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1. Introduction

In recent decades, there has been intense activity on the algebraic and analytic prop-
erties of the Bloch and Fermi varieties of periodic Schrödinger operators. Such properties 
are related to many problems of interest, including the absence of embedded eigenvalues 
in continuous settings [18] and discrete settings [19,22], the existence of eigenfunctions 
of unbounded support in locally perturbed periodic media [31], properties of spectral 
band functions [22], inverse spectral problems [10,24–27], quantum ergodicity [21,28], 
flat bands [1,14,15,29], and ballistic motion [5,6,8]. For additional information and back-
ground see, e.g., the surveys [16,17,23].

The study of irreducibility of Fermi and Bloch varieties started about 30 years ago. 
Bätting, Gieseker, Knörrer, and Trubowitz studied this question for periodic Schrödinger 
operators in dimensions d ∈ {2, 3} by compactification methods [2,3,10]. When d = 2, 
the irreducibility of the Bloch variety was proved by Bättig [2]. In [10], Gieseker, Knörrer 
and Trubowitz proved that the Fermi variety is irreducible except for finitely many values 
of λ. When d = 3, Bättig proved that the Fermi variety is irreducible for every λ [3].

For continuous periodic Schrödinger operators, Knörrer and Trubowitz proved that 
the Bloch variety is irreducible (modulo periodicity) when d = 2 [13]. When the periodic 
potential is separable, Bättig, Knörrer and Trubowitz proved that the Fermi variety at 
any level is irreducible (modulo periodicity) for d = 3 [4].

For further developments on these topics, see [20] for the case of planar periodic graphs 
and [7] for a work which explores the connection with discrete geometry.

Recently, one of the authors introduced a novel approach to study the irreducibility of 
polynomials, obtaining several new results for periodic operators of the form −Δ + V on 
�2 (Zd

)
. In this case, Liu proved that for d = 2, the Fermi variety is irreducible at every 

energy level λ except for, possibly, the average energy level. He also proved that when d ≥
3, the Fermi variety is irreducible for every level λ [22]. In particular, for such operators 
it follows that the Bloch variety is irreducible in arbitrary dimension [22]. The results in 
[22] provide a complete proof for conjectures about the irreducibility of Fermi and Bloch 
varieties in the discrete settings, as discussed in numerous articles [3,4,10,13,16,18].

On a technical level, the approach in [22] can be divided into several steps.

1. Show that the variety associated with every irreducible factor contains certain sin-
gular points in the Riemann sphere.

2. Calculate the asymptotics (tangent cones after changing coordinates of variables) of 
the Fermi variety at those singular points.

3. Prove that the asymptotics themselves are irreducible.
4. Use degree arguments to complete the proof.

Our previous work [9] studied the Bloch variety associated to certain Zd-periodic 
graphs and Schrödinger operators given by the sum of a multiplication operator (the 
potential) and a Toeplitz operator (governing the site-to-site interactions). Following the 
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approach outlined above, we introduced new ideas to study the Bloch varieties associated 
to such operators on single-vertex models, that is, Zd-periodic graphs in which the action 
is transitive on the vertices (i.e., there is a single vertex orbit under the Zd action). 
Compared to the irreducibility of Fermi varieties, we were able to work with asymptotics 
that also depend on the spectral parameter λ in a specific way. As a result we proved 
the irreducibility of Bloch variety for a large family of periodic graph operators [9].

The key idea in both works [9,22] is to find a way to reduce the problem to one in 
which the potential disappears. Indeed, the dependence of the full dispersion relation on 
the potential can be very delicate, so this is exactly the role of the asymptotic terms. In 
both cases, the approach is to expand the dispersion relation in terms of the symbol of the 
Toeplitz operator governing the site-to-site interactions. However, there are a couple of 
drawbacks to their results. First, [22] only focuses on single-vertex models; many models 
of physical interest such as graphene, the Lieb lattice and Kagome lattices and others do 
not fall into the single-vertex category. Secondly, the arguments in [9] are only effective in 
studying irreducibility of the dispersion relation itself (equivalently, irreducibility of the 
Bloch variety). However, the most interesting irreducibility results are for the dispersion 
relation with fixed energy, which corresponds to the Fermi variety. The present paper 
thus develops a method to study the dispersion relation at fixed energy. In particular, 
the technique here gives new results, even for the single-vertex case.

We now give context to the present manuscript and point out several difficulties 
inherent to the setting of many-vertex models which had to be overcome by us in order to 
implement the strategy outlined above in steps 1-4. We also comment on the importance 
of the models studied here for the mathematics and physics of periodic structures.

Our goal in this note is to present irreducibility criteria which can be applied to many-
vertex models, that is, periodic lattices with more than one vertex in their fundamental 
cell. Although the general scheme of the proof follows [22], the framework and its im-
plementation for specific examples are significantly more challenging. The many-vertex 
context is typically introduced to interpret physical systems which either contain many 
particles or allow for internal degrees of freedom such as spins, energy levels, and other 
physical parameters. Therefore, the scope of Hamiltonians which arise in this study, even 
when restricted to the Zd-periodic setting, is wide and also corresponds to a diverse range 
of physical phenomena.

One guiding example for the results presented here is the Lieb lattice, which is ubiqui-
tous in nanostructures and exhibits exotic flat band structures. This lattice is of interest 
to ferromagnetism, superconductivity and fractional quantum Hall effects; see [11,12]
and references therein. A finite portion of the two dimensional Lieb lattice with three 
vertices in the fundamental cell is shown in Fig. 1 below.

Many-vertex models also naturally arise in the process of graph decoration. While 
this process may produce drastic effects on the spectrum of the underlying adjacency 
operator, such as the creation of spectral gaps [30], we show below that in many examples 
of interest irreducibility is unaffected by decoration procedures. In this way, we are able 
to present new irreducibility results for a class of examples of interest to mathematical 
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Fig. 1. A finite portion of the two dimensional Lieb lattice. A fundamental cell is shown with dashed lines. 
The three orbit classes of vertices under the translation action are represented with different colors (see the 
web version of this article.)

physics. We now comment on some technical merits of the approach developed in this 
manuscript.

