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ABSTRACT

We consider a discrete non-linear Schrédinger equation on Z and show that, after adding a small potential localized in the time-frequency
space, one can construct a three-parametric family of non-decaying spacetime quasiperiodic solutions to this equation. The proof is
based on the Craig-Wayne-Bourgain method combined with recent techniques of dealing with Anderson localization for two-dimensional
quasiperiodic operators with degenerate frequencies.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0166183

I. INTRODUCTION AND MAIN RESULTS

We study the nonlinear Schrédinger equation on Z:

i%u:Au+Vu+|u|2Pu, peN, (1.1)

where A is the discrete Laplacian:

(AP () = y(x+1) +y(x-1), xeZ,

and V is a small non-local potential whose exact form will be described in the end of the section. Consider first the linear equation with zero
potential:

0
i = Au. (1.2)

Generalized eigenfunctions of the discrete Laplacian A can be expressed in the form:
u(x):eij'lx; x€Z, AeR, jeZ,
with eigenvalues 2 cos(jd), where j € Z, x € Z and A € R. The correspondence between pairs (j,1) and generalized eigenfunctions is not

one-to-one: two pairs (j,A) and (j',A") correspond to the same eigenfunction if and only if jA —j’A" € 2n7Z. This use of two parameters will
be convenient, as we later intend to fix A and restrict ourselves to the sub-family of eigenfunctions parametrized by j.
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When A is an irrational multiple of 27, the above generalized eigenfunctions are quasiperiodic on Z. These eigenfunctions produce
solutions to (1.2):

—2itcos(j1) ijA
M(X, t) —e it cos(j )61] x.

A non-trivial linear combination of such solutions is quasiperiodic both in space and time. Let

hi,hy € Z\{0}; w1 =2 cos (hi)), wy =2 cos (ha), (1.3)
and assume that w; # w;. Then
2 . .
u(O) (t, x) = Z ukefzwktezhk/\x (14)
k=1

is a two-parametric family of solutions to the linear Eq. (1.2). The goal of this paper is to show that there exist solutions to the non-linear
Eq. (1.1) which are small perturbations of (1.4), of the form

u(tx) = Y ilej)e e, (1.5)
(kj)eZ* <7

where w = (w1, w2) € [-3,3]% ) € [1, 2] are frequency parameters,
k-w= k](A)l + kza)z,

t € R, is the time variable, and x € Z is the space variable. We will always assume that {1, w1, w, } are linearly independent over Q. Most of
the analysis will be conducted in the space of variables (k, j) € Z>. It will be convenient to combine them into a single variable

n:= (kj)eZ.
Denote by S(A, w1, w>) the class of functions u of the form (1.5) with

2. (L+n])’

nez’

#i(n)] < +o0, VreN.

Denote also by S(A, w1, ;) c £ (Z*) the class of the corresponding lattice functions #(-)on Z>. The above class is closed under convolution
and complex conjugation. As a consequence, for u € S(A, w1, ), we have |u[?u € S(A, w1, w2 ), as well as %u and Au. Therefore, this class is
a natural space to consider quasiperiodic solutions of the Eq. (1.1) and to define various transformations and functionals.

Ideally, one would like to consider the Eq. (1.1) with V = 0. Our current methods fall short of this goal, and, similarly to Refs. 3, 4,
and 10, we consider an additional term which will be small in magnitude and have small support in the momentum space. More pre-
cisely, let e, = (1,0), e2 = (0,1), hy € Z\{0},h2 € Z\{0} and h; # +h,. Denote by V the following function on Z? x Z, supported on the
set {(el,hl), (ez,hz)}:

V(n) =m 1(*91xh1) (n) + le(,ez)hz)(n). (16)

It will be convenient to use the notation 14 for the indicator function of a subset A. In the case when A = {a} is a singleton, we will use 1,
instead, in the situations where it does not lead to a confusion.

Let § be a small parameter (our results will be asymptotic as § — 0+), and x be a small absolute constant. The potential V will be defined
as the following convolution-type operator acting on the space of functions (1.5), or, equivalently, a multiplier acting on the coefficients 1(n):

(Vu)(t, x) = 5 Z V(n)i{(n)ei(kw)teﬁlx _ Z 6xmsa(_es’hs)ei(—eyw)teihdtx.

n=(kj)eZ>xZ s=1,2

Clearly, it defines an operator acting on S(A, w1, w;). Rewrite (1.4) as

L:82:S1 ¥202 Iudv L0

u®(t,x) = > ﬁ(o)(n)ei(k'ww))te’j)‘x, (1.7)
nez*x7
where
1O (n) = w1 ) (0) + 101 (e, (0);
w® = (wfo),wgo)) = (2 cos (h11),2 cos (ha))).
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The presence of the additional parameters m;, m, will allow us to “fine tune” them in order to have the general procedure converge to a
solution. The following is our main result.

Theorem 1.1. For any & > 0, there exist 8o = 8o(&, h1,h2) > 0 such that the following is true for any 8 with 0 < § < 8. For u; € (0,1),
i =1,2, there exist a closed set I c [1,2]® with
I>1-¢

and a C! map on (1,2)3, (A, mi,mz) = (A wi (A, mi,m2), w2 (A, mi, my)) such that, for any (A, mi, my) € I, there is a spacetime quasiperiodic
solution of the form (1.5) to the nonlinear Schrodinger equation (1.1),

u(t,x)= Y. ﬁ(k,j)ei(k'w)teiﬂ)‘, (1.8)
nezZ*x7
satisfying:
i(—e, ) = uy, i(—ex, h2) = ua,
lis(n)| < 0(1)8 ™ foranyn € Z*\{(~e1, 1), (—e2,12) },
w1 (A, m1,my) = 2 cos (mA) + m & + 0(67); (A, my,my) = 2 cos (ha)) + myd” + O(867F).
A. Motivation

Theorem 1.1 shows the existence of global in time, non-vanishing at infinity and uniformly £* solutions to the nonlinear Eq. (1.1) on
Z. Previously, this type of L™ solutions was found for the NLS on R.*' Note that many nonlinear PDE theories address solutions which are
localized, in appropriate Sobolev spaces on RY, for example, or periodic (in space), in Sobolev spaces on the torus T4, which are compact. On
the line Z, the result see Ref. 9, Proposition 2 implies an a priori bound on the £*°-norm, but it does not preclude growth. The results here and
in Ref. 21 provide extended state solutions to the nonlinear Schrodinger equations, with uniformly bounded £°° -norms. These are new types
of solutions.

The analysis of non-localized solutions without symmetry, such as those in Theorem 1.1 and in Ref. 21 requires different tools. It
transforms the extended solution problem (on Z here) to a dual problem in a Fourier space. Establishing a nonlinear version of Anderson
localization in the Fourier space (here Z’) and using duality, lead to extended states solutions.

