exempt. We hired crowd 
annotators from US through Amazon Mechanical Turk. These annotators have lifetime 
approval rates over 99% and more than 1000 approved HITs. We first conducted a quality 
check on ART and E-CARE. For each dataset, we randomly selected 100 examples from 
the test set and each example is evaluated by 7 annotators, resulting in 100 × 7 = 700
annotations for each dataset. We finally selected 7 qualified crowdworkers from each of the 
datasets. The procedure of filtering out non-qualified workers is shown below. For qualified 
crowdworkers, we randomly select another 100 examples from each dataset and conduct a 
final annotation round, resulting in 100 × 7 × 2 = 1400 annotations in total. We set maximum 
time on completing each HIT to 1 hour and each HIT takes approximately 1.5 minutes. We 
paid annotators $ 0.3/HIT, which

Table 5:

A summary of dataset statistics. All datasets are in English. For ART and E-CARE, we show 
the stats of our adapted versions. Since E-CARE has a hidden test set, we randomly split the 
original training set into a training and a validation set, and we use the original validation set 
as our test set. Note that each example in E-CARE asks for either the cause or the effect of 
the premise.

Dataset Train Val Test

Likely Less Likely Less Likely Less Likely

MRIINTERPRET 10097 1005 121 —

ART 50509 50509 1781 3562

E-CARE cause effect cause effect cause effect cause effect

6855 6580 6855 6580 762 731 1088 1044

is equivalent to $ 12/hr and is higher than the minimum USA wage.

Category definitions and annotation instructions with examples are shown in Figure 5, 6, 7 
and 8.
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Selecting Qualified Workers
After we collected all annotations from the pilot study. We filter out workers by following 
these steps:

1. We first filter out workers that annotated less than 4 HITs. With limited amount 
of annotated HITs, it is hard to evaluate the consistency of their annotations.

2. For any HIT, if two output sequences are exactly the same but the annotator 
assigned them different categories, then we remove the worker. For example, in 
E-CARE, if the premise is “Tom goes to the gym every day.”. and we have the 
hypotheses “He gets a promotion from his manager who saw him in the gym.” 
that appears twice, then if one hypothesis is classified as “Relevant and Likely” 
and another one is classified as “Relevant but Less Likely”, we will filter out this 
annotator.

3. We use the “Repetition” category to further filter out annotators. We believe 
“Repetition” is the least subjective category in our annotation instruction, and 
using this category to filter out annotations would lead to minimum bias we can 
project to the selected annotators. This consists of two steps: (1) A model many 
generate an output that is exactly the input. For example, a model takes as input 
“Tom goes to the gym every day.” and generate “Tom goes to the gym every 
day.” as well. This happens sometimes across all models. For those cases, we 
will filter out annotators that assigned categories other than “Repetition”; (2) 
Besides the exact match, there are cases where a model’s output is a paraphrase 
of the input. For these, to minimize our bias, we choose to use models’ outputs 
that only differs from the input by at most two words to filter out annotators. For 
example, in ART, if one observation is “Lisa went laptop shopping yesterday”, 
and the model’s output is “She went laptop shopping yesterday”, then we filter 
out annotators that do not assign “Repetition” to it.

After we collected all the annotations from qualified workers, we use the above steps to 
further filter out works that do not meet our standard. Finally, we got valid annotations 
by three annotators from each datasets. We use Fleiss kappa to calculate the agreement 
between annotators. The annotators achieve moderate agreement κ = 0.447  on ART and fair 
agreement κ = 0.354  on E-CARE for relevancy evaluation. This is within our expectation 
since evaluating whether a hypothesis is likely or less likely is subjective.

D: Fluency Evaluation on Everyday Commonsense Reasoning
Fluency evaluation can be found in Table 6. Most of generations from models are fluent and 
grammatically correct.

E: Annotation on Brain MRI Interpretation
The use of the brain MRI data is covered by an IRB. A neurologist reviewed each finding 
sample and evaluated the interpretation on multiple metrics.
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E.1 Relevancy
The overall objective of the interpretation generation was to produce less likely diagnoses, or 
interpretations, based on the absence of specific findings. The findings followed a common 
pattern of “Absence of [finding x] makes it unlikely to

Table 6:

Human evaluation of fluency on everyday commonsense reasoning datasets. Annotators 
reached substantial agreement on both datasets.