A first contribution of the present work is to present unified criteria for irreducibility. 
Indeed, the main results of Theorems 2.4 and 2.6 below include both types of examples 
discussed above and also recover known results for single-vertex models in which the 
action by Zd has a single vertex orbit. In short, we show that in many situations of 
interest the Fermi variety is irreducible for all but finitely many energies. The criteria 
obtained here reduces the question of counting irreducible factors of the Fermi variety 
to counting factors of suitable asymptotics, which is achieved in Theorems 2.4 and 2.6.

We also emphasize that our main results of Theorems 2.4 and 2.6 are abstract and 
possibly of independent interest. Moreover, these results are not only applicable to the 
study of irreducibility but, rather, they bound the number of irreducible components of a 
polynomial in terms of the number of components of two of its asymptotics whenever the 
appropriate conditions are met. Within the realm of applications to irreducibility of the 
Fermi variety of periodic operators, the operators considered here are vector-valued, and 
their dispersion relations may depend non-trivially on the values of the potential at every 
site of the fundamental domain and also on the spectral parameter in a more delicate 
fashion than in the single-vertex case. In particular, the potential values and spectral 
parameter λ appear in the tangent cone asymptotics in a highly nontrivial fashion, in 
contrast to [22] and [9], where the asymptotics are independent of the potential and 
of the spectral parameter as well. In fact, this dependence explains one of the crucial 
technical challenges of this work.

The rest of the paper is laid out as follows. In Section 2, we describe the general 
setting of our abstract results. The proofs of those abstract theorems are then given 
in Section 3. Since we consider many-vertex models, we need to use the matrix-valued 
version of Floquet theory, which we describe in Section 4. Finally, we give our main 
applications to Lieb and decorated lattices in Sections 5 and 6, respectively.



J. Fillman et al. / Journal of Functional Analysis 286 (2024) 110286 5
Acknowledgments

The authors gratefully acknowledge support from the Simons Center for Geometry 
and Physics for the Workshop on “Ergodic operators and quantum graphs” and ICERM 
for the Hot Topics workshop on “Algebraic Geometry in Spectral Theory”, at which 
some of this work was done.

2. Setting and statement of main results

Let C� = C\{0}, C = C ∪ {∞}, and for m ∈ N, let C[x1, . . . , xm] (respectively 
C[x±1

1 , . . . , x±1
m ]) denote the set of polynomials (respectively Laurent polynomials) in m

variables. We denote a typical element of C[x±1
1 , . . . , x±1

m ] by

f(x) =
∑

α∈Zm

cαxα, x ∈ (C�)m, (2.1)

where

xα = xα1
1 · · · xαm

m , for x ∈ (C�)m, α ∈ Zm.

As usual, f ∈ C[x±1
1 , . . . , x±1

m ] is a unit if and only if 1/f ∈ C[x±1
1 , . . . , x±1

m ], which in 
turn holds if and only if f is a nonzero monomial: f(x) = cxα for some c �= 0 and α ∈ Zd. 
If f �≡ 0 is not a unit, it is irreducible if it cannot be factored nontrivially. Equivalently, 
f is irreducible if and only if f = gh implies that one of g, h must be a unit. Given 
f ∈ C[x±1

1 , . . . , x±1
m ], we let

V (f) = {x ∈ (C�)m : f(x) = 0}

denote the variety associated to f , and we say that f meets y ∈ C
m if the closure of V (f)

contains y (with the closure being taken with respect to the usual product topology on 
C

m). Define

0k = (0, 0, . . . , 0︸ ︷︷ ︸
k copies

),

and notice that f meets (0m−1, ∞) if and only if f(x̂) meets 0m, where x̂ =
(x1, x2, . . . , xm−1, x−1

m ). We also denote pointwise operations via

x � y = (x1y1, . . . , xmym) and x�α = (xα1
1 , . . . , xαm

m ). (2.2)

Given a Laurent polynomial as in (2.1), set

A = A(f) = {α ∈ Zm : cα �= 0}. (2.3)
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We define αmin(j) = αmin,f (j) = min{αj : α ∈ A}, that is, αmin(j) is the lowest 
exponent of xj in f(x). We also introduce

α0(j) = α0,f (j) = max{−αmin,f (j), 0} (2.4)

so that

α0 = α0,f := (α0,f (1), . . . , α0,f (m)) (2.5)

is the vector in Zm
+ with smallest length such that f+(x) := xα0f(x) is a polynomial. 

The interplay between (ir)reducibility properties of f(x) (as a Laurent polynomial) and 
f+(x) (as a polynomial) plays a key role in this manuscript. In particular, let us note 
that f is irreducible as a Laurent polynomial if and only if f+ has only one irreducible 
factor that is not a monomial. This motivates the following definitions.

Definition 2.1. A nontrivial monomial is a Laurent polynomial of the form cxα where c �=
0 and α �= 0m. If cxα is nontrivial and αj ≥ 0 for all j, we call cxα a positive3 monomial. 
The degree of f is defined as deg(f) = α1 + α2 + · · · + αm. Abusing notation slightly, we 
also denote deg(α) = α1 + α2 + · · · + αm for the multi-index α = (α1, . . . , αm) ∈ Zm. We 
say that f ∈ C[x1, . . . , xm] is a proper polynomial if f has no positive monomial factors.

Definition 2.2. Given a Laurent polynomial

f(x) =
∑

α

cαxα,

let L− = min{deg(α) : cα �= 0}. Then, the lowest degree component of f is defined to be 
the Laurent polynomial

f(x) =
∑

deg α=L−

cαxα.

We sometimes refer to this simply as the lowest component of f .
More generally, if l ∈ Zm \ {0}, then the l-degree of xα and α are defined by

degl(xα) = degl(α) := deg(xl�α) = deg(l � α) =
m∑

j=1
ljαj . (2.6)

One can then put L−(l) = min{degl(α) : cα �= 0} and the component of lowest l-degree
is

f
l
(x) =

∑
degl(α)=L−(l)

cαxα. (2.7)

3 Obviously, positive refers to the vector of exponents, not to the range of values taken by the monomial.
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The component of lowest l-degree has the helpful property that (fg)
l

= f
l
g

l
, so 

(ir)reducibility results for the lowest-degree components can give helpful information 
about (ir)reducibility of a given polynomial.