B. The nonlinear spacetime quasiperiodic problems

When the space direction is periodic, one may work on the torus T%. The analysis of time quasiperiodic solutions to nonlinear PDEs on
the torus has by now become almost a classical subject, see e.g., Refs. 3, 4, and 18, and the review article,”’ see also Refs. 10 and 16. However,
most of these techniques are based on the existence of only one quasiperiodic direction, namely in time, and the other directions being elliptic,
such as in the nonlinear Schrédinger equations. For the nonlinear random Schrodinger equation on the lattice,”' """ the space direction Z*
is endowed with many parameters. The elliptic directions or the random parameters regularize the problem. The nonlinear problem in this
paper has two quasiperiodic directions, with non-decaying nonlinear term, so most of these techniques are not applicable. We need to develop
new tools.

Remark 1.2. The recent work Ref. 17 shows, however, that the space direction may be regularized with fewer parameters when the linear
problem has Anderson localization and, consequently, the nonlinear term is decaying in space.

C. The new tools

We combine the analysis of linear quasiperiodic problems in higher dimensions™*"* (cf. Ref. 7), with the Lyapunov-Schmidt approach
developed for nonlinear time quasiperiodic problems.™'” In the space periodic case, the linearized operators are quasiperiodic only in the time
direction. In the spacetime quasiperiodic case, however, the linearized operators are quasiperiodic in at least two dimensions. We address this
by applying the only known techniques of dealing with multi-dimensional quasiperiodic localization and involving semi-algebraic geometry,
the matrix-valued Cartan theorem, and multi-scale procedures, to analyze nonlinear spacetime quasiperiodic problems.

D. Comparison with the space periodic case

As mentioned earlier, the space periodic problem may be reduced to that on the torus. The spectrum of the Laplacian in this case consists
of integers, and there are gaps of size at least 1 between non-equal eigenvalues. It is established in Ref. 18 that the NLS:

i%u=Au+|u|2‘)u,peN, (1.9)
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on T has time quasiperiodic solutions of arbitrary number of frequencies, in any dimension d. The method consists in extracting parameters
from the nonlinear term, and subsequently adapting the analysis in Ref. 4, Chap. 19. The uniform spectral gap of non-equal eigenvalues
permits to control small divisors using the extracted parameters, which are of lower order than o(1), since we seek small, 0(1) solutions.

In the spacetime quasiperiodic case, such as here, the spectral gaps are no longer bounded from below. One may still extract parameters,
but they are not sufficient for the analysis. The simplest is then to work with related parameter dependent equations. Here we use the parameter
V. Note that in problems involving small-divisors, one often starts by studying related parameter dependent equations, such as in the setting
of Ref. 4. These parameters are then removed in Ref. 18, yielding solutions to the original NLS in (1.9).

E. On the parameters 1 and V

We note that when V =0, A is the only parameter. From (1.3), the time frequencies w = (w1, w;) are functions of A. Therefore the
spacetime frequencies (A, w;, ;) € R® provide only a parameter space of dimension one. In that case, our problem, which is on Z>, is
degenerate.

The recent paper® analyzed a degenerate linear quasiperiodic Schrédinger operator on Z*. The main obstruction to carrying out Green’s
function estimates in d = 3 is the arithmetic lemma. In our case, due to the special structure of the operator, we have a version of the arithmetic
lemma, adapted from Ref. 8, that works in d = 3. The part that involves the linear analysis does not require the potential V and the parameters
(m1, my). However, we had to introduce these parameters in order for the implicit function argument in Sec. VI to be able to run. However,
V =0(1) as § — 0 is sufficient here, instead of V = O(1), which would have been more typical, cf. e.g., Refs. 3 and 4, Chap. 19. The general
scheme of the proof can be considered similar to that in Ref. 21, see also Ref. 19.

F. Structure of the paper

Sections I and 11T deal with the linearized problem. In Sec. I, we introduce some basic notation for the Green’s functions of the linearized
operators and state the corresponding arithmetic lemma. In Sec. III, we state a covering lemma (a highly specialized analogue of Ref. 7,
Lemma 2.2 and the covering lemma from Ref. 12) and the large deviation theorem which is, again, specialized for the current situation of
scale-dependent operators.

In Sec. IV, we state the iteration procedure for the non-linear problem and the role of P- and Q-equations. In Sec. V, we implement
the iteration procedure from Sec. I'V. This is the most technical section of the paper, since the inductive procedure requires keeping track
of regularity and decay estimates of numerous objects at the same time, with some cumbersome relations between these estimates. While
these arguments are commonly assumed to be straightforward, we believe that some readers may benefit from the additional level of detail.
In Sec. VI, we finish the proof of the main result by using the implicit function theorem and reducing the assumptions on (A, w1, wz) to
assumptions on (A, my1,m,). In Sec. VII, we outline the proof of the large deviation theorem (Proposition 3.2) stated in Sec. I11.

Il. THE GOOD GREEN’S FUNCTIONS AND THE ARITHMETIC LEMMA
Let

Lom =T x {+,-}.

A lattice point n = (11,12, 13) € Z> will later be associated with a pair (k,j) with k € Z? and j € Z, as in the original statement of the main
theorem. The study of the linearized problem will be centered around operators on £* (Zf,m), which can be associated with £2(Z; C*). For an
operator H, we will denote its matrix elements by

H(ni,n;) e Ma(C), np,mp e 7>,

We will use the notation |H(ni,nz)| to denote the norm of the corresponding (2 x 2)-matrix; the particular choice of the norm does not
matter, and we can for example use the operator norm. We will also use the notation

Inf = [nfy = [m] + [na] + sl nloo += max ] na], ).

An operator H on (*(Z,,) is Toplitz if:

H(n; + myn; + m) = H(ny,nz), Vnj,nz,me 72,
In most cases, we will assume that there exists y > 0 such that

|[H(n,ny)| < el (2.1)

L:82:S1 ¥202 Iudv L0
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Let D(6, ¢) be a family of operators on ¢*(Z,,,) parametrized by (6,¢) € R x [0,27):

g =" " 2.2)
where D, are diagonal operators on £2(Z) with entries
Di(n,n) = £(mw; + naws + 6) +2 cos (n3A +¢), neZ’.
Define also by T(6, ¢) the operator family on éZ(ZSm):
T(6,¢9) = D(6,¢) + eH. (2.3)

Note that both D and T are unbounded. However, their domains do not depend on 6 and ¢.

A. Semi-algebraic sets

A subset S c R” is called a (closed) semi-algebraic set if it is a finite union of sets defined by a finite number of polynomial inequalities
and/or equalities. More precisely, let {Py,...,Ps} c R[xi,...,X,] be a family of real polynomials whose degrees are bounded by d. A (closed)
semi-algebraic set S is a subset of the form

S=J N {xeR": Py(x) .0}, (2.4)

j Lec;

where L; c {1,...,s}and *jg € {<,=,>}. In the above case, we say that S has degree at most sd. In general, the degree of a semi-algebraic set
S is defined to be the smallest possible value sd over all representations, and is denoted by deg ( S).

