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1. Introduction

In recent decades, there has been intense activity on the algebraic and analytic prop-
erties of the Bloch and Fermi varieties of periodic Schrédinger operators. Such properties
are related to many problems of interest, including the absence of embedded eigenvalues
in continuous settings [18] and discrete settings [19,22], the existence of eigenfunctions
of unbounded support in locally perturbed periodic media [31], properties of spectral
band functions [22], inverse spectral problems [10,24-27], quantum ergodicity [21,28],
flat bands [1,14,15,29], and ballistic motion [5,6,8]. For additional information and back-
ground see, e.g., the surveys [16,17,23].

The study of irreducibility of Fermi and Bloch varieties started about 30 years ago.
Bétting, Gieseker, Knorrer, and Trubowitz studied this question for periodic Schrédinger
operators in dimensions d € {2,3} by compactification methods [2,3,10]. When d = 2,
the irreducibility of the Bloch variety was proved by Béttig [2]. In [10], Gieseker, Knorrer
and Trubowitz proved that the Fermi variety is irreducible except for finitely many values
of \. When d = 3, Béttig proved that the Fermi variety is irreducible for every X [3].

For continuous periodic Schréodinger operators, Knoérrer and Trubowitz proved that
the Bloch variety is irreducible (modulo periodicity) when d = 2 [13]. When the periodic
potential is separable, Béattig, Knorrer and Trubowitz proved that the Fermi variety at
any level is irreducible (modulo periodicity) for d = 3 [4].

For further developments on these topics, see [20] for the case of planar periodic graphs
and [7] for a work which explores the connection with discrete geometry.

Recently, one of the authors introduced a novel approach to study the irreducibility of
polynomials, obtaining several new results for periodic operators of the form —A +V on
2 (Zd). In this case, Liu proved that for d = 2, the Fermi variety is irreducible at every
energy level A except for, possibly, the average energy level. He also proved that when d >
3, the Fermi variety is irreducible for every level A [22]. In particular, for such operators
it follows that the Bloch variety is irreducible in arbitrary dimension [22]. The results in
[22] provide a complete proof for conjectures about the irreducibility of Fermi and Bloch
varieties in the discrete settings, as discussed in numerous articles [3,4,10,13,16,18].

On a technical level, the approach in [22] can be divided into several steps.

1. Show that the variety associated with every irreducible factor contains certain sin-
gular points in the Riemann sphere.

2. Calculate the asymptotics (tangent cones after changing coordinates of variables) of
the Fermi variety at those singular points.

3. Prove that the asymptotics themselves are irreducible.

4. Use degree arguments to complete the proof.

Our previous work [9] studied the Bloch variety associated to certain Z9-periodic
graphs and Schrodinger operators given by the sum of a multiplication operator (the
potential) and a Toeplitz operator (governing the site-to-site interactions). Following the
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approach outlined above, we introduced new ideas to study the Bloch varieties associated
to such operators on single-vertex models, that is, Z?periodic graphs in which the action
is transitive on the vertices (i.e., there is a single vertex orbit under the Z? action).
Compared to the irreducibility of Fermi varieties, we were able to work with asymptotics
that also depend on the spectral parameter A\ in a specific way. As a result we proved
the irreducibility of Bloch variety for a large family of periodic graph operators [9].

The key idea in both works [9,22] is to find a way to reduce the problem to one in
which the potential disappears. Indeed, the dependence of the full dispersion relation on
the potential can be very delicate, so this is exactly the role of the asymptotic terms. In
both cases, the approach is to expand the dispersion relation in terms of the symbol of the
Toeplitz operator governing the site-to-site interactions. However, there are a couple of
drawbacks to their results. First, [22] only focuses on single-vertex models; many models
of physical interest such as graphene, the Lieb lattice and Kagome lattices and others do
not fall into the single-vertex category. Secondly, the arguments in [9] are only effective in
studying irreducibility of the dispersion relation itself (equivalently, irreducibility of the
Bloch variety). However, the most interesting irreducibility results are for the dispersion
relation with fixed energy, which corresponds to the Fermi variety. The present paper
thus develops a method to study the dispersion relation at fixed energy. In particular,
the technique here gives new results, even for the single-vertex case.

We now give context to the present manuscript and point out several difficulties
inherent to the setting of many-vertex models which had to be overcome by us in order to
implement the strategy outlined above in steps 1-4. We also comment on the importance
of the models studied here for the mathematics and physics of periodic structures.

Our goal in this note is to present irreducibility criteria which can be applied to many-
vertex models, that is, periodic lattices with more than one vertex in their fundamental
cell. Although the general scheme of the proof follows [22], the framework and its im-
plementation for specific examples are significantly more challenging. The many-vertex
context is typically introduced to interpret physical systems which either contain many
particles or allow for internal degrees of freedom such as spins, energy levels, and other
physical parameters. Therefore, the scope of Hamiltonians which arise in this study, even
when restricted to the Z?periodic setting, is wide and also corresponds to a diverse range
of physical phenomena.

One guiding example for the results presented here is the Lieb lattice, which is ubiqui-
tous in nanostructures and exhibits exotic flat band structures. This lattice is of interest
to ferromagnetism, superconductivity and fractional quantum Hall effects; see [11,12]
and references therein. A finite portion of the two dimensional Lieb lattice with three
vertices in the fundamental cell is shown in Fig. 1 below.