One can also view the lowest degree component of a Laurent polynomial in a geo-
metrical way. While our approach does not rely on the following perspective, it adds 
helpful context. The Newton polytope of the Laurent polynomial f is defined to be the 
convex hull of the set A(f) given by (2.3). Then, any vector l ∈ Zm \ {0} determines a 
corresponding face of the polytope via

F = Fl =
{

y ∈ N (f) : 〈y, l〉 = min
y′∈N (f)

〈y′, l〉
}

.

The facial polynomial corresponding to the face F is

fF (x) =
∑
α∈F

cαxα.

The reader can then check that f
l
(x) is exactly the Newton polytope facial polynomial 

associated with the face Fl.
With the basic definitions, we are now ready to formulate our main results. Let P, P̃ ∈

C[x±1
1 , . . . , x±1

m ], and suppose that there exists l ∈ Nm such that

P̃(x) = P(x�l). (2.8)

Let h̃0 be the lowest degree component of P̃+, h̃∞ be the lowest degree component of 
(P̃(x̂))+, where x̂ = (x1, x2, · · · , xm−1, x−1

m ). Notice that both h̃0 and h̃∞ are polynomi-
als.

Under these assumptions, there exist h0, h∞ ∈ C[x1, . . . , xm] such that

h̃0(x) = h0(x�l), h̃∞(x) = h∞(x�l)

for example, by [9, Lemma 3.1]. We remark that h0 is the component of lowest l-degree 
of P+ and h∞ is the component of lowest l-degree of (P(x̂))+.

For the first result of this note, we will make the following assumptions:

(A1) Each factor of P(x) meets either 0m or (0m−1, ∞).
(A2) Both P+(x) and (P(x̂))+ are proper polynomials, in the sense of Definition 2.1.
(A3) h0 has p1 irreducible factors and h∞ has p2 irreducible factors.
(A4) deg(h̃0)+deg((h̃∞(x̂))+)>deg(P̃+) or deg((h̃0(x̂))+)+deg((h̃∞(x)))>deg((P̃(x̂))+)

As we shall see in several examples, assumptions (A1)-(A4) can be verified in many cases 
of interest.

Remark 2.3. If P+(x) and (P(x̂))+ are proper polynomials, then (P(x̂))+ = (P+(x̂))+.
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Theorem 2.4. Under assumptions (A1)-(A4), the Laurent polynomial P(x) has at most 
p1 + p2 − 1 irreducible components.

Theorem 2.4 will be proved in Section 3. As an immediate consequence we obtain the 
following corollary.

Corollary 2.5. If p1 = p2 = 1, assumptions (A1)–(A4) imply that the Laurent polynomial 
P(x) is irreducible.

It the sequel we consider the situation when we have an equality between the degrees, 
that is, when assumption (A4) is replaced by

(A′
4) deg h̃0 + deg((h̃∞(x̂))+) = deg P̃+ and deg((h̃0(x̂))+) + deg((h̃∞(x))) =

deg((P̃(x̂))+)

Theorem 2.6. Under assumptions (A1), (A2), (A3), and (A′
4), either the Laurent polyno-

mial P(x) has at most p1 + p2 − 1 irreducible components or P(x) has p1 + p2 irreducible 
components and P̃+(x) = Ch̃0(x)(h̃∞(x̂))+ where C is a constant.

As discussed before, Theorems 2.4 and 2.6 improve the results of [9] in several ways. 
First, the approach of [9] is necessarily limited to single-vertex models (that is operators 
on graphs with a free Zd-action that acts transitively on vertices), since that manuscript 
worked directly with polynomials enjoying a certain expansion in terms of a single fixed 
Laurent polynomial and some characters. For more general lattices and especially for 
lattices with many points in the fundamental domain, that expansion is not valid, so it 
is necessary to deal directly with P rather than p. The abstract result here formulates 
conditions purely on asymptotics of the polynomial itself which can be checked directly.

3. Proofs of Theorems 2.4 and 2.6

Before proving our main theorems we will need to collect a few other results.

3.1. Technical lemma

Lemma 3.1. Let P be a Laurent polynomial that satisfies assumptions (A1), (A2), and
(A3). Then P has at most p1 + p2 irreducible components. Moreover, if P(x) has exactly 
p1 + p2 irreducible components then P+ enjoys a factorization of the form

P+ = fg, (3.1)

where f ∈ C[x1, . . . , xm] meets 0m and does not meet (0m−1, ∞) and g ∈ C[x1, . . . , xm]
meets (0m−1, ∞) and does not meet 0m.
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Proof. Factoring P+ into irreducibles and applying Assumption (A1), we can write

P+ =
3∏

i=1

ai∏
j=1

fij , (3.2)

where each f1j is a polynomial that meets 0m and does not meet (0m−1, ∞), each f2j is 
a polynomial that meets (0m−1, ∞) and does not meet 0m, and each f3j is a polynomial 
that meets both 0m and (0m−1, ∞). Note by assumption (A2) that no fij can be a 
monomial so a1 + a2 + a3 is the number of irreducible components of both P and of P+.

For each i ∈ {1, 3}, j, let g̃ij denote the component of f̃ij = fij(x�l) of lowest degree, 
and gij be such that g̃ij = gij(x�l). Let tij , i ∈ {1, 3} denote the number of irreducible 
factors of gij .