The following two facts about semi-algebraic sets will be used during the course of the proofs. See 4 for more applications. The first result
is a particular case of:’

Proposition 2.1. Let S c R" be a semi-algebraic set of degree B. Then the number of connected components of S does not exceed (1 + B)°™.

The second result is known as the Tarski-Seidenberg principle:
Proposition 2.2. Let S ¢ R"*™* be a semi-algebraic set of degree B. Then the projection of S onto R™
proj,, (8) = {x1 e R : ({1} xR*) n S+ #}

is a semi-algebraic set with degree at most (1 + B)©(42),

Proposition 2.3. Let S [0,1]% x [0,1]% = [0,1]" be a semi-algebraic set of degree B and Leby(S) < 1,log B << log 1/n. Denote by (x,y) €
[0,1]% x [0,1]% the product variable. Fix € > 5. Then there is a decomposition

S=8US

with Sy satisfying
Leb(Proj, S1) < Bc(d)s,

and S, the transversality property
Leb(S:nL) < Bc(d)e_lql/d,

or any dp-dimensional hyperplane L in [0, 11" %% such that
for any yperp

1
Proj, (¢) < —&,
max [Proj; (¢))] < J55¢

where ej are the basis vectors for the x-coordinates.
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The notation log B <« log 1/# means that there exists a (small) constant ¢ = ¢(n) such that the conclusion of the lemma holds under
the assumption log B < clog 1/#. The above lemma, referred to as the steep planes lemma, is the basic tool underlining the semi-algebraic
techniques used in the subject. It is stated as (1.5) in Ref. 5, cf., Lemma 9.9" and Proposition 5.1 Ref. 8, and relies on the Yomdin-Gromov
triangulation theorem. For a complete proof of the latter, see Ref. 2.

B. The arithmetic lemma

The Green’s function method of proving Anderson localization involves restrictions of the operator to various boxes. Let N € N, and T
be an operator on £*(Z;,, ). For a subset A ¢ Z°, let Apm := A x {—,+} ¢ Z3,,, and

T|A = lAmelA

pm |Ran 1 Apm

the block of T corresponding to the subspace £*( Apm), naturally embedded into ZZ(Zf,m), considered as an operator acting on a finite-
dimensional subspace. For boxes centered at the origin, we will use shorter notation

T|N = Tl[—N,N]3'

Let r(A) be the diameter of A. Denote by X‘f\,y (the “good set”) the set of pairs (6, ¢) € R x [0, 27]such that

1T, )| <™, (2.5)

and for any n,n’ € A with [n — n’| > r(A)**1%°, we have the following estimates for the matrix elements:
|T(6,¢)[x (n,n")| < ¢t (2.6)

Let ijw =R x[0,2r] \XilJ be the “bad set,” that is, the complement of X‘f\,y. As always, we will use the notation ng»# and Xiﬁ# for the case
A=[-N,NP.

In the multi-scale estimates, it will be important to consider different values of u for different scales N. For large N, one would expect
y <y, since the factors with decay rate y will appear in the resolvent identity. On each step of the multi-scale procedure, the rate deteriorates
(that is, gets weaker).

In the setting of the present paper, the situation will be complicated by the fact that the operator H itself, as well as the value of y will
also change from scale to scale. One needs to be careful in obtaining a meaningful version of the multi-scale argument for the large deviation
theorem. We will formulate such a version in the end of Sec. I11.

We will start from some preparations. Compared to the traditional quasiperiodic setting such as Ref. 7, the set of parameters 6, ¢ under
consideration is not compact. However, one can restrict the bad values of the parameters to a bounded N-dependent subset.

Lemma 2.4. Suppose that |¢| < e"°*? and |D.(n,n)| 2 r(A)* for alln € A. Then (2.5) and (2.6) are satisfied. As a consequence, we have
the following inclusion:

X3, c [F10N*,10N*] x [0,27], Ve (y/5,5y).

Proof. Both properties follow from considering T being a small perturbation of its diagonal part, and expanding it into the Neumann
series. Additionally, (2.5) becomes much stronger with O(N~") in the right hand side. O

As in many results, we will need to introduce Diophantine conditions on the frequency vectors. Fix Cgio, Odio > 0. Let

Ci
DC;(Clios 8dios N) = {oc eR: dist(ka,Z) > |k|1i§l_u ,VkeZ, 1<kl < N};

DCi1(Ciio» 8dio) = () DCi1(Ceio» dio> N).
N

We will often take 84, = 1/100 and denote Cg;, by 7. To simplify the notations, in this case, we write the Diophantine condition as DC; (7).
The following result is essentially proven in Ref. 8, Theorem 5.1. The argument in Ref. 8 assumes a1 = a;, but one can check that this
assumption is not necessary for the argument.
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Lemma 2.5. Assume oy, o, € DCi(Cio, Odio ) Let A c [0,2 71)2 be a semi-algebraic subset. Assume that, for any unit line segment L c
[0,2 7)%, we have

|
Lebi(ANL) < > 15r‘rll(llélzl\]dlst(k- o, 7).
Then .
#k= (ki ko) € 77 [l < N, (knan aas) mod 22 € A} < (1+ deg A)% GOm0 @)

for N> No(«).

Here and in the future, C,ps > 0 denotes some positive absolute constant (not necessarily the same in different places).
The following is a modification of the above lemma which is essential for the multi-scale arguments afterwards.

Theorem 2.6. Let |e| < ¢ '°"* and y/5 < u < 5y. Fix some vy > 0. Let w1, w; € (=3,3) with |ws| > v2 and o €DCi(7). Let A € (1,2)
with A € DC; (Cdim 6dio)-
Let A c Z2 with r(A) < Ny. Assume that the set ijw is contained in a semi-algebraic subset le\’;lg with
Lebl(Xz’jdlg NnL) < e dengf:g <r(A)S, (2.8)
uniformly in all unit line segments L c R x [0,27m). Then, for any (6,¢) € R x [0,27], we have
#{neZ’ :|n| <Ny, (0+k-w,9+jA) € X3, } < (v21) 0 r(A) NG/ 430, (2.9)

assuming N is large enough depending on (w, ) and p.

Proof. Without loss of generality, assume that w; > 0. Let 7 = {1. Denote by Y? the subset of [0,1) x [0,27), defined by the following

condition:
(0 + kiwi + kawa, ¢ +j)) € Xh, < ({kun}, {jA}) € Yi.

To obtain Y, from X,hw, one can first stretch the latter by w; ! in the first coordinate. The resulting set will be contained in
[-107(A)*v;*,107(A)*v5"] x [0,27). One can then eliminate the variable k; by slicing the set into O(r(A)*v>') pieces and translating
each piece into [0,1) x [0,27). An additional translation, or a slight modification of the previous step, would also eliminate the dependence
on (6,9¢).