Many-vertex models also naturally arise in the process of graph decoration. While
this process may produce drastic effects on the spectrum of the underlying adjacency
operator, such as the creation of spectral gaps [30], we show below that in many examples
of interest irreducibility is unaffected by decoration procedures. In this way, we are able
to present new irreducibility results for a class of examples of interest to mathematical
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Fig. 1. A finite portion of the two dimensional Lieb lattice. A fundamental cell is shown with dashed lines.
The three orbit classes of vertices under the translation action are represented with different colors (see the
web version of this article.)

physics. We now comment on some technical merits of the approach developed in this
manuscript.

A first contribution of the present work is to present unified criteria for irreducibility.
Indeed, the main results of Theorems 2.4 and 2.6 below include both types of examples
discussed above and also recover known results for single-vertex models in which the
action by Z% has a single vertex orbit. In short, we show that in many situations of
interest the Fermi variety is irreducible for all but finitely many energies. The criteria
obtained here reduces the question of counting irreducible factors of the Fermi variety
to counting factors of suitable asymptotics, which is achieved in Theorems 2.4 and 2.6.

We also emphasize that our main results of Theorems 2.4 and 2.6 are abstract and
possibly of independent interest. Moreover, these results are not only applicable to the
study of irreducibility but, rather, they bound the number of irreducible components of a
polynomial in terms of the number of components of two of its asymptotics whenever the
appropriate conditions are met. Within the realm of applications to irreducibility of the
Fermi variety of periodic operators, the operators considered here are vector-valued, and
their dispersion relations may depend non-trivially on the values of the potential at every
site of the fundamental domain and also on the spectral parameter in a more delicate
fashion than in the single-vertex case. In particular, the potential values and spectral
parameter A appear in the tangent cone asymptotics in a highly nontrivial fashion, in
contrast to [22] and [9], where the asymptotics are independent of the potential and
of the spectral parameter as well. In fact, this dependence explains one of the crucial
technical challenges of this work.

The rest of the paper is laid out as follows. In Section 2, we describe the general
setting of our abstract results. The proofs of those abstract theorems are then given
in Section 3. Since we consider many-vertex models, we need to use the matrix-valued
version of Floquet theory, which we describe in Section 4. Finally, we give our main
applications to Lieb and decorated lattices in Sections 5 and 6, respectively.
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2. Setting and statement of main results
Let C* = C\{0}, C = C U {x}, and for m € N, let C[xy,...,7,] (respectively

ClzT?, ..., zE!) denote the set of polynomials (respectively Laurent polynomials) in m
variables. We denote a typical element of C[z7!, ..., x5! by

flz) = Z cax®, x e (CH™, (2.1)

acZm
where
=zt a0m for x € (C)™, a € Z™.
As usual, f € Clzfl, ..., zE!] is a unit if and only if 1/f € Clzf!, ..., zE!], which in

turn holds if and only if f is a nonzero monomial: f(x) = cz® for some ¢ # 0 and o € Z4.
If f # 0 is not a unit, it is irreducible if it cannot be factored nontrivially. Equivalently,
f is irreducible if and only if f = gh implies that one of g, h must be a unit. Given
fecCi,. .. ], we let

V(f) ={z e (C)™: f(z) = 0}

denote the variety associated to f, and we say that f meetsy € C" if the closure of V(f)
contains y (with the closure being taken with respect to the usual product topology on
C™). Define

Ok:(070a"'a0)7
———

k copies

and notice that f meets (0,,-1,00) if and only if f(£) meets 0,,, where & =
(v1,T2, ..., Tm_1,,,"). We also denote pointwise operations via
TOY=(T1Y1,--, TmYm) and 2O = (2., 22m). (2.2)

m

Given a Laurent polynomial as in (2.1), set

A=A(f)={a € Z™ : ¢, #0}. (2.3)
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We define amin(j) = min,f(j) = min{e; : a € A}, that is, amin(j) is the lowest
exponent of z; in f(x). We also introduce

aO(j) = a07f(j) = max{_amin,f(j)a O} (24)

so that

ap = ag = (ag,r(1),..., a0 r(m)) (2.5)

is the vector in Z7 with smallest length such that f*(z) := z*° f(z) is a polynomial.
The interplay between (ir)reducibility properties of f(z) (as a Laurent polynomial) and
fT(x) (as a polynomial) plays a key role in this manuscript. In particular, let us note
that f is irreducible as a Laurent polynomial if and only if f* has only one irreducible
factor that is not a monomial. This motivates the following definitions.

Definition 2.1. A nontrivial monomial is a Laurent polynomial of the form cz® where ¢ #
0 and « # 0,,. If cz® is nontrivial and a; > 0 for all j, we call cz® a positive® monomial.
The degree of f is defined as deg(f) = a1 + a2 + - - - + . Abusing notation slightly, we
also denote deg(a) = a1 + g + - - - + vy, for the multi-index o = (avy, ..., ayy) € Z™. We
say that f € Clzy,..., %] is a proper polynomial if f has no positive monomial factors.