Since f1j and f3j meet 0m, we have that tij ≥ 1 for all 1 ≤ j ≤ ai, i = 1, 3. In 
particular,

ai∑
j=1

tij ≥ ai, i = 1, 3. (3.3)

We also observe that by definition f2,j does not meet 0m, thus f2,j(0m) �= 0.
Since h̃0(x) = C

∏
i=1,3

∏ai

j=1 g̃ij and

h0(x) = C
∏

i=1,3

ai∏
j=1

gij , (3.4)

these observations and (3.3) give

a1 + a3 ≤
∑

i=1,3

ai∑
j=1

tij = p1. (3.5)

Similarly, we find that

a2 + a3 ≤ p2. (3.6)

Combining (3.5) and (3.6), we conclude that

a1 + a2 + a3 ≤ a1 + a2 + 2a3 ≤ p1 + p2. (3.7)

Thus, the total number of components, a1 + a2 + a3, is bounded above by p1 + p2, and 
(3.7) makes it clear that a1 + a2 + a3 = p1 + p2 forces a3 = 0, as desired. �
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3.2. Proofs of theorems

Proof of Theorem 2.4. For simplicity, we assume the first half of Assumption (A4) holds, 
that is,

deg(h̃0) + deg((h̃∞(x̂))+) > deg(P̃+). (3.8)

From Lemma 3.1, we conclude that P+(x) has at most p1+p2 irreducible factors. Assume 
for the sake of contradiction that P+(x) has exactly p1 + p2 irreducible factors. By 
Lemma 3.1 we can write P+ = fg, where f is a polynomial that meets 0m and does not 
meet (0m−1, ∞) and g is a polynomial that meets (0m−1, ∞) and does not meet 0m. By 
definition of h̃0 and h̃∞ and the assumptions on f and g, we have that

f(x�l) = C1(h̃0(x) + f1(x)) (3.9)

where each term in f1(x) has degree higher than the degree of h̃0(x) and

g(x�l) = C2(h̃∞(x̂) + g1(x̂))xα′

m (3.10)

where g1(x̂) consists of higher order terms of x̂ and α′ is a suitable constant, namely,

α′ = max{α0,h̃∞(x)(m), α0,g1(m)},

with α0 defined as in (2.4). In simple terms, α′ is defined in a way that x−α′
m is the lowest 

power of xm appearing in the sum h̃∞(x̂) + g1(x̂). Then, letting f̃(x) = f(x�l)

deg P̃+ ≥ α′ + deg(h̃∞(x̂)) + deg(f̃) ≥ deg((h̃∞(x̂))+) + deg(h̃0), (3.11)

which contradicts our assumption (3.8). Therefore, P has at most p1+p2−1 components, 
as desired.

The case when deg((h̃0(x̂))+) + deg((h̃∞(x))) > deg((P̃(x̂))+) is proved similarly. �
Proof of Theorem 2.6. Assume that P(x) has p1 + p2 irreducible components. We can 
follow the proof of Theorem 2.4 to reach the chain of inequalities (3.11). By the first 
half of assumption (A′

4), namely deg h̃0 + deg((h̃∞(x̂))+) = deg P̃+, all of these must be 
equations hence by (3.9) and (3.10), we have that α′ = α0,h̃∞

and deg(f̃) = deg(h̃0). 
From the latter, we deduce f1 ≡ 0. Similarly, using the second half of assumption (A′

4) 
we find that g1 ≡ 0, finishing the proof. �
4. Floquet transform in the matrix-valued case

Our main interest in the results contained in Theorems 2.4 and 2.6 comes from appli-
cations to Schrödinger operators, in particular to estimating the number of components 
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of the dispersion relation and its restriction to constant energies. The former estimates 
the number of components of the Bloch variety and the latter estimates the number of 
components associated to the Fermi variety. Before stating corollaries of our general re-
sults, we include some basic terminology and results from Floquet theory in the discrete 
case following [9]. For a more complete picture we recommend Kuchment’s survey [16]
and references therein.

Since we are interested in periodic operators on graphs, it will be convenient for us 
to discuss the matrix-valued version of the Floquet transform. This is well-known. We 
include a summary to fix notation for the reader’s convenience. To that end, fix d ∈ N

and ν ∈ N, which here denotes the order of matrices and later will denote the number 
of vertex orbits in a given periodic graph. For a set S, we denote by Cν×S the set of 
functions from {1, 2, . . . , ν} × S to C.

We then consider the basic Hilbert space

�2(Zd,Cν) ∼= �2(ν × Zd)

=

⎧⎨⎩ϕ ∈ Cν×Zd

:
ν∑

j=1

∑
l∈Zd

|ϕ(j, l)|2 < ∞

⎫⎬⎭ .

Let us now define the operators of interest on this space. Given

{aij
n : n ∈ Zd, 1 ≤ i, j ≤ ν}

such that aij has compact support for each 1 ≤ i, j ≤ ν, the associated matrix-valued 
Toeplitz operator A : �2(Zd, Cν) → �2(Zd, Cν) is given by

[Aψ](i, l) =
ν∑

j=1

∑
l′∈Zd

aij
l−l′ψ(j, l′), 1 ≤ i ≤ ν, l ∈ Zd. (4.1)

It is helpful to rewrite this in matrix form, especially since we will be describing some 
other block decompositions later. More specifically, set ψ(l) = [ψ(1, l), . . . , ψ(ν, l)]� ∈ Cν

for ψ ∈ �2(Zd, Cν) and write

A(l) =

⎡⎢⎣a11
l · · · a1ν

l
...

. . .
...

aν1
l · · · aνν

l

⎤⎥⎦
and observe that we can rewrite (4.1) as

[Aψ](l) =
∑

l′∈Zd

A(l − l′)ψ(l′), l ∈ Zd. (4.2)

To add a potential, we consider V : ν × Zd → C bounded and define [V ψ](i, l) =
V (i, l)ψ(i, l) for 1 ≤ i ≤ ν and l ∈ Zd. We are then interested in the operator
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H = A + V. (4.3)

For q ∈ Nd, we say that V is q-periodic if4 V (j, n + l � q) = V (j, n) for all 1 ≤ j ≤ ν

and n, l ∈ Zd. In this case, denote by

W = {w ∈ Zd : 0 ≤ wi < qi ∀1 ≤ i ≤ d}

its fundamental domain and write Γ = {l � q : l ∈ Zd} for the period lattice. Writing 
q∗ = (q−1

1 , . . . , q−1
d ), the dual lattice is given by Γ∗ = {l � q∗ : l ∈ Zd} = {( l1

q1
, . . . , ld

qd
) :

l ∈ Zd}. Let us now define Td
∗ = Rd/Γ∗,

Hq,ν =

⎧⎨⎩f : ν × W × Td
∗ → C :

ν∑
j=1

∑
w∈W

∫
|f(j, w, k)|2 dk

|Td
∗| < ∞

⎫⎬⎭
∼=

ν⊕
j=1

⊕∫
Td

∗

CW dk

|Td
∗|

∼= L2
(
Td

∗,Cν×W ; dk

|Td
∗|

)
.