Since the constants are allowed to depend on v, the new set YK will satisfy (2.8) with, say, e T2 4h the right hand side. If XK” was
contained in a semi-algebraic subset of degree B, then one can apply the same operations to that set and obtain a semialgebraic approximation
for Y% of degree at most 10Br(A)>v; .

With the above preparations, Lemma 2.5 implies the desired bound for the number of pairs (ki,j). To complete the proof, recall
Lemma 2.4 and note that, once k; is fixed, there are at most O(v;'r(A)*) possibilities to choose k,. The contribution from these possibilities
can be absorbed into the front factor. O

Remark 2.7. If w, € DCi(7), then |wz| > 7. However, the proof does not require the individual frequencies to be Diophantine. One
cannot remove the condition |w;| > v,: in the extreme case w, = 0 we have O(k,) possibilities for k, alone, which will make o(k,) impossible
to achieve. Since ¢ € DC;(7), we have |w;| > 7v; as part of the assumptions.

In later applications of Theorem 2.6, it will be convenient to have v, = 7. In this case, the factor (7v)~“* becomes 7~ .

I1l. COVERING LEMMA AND THE LARGE DEVIATION THEOREM
A. Resolvent identity and the covering lemma
Let A=A UM, cZ® and Ay n Ay =@. Let T be an operator on KZ(A). From the resolvent identity, we have

TIa' = Tl + Tla, = (Tla, + TIay ) (Tla = Tla, = Tla,) Tl 3.1)

Here, we assume that T\j\i is extended by zero into £*((A\A)pm ), in order for the addition of operators to make sense. Assume that T satisfies
the Toplitz condition:

|T(n1,m)]| < e*}'\nlfnz\,
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andletn; € A;, n; € A. Then

ITIa! (n1,m2)| < | T3, (n1,m) 14, (n2)

Y MR () | 1R (2o, (3.2)

n’eA;, n” €A,

In the inductive procedure of constructing solutions to the P-equations, one needs to apply the above resolvent identity several times in a
specific way. In one way or another, these ideas have been used in most of the applications of the Craig-Wayne-Bourgain method. A detailed
scheme has been recently clarified in Ref. 12. For the convenience of the reader, we describe a version of this argument adapted to our setting.
We will start from the “covering lemma.” Suppose that T satisfies the following conditions

(covl) The Téplitz condition |T(ny,n, )| < &M,
(cov2) There will be boxes of three sizes: the main box A = [-N, N]3, the central box A, = [—NI,N1]3, and several “small” boxes of the
form A; =n + [—M,M]3 c A. We will assume

VN <N < N/10; (log N)loo <M < (log N)log log N

All results will hold under the assumption that N is larger than an absolute constant (in particular, all logarithms are well defined).
(cov3) The box A, is good in the following sense:

-1
ITla; [ < B,

|T|K:(n1,nz)| < ej“"‘*"Zl, for [m; —my| > R,

999/1000
Nl

where 100M < R < N7 and0<B<e
H4des > > > = >
(cov4) For each point n € A\3A,, there exists a box As c A of size M, containing n, with dist(n, A\As) > M/20, which is good in the
following sense:

_ 6/7
ITIR T <,

—pin; —ny| 999/1000
> .

|T

X:(nl,n2)|£e for |n1—n2|2M

Here, y, p € [1,+00). For each point n € A, the default choice of a “good box” will be A provided in (4) or A if n € %AC.
Sometimes we will need to be more careful and still choose A, even if a legitimate A; exists.

Proposition 3.1. Under the above assumptions and for sufficiently large N, the Green’s function in the box A is good in the sense of the
following two bounds: the norm bound

- /
TR < 2(™" +B)
and the exponential decay bound: for |n; — ny| > R, we have

. 1000 log N 999/1000
IT[7 (1, )| < ¢ (i b= S50 ) fmmml 2™
Proof. In multiple aspects, the proof follows standard arguments dating back to Ref. 7. Let us first consider the norm estimate. For each
n; € A, let A; be the “default good box” around it; that is, A’ from (3) if it exists, or A.. Apply (3.2) and first take the supremum over ny; then
take a supremum over n;; note that, since A; depends on nj, the right hand side of (3.2) will be different each time. As a consequence, we
obtain

s(1-1) < (eMs/7 +B),

where
s= max |T[; (n1,n)],
np,neA

o —[n—n""|| -1 ’
- 5 T (g, ),
AjcAneA;,n” eA\A,,dist(n,0A;\OA)>diam (A, ) /40

-M/100 | ,~Ni/100

Here, N is assumed to be large enough so that the exponential factor, which is either bounded by e absorbs the last factor

6/7 /7
bounded by """ or AR respectively, and all combinatorial factors. We also weakened the estimates by assuming that y = y = 1. It is clear
that we have ¢t < 1/2 for N larger than an absolute constant, which implies the norm estimate.
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Let us proceed with the exponential decay estimate. Let nj,n; € A and |n; — n| > R. Find a good box A; around n; and apply (3.2).
Assume for now that n, ¢ A;. Then we have

TR (m)[ < Y e T (0,0,
neA;, n”eA\A,

For n and n” that produce the largest possible term in the summation, we have

IT]2! (n1,m0)] < [T (n1,m5) 14,15
+|1\1 ”A|e— min {y,y}(|n]—n|+|n—n”|)|T|X1 (nll, 112)|
< |TIX) (myma)[La,mz o+ Ay [ Afe ™™ O T (0 g )| (33)

Let n{’ := n”’. One can iterate the above inequality by applymg it to | T| 2 (ng,n})| with n, replaced by ny, and obtain a new “intermediate
point” nj. The process can be repeated, and we obtain a “path” n{’ ,n2 ,.... For each point n;’ we find a good box A; containing n}/, and the
next point n,; will be outside of A;. We will call the jump from n;’ to ny/,; short or long depending on whether A; is a large or small box.
Note that this terminology only reflects a lower bound on the size of the jump; the actual jump can be arbitrarily large within A, but cannot
be very small since the next point must be outside of A;.

The iterations can be repeated indefinitely. At each step, the number of terms increases at most by 1. Generally, we expect that the first
term in the right hand side of (3.2) would only appear at later stages, since n, is not very close to n,. However, one can easily see that eventually
it will appear. In that case, we estimate the first term in the right hand side of (3.3) with the best available bound on the matrix element of

- . . 5/6 . . . . . "
T All, which can either be ™, B, or an exponentially decaying bound. Let us terminate the iterations once we meet the condition
4 4
In; —nf|+ny —ny| +---+n;_; —n;| > 2Ny;

recall that N is the size of the central box. In the last step, we estimate the matrix element of T|;' by the (already obtained) norm bound
2B+ M) < 4B.