Model Art E-CARE

Gram. Correct Fluent Contain Flu. Errors Gram. Correct Fluent Contain Flu. Errors

MLE-LL 93.9 6.1 99.0 1.0

QUARK 94.6 5.4 98.0 2.0

BRAINSTORM 93.5 6.6 95.9 4.1

Figure 4: 
Examples from MRIINTERPRET, ART and E-CARE. The example shown in the table for 
E-CARE asks for a likely/less likely effect of the premise. “+”/”~” indicates whether 
humans would consider the output to be likely/less likely according to the context under 
the Examples column. We explain why humans would consider these outputs as likely/less 
likely in the Explanation column (this is not in the training data).

Table 7:

Human evaluation on hallucinations. The result shows the percentage of hallucinations 
found in 150 generated interpretations from each model.

Model Hallucination (%)

MLE-LL 23.3

MLE 30.0

BRAINSTORM 33.3
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Model Hallucination (%)

Reference 6.6

be [interpretation y].” The finding of interest was modified to be standardized across all 
findings if it used varying terminologies in a similar pattern (see Appendix F for more 
details). Because the interpretations are oriented in this negated valence, the objective of 
the output is to produce “relevant but unlikely” interpretations. The annotator rated the 
interpretation on 3 metrics: (1) relevant and likely, (2) relevant but less likely, and (3) 
irrelevant.

Relevant and Likely

Output was judged as “relevant and likely” if the interpretation erroneously suggested a 
diagnosis that would be likely, not unlikely, despite the absence of [finding x]. For instance, 
“Absence of restricted diffusion within the previously described fluid collections along the 
right convexity makes it unlikely to be”. An interpretation of “the presence of a small 
subdural hematoma” is actually a likely diagnosis given the lack of restricted diffusion in the 
fluid collection since subdural hematomas do not normally demonstrate restricted diffusion.

Relevant but Less Likely

Output was judged as “relevant but less likely” if the interpretation correctly provides a 
less likely diagnosis due to the absence of [finding x]. For example, “absence of restricted 
diffusion makes it unlikely to be”. An interpretation of “acute ischemia” is unlikely since 
diffusion restriction is often associated with acute ischemia.

If the interpretation was judged as “relevant but unlikely”, the degree to which the 
interpretation fits with the findings was graded on three levels: (1) high, (2) medium, and (3) 
low.

• Less likely interpretations were high matches if they were within the top 5 
diagnoses to fit the statement. These were the most obvious interpretations.

• Less likely interpretations were medium matches if they were further down the 
bar of potential interpretations. They still were relevant to the findings and made 
sense as being less likely given the absence of the finding of interest, but are less 
obvious and fall outside of the top 5 diagnoses.

• Less likely interpretations were low matches if the interpretation was relevant to 
the findings, but was an exceedingly rare diagnosis to make it of low value to 
mention as an interpretation.

Irrelevant

Output was judged as “irrelevant” if it was not related to the finding of interest or the 
structure that the finding of interest is referring to.
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E.2 Presence of Hallucination
Lastly, no matter the rating of relevance, presence or absence of hallucination was noted. 
It was possible to have a relevant but unlikely interpretation with high degree of fit with 
the finding, but a hallucination that does not appear in the original findings was added. We 
therefore evaluate whether each interpretation contains hallucinations.

The results are shown in Table 7. The models listed contain a large proportion of 
hallucinated content especially for MLE and BRAINSTORM. We examined what these 
hallucinations look like. We found that in the most cases, models hallucinate about 
the findings (generating some findings that do not actually written in the report) and 
concatenate those hallucinated findings after their interpretations. For examples, a generated 
interpretation would be “an acute infarction although this is limited by the presence of 
contrast enhancement”, “intracranial abscess although this is limited by the presence of 
significant soft tissue swelling”, or “blood products in the ventricular system as seen on 
prior CT.”

However, unlike other text generation tasks such as text summarization where hallucinations 
are hard to identify, hallucinations in MRIINTERPRET follow a pattern of interpretation 
followed by the non-existent findings. Although future work could work on how to 
directly generate interpretations without hallucination, a rule-based heuristics can remove 
the majority of hallucinations in the current version of our system.

Table 8:

Examples of generating less likely hypotheses across different methods on ART.

O1: Riley went to the store with her mother.

O2: Riley wore her cowboy boots to school the next day.

MLE-LL Riley’s mother bought her cowboy boots.

 + CD (τCD = 0.5) Riley had bought cowboy shoes that she had not worn before.