The first version of the Floquet transform is given by Fq,ν : �2(Zd, Cν) → Hq,ν , u �→ û

where

û(j, w, k) =
∑

n∈Zd

e−2πi〈n�q,k〉u(j, w + n � q),

for 1 ≤ j ≤ ν, w ∈ W , and k ∈ Td
∗. This conjugates H to a decomposable operator 

whose action on the kth fiber of Hq,ν is given by the restriction of H to {1, . . . , ν} × W

with boundary conditions

u(j, n + m � q) = e2πi〈m�q,k〉u(j, n), n, m ∈ Zd, 1 ≤ j ≤ ν. (4.4)

More precisely, for k ∈ Td
∗, define H̃(k) on Cν×W by

[H̃(k)u](i, w)

= V (i, w)u(i, w) +
ν∑

j=1

∑
w′∈W

∑
l∈Zd

e2πi〈l�q,k〉aij
w−(w′+l�q)u(j, w′) (4.5)

for 1 ≤ i ≤ ν, w ∈ W . We have the following:

4 recall that x � y = (x1y1, x2y2, . . . , xdyd).
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Proposition 4.1. The operator Fq,ν is unitary. If V is q-periodic, then

Fq,νHF ∗
q,ν =

⊕∫
Td

∗

H̃(k) dk

|Td
∗| ,

where H̃(k) is as in (4.5).

Proof. This follows from a direct calculation. �
For our purposes, the form of H from Proposition 4.1 is not optimal, since the depen-

dence of H̃(k) on the Floquet multipliers can be highly nontrivial. In order to compute 
asymptotic terms, it is useful to have a different version of the Floquet transform that 
places the multipliers on a (block) diagonal.

To describe this, let Q = #W = q1q2 · · · qd, and let us consider the νQ-dimensional 
vector space Cν×W which consists of vectors u : {1, 2, . . . , ν} × W → C. For k ∈ Rd, the 
corresponding fiber of the Floquet transform F (k) : Cν×W → Cν×W is given by

[F (k)u](j, w) = 1√
Q

∑
n∈W

e−2πi〈w�q∗+k,n〉u(j, n). (4.6)

It turns out that F (k)H̃(k)F (k)∗ takes a simple form: the sum of a block-diagonal 
operator that depends only on A and k and a block-operator that depends only on V
(and not on k).

For 1 ≤ i, j ≤ ν, define

pij(z) =
∑

n∈Zd

aij
n z−n (4.7)

and consider p(z) ∈ Cν×ν given by

p(z) =

⎡⎢⎢⎢⎣
p11(z) p12(z) . . . p1ν(z)
p21(z) p22(z) . . . p2ν(z)

...
...

. . .
...

pν1(z) pν2(z) . . . pνν(z).

⎤⎥⎥⎥⎦ (4.8)

Given q ∈ Nd and n ∈ Zd, the vector μn = μn,q ∈ (C�)d is defined by

μj
n = e2πinj/qj , 1 ≤ j ≤ d. (4.9)

Using μn as in (4.9), define

Dz(n, n′) = p(μn � z)δn,n′ , n, n′ ∈ W, (4.10)

where z = (e2πik1 , . . . , e2πikd), which we abbreviate as z = exp(2πik).
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The linear operator Dz on Cν×W is then the (block-diagonal) operator Dz =
diag(Dz(n, n)), that is,

[Dzu](w) = p(μw � z)u(w), w ∈ W, (4.11)

where similar to before, we denote u(w) = [u(1, w), . . . , u(ν, w)]� ∈ Cν . Equivalently, 
choosing an enumeration W = {w1, . . . , wQ}, one can write Dz as a block-diagonal 
matrix

Dz =

⎡⎢⎢⎣
p(μw1 � z)

p(μw2 � z)
. . .

p(μwQ
� z)

⎤⎥⎥⎦ (4.12)

with ν × ν blocks on the diagonal and in which all unspecified blocks are zero.
Writing the discrete Fourier transform of a q-periodic function g : Zd → C on Γ∗ by

ĝl = 1√
Q

∑
n∈W

e−2πi〈l,n〉gn, l ∈ Γ∗,

we define B = BV by

B(n, n′) = diag
(

V̂1 (q∗ � (n − n′)) , . . . , V̂ν (q∗ � (n − n′))
)

, n, n′ ∈ W, (4.13)

where we recall q∗ = (q−1
1 , . . . , q−1

d ).
The corresponding operator B = BV on Cν×W is given in block matrix form in a 

similar fashion to Dz:

[BV u](w) =
∑

w′∈W

BV (w, w′)u(w′). (4.14)

Enumerating W = {w1, . . . , wQ} as before, one can write BV as the Q × Q block matrix

BV =

⎡⎢⎢⎢⎣
B(w1, w1) B(w1, w2) · · · B(w1, wQ)
B(w2, w1) B(w2, w2) · · · B(w2, wQ)

...
...

. . .
...

B(wQ, w1) B(wQ, w2) · · · B(wQ, wQ)

⎤⎥⎥⎥⎦ (4.15)

where each block is ν × ν.

Proposition 4.2. Assume V is q-periodic. Then

F (k)H̃(k)F (k)∗ = Dz + BV (4.16)
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for each k, where Dz and BV are as above. In particular, writing F =
∫ ⊕
Td

∗
F (k), one 

has

F H̃F ∗ =
⊕∫

Td
∗

(Dexp 2πik + BV ) dk

|Td
∗| . (4.17)

Proof. This follows from a calculation almost identical to that in the proof of [9, Propo-
sition 5.3]. �
Proposition 4.3. Assume V is q-periodic, and let

P̃(z, λ) = det(Dz − BV − λI), (4.18)

where Dz and BV are as before. For any w ∈ W ,

P̃(μw � z, λ) ≡ P̃(z, λ). (4.19)

In particular, P̃(z, λ) = P(z�q, λ) for a suitable Laurent polynomial P.