As a consequence, we have at most, say, L00N; /M terms. Each term corresponds to some sub-path of the initial path. It includes an
exponential factor (total length of the sub-path), a combinatorial factor (|A1|A])", where r is the number of steps in the sub-path, and the

norm factor, which is either, say 4B or e

To simplify the estimates, first note that the number of terms can be absorbed into the overall bound, and therefore one can deal with
the worst possible individual term. Let us consider the combinatorial factor. For a sub-path with r steps, the exponential factor is at most
(meaning at least as good as)

: M
g~ min {)’M}ﬁ.

The combinatorial factor is bounded by

(|A1 ”ADI < NlOOr < elOOr log N'

Since M > (log N)'®, the combinatorial factor can always be absorbed into the exponential factor for large N, with some deterioration in the
factor min{y, u} as indicated in the statement of the proposition.

It remains to consider how to deal with the norm factors. Clearly, if the norm factor is e ‘. then the length of the sub-path must
be at least |n; — ny| — M 1000 and therefore the norm factor is, again, absorbed by the exponentlal one. If the norm factor is 4B, it can

come either from a sub-path [corresponding to the first term of (3.3) at some iteration step], or from the second term through the length
999/1000
termination condition. In the latter case, since B < ™1

term.
It remains to consider the situations where the factor B appears in the first term. It can only happen if, at some stage, ny is inside of A./2
(so that we have to choose A, as a good box), and |n; — n;| < R. In that case, note that ny_; must be outside of A./2. Therefore, the jump from

ny_; to n; must have been through a small box (using our terminology, a short jump), but the actual length of the jump, and therefore the
N999/1000

length of the path, is at least, say, N1/10. Thus, the exponential factor will also absorb B < et . 0

and the length of the path is at least 2N, it will again be absorbed by the exponential
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B. The large deviation theorem
Our next goal is the scale-dependent version of the large deviation theorem for the Green’s functions. Let
2Yoo 2P Y22 2 Yo0r 2P YL 2 Yoo
be two non-increasing sequences of real numbers. As above, define a family of operators on £ (Zf,m):

T(6,9) = D(6,¢) + eHy.

One can also consider their restrictions into ng\S for a finite subset S in the same way as described above. We omit this straightforward part
for simplicity. Assume the following conditions on T} and Hy.

(msl) Hj are Toplitz operators with the matrix elements satisfying
|Hi(n,n")| < ¢ rinn'l
i
(ms2)  |Ty1 — Tyl <.

(ms3)  Yyens < min{yey} -k

The following Proposition 3.2 is a version of the large deviation theorem. There no major difficulties in adapting the known proof
from Ref. 7 to the variable decay rate situation and to arbitrary dimension (in our case, d = 3), assuming that an appropriate version of the
arithmetic lemma holds (Theorem 2.6). However, one also needs to use modified versions of the covering lemmas Ref. 7, Lemmas 2.2, 2.4
which take into account the Toplitz form of the off-diagonal terms, more accurate counting of bad boxes, and stronger off-diagonal decay
(that is, [n — n’| > N**'%C rather than [n — n’| > N/100). Such versions were stated in Refs. 12 and 14, with the latter being the most suitable
for our direct applications (the statement in Ref. 14 would have needed a minor modification).

It will be convenient to introduce a new arithmetic condition on the spacetime frequencies. Let

DCR(7,N) = {(/\,wl,wz) € (1,2) x (=3,3)2: |ws| 2 7, % € DCi(1sN), d e DC1(T;N)};
w2
DCR() = () DCR(7;N).
N

One can check that
Lebs (DCR(7; N)\DCR(z; N + 1)) < 107°N~+/100); (3.4)

Lebs((1,2) x (-3,3)*\DCR(7)) < 107. (3.5)

Proposition 3.2. There exists an absolute constant Cing > 2 such that, for every y_ € (1/2,10) there exists & > 0 such that, for any ¢ €
(0, &0), we have the following. For every M € N, and every (A, w1, w,) € DCR(7, Mw) there exists a subset Xy = X (A, w1, w2) € R x T such
that, for every (0,¢) € (R x T)\Xu, we have

6
7

(T @)a) ' <™, Vik>M. (3.6)
and for all n,n € [-M, M]?* with [n — n’| > N1 e have
[(Te(6,9)|a)  (myn')| < e s M. (3.7)
For every line segment L c (-3, 3)2, X satisfies

1
Leb; (XynL) <e™™. (3.8)

Remark 3.3. For the convenience of the reader, the main steps of the proof will be outlined in Sec. VII. As previously, we assume that
8dio = 1/100 is fixed. An analysis of the proof shows that the choice

€ = exp {—T_ Cabs,dio }

is sufficient. See also Remark 7.6.
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Remark 3.4. We will be using the condition (3.8) only for horizontal and vertical line segments. In that way, the steep planes analysis in
Sec. V is more similar to Refs. 5 and 6 rather than.” Most likely, the Proof of Proposition 3.2 can also be performed along the lines of Ref. 7.
However, the latter paper involves a non-explicit arithmetic condition on the frequency vector, which complicates quantitative estimates
needed for Remark 3.3. We believe that there is also some value in keeping the conditions on (A, w1, w2 ) in Preposition 3.2 purely arithmetic,
even though they undergo an additional non-arithmetic parameter removal in Step 4 of Sec. V. We would like to thank the anonymous referee
whose suggestions lead to this remark.

IV. THE LYAPUNOV-SCHMIDT DECOMPOSITION
Recall that we have n = (1,12, n3) = (k,j). Write u using the Fourier series (1.5). Let it be the complex conjugate of u, and
a(t,x) =u(t,x) =y, fi(n)e k)t gmiieh > L:t(—n)ei(k‘w)teijx'\. (4.1)
nez’ nez?

In other words, ©(n) = &(—n). The function v is only introduced for convenience of notation, in order to avoid multiple stacked conjugation
symbols. In the sequel, we will call v and u conjugate.
A. The functional F

Using (1.5) and (4.1), we can rewrite the original NLS Eq. (1.1) in the Fourier representation:

(k-w+8V(n) +2 cos (1)) i(n) + 87 ((it + 0)*F &) (n) = 0, (4.2)
(-k- @+ 8 V(-n) + 2 cos (j1)) #(n) + 6% ((ix0) P *0)(n) = 0, (4.3)

where we recall the definition of V(n)in (1.6):

V(n) = mley (&)1, (7) + maliey (K1, (), n=(kj)eZ’.

The symbol * denotes the standard convolution:

(A*B)(n) = Z A(nfn')B(n'),

n'ez’

and (it+9)*F denotes the pth convolution power of i * ¥.

The expression in the left hand side of (4.2), as well as (4.3), is a function on Z? (in the variable n). Let us combine the left hand sides
of (4.2) and (4.3) into a single function on Zf,m, and denote the resulting function by F[#, ¥]. In some calculations, it will be convenient to
consider i and 9 as independent variables, without explicitly using the fact that they are conjugate to each other.