 + CD (τCD = 1.0) Her mother bought a new cowboy shirt for Riley.

 + CD (τCD = 1.5) Riiley got her new cowboy boots torn.

 + DEXPERTS (α = 0.1) Riley’s mother bought her cowboy boots.

 + DEXPERTS (α = 0.5) Riley’s mother bought her cowboy boots.

 + DEXPERTS (α = 1.0) Riley didn’t have cowboy boots.

BRAINSTORM Riley bought a pair of cowboy boots for her mother.

 + CD (τCD = 0.5) Rice bought cowboy hats with her money and jeans.

 + CD (τCD = 1.0) Rice’s mother bought her a pair of cowboy boots to wear to school next to her cowboy 
outfit.

 + CD (τCD = 1.5) Her mom bought her a new pair of cowboy boots.

 + DEXPERTS (α = 0.1) Riley’s mother bought her a pair of cowboy boots. Riley hated them.

 + DEXPERTS (α = 0.5) Riley bought a pair of cowboy pants.

 + DEXPERTS (α = 1.0) Riley bought a pair of cowboy pants.

QUARK Riley’s mother bought her cowboy boots at the store and Riley hated them.

Tang et al. Page 18

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2023 September 11.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Table 9:

Examples of generating less likely hypotheses across different methods on E-CARE.

Premise: The whole kitchen was burnt down more quickly.

Ask for: less likely cause

MLE-LL The whole kitchen was burnt down more quickly.

 + CD (τCD = 0.5) Tom poured water in the pan of acid.

 + CD (τCD = 1.0) There was a big thunderstorm yesterday.

 + CD (τCD = 1.5) There is a big storm outside.

 + DEXPERTS (α = 0.1) The whole kitchen was burnt down more quickly.

 + DEXPERTS (α = 0.5) The fire in the kitchen spread outwards.

 + DEXPERTS (α = 1.0) There are more and more fires in this place.

BRAINSTORM Tom put a lot of fuel on the fire.

 + CD (τCD = 0.5) Tom poured a bucket of water to a sink which has a high temperature.

 + CD (τCD = 1.0) There was an accident at night.

 + CD (τCD = 1.5) Tom poured gasoline to the stove.

 + DEXPERTS (α = 0.1) There is a fire in the kitchen.

 + DEXPERTS (α = 0.5) The whole kitchen was filled with smoke.

 + DEXPERTS (α = 1.0) Tom’s kitchen is leaking water.

QUARK The fire in the kitchen was very hot.

F: Indicator Unification for MRIINTERPRET

We narrowed down the indicators to a smaller set to ensure that our model sees sufficient 
data for each indicator during training. The indicator mappings are shown in Figure 9 and 
10. We also include the way we flip these indicators for the margin loss objective.

G: Example of generated outputs
We show examples of generated outputs for both everyday commonsense reasoning datasets 
in Table 8 and 9.

H: Implementation Details

H.1 Significance Test
We perform a paired bootstrap test for each result by comparing to MLE-LL. We highlight 
results that are better at 0.05 level of significance.

H.2 Computing Infrastructure
We use BART from HuggingFace Transformers (Wolf et al., 2020), which is implemented in 
the PyTorch framework.
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H.3 Training Details
We fine-tune BART-Large (400M parameters) with 1 NVIDIA RTX A6000 GPU on all 
experiments and it converges in 2 epochs. We use AdamW as our optimizer with adam 
epsilon set to 1e-8. Learning rate is set to 5e-5 with linear schedule warmup. There is no 
warm-up step.

H.3.1 Everyday Commomsense Reasoning

We initialize the model from facebook/bartx–large. The batch size is set to 64 if only 
using MLE objective and 42 otherwise. We set maximum input length to 100 and maximum 
output length to 64. Most text should fit into these lengths. The average training time for 
each model is around 0.8 GPU hours if only using MLE objective and 1.5 GPU hours 
otherwise.

H.3.2 MRIINTERPRET

We initialize the model from GanjinZero/biobart–large (Yuan et al., 2022). The batch 
size is set to 32. We set maximum input length to 256 and maximum output length to 60. 
Most text should fit into these lengths. The average training time for each model is around 
0.8 GPU hours if only using MLE objective and 1.2 GPU hours otherwise.