Proof. For w ∈ W , let Tw : Cν×W → Cν×W denote the operator

[Twu](j, w′) = u(j, {w′ − w}), 1 ≤ j ≤ ν, w′ ∈ W,

where for n ∈ Zd, {n} denotes the unique element of W that is equivalent to n modulo 
Γ. By direct calculations, T ∗

wDzTw = Dμw�z and T ∗
wBV Tw = BV , so

P̃(μw � z, λ) = det(T ∗
w(Dz + BV − λ)Tw) = P̃(z, λ),

as desired. The second statement then follows immediately from [9, Lemma 3.1]. �
Let us conclude this section by pointing out that the framework described above 

includes all finite-range translation-invariant operators on periodic graphs in a canonical 
fashion.

More precisely, recall that a graph G consists of a nonempty set V of vertices and E
a set of unordered pairs of elements of V, called edges. A Zd-periodic graph is a locally 
finite graph G on which Zd acts freely and cocompactly. We denote the action of Zd

additively, so the assumption that Zd acts freely can be expressed as

v + n �= v, ∀n �= 0d.

The translations v �→ v + n induce unitary operators Un : �2(V) → �2(V) via [Unf ](v) =
f(v +n). One says that a bounded operator A on �2(V) is translation-invariant if AUn =
UnA for all n ∈ Zd.
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Consider a translation-invariant operator A and choose a fundamental domain Vf so 
that V =

⋃
n∈Zd(Vf + n). Let ν = #Vf , and write Vf = {v1, . . . , vν}. Thus, any v ∈ V

can be written as vj + n for some j ∈ {1, 2, . . . , ν} and n ∈ Zd.
We further assume that A has finite range in the sense that there exists r > 0 such 

that

〈δvi+n, Aδvj+m〉 = 0 whenever |n − m| > r. (4.20)

The map Φ : �2(V) → �2(Zd, Cν) given by

[Φf ](j, n) = f(vj + n)

is unitary, and ΦAΦ∗ is the matrix Toeplitz operator corresponding to coefficients aij
n

given by

aij
n = 〈δvi+n, Aδvj

〉, (4.21)

as above.

5. Applications to the Lieb lattice

The Lieb lattice in dimension d = 2 is the graph with vertices V consisting of all 
n ∈ Z2 such that n1 and n2 are not both odd. One then connects a pair of vertices n
and m by an edge whenever ‖n − m‖1 = 1. Compare Fig. 1; there, the black vertices are 
those that belong to 2Z ⊕ 2Z.

We let A denote the adjacency operator on the Lieb lattice and the corresponding 
operator A + V acting on �2(Z2, C3), where V : Z2 → C3 is q-periodic. Let us exploit 
the connection discussed in the previous section to write this as a matrix-valued periodic 
operator. Referring to Fig. 1, let ψ1, ψ2, and ψ3 respectively represent the value of 
ψ ∈ �2(Z2, C3) at the corresponding black, red, or blue vertex respectively. Writing 
{e1, e2} ⊆ Z2 for the standard basis and defining Δ±ej

on �2(Z2) by

[Δ±ej
ψ](n) = ψ(n) + ψ(n ± ej), ψ ∈ �2(Z2),

the reader can check that

[Aψ](n) =

⎡⎣ [Δ−e1ψ2](n) + [Δ−e2ψ3](n)
[Δe1ψ1](n)
[Δe2ψ1](n)

⎤⎦ . (5.1)

In matrix form:

A =

⎡⎣ 0 Δ−e1 Δ−e2

Δe1 0 0

⎤⎦ . (5.2)

Δe2 0 0
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Let us now use Proposition 4.2 to write the Floquet matrix of A + V , with A as in 
(5.1), as the 3Q × 3Q matrix Dz + BV .

By (4.8) and (5.2), p(z) is given by

p(z) =

⎡⎣ 0 1 + z−1
1 1 + z−1

2
1 + z1 0 0
1 + z2 0 0

⎤⎦ (5.3)

so

det(p(z) − λI) = (−λ)(z−1
1 + z1 + z−1

2 + z2 + λ2 + 4) (5.4)

Notice that the factor of λ shows the existence of a flat band of the operator A. Indeed, 
one can check that

ψ(n) =

⎧⎪⎪⎨⎪⎪⎩
+1 n = (0, 1), (2, 1)
−1 n = (1, 0), (1, 2)
0 otherwise

(5.5)

defines an eigenfunction of A with eigenvalue 0 having compact support.
Recall that the matrix B = BV is a 3Q × 3Q matrix given by (4.13) and (4.15) with 

blocks of the form

B(n, n′) =

⎡⎢⎣ V̂1(n − n′) 0 0
0 V̂2(n − n′) 0
0 0 V̂3(n − n′)

⎤⎥⎦ n, n′ ∈ W. (5.6)

In comparison to the adjacency operator of Z2, the inclusion of extra vertices ac-
counts for additional interactions, which increases the complexity of the study of the 
Fermi variety in a substantial fashion, especially in the presence of a periodic poten-
tial. For nontrivial choices of V , counting the number of irreducible components of 
P̃(z) = det(Dz + BV − λI) and the related P(z) is significantly harder due to the 
contributions from the off-diagonal blocks. We shall explain below how irreducibility of 
the latter follows from Theorem 2.6 for all but finitely many values of λ.

Before proving the main irreducibility result for the Lieb lattice, we will need a suitable 
technical result about the asymptotic terms. Let us fix some notation. Fix λ ∈ C. Let 
P̃(z) = det(Dz+BV −λI) with Dz and BV given by (4.11) and (4.15). By Proposition 4.3, 
there is a polynomial P such that P̃(z) = P(z�q). Define h̃0 h0, h̃∞ and h∞ as in 
Section 2.

Since we are interested in the Fermi variety, we want to consider P as a polynomial 
in the variable z with λ fixed. Thus, we generally write P(z) unless we need to explicitly 
mention the dependence on λ, in which case we write P(z; λ), with similar notation for 
h0, h∞, and so on.
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Lemma 5.1. If gcd(q1, q2) = 1, then h0 and h∞ are irreducible for all but finitely many 
λ.