Let £o(Z*) denote the space of all finitely supported functions on Z*. We can consider (i, ©) ~ F[#, ©]as a non-linear map from £o(Z*) x
6(Z°) = to(Zy) into itself. Its derivative at the point (i, ¥)is a linear map of the same type of the form

F'[i, 0] = D+ 8"V + 87 H[ i1, 0],

where
diag {k- 2 i 0
N , neZ’, (4.4)
0 diag {-k-w+2 cos (jA)}
and
Ve diag {V(n)} 0
0 diag {V(-n)}
are multiplication operators independent of i, 9, and
+ D (L*0)*P A ANFD=L A A
H= 2 )(”’1”’) *  p(ixd) 11 11 % ws)
p(ix0) P o0 (p+1)(Gxo) P

is a matrix of convolution-type operator. For example, (p + 1)(##%)*”* denotes an operator on £(Z’) whose action on an element w €
£o(Z?) is given by (p + 1) (%0 )*F » w.
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Note that the non-linear part of F in the original coordinate representation (before Fourier transform) is simply the map

u
f: R > R?, f(u,v) = 82p(uU)P ,
v
whose differential is the matrix
o (p+Dufo?  pufo!
pul P (p+ 1) ‘

We would like to estimate the difference between the increment f(u + tcorr, U + Veorr) — f (14, v) and its linearization. Clearly, the linear part
will completely cancel in this estimate. We can express the difference as follows:

1 p-1
P p U+ Ucorr _ Pt u _ (P + l)upvp P”p+ Up Ucorr
(M + ucorr) ('U + vcorr) u 1 pel
U + Veorr v puf P (p+ 1) |\ veorr
2 2
= Ucorr&1 (u: U, Ucorr» 'Ucorr) + 'Ucorrgz(u: U, Ucorr» Ucorr) + UcorrUcorr 3 (u> U, Ucorr> 'Ucorr)- (46)

One can easily check that g,, g,, g5 are polynomials of degrees at most, say, 10p with coefficients bounded by, say, 9'%_ As a consequence,
Igilc ppe <10 (10+B)'”, j=1,2,3.

In other words, if one assumes that u, v, ticorr, Veorr are restricted to a bounded domain, then the difference between the increment of f and its
linear approximation is, as expected, quadratic in tcorr and veorr. Moreover, if u and v additionally depend on a parameter, this estimate can
also be differentiated (possibly multiple times) with respect to that parameter, due to smoothness of the right hand side of (4.6). Naturally, the
estimate is only meaningful if #corr and veorr are small. Combining with the Fourier representation, we arrive to the following proposition for
the original functional F.

Proposition 4.1. Assume that ||it|1, |0 Dcore||1 < B, where || - |1 denotes the norm in £'(Z*). Assume that it and © are conjugate

to each other. Then

1> 1> ilcorr”l;
F[[ét + ficorrs © + Deorr ] — F[d1, 0] = F' [, 0] < 8710"7(10 + B)"* |l ficore | 1. (4.7)

Suppose, in addition, that i1, ¥, licorr, Dcore depend on several parameters. Let V denote the derivatives with respect to the above parameters. Then

one has
N N N N N N I A N 1:‘(:01'1‘
V| [ + ftcorr, © + Dcore | — F[i1, 0] — F' [, 0]
ﬁcorr 1
< 62p1011p(10 + B)IOP ilcorr”l( ilcorr”l + Hvilcorrul) (48)

Remark 4.2. One can also restate the above bounds in the form of the following convolution-type relation:

F[ it + ftcorr © + Dcorr ] — F[it, 0] = F'[11, 0] %

N
Vcorr

2P A IS A A A N 2p A N A A A N
=0 Pucorr * Hleorr * My (U: U, Ucorr, Ucorr) +6 Pucorr * Ucorr * hz(u, U, Ucorr, Ucorr)

2p A A A A A A
+6 pvcorr * Veorr * N3 (u: U, Ucorr» vcorr)a

where hy, hy, h3, similarly to the above, are convolution polynomials of degrees at most 10p with coefficients bounded by, say, 910p,
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B. The Lyapunov-Schmidt decomposition

Let
Sy = {(-e1, ), (—exh2)}, S-==8+ ={(e1,—h), (e, —-h2)},

and
Si= (Se x {+}) U(S-x {-}) € Zjm. (4.9)

The Lyapunov-Schmidt decomposition is a decomposition of the system of Egs. (4.2) and (4.3) F[#1, ¥] = 0 into two systems, by restricting it
into S and ng\s, respectively. The first system

F[i1, 6]

7 \s = F[it, ]| = 0, (4.10)

‘pm

namely, for any n € Z°\S,,
(k- +2 cos (jA))i(n) + 8% ((ix9)*P*it)(n) = 0, (4.11)

and for any n € Z°\S_,
(-k- w +2 cos (jA))d(n) + 87 ((it%0 ) P*0)(n) = 0 (4.12)

is usually referred to as P-equations. The restriction into S is called the Q-equations:
F[i1, 0]]s = 0. (4.13)

We will impose #i(—ey, i) = u for k = 1,2. With this assumption and using the conjugacy relation between i and 9, we can see that the
Q-equations reduce to the following system:

2p
wy =2 cos (ld) + m8™ + 8—((14 #0) P w i) (e, by), k=1,2. (4.14)
Uk

We remark that only the Q-equations depend explicitly on m, and the P-equations (4.11) and (4.12) do not. The latter enables us to solve the
P-equations in the (w, 1) variables and is a simplifying feature.

C. The P-equations and the multi-scale Newton scheme

We use a Newton scheme to solve the P-equations. Fix a conjugate pair (u,v), and let T, be the linearized operator on £> (ng\s ):

T, = F'[i1, 9]|g = (D + 87 H[i1, 9])|g. (4.15)

Recall the formal Newton scheme:

A
Ucorr

= —(Tu) "' F[i1, ]

.. (4.16)

Ucorr

Here, F[il, ¥]|s is an element of KZ(SC), and T, is an operator acting on the same space. Therefore, both ficorr and Deorr are elements of
ZZ(Z3\S+) and KZ(Z3\S_), respectively. One can easily check that ilcorr and dcorr are conjugate, that is,

ﬁcorr(n) = %corr(_n)-

We adopt a multiscale Newton scheme as follows. Start from the zero iteration

ui, n= (_el)hl);
1Pm)=w, n=(-enh);

0, neZ\S,.
Consider a sequence of scales N < NV < .. .. At the iteration step (r + 1), consider

Tuln = Tu|[—N,N]gm\s-
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Note that, since T, is already restricted to Zf,m\S in the original definition, this is the same notation as in Sec. II. Define the (r + 1)-th
correction to be:

A (r+1)
i B o) FL 5O e ¢ (4.17)
corr
and obtain the next iterations by
a0 g O a6 = O g0y 9 (n) = 50 (-, (4.18)

where one can easily check that the last two equalities imply one another.

I P ORI

We will use the terminology finite volume for the above iterated equations and their solutions u "), and infinite volume for

the original non-linear equations and their solutions.