Definition 2.2. Given a Laurent polynomial
f(x) = Z Ca®?,
«@

let L_ = min{deg(a) : ¢, # 0}. Then, the lowest degree component of f is defined to be
the Laurent polynomial

dega=L_

We sometimes refer to this simply as the lowest component of f.
More generally, if [ € Z™ \ {0}, then the [-degree of 2* and « are defined by

deg;(2%) = deg; () := deg(z!®%) = deg(l ® o) = Z L. (2.6)
j=1

One can then put L_(I) = min{deg;(«) : ¢ # 0} and the component of lowest l-degree
is

L@ =Y ™ (2.7)

deg; (@)=L_ (1)

3 Obviously, positive refers to the vector of exponents, not to the range of values taken by the monomial.
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The component of lowest [-degree has the helpful property that (f_g)l =f 19, SO
(ir)reducibility results for the lowest-degree components can give helpful information
about (ir)reducibility of a given polynomial.

One can also view the lowest degree component of a Laurent polynomial in a geo-
metrical way. While our approach does not rely on the following perspective, it adds
helpful context. The Newton polytope of the Laurent polynomial f is defined to be the
convex hull of the set A(f) given by (2.3). Then, any vector I € Z™ \ {0} determines a

corresponding face of the polytope via

F=ri={yeN(): )= min /0.

The facial polynomial corresponding to the face F is

fr(z) = Z Cax®.

acF

The reader can then check that f, (z) is exactly the Newton polytope facial polynomial
associated with the face Fj.

With the basic definitions, we are now ready to formulate our main results. Let P, Pe
(D[:clil, ..., xE1], and suppose that there exists | € N™ such that

rrm

P(x) = P(z). (2.8)

Let EO be the lowest degree component of ﬁJ“, Eoo be the lowest degree component of
(P(2£))*, where 2 = (21,29, -+ ,Tm—_1,2,,;}). Notice that both hg and hs, are polynomi-
als.

Under these assumptions, there exist hg, hoo € Cl21, ..., Zm] such that
ho(x) = ho(z®"),  Thoo() = hoo(z®")

for example, by [9, Lemma 3.1]. We remark that hg is the component of lowest I-degree
of Pt and hy, is the component of lowest I-degree of (P())™.
For the first result of this note, we will make the following assumptions:

(A1) Each factor of P(x) meets either 0,, or (0,,_1,00).

(A) Both P*(z) and (P(£))" are proper polynomials, in the sense of Definition 2.1.
(A3) ho has py irreducible factors and hs has po irreducible factors.

(As) deg(ho)+deg((hoo(£)))>deg(PT) or deg((ho(&))™)+deg((hoo (2)))>deg((P(2))")

As we shall see in several examples, assumptions (A1)-(A4) can be verified in many cases
of interest.

Remark 2.3. If P (z) and (P(2))" are proper polynomials, then (P(2))* = (P (2))".
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Theorem 2.4. Under assumptions (A1)-(A4), the Laurent polynomial P(x) has at most
p1 + p2 — 1 drreducible components.

Theorem 2.4 will be proved in Section 3. As an immediate consequence we obtain the
following corollary.

Corollary 2.5. If py = p2 = 1, assumptions (A1)—(A4) imply that the Laurent polynomial
P(x) is irreducible.

It the sequel we consider the situation when we have an equality between the degrees,
that is, when assumption (A4) is replaced by

(A}) degho + deg((hoo(#))?) = degP* and deg((ho(2))) + deg((hao(2))) =

deg((P(2))")

Theorem 2.6. Under assumptions (A1), (As), (4s), and (A}y), either the Laurent polyno-
mial P(x) has at most p1 + pa — 1 irreducible components or P(x) has p1 + pa irreducible
components and P+ (z) = Cho(z)(hoo (%)) where C is a constant.

As discussed before, Theorems 2.4 and 2.6 improve the results of [9] in several ways.
First, the approach of [9] is necessarily limited to single-vertex models (that is operators
on graphs with a free Z?-action that acts transitively on vertices), since that manuscript
worked directly with polynomials enjoying a certain expansion in terms of a single fixed
Laurent polynomial and some characters. For more general lattices and especially for
lattices with many points in the fundamental domain, that expansion is not valid, so it
is necessary to deal directly with P rather than p. The abstract result here formulates
conditions purely on asymptotics of the polynomial itself which can be checked directly.

3. Proofs of Theorems 2.4 and 2.6
Before proving our main theorems we will need to collect a few other results.
3.1. Technical lemma
Lemma 3.1. Let P be a Laurent polynomial that satisfies assumptions (A1), (As), and

(As3). Then P has at most p1 + pa irreducible components. Moreover, if P(x) has exactly
p1 + p2 irreducible components then Pt enjoys a factorization of the form

P* = fg. (3.1)

where f € Clxy,...,Tn] meets 0, and does not meet (0,,—1,00) and g € Clzy, ..., Tmn]
meets (0,,—1,00) and does not meet 0,,.
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Proof. Factoring P+ into irreducibles and applying Assumption (A;), we can write

3 a;
P =1111 % (3.2)

i=1j=1

where each fi; is a polynomial that meets 0,, and does not meet (0,,_1,00), each fa; is
a polynomial that meets (0,,—1,00) and does not meet 0,,,, and each f3; is a polynomial
that meets both 0,, and (0,,—1,00). Note by assumption (As) that no f;; can be a
monomial so a; + ag + a3 is the number of irreducible components of both P and of PT.