Proof. We will only prove irreducibility of h0 since the result for h∞ is analogous. From 
the structure of Dz and BV one readily checks that the lowest degree term of P̃(z) =
det(Dz − BV − λI) is of the form

r0(z) =
∑

cαzα

where the summation runs over those α ∈ [−q1q2, 0]2 ∩ Z2 satisfying α1 + α2 = −Q =
−q1q2. Moreover, since r0(z) = r0(μn � z) for each n ∈ W , the only terms in r0(z) that 
can have cα �= 0 are the terms with α1 = m1q1 and α2 = m2q2 for integers −q2 ≤ m1 ≤ 0
and −q1 ≤ m2 ≤ 0. Since gcd(q1, q2) = 1 the only solutions to

m1q1 + m2q2 = −q1q2

within the given range are (m1, m2) = (−q2, 0) and (m1, m2) = (0, −q1). In particular,

r0(z) = c2z−Q
1 + c1z−Q

2 ,

where cj = cj(λ) for j = 1, 2. From this, it follows that

h̃0(z) = (z1z2)Qr0(z) = c1zQ
1 + c2zQ

2 .

We shall see below that c1(λ) and c2(λ) are polynomials in λ that do not vanish iden-
tically. Consequently, h0(z) = c1zq2

1 + c2zq1
2 is irreducible for all but finitely many λ; 

indeed, it is irreducible precisely for those λ for which c1(λ) and c2(λ) are both nonzero. 
To finish the proof we now show c2(λ) �≡ 0 (the argument for c1(λ) is analogous) by 
expanding det(Dz + BV − λI) using permutations σ : {1, . . . , 3Q} → {1, . . . , 3Q}. Note 
that the highest degree term in c2(λ) is achieved precisely by the permutation τ given 
by

τ(j) =

⎧⎪⎪⎨⎪⎪⎩
j + 1 if j ≡ 1 mod 3
j − 1 if j ≡ 2 mod 3
j otherwise

, (5.7)

which yields a term in det(Dz + BV − λI) of the form (−1)Q(V̂3(0) − λ)Qz−Q
1 . It follows 

that c2(λ) is a polynomial of degree Q in λ which completes the proof. �
Lemma 5.2. Let P̃(z) = det(Dz +BV −λI) as above with gcd(q1, q2) = 1. Let P(z) satisfy 
P̃(z) = P(z�q) for all z ∈ C. Then, for all but finitely many values of λ, each factor of 
P(z) meets either (0, 0) or (0, ∞).
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Proof. Assume z(n) = (z1(n), z2(n)) ∈ V (P̃) with z(n) → y = (y1, y2) ∈ C
2 and y1 = 0. 

For all but finitely many λ, this forces y2 ∈ {0, ∞}. Indeed, if y2 ∈ C�, then we follow 
the proof of Lemma 5.1 to conclude that

P̃(z(n)) = c2(λ) 1
z1(n)Q

+ O(z1(n)−(Q−1)).

Whenever c2(λ) �= 0, this gives P̃(z(n)) → ∞, which is inconsistent with z(n) ∈ V (P̃).
Since z(n) → (0, 0) (respectively, z(n) → (0, ∞)) if and only if (z(n))�q → (0, 0)

(respectively, (z(n))�q → (0, ∞)) it readily follows that each factor of P(z) meets either 
(0, 0) or (0, ∞). �
Corollary 5.3. If gcd(q1, q2) = 1 the Fermi variety of the Schrödinger operator A + V on 
the Lieb lattice given by (5.1) is irreducible for all but finitely many λ ∈ C.

Proof. In view of the discussion in previous proofs, when the periods q1 and q2 are 
coprime (z1z2)Q det(Dz + BV − λI) has a lowest degree term of the form

h̃0(z) = c01(λ, V )zQ
1 + c02(λ, V )zQ

2 (5.8)

where each c0j(λ, V ) is a polynomial of degree Q in λ that in principle also depends on 
V (l) for all l ∈ W . In particular, there exists a finite set Z0 such that for λ ∈ C \ Z0

h̃0(z, λ) does not have any monomial factors. Similarly (or by symmetry considerations) 
one checks that h̃∞(z) = c11(λ, V )zQ

1 +c12(λ, V )zQ
2 where each c1j(λ, V ) is a polynomial 

of degree Q in λ and therefore that (h̃∞(ẑ))+ = c12(λ) + c11(λ)zQ
1 zQ

2 . It follows that 
(h̃∞(ẑ))+ also does not have any monomial factors for λ ∈ C \ Z0. In particular

deg h̃0(z) + deg(h̃∞(ẑ))+ = deg P̃+(z) = 3Q.

Therefore, for λ ∈ C \ Z0 the assumptions of Theorem 2.6 are met. We conclude that if 
P(z) is reducible then we must have

(z1z2)QP̃(z) = K[c01(λ)zQ
2 + c02(λ)zQ

1 ] (5.9)

× [c12(λ) + c11(λ)zQ
1 zQ

2 ], (5.10)

where K = K(λ) is a rational function of λ. We will show that the above setting leads 
to a contradiction for all but finitely many λ. Indeed, the highest power of λ on the 
left-hand side of (5.9) equals 3Q. Since each of the polynomials c1(λ), c2(λ) has degree 
Q, we conclude from this that K(λ) ∼ λQ in the sense that

lim K(λ) = C �= 0.

λ→∞ λQ
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Fig. 2. A Z2 decoration by triangles.

However, this implies that the coefficient of zQ
2 in the right-hand side is of the order of 

λ3Q whereas the coefficient of zQ
2 on the left-hand side is of the order of λQ, according to 

the proof of Lemma 5.1. Thus, this leads to a contradiction unless λ belongs to a certain 
algebraic set. In particular, P(z) is irreducible for all but finitely many values of λ. �
6. Applications to decorated lattices

Another application of the main results of this note concerns certain graph decorations 
of Zd by polygons of ν ∈ N vertices. Let G = (V, E) denote the graph obtained from Zd

by attaching a cyclic graph of order ν to each n ∈ Zd. More precisely, the vertices of G
are given by V = Z × Zν and edges described as follows:

• For any n, n′ ∈ Zd with ‖n − n′‖1 = 1, there is an edge from (n, 0) to (n′, 0)
• For any n ∈ Zd and j ∈ Zν , there is an edge from (n, j) to (n, j +1) and to (n, j −1).