D. The Q-equations

At each iteration step, the values of #(Pand ¥ (”on § do not change, and are always equal to those of & ©, 5 As a consequence,
the iteration process for the P-equations is consistent. In other words, the outcome of the Newton iterations for the P-equations is sufficient
to determine the input for the next iterations. As a consequence, finite volume versions of the Q equations can be essentially ignored. If the
above Newton iterations for the P equations converge to an infinite volume solution, one can interpret the Q-equations (4.14) as the final
relation between A, m1, ma, w1, ;. During the iteration, we will require (A, w1, w,) to belong avoid certain “bad” subsets, from the application
of Proposition 2.3 (“steep planes lemma”). In Sec. V1, we will restate this as a condition completely in terms of (A, m;,m, ), as required by the
statement of the main result, Theorem 1.1.

V. INDUCTIVE PROCEDURE FOR THE P-EQUATIONS

In this section, we will implement the multi-scale Newton scheme described above, for the P-equations. This is the most technical section
of the paper.
As discussed above, we start from the initial iteration

ui, n= (*el,hl);
8Om)={u, n=(-enh); (5.1)
0, ne Za\SJr,

and ) being the conjugate of i1 (). For a sequence of scales N = A™", define

A(r+1)
corr _ R .
ey | = (T lyen) Fla U(r)]|N(r+1>,sc,
corr
PGV IR GO aé;:—rl); D (™ 135,3:}1); ﬁ(r+l)(n) _ lAl(Hl)(—n).

The goal of this section is to establish several inductive estimates on &t (Vand © (", each of which will be supported on [-A"", A™*"].
Recall

DCR(7,N) = {(A,wl,wz) €(12) x (-3,3)%: [wa| 2 7. 2L € DCy(BN), A e DCI(T;N)}.
w2

Let
Is = {(w,A) € DCR(7,A'") : [D(n)| > 8res foralln e [-A™, A" ]’} (5.2)

Let Iy be the union of all dyadic cubes contained in Ij with side at least 8%,. It is easy to see that, say

Lebs (DCR(7,A'")\Iy) < A" 8. (5.3)
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(i1) I, can be split into a disjoint union of exp {((r+ro)log A)“™'} closed rectangles I, each of which is of diameter at most

exp {~((r + o) log A)“2} and has edges parallel to the coordinate axes.
(i2) The rectangles in I, are nested: for each I, ; there exists I

(13) Wehave Lebs (I\Ij41) < e Cimo(rm)log 4,

r—1,

For (w, 1) € I, we will show:

(soll)  #and o Vare supported on [-A"™", A" ] for r > 1.

(sol2) | (n)]| < (1 - 27(”1))(""“', for |n| € Z*\S,.
(sol3) aé;;“ (n)| < 6r+1e7"'(3)|"‘ < 8,p1e il see (5.6) for details on notation.

(sold) [F[3 ), 0 (m)] < el
(sol5) Let

G i {exp (Cans3(r+10)log A),

exp (((r +19)log A)C“bs*3 ),

1)
D, := c
((r+ro)log A)~™*,

We have the following Green’s function bounds:

I(Tyolava) ™' < 8s G

and for [n — n’| > D,, we have

(T,

(sol6) The matrix elements of the operator T satisfy

s such thatIrj c I, ;.

OST’SF();
r > 1.

0<r<r

e ) ()| < 87712l

1y Djne
T, (n,n)| T e R

VT »(n,n 362"_1[”51)‘"_"", n+n’
VT,

The operator T satisfies the conclusion of Proposition 3.2 at the scale

M = M(r) = | ((r + o) log A)% |,

where Cp is a large absolute constant (say, C; = 300), and 75\4(7) =y — W.

In addition to the above, we will establish the following regularity properties.

(regl) The map (w,1) ~ & can be extended to a map of the class

C'((1,2) x (=3,3); £ ([-A"", A7 ).

(reg2) On (-3,3)% x (1,2), we have | Vit ™) (n)| < (1 - 277"1)§!+3¥#/8gwinl,

(5.4)

(5.5)

(reg3) For (w,1) €I, we have |V£4§,§;}1) (n)| < 5r+167’“'(4)|n‘, where V denotes the gradient with respect to w1, ws, A.

(regd) For (w,A) €I, we have [VF[it (7,0 ]|¢ ()] < ke,

(reg5) For (w,A) €1, the components of u” (w, 1) are rational functions of w1, ws, cos A of degree at most e

(reg6) The small parameters in the above bounds satisfy the estimate

K = SPGB/ _ mPCabsro (3/2)" log 4

We will also have
—Capssto log A —Cabs770 log A

e <d<e

(reg7) The bounds in (sol5) for r > ry are stable under perturbations of u®

<res <€

2 o—1
6r+1 = Gr 61‘65 Kr.

—CabsoTo log A

((r+19) log A)? .

2
of size ™ in the £°° norm (see the notation of Steps 3 and 4).

2
Since 8, < e ™, they are also stable under perturbations of size 106,. For r < ry, the bounds are stable under perturbations of size

82,.. The same is true for perturbations of the parameters w, A.
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A. Some conventions about the estimates

The below estimates are quite technical and involve multiple r-dependent parameters. We will try to introduce some conventions in

order to have more structure and lesser chance of errors.

@

@)

The exponential decay rate of several involved quantities is denoted by y.. In the transition from r to r + 1, we will have to introduce
several auxiliary decay rates:

(7 _

0 j+1
(0) G

Y = U j=12,...,4 (5.6)

1
100(r +19)*’

In the end, we will take pr4; := ‘ufs). Each sub-step will slightly decrease the rate of decay. This, together with the choice of small §, will
guarantee

ur € (y/2,9)

forsome3 <y <10andallr> 0.
For a given scale r, in most of the calculations one can assume the constant prefactor to be 1 in (sol2) and (reg2), and then subsequently
use (sol2) and (reg2) to confirm that one can use (1 — 27"~ for the scale r + 1.

B. The induction step: Plan

The induction procedure involves multiple estimates related to each other. Here, we outline the order in which we prove them. We

assume that the induction assumptions are obtained at step r.

1
(2

(©)

)

)

(6)

@)

(8)
&)

Check all estimates at the initial scale for 4 (for small 8 using direct perturbation arguments).

Using the induction assumptions on u”, construct the operator T, »and check the first two estimates in (sol6). The off-diagonal decay

rate for matrix elements of T, will be ‘ufl).

Check the assumptions of the large deviation theorem (Proposition 3.2) on the relevant scales, thus confirming the remaining claims
in (sol6). The decay rate in the output of LDT will be ‘ufz). This step will only be required only for r > r; and will use the corresponding
scale-dependent Diophantine condition. Quantitative aspects of the Diophantine condition will be discussed during Step 9.