For each i € {1, 3}, j, let g;; denote the component of ﬁj = fi;(x®!) of lowest degree,
and g;; be such that g;; = g;;(x®"). Let t;;, i € {1,3} denote the number of irreducible
factors of g;;.

Since fi; and f3; meet 0,,, we have that t;; > 1 forall 1 < j < a4 7= 1,3. In
particular,

a;
Ztij Z Q;, 1= ]., 3. (33)
j=1

We also observe that by definition f; ; does not meet 0,,, thus f ;(0,,) # 0.
Since ho(z) = CT[,=, 5 [1jZ, Gij and

ho(z) =C H ﬂgz‘j, (3.4)

i=1,3 j=1

these observations and (3.3) give

a;
a1 + as S Z Ztij = P1. (35)

i=1,3 j=1
Similarly, we find that
as + a3 < po. (3.6)
Combining (3.5) and (3.6), we conclude that
a1 +az+az < ar+az +2a3 < p; + pa. (3.7)

Thus, the total number of components, a; + a2 + a3, is bounded above by p; + ps2, and
(3.7) makes it clear that a1 + ag + ag = p1 + p2 forces az = 0, as desired. O
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3.2. Proofs of theorems

Proof of Theorem 2.4. For simplicity, we assume the first half of Assumption (A4) holds,
that is,

deg(ho) + deg((hoo(#))) > deg(PH). (3.8)

From Lemma 3.1, we conclude that PT(x) has at most p; +ps irreducible factors. Assume
for the sake of contradiction that P*(z) has exactly p; + ps irreducible factors. By
Lemma 3.1 we can write PT = fg, where f is a polynomial that meets 0,, and does not
meet (0,,—1,00) and ¢ is a polynomial that meets (0,,—1,00) and does not meet 0,,. By
definition of Eo and iNLOO and the assumptions on f and g, we have that

f@®) = Culho(w) + fi(x) (3.9)

where each term in fi(z) has degree higher than the degree of hg(z) and

’

9(x") = Ca(hoo () + g1(2))a?, (3.10)
where g1(2) consists of higher order terms of & and ' is a suitable constant, namely,
of = max{aoﬁw(x)(m), Q0,g, (m)},

with g defined as in (2.4). In simple terms, o is defined in a way that z,* is the lowest
power of z,,, appearing in the sum h. (%) + g1(2). Then, letting f(x) = f(z®)

deg P > o + deg(hoo(2)) + deg(f) > deg((hoo(#))T) + deg(ho), (3.11)

which contradicts our assumption (3.8). Therefore, P has at most p; +ps —1 components,
as desired.
The case when deg((ho(£))") +deg((hoo(2))) > deg((P(Z))™) is proved similarly. O

Proof of Theorem 2.6. Assume that P(x) has p; + py irreducible components. We can
follow the proof of Theorem 2.4 to reach the chain of inequalities (3.11). By the first
half of assumption (A}), namely deg ho + deg((hoo(2))F) = deg P, all of these must be
equations hence by (3.9) and (3.10), we have that o’ = a7 and deg(f) = deg(hy).
From the latter, we deduce f; = 0. Similarly, using the second half of assumption (A})

we find that g; = 0, finishing the proof. O
4. Floquet transform in the matrix-valued case

Our main interest in the results contained in Theorems 2.4 and 2.6 comes from appli-
cations to Schrodinger operators, in particular to estimating the number of components
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of the dispersion relation and its restriction to constant energies. The former estimates
the number of components of the Bloch variety and the latter estimates the number of
components associated to the Fermi variety. Before stating corollaries of our general re-
sults, we include some basic terminology and results from Floquet theory in the discrete
case following [9]. For a more complete picture we recommend Kuchment’s survey [16]
and references therein.

Since we are interested in periodic operators on graphs, it will be convenient for us
to discuss the matrix-valued version of the Floquet transform. This is well-known. We
include a summary to fix notation for the reader’s convenience. To that end, fix d € N
and v € N, which here denotes the order of matrices and later will denote the number
of vertex orbits in a given periodic graph. For a set S, we denote by €C¥*° the set of
functions from {1,2,...,v} x S to C.

We then consider the basic Hilbert space

(78,C7) = (v x 7%
d v .
= e NN e D
j=1lezd

Let us now define the operators of interest on this space. Given
{a¥:nez? 1<i,j<v}

such that a* has compact support for each 1 < i,j < v, the associated matrix-valued
Toeplitz operator A : (2(Z%, C¥) — ¢*(Z?, C") is given by

[Ay)(i,1) = ZZal L), 1<i<w, leZ? (4.1)

j=1Uezd

It is helpful to rewrite this in matrix form, especially since we will be describing some
other block decompositions later. More specifically, set 1(1) = [¢(1,1),...,¥(v,1)]T € C¥
for o € £2(Z%,C") and write

al11 all”
A= |
a}’l a;”

and observe that we can rewrite (4.1) as

= > A=), ez (4.2)

l'ezd

To add a potential, we consider V : v x Z? — C bounded and define [V¢](i,l) =
V (i, 1) (i,1) for 1 <i < v and [ € Z%. We are then interested in the operator
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H=A+V. (4.3)