Fig. 2 illustrates this in the case d = 2 and ν = 3. The black vertices represent (n, 0)
with n ∈ Z2 while the blue vertices represent (n, ±1). The case when ν = 2, where the 
graph is decorated by lines, is one of the examples of graphs studied by Aizenman and 
Schenker to create spectral gaps, see [30, Figure 2].

We now let A denote the adjacency operator on �2(V). As in the previous section, 
one can write this a periodic operator with matrix coefficients. For ψ ∈ �2(Zd, Cν) we 
identify the coordinate function ψ(j, n) with the value of ψ on (n, j − 1 mod ν). With 
these definitions, one has that

[Aψ](n) =

⎡⎢⎢⎢⎢⎢⎣
[Δψ1](n) + ψ2(n) + ψν(n)

ψ1(n) + ψ3(n)
...

ψν−2(n) + ψν(n)
ψν−1(n) + ψ1(n)

⎤⎥⎥⎥⎥⎥⎦ , (6.1)

where Δ in the top row represents the adjacency operator on �2 (Zd
)
. A portion of the 

example where d = 2 and ν = 3 is presented in Fig. 2.
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This time, the diagonal blocks of the Floquet matrix are generated by

p(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b0(z) 1 1
1 0 1

1 0 1
. . . . . . . . .

1 0 1
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.2)

where b0(z) = z1 +z−1
1 + . . .+zd +z−1

d and all unspecified entries are 0. We now consider 
the operator H = A + V with a q-periodic potential V : Zd → C.

We will check below that the dispersion relation P̃(z) = det(Dz + BV − λI) of A + V , 
with A as in (6.1) and V q-periodic, satisfies the assumptions of Theorem 2.4 (respectively 
2.6) whenever d > 2 (respectively d = 2) for all but finitely many λ ∈ C. Define P, h̃0, 
h0, h̃∞, and h∞ as in Section 2.

Note that, under the above definitions

h̃0(z; λ) = h̃∞(z; λ) = s(λ)(z1 · · · zd)Q
∏

n∈W

r0(μn � z) (6.3)

with r0(z) = z−1
1 + . . . + z−1

d and s(λ) a polynomial in λ of degree (ν − 1)Q.
Consequently,

(h̃∞(ẑ; λ))+ = s(λ)(z1 · · · zd−1)Q
∏

n∈W

r∞(μn � z) (6.4)

with r∞(z) = r0(ẑ) = z−1
1 + . . . + z−1

d−1 + zd and s(λ) is as above. In particular, whenever 
s(λ) �= 0 we have that h̃0(z) and h̃∞(z) are nonzero.

Recalling that

h̃0(z) = h0(z�q) and h̃∞(z) = h∞(z�q), (6.5)

we have the following.

Lemma 6.1. If gcd(q1, . . . , qd) = 1, then h0 and h∞ given by (6.3), (6.4), (6.5) are irre-
ducible for all but finitely many λ. The finite set of exceptional λ’s is precisely the set 
on which s(λ) = 0.

Proof. See [22, Lemma 5.1]. �
Lemma 6.2. Let P̃(z) = det(Dz + BV − λI), and let P(z) satisfy P̃(z) = P(z�q) for all 
z ∈ C. Then, for all but finitely many values of λ, each factor of P(z) meets either 0d

or (0d−1, ∞).
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Proof. If P̃(z) = 0 with (z1, . . . , zd−1) → 0d−1 then we must have that zd → 0 or 
zd → ∞ since otherwise we would have P̃(z) = s(λ)(z−Q

1 + . . . + z−Q
d−1) + l.o.t with 

s(λ) the polynomial from (6.3). In particular whenever s(λ) �= 0 this would imply that 
P̃(z) → ∞, which is a contradiction. It follows as in the proof of Lemma 5.2 that each 
factor of P(z) meets either 0d or (0d−1, ∞). �
Corollary 6.3. Let d ≥ 2 and assume that gcd(q1, . . . , qd) = 1. Then the Fermi variety of 
A + V , with A given by (6.1) is irreducible for all but finitely many λ ∈ C.

Proof. If d > 2 then this result follows from Theorem 2.4. Indeed, in this case we have 
that deg h̃0(z) = (d − 1)Q and deg((h̃∞(ẑ))+) = Qd by (6.3) and (6.4). In particular,

deg h̃0(z) + deg((h̃∞(ẑ))+) = (2d − 1)Q > (d + 1)Q = deg P̃+(z),

which verifies assumption (A4) as d > 2. Moreover, Lemma 6.1 implies that p1 = p2 = 1.
For d = 2, we have (2d − 1)Q = (d + 1)Q hence the above considerations imply 

assumption (A′
4) so one only needs to check that the factorization

P̃+(z; λ) = K(λ)h̃0(z; λ)(h̃∞(ẑ; λ))+

cannot happen. In fact, this would imply that

(z1z2)Q det(Dz + BV − λI)

= K(λ)s2(λ)(z1z2)QzQ
1

( ∏
n∈W

r0(μn � z)
)( ∏

n∈W

r∞(μn � z)
)

.
(6.6)

Let us show that this can happen for at most finitely many λ ∈ C. First, notice that 
gcd(q1, q2) = 0 implies that r0(μn�(z1, −z1)) is not identically zero for any n ∈ W \{0d}. 
In particular, setting z2 = −z1 and expanding P̃(z1, −z1; λ), we see that the highest 
power of z1 in P̃(z1, −z1; λ) is of the form t(λ)zQ−1

1 where t(λ) is a polynomial of degree 
ν + (ν − 1)(Q − 1) in λ. On the other hand, if (6.6) holds for some λ, using r0(z1, −z1) =
1
z1

+ 1
−z1

= 0, yields

P̃+(z1, −z1; λ) = 0, ∀z1 ∈ C.

In particular (6.6) can only be true when t(λ) = 0, which in turn is true only for finitely 
many λ. Therefore, P(z; λ) is irreducible for all but finitely many λ. �
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