H.4 Hyperparameter Setups
BRAINSTORM

For the margin loss ℒmargin  (Equation (2)), we chose m within in the range of 1 × 10−3 and 

1 × 10−2 and set it to 0.005 in the log space as it works well throughout our experiments. ws

and wm are set to 1.0 and 10.0, respectively, as they achieve the best result on the validation 
set.

QUARK

We follows the default parameter setups in the original work with 6000 training steps for 
both commonsense reasoning datasets.

Decoding

We use diverse beam search for all experiments with diversity penalty set to 1.0. We set 
τCD in CD from 2 × 10−1 to 1 × 103, and α in DEXPERTS from 1 × 10−3 to 1. We keep the 
recommended values for the remaining hyperparameters.
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Figure 5: 
Annotation Interface (I) for ART.
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Figure 6: 
Annotation Interface (II) for ART.
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Figure 7: 
Annotation Interface (I) for E-CARE.
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Figure 8: 
Annotation Interface (II) for E-CARE.

Figure 9: 
Unifying “likely” indicators in MRIINTERPRET.
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Figure 10: 
Unifying “less likely” indicators in MRIINTERPRET and how we map flipped indicators.
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Figure 1: 
Examples from MRIINTERPRET and E-CARE datasets. The task is to generate interpretations 
or hypotheses that humans would consider to be “less likely” to happen but still relevant to 
the context. “+” and “~” represent likely and less likely outputs, respectively.
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Figure 2: 
An overview of BRAINSTORM using an example from E-CARE, which consists of three 
objectives. zx, i is the encoder representation of the input x conditioned on an indicator 
i . zy+, zy  and zŷ are the decoder representations of positive, hard negative, and other negative 
target sequences within the same batch, respectively. The ℒsim  objective is highlighted in red 
where it requires both likely and less likely data.
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Figure 3: 
Fraction-perplexity trade-off of decoding-time methods CD and DEXPERTS on ART test set 
and original E-CARE validation set (our test set). We show the trade-off across various 
values for τCD in CD> and α in DExperts. Both CD and DExperts can improve the fraction of 
less likely hypotheses, but at a very high cost to perplexity.
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Table 1:

Requirements for various methods. +/ / pair means a method requires y+/y / both for x. QUARK can take any 
type of data as inputs but requires a trained classifier. We use BRAINSTORM′ as an alternative of BRAINSTORM if 
y+ and y  are not both available for x. DEXPERTS and CD require that both y+ and y  could be available for x
(which is not the case for MRIINTERPRET, Section 7).

Methods Data
Need Clf.

+ ~ pair

Training-time Method

 MLE-LL ✓

 MLE ✓

 QUARK ✓ ✓ ✓ ✓

 BRAINSTORM ✓

 BRAINSTORM′ ✓ ✓

Decoding-time Method

 DEXPERTS ✓

 CD ✓
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Table 2:

Performance of generating less likely hypothesis on ART test set and E-CARE validation set. For DEXPERTS and 
CD, we list the fractions where models reach minimum PPL. The ablation study of our proposed method is 
shown at the bottom.

ART E-CARE

Model Frac (↑) PPL (↓) Frac (↑) PPL (↓)

MLE 54.1 42.6 54.5 80.4

MLE-LL 56.6 42.5 52.6 84.8

+ CD 59.9 49.8 63.4 107.3

+ DEXPERTS 56.2 51.7 57.2 108.3

BRAINSTORM 79.4 40.7 58.1 69.2

+ CD 79.7 50.2 67.2 88.1

+ DEXPERTS 79.0 51.5 58.1 89.3

QUARK 85.9 27.5 68.2 80.8

BRAINSTORM

− ℒmargin 69.3 44.9 54.6 73.2

− ℒsim 58.2 52.6 53.2 83.7

BRAINSTORM′ 58.3 52.0 55.1 71.2
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Table 4:

Human Evaluation on MRIINTERPRET. Results are shown as percentages. We evaluated 30 × 5 = 150 less likely 
interpretations generated from each model and 30 less likely interpretations from human reference. Results 
show that our proposed model successfully shifts the distribution of generated interpretations further toward 
the tail of the “relevant but less likely” category but still generates relevant diagnoses.

Model Likely Less likely Irrel.

High Med. Low

MLE-LL 6.7 40.7 21.2 14.7 16.7

MLE 7.3 50.0 22.1 13.3 7.3

BRAINSTORM′ 6.7 42.0 32.6 8.7 10.0

Reference 3.3 76.7 13.4 3.3 3.3
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