For ¢ € N%, we say that V is g-periodic if* V(j,n+1®q) =V (j,n) forall1 <j<wv
and n,l € Z%. In this case, denote by

W={wez:0<w <qVl<i<d}
its fundamental domain and write I' = {l ® ¢ : | € Z?} for the period lattice. Writing

g = (ql_l7 . ,chl)7 the dual lattice is given by I'* = {{ ® ¢* : | € Z%} = {(é—ll,...,fl—‘;) :
I € Z9}. Let us now define T¢ = R4 /T,

A= vxWx T o €Y Y [ 117G k)P g < o0

=l T
, ©
=@ [ 5
N ||
Td

dk
~ 2 (T, ey .
(3" g

The first version of the Floquet transform is given by 7, ,, : 2(Z4,C") — 4, ,, u U
where

AGw k) = Y e PO (G w £ n o g),
neza

for 1 < j <wv,we W, and k € T? This conjugates H to a decomposable operator
whose action on the kth fiber of 74, ,, is given by the restriction of H to {1,...,v} x W
with boundary conditions

u(j,n+moe q) =™ mOsky (i n) nomeZd 1<j<w. (4.4)

More precisely, for k € T¢, define H (k) on CV*W by

[H (k)ul (i, w)

N

— Vi whGw)+ 3 S S e ) ()
j=lw' eW [ezd

for 1 <i<v, we W. We have the following:

4 recall that © © y = (z1Y1, T2Y2, - - -, TaYd)-
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Proposition 4.1. The operator F,,, is unitary. If V is g-periodic, then
i dk
Fo HFL, = / (E) a7
Td

where H(k) is as in (4.5).
Proof. This follows from a direct calculation. O

For our purposes, the form of H from Proposition 4.1 is not optimal, since the depen-
dence of H (k) on the Floquet multipliers can be highly nontrivial. In order to compute
asymptotic terms, it is useful to have a different version of the Floquet transform that
places the multipliers on a (block) diagonal.

To describe this, let Q = #W = q1q2 - - - q4, and let us consider the vQ-dimensional
vector space C**" which consists of vectors u : {1,2,...,v} x W — C. For k € R, the
corresponding fiber of the Floquet transform .7 (k) : CV*W — C"*W is given by

\F (k) (j, w) = % T em2riwer Hhiny (). (4.6)

new

It turns out that .#(k)H (k).% (k)* takes a simple form: the sum of a block-diagonal
operator that depends only on A and k and a block-operator that depends only on V
(and not on k).

For 1 <14,j < v, define

pij(z) = Z aidzm (4.7)

nezd
and consider p(z) € C"*¥ given by
p11(z) pr2(z) . pu(2)
p(z) = | P ) ) (1.9
() P(z) . pul2).
Given g € N¢ and n € Z<, the vector i, = 1,4 € (C*)? is defined by
ph = e?™ni/a 1 < j<d. (4.9)
Using uy,, as in (4.9), define
D.(n,n") = p(pn ® 2)0p 0, n,n’ €W, (4.10)
where z = (e?™F1 ... e2mika) which we abbreviate as z = exp(2rik).
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The linear operator D, on C**W is then the (block-diagonal) operator D, =
diag(D,(n,n)), that is,

[D:ul(w) = p(pw © 2)u(w), weW, (4.11)
where similar to before, we denote u(w) = [u(1,w),...,u(r,w)]T € C”. Equivalently,
choosing an enumeration W = {wi,...,wg}, one can write D, as a block-diagonal
matrix

P, © 2)

Py, © 2)
D, = . (4.12)
p(MwQ O 2)

with v x v blocks on the diagonal and in which all unspecified blocks are zero.
Writing the discrete Fourier transform of a g-periodic function ¢ : Z% — C on I'* by

727nln *
q = _E e gn, lel™,

nEW
we define B = By by
B(n,n') = diag (V (¢ ©m-n)),....V,(¢" @(n—n’))), n,n €W, (4.13)
where we recall ¢* = (¢; ', .. .,qgl).

The corresponding operator B = By on C**W is given in block matrix form in a
similar fashion to D,:

[Byu](w Z By (w, w")u(w"). (4.14)
w' eW
Enumerating W = {w1,...,wq} as before, one can write By as the @ x @ block matrix
B(wi,w) Blwi,wa) -+ Blwi,wg)
By = B(w%’ o) B(w%’wQ) B(wQ.’ va) (4.15)
Blwgwi) Blug,wa) - Blug,uq)

where each block is v x v.

Proposition 4.2. Assume V is q-periodic. Then

F(k)H(k)Z (k)* = D, + By (4.16)



J. Fillman et al. / Journal of Functional Analysis 286 (2024) 110286 15

for each k, where D, and By are as above. In particular, writing % = fTEFBd F(k), one
has

dk

_— 4.1
T (4.17)

57l
fﬁﬁ* — /(Dexpgﬁik Jer)
¢

Proof. This follows from a calculation almost identical to that in the proof of [9, Propo-
sition 5.3]. O

Proposition 4.3. Assume V is q-periodic, and let

P(z,\) = det(D, — By — AI), (4.18)

where D, and By are as before. For any w € W,

Pl @ 2, A) = Pz, A). (4.19)
In particular, P(z,\) = P(29%,\) for a suitable Laurent polynomial P.
Proof. For w € W, let T}, : C**W — C"*W denote the operator
[Twul(j,w') = u(i{w' —w}), 1<j<v, weW,

where for n € Z?, {n} denotes the unique element of W that is equivalent to n modulo
I'. By direct calculations, Ty, D, T, = D, - and T, ByT,, = By, so

Pty © 2,A) = det(T (D, + By — A\)Ty) = P(z, A),
as desired. The second statement then follows immediately from [9, Lemma 3.1]. O

Let us conclude this section by pointing out that the framework described above
includes all finite-range translation-invariant operators on periodic graphs in a canonical
fashion.

More precisely, recall that a graph G consists of a nonempty set V of vertices and £
a set of unordered pairs of elements of V, called edges. A Z-periodic graph is a locally
finite graph G on which Z? acts freely and cocompactly. We denote the action of Z¢
additively, so the assumption that Z¢ acts freely can be expressed as

v+n#v, VYn#O0y
The translations v — v + n induce unitary operators U, : £2(V) — ?(V) via [U, f](v) =

f(v+n). One says that a bounded operator A on ¢2(V) is translation-invariant if AU,, =
U, A for all n € Z°.
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Consider a translation-invariant operator A and choose a fundamental domain V; so
that V = J,,cza (Vs +n). Let v = #Vy, and write Vy = {v1,...,v,}. Thus, any v € V
can be written as v; + n for some j € {1,2,...,v} and n € Z%.

We further assume that A has finite range in the sense that there exists » > 0 such
that

(0v;4ns Ady, ym) =0 whenever [n —m| > r. (4.20)
The map ® : 2(V) — (3(Z4,C") given by

[@f](5,n) = f(v; +n)
is unitary, and ®A®* is the matrix Toeplitz operator corresponding to coefficients a®/
given by
al = (8,4, Ady,), (4.21)

n

as above.
5. Applications to the Lieb lattice

The Lieb lattice in dimension d = 2 is the graph with vertices V consisting of all
n € 72 such that n; and no are not both odd. One then connects a pair of vertices n
and m by an edge whenever ||n —m||; = 1. Compare Fig. 1; there, the black vertices are
those that belong to 27 & 27.

We let A denote the adjacency operator on the Lieb lattice and the corresponding
operator A + V acting on £%(Z?,C3), where V : Z? — C? is g-periodic. Let us exploit
the connection discussed in the previous section to write this as a matrix-valued periodic
operator. Referring to Fig. 1, let w1, 19, and w3 respectively represent the value of
W € L2(Z% C3) at the corresponding black, red, or blue vertex respectively. Writing
{e1,es} C 72 for the standard basis and defining A4, on ¢?(Z?) by

[Ase,¥](n) =(n) +(nte;), o e *(Z?),
the reader can check that

[A—e,2](n) +[A—e,3](n)
[AY](n) = [Ac,91](n) : (5.1)
[Ac,¢n](n)

In matrix form:

0 A, A,
A=|A, 0 0 . (5.2)
A, 0 0
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Let us now use Proposition 4.2 to write the Floquet matrix of A + V, with A as in
(5.1), as the 3Q x 3Q matrix D, + By.
By (4.8) and (5.2), p(z) is given by

0 14zt 142"

p(z) = [1+2x 0 0 (5.3)
1+ Z9 0 0
S0
det(p(z) = M) = (=A)(z; '+ 21+ 25 4+ 20 + A2+ 4) (5.4)

Notice that the factor of A\ shows the existence of a flat band of the operator A. Indeed,
one can check that

+1 n=1(0,1), (2,1)
Y(n) =< -1 n=(1,0), (1,2) (5.5)

0 otherwise

defines an eigenfunction of A with eigenvalue 0 having compact support.
Recall that the matrix B = By is a 3Q) x 3Q matrix given by (4.13) and (4.15) with
blocks of the form

f/:(n —n') 0 0
B(n,n') = 0 Va(n —n') 0 n,n' € W. (5.6)
0 0 Va(n—n')

In comparison to the adjacency operator of 72, the inclusion of extra vertices ac-
counts for additional interactions, which increases the complexity of the study of the
Fermi variety in a substantial fashion, especially in the presence of a periodic poten-
tial. For nontrivial choices of V', counting the number of irreducible components of
P(z) = det(D, + By — M) and the related P(z) is significantly harder due to the
contributions from the off-diagonal blocks. We shall explain below how irreducibility of
the latter follows from Theorem 2.6 for all but finitely many values of A.

Before proving the main irreducibility result for the Lieb lattice, we will need a suitable
technical result about the asymptotic terms. Let us fix some notation. Fix A € C. Let
P(z) = det(D.+By —\I) with D, and By given by (4.11) and (4.15). By Proposition 4.3,
there is a polynomial P such that P(z) = P(294). Define ho ho, hoo and heo as in
Section 2.

Since we are interested in the Fermi variety, we want to consider P as a polynomial
in the variable z with X fixed. Thus, we generally write P(z) unless we need to explicitly
mention the dependence on A, in which case we write P(z; \), with similar notation for
ho, hoo, and so on.
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Lemma 5.1. If ged(q1,q2) = 1, then hg and hoo are irreducible for all but finitely many
A

Proof. We will only prove irreducibility of hg since the result for ho, is analogous. From
the structure of D, and By one readily checks that the lowest degree term of P(z) =
det(D, — By — M) is of the form

ro(z) = Z Ca?®

where the summation runs over those o € [—q1g2,0]? N Z? satisfying o + g = —Q =
—q1q2. Moreover, since ro(z) = ro(pn @ 2) for each n € W, the only terms in 7¢(z) that
can have ¢, # 0 are the terms with a; = my¢; and as = mags for integers —go < mq < 0
and —q1 < msg < 0. Since ged(gi, g2) = 1 the only solutions to

miq1 + maq2 = —q1q2

within the given range are (mq,ms) = (—g2,0) and (mq,ms) = (0, —q1). In particular,

ro(z) = czzl_Q + cle_Q,

where ¢; = ¢;(X) for j = 1,2. From this, it follows that
ho(2) = (2122)%r0(2) = 129 + 225

We shall see below that ¢q(\) and c2(\) are polynomials in A that do not vanish iden-
tically. Consequently, ho(z) = c12{ + c223" is irreducible for all but finitely many A;
indeed, it is irreducible precisely for those A for which ¢; (M) and ¢3(\) are both nonzero.
To finish the proof we now show ca(\) # 0 (the argument for ¢;(\) is analogous) by
expanding det(D, + By — AI) using permutations o : {1,...,3Q} — {1,...,3Q}. Note
that the highest degree term in ca()\) is achieved precisely by the permutation 7 given
by

j+1 ifj=1mod3
T(j)=<j—1 ifj=2mod3, (5.7)

J otherwise

which yields a term in det(D, + By — AI) of the form (—1)Q(‘//;(0) - )\)szQ. It follows
that c2(\) is a polynomial of degree @ in A which completes the proof. O

Lemma 5.2. Let P(z) = det(D, + By — ) as above with ged(qy, g2) = 1. Let P(z) satisfy
P(z) = P(299) for all z € C. Then, for all but finitely many values of \, each factor of
P(z) meets either (0,0) or (0,00).
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Proof. Assume z(n) = (z21(n), 22(n)) € V(P) with z(n) — y = (y1,y2) € T and y1 =0.
For all but finitely many A, this forces yo € {0,00}. Indeed, if yo € C*, then we follow
the proof of Lemma 5.1 to conclude that

~ 1

Pla(n) = () 21(n)@ +O0(z1(n)"@7Y).

Whenever c()\) # 0, this gives P(z(n)) — oo, which is inconsistent with z(n) € V(P).

Since z(n) — (0,0) (respectively, z(n) — (0,00)) if and only if (2(n))®? — (0,0)
(respectively, (2(n))®? — (0,00)) it readily follows that each factor of P(z) meets either
(0,0) or (0,00). O

Corollary 5.3. If gcd(q1,q2) = 1 the Fermi variety of the Schrodinger operator A+V on
the Lieb lattice given by (5.1) is irreducible for all but finitely many X\ € C.

Proof. In view of the discussion in previous proofs, when the periods ¢; and ¢o are
coprime (z129)% det(D, + By — M) has a lowest degree term of the form

Eo(z) = 001()\, Vv)Zi2 + C()Q()\7 V)zgg (58)

where each cg;(A, V') is a polynomial of degree @ in A that in principle also depends on
V(1) for all [ € W. In particular, there exists a finite set Zy such that for A € C\ Zy
Eo(z, A) does not have any monomial factors. Similarly (or by symmetry considerations)
one checks that hieo(2) = c11(A, V)Z? + 12 (A, V)ZQQ where each ¢1;(A, V) is a polynomial
of degree @ in A and therefore that (heo(2))T = c12(A) 4 c11(V)2228. Tt follows that
(hoo(2)) also does not have any monomial factors for A € C\ Z. In particular

deg ho(z) + deg(hoo(2))T = deg PT(2) = 3Q.

Therefore, for A € C\ Zp the assumptions of Theorem 2.6 are met. We conclude that if
P(z) is reducible then we must have

(zlzz)Q’ﬁ(z) = K[cm()\)zQQ + 002()\)2?} (5.9)
X [e12(N) + e (V) 2229, (5.10)

where K = K(\) is a rational function of \. We will show that the above setting leads
to a contradiction for all but finitely many A. Indeed, the highest power of A on the
left-hand side of (5.9) equals 3Q). Since each of the polynomials ¢1(A), c2(M\) has degree
Q, we conclude from this that K (\) ~ A% in the sense that

o KO _
N T
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Fig. 2. A Z? decoration by triangles.

However, this implies that the coefficient of zQQ in the right-hand side is of the order of
A3@ whereas the coefficient of 252 on the left-hand side is of the order of A9, according to
the proof of Lemma 5.1. Thus, this leads to a contradiction unless A belongs to a certain
algebraic set. In particular, P(z) is irreducible for all but finitely many values of A. O

6. Applications to decorated lattices

Another application of the main results of this note concerns certain graph decorations
of Z% by polygons of v € N vertices. Let G = (V, £) denote the graph obtained from Z?
by attaching a cyclic graph of order v to each n € Z®. More precisely, the vertices of G
are given by V = 7Z x Z, and edges described as follows:

e For any n,n’ € Z4 with ||n — n’||; = 1, there is an edge from (n,0) to (n’,0)
e For any n € Z¢ and j € Z,, there is an edge from (n, 5) to (n,j+1) and to (n,j—1).

Fig. 2 illustrates this in the case d = 2 and v = 3. The black vertices represent (n,0)
with n € Z? while the blue vertices represent (n,+1). The case when v = 2, where the
graph is decorated by lines, is one of the examples of graphs studied by Aizenman and
Schenker to create spectral gaps, see [30, Figure 2.

We now let A denote the adjacency operator on £2(V). As in the previous section,
one can write this a periodic operator with matrix coefficients. For ¢ € ¢2(Z%, C¥) we
identify the coordinate function v (j,n) with the value of ¢ on (n,j — 1 mod v). With
these definitions, one has that

[AY1](n) +9pa(n) + 2y (n)
Y1(n) + ¥3(n)

Yoo (n) + ty(n)
'(/Ju—l(n) + 1/’1(”)

where A in the top row represents the adjacency operator on ¢2 (Zd). A portion of the
example where d = 2 and v = 3 is presented in Fig. 2.
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This time, the diagonal blocks of the Floquet matrix are generated by

_bo(Z) 1 17
1 0 1
1 1
p(z) = N ; (6.2)
1 0 1
L 1 1 0l

where bo(2) = 21 +2; ' +...+24+2; " and all unspecified entries are 0. We now consider
the operator H = A 4+ V with a g-periodic potential V : Z¢ — C.

We will check below that the dispersion relation P(z) = det(D, + By — M) of A+ V,
with A asin (6.1) and V' ¢-periodic, satisfies the assumptions of Theorem 2.4 (respectively
2.6) whenever d > 2 (respectively d = 2) for all but finitely many A € C. Define P, 7LQ,
ho, iNLOO, and heo as in Section 2.

Note that, under the above definitions

ho(2: ) = hoo (% 0) = s(\) (21 20)? T 70(in © 2) (6.3)
neWw

1

with ro(z) = 277! + ... + z; ' and s()\) a polynomial in \ of degree (v — 1)Q.

Consequently,

(Moo (£ M) T = s\ (21 2a-1)? ] roc(tn © 2) (6.4)
new

with reo(2) = 79(2) = 21 ' +...+ 2, + 24 and s()) is as above. In particular, whenever
s(\) # 0 we have that ho(z) and hs(2) are nonzero.
Recalling that

ho(2) = ho(299) and heo(2) = heo (2°9), (6.5)
we have the following.
Lemma 6.1. If gcd(qy,...,qq4) = 1, then hy and hs given by (6.3), (6.4), (6.5) are irre-
ducible for all but finitely many A. The finite set of exceptional \’s is precisely the set
on which s(A) = 0.
Proof. See [22, Lemma 5.1]. O
Lemma 6.2. Let P(z) = det(D. 4+ By — M), and let P(2) satisfy P(z) = P(z®9) for all

z € C. Then, for all but finitely many values of \, each factor of P(z) meets either 04
or (04-1,00).
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Proof. If 73(2) = 0 with (21,...,24-1) — 04—1 then we must have that z4 — 0 or
zq — 00 since otherwise we would have P(z) = s()\)(zfQ +...+ zd:Ql) + lLo.t with
s(A) the polynomial from (6.3). In particular whenever s(\) # 0 this would imply that

P(z) — oo, which is a contradiction. It follows as in the proof of Lemma 5.2 that each
factor of P(z) meets either 04 or (04—1,00). O

Corollary 6.3. Let d > 2 and assume that ged(q, - . .,q4) = 1. Then the Fermi variety of
A+ V, with A given by (6.1) is irreducible for all but finitely many X € C.

Proof. If d > 2 then this result follows from Theorem 2.4. Indeed, in this case we have
that deghg(z) = (d — 1)Q and deg((heo(2))T) = Qd by (6.3) and (6.4). In particular,

deg ho(2) + deg((hoo(£))T) = (2d — 1)Q > (d + 1)Q = deg P (2),
which verifies assumption (A4) as d > 2. Moreover, Lemma 6.1 implies that p; = ps = 1.

For d = 2, we have (2d — 1)Q = (d + 1)Q hence the above considerations imply
assumption (A}) so one only needs to check that the factorization

PH(zA) = K(\ho(2; ) (hoo (23 1))
cannot happen. In fact, this would imply that

(2122)@ det(D. + By — A)

— f(()\)s2()\)(2’122)sz2 ( H ro(tn © Z)) ( H Too(in © z)) .

new new

(6.6)

Let us show that this can happen for at most finitely many A € C. First, notice that
ged(qi, g2) = 0 implies that ro(u, © (21, —21)) is not identically zero for any n € W\{04}.
In particular, setting zo = —z; and expanding 75(21, —z1; ), we see that the highest
power of z; in P(z1, —z1; A) is of the form ¢(A)2% ™" where ¢()) is a polynomial of degree
v+ (v—1)(Q —1) in A\. On the other hand, if (6.6) holds for some A, using 7o (21, —21) =
% + %n =0, yields

ﬁ+(21, —21; )\) =0, Vz; € C.

In particular (6.6) can only be true when ¢(\) = 0, which in turn is true only for finitely
many A. Therefore, P(z; ) is irreducible for all but finitely many A. O
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