. . -1 . . . .
Obtain estimates (sol5) of ( T )| gronon ) , using the estimates on T (| y»and the large deviation theorem. The exponential decay rate

in this version of (sol5) will be /453). During this process, a small subset of the parameters (w, ) will be removed through an application
of the steep planes lemma, in addition to the Diophantine condition. This removal of the parameters (w, 1) is not optimal for some
smaller scales (depending on 6r.s), compared to a direct perturbation argument. We will also determine the range of scales for which a
conclusion of this step can be achieved by a direct perturbation approach with better measure estimates, and combine them into one
estimate which will have power law decay as § — 0.

Construct aﬁg,t” and estimate it using the previous step and the induction assumptions on F[i ™ % (r)], obtaining (sol3) and (reg3).

The decay rate in these estimates will be /454). This also implies (sol5) at the scale r + 1 with decay rate y£3 .
Estimate F[# (1) (D) Jlye+» ¢ using the results of the previous steps. The decay rate will be (455) . At this step, we will take advantage

of the Newton approximation argument in order to get a quadratic improvement. The rate ‘ufs) will be the weakest possible among those

obtained at step r, and we declare pr4; := ,155).

Summarize the inductive assumptions on smallness of various constants and justify (reg6).
Use the definition # "™ = () 4 {*D 1o estimate # “*Vand establish (sol3), (reg3) with the decay rate y£4).

Complete the semi-algebraic bounds (degree and rectangular structure) and extensions to the full parameter space.

C. Some bounds on convolution-type operators

We will need some elementary bounds on convolutions and convolution-type operators.

Lemma 5.1. Suppose that

0<fitn)y<e™™ 1<j<p
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Then
n|” A
fm):=(fixfox - *fp)(n) < 2617—1614(% n %)e ulnl

For R > 1, we also have

ép N
f(n) < zépfleﬂ(m . %)e—(w Yinl
u I
Proof. We have

+oo +oo
f(m)< > eiﬂk#{(nl,...,np) |+ | = Ky < 2% > kP ek
k=|n| k=|n|

3 O 3 s 3p u —un| [T 3p —ps
<2 sPe ds = 2P ee / (s+n))Pe ™ ds
0

[n]

Foo 3p 3p)!
< 26P_1e“e_"‘“|f (s7 + 0 )e* ds < Z(’P_Ie”(Ln‘ + (353*1')3_[4'""
0 4 IS

-1
The second estimate follows from the fact that, for [n| > 100p>R?, the extra factor e ® " will absorb |n|*. ]

We will also need another more specific convolution-type estimate.

Corollary 5.2. Suppose that gj, f : Z> — Ry and forj=1,2,...,p — 1 we have

e n| > D;

G, |n| < D.

g(n) <{

with G > 1. Suppose also that f(n) < e™*™ for alln € Z>. Then

3p '
(g1+go*---*g-1+f)(n) < 271”161‘(& + (211;)1 4 (3p)!)eiﬂ|n‘ i GP*1(4D)3P62(P*1)#De*14|n\.
IS I3

For R > 1, we also have
(gr#gax -+ *gp-1%f)(m) <

< 27p—ley((10PR)6P N (3p)! N (3p)!)e—(/4—R")lnl + G (4D) PP DkD il
U

3p+1
@

Proof. Since g;(n) < e il Liyjsp + Gljpj<p, One can expand the left hand side into 27! terms, by considering two possible choices for
each g;. By adding an extra factor 2P and after a small weakening of the estimates to ensure monotonicity in p, one can restrict themselves to

two extreme cases, with either first or second choice made for all 8 at the same time. We leave the details to the reader. ]

Remark 5.3. The bounds in Lemma 5.1 and Corollary 5.2 are of pointwise type. As a consequence, one can replace convolution-type
operators by more general operators with matrix elements satisfying [¢;(m, n)| < g;(n — m).

D. Step 1: The initial scale and some perturbative estimates

While we will construct u™,u®, . .. inductively, it is convenient to obtain bounds (in particular Step 4) “in advance,” since the bounds
obtained as a results of the inductive procedure would be too weak on small scales. Suppose that (w, ) € I,. Recall that, from (sol6), we have
(after simplifying some notation)

T:=Tw=(D+67H[aD,00))|¢ =D+6*'H,  |[H(n,m)| <e ™™,
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For 0 < 7 < rg, we have | D™!| < 0. We assume that T is restricted to an appropriate box [-A"*", A"*"], although it does not affect the
argument much (however, a larger box will require stronger assumptions to maintatin the bound | D™"|| < 87it). Assume that § is small enough
so that | 6% ' H| < 18res. One has the Neumann series expansion:

T '=D'+&6*'D'HD ' +6¥Y*D'HD'HD ' +---

Assume also that 8] < A71%_ Then the factors 6% ~V¥ will absorb all factors of the form D! and all polynomial/combinatorial factors,
leaving with exponential factors from convolutions of several copies of H. As a consequence, in the above range we have

—1 1 -1
” T H < Eares;
|77 (m,n) || < 872l g,
Summarizing the above, the estimates (sol5) are obtained in the range 0 < r < r( assuming the estimates from (sol6).

E. Step 2: The operator T

We recall that
T, = (D + 67 H[i1, 9]) s,
where
diag {k- 2 iA 0
Do iag {k-w+2 cos(jA)} ’ (k,j):neZs,
0 diag {-k-w+2 cos(jA)}

and H is a (2 x 2)-matrix of convolution-type operators:

P G

(p+1)(@x0)Px  p(iaxd)
p(ﬁ*ﬁ)*rlﬂﬁ*ﬁ* (p+1)(tr%0)"Fx

Assume the choice of § made at Step 1. Note that, since # contains the values of & on S; which are not necessarily small, they may spread to
the translations of the points of S, after taking the convolution. Assume, in addition to the former, that the choice of large A, ro absorbs these
values. For example one can choose them so that

8Mj < e—lOOPlh]‘) ] — 1’2 (5’7)

With the above choices, one can see that both bounds hold for 0 < r < ry, assuming (sol3) and (reg3). Indeed, polynomial factors from the
convolution can be absorbed into the upper bound on §.
For the larger scales, it will be convenient to prove a stronger bound

_ o1y O’
IT o (nn")[ <8*7'(1-27""")e L R

inductively, by estimating the difference
Tu(r—l) (n, n') - Tu(r) (n, n'). (5.8)

Indeed, the above difference can be expressed as a sum of 2p convolution-type operators, each of which contains itgzror ﬁgggr, and the
remaining factors are of the form & =D 50, 50D 5 As an example, for the top left matrix element we have

(p+ 1) 0 F = (pr 1)@V x )
=(p+ 1){(a(r—1) " aég?r)*"*(ﬁ("l) " 0gzr)*P _ (ﬁ(r—l)*ﬁ(r—l))*P}

— ﬁgl)'r*h[(zl)(f’l(r)) 15(’), ﬁ(f—l), 13(’—1)) + ﬁgézr*h,(,z)(ﬁ(r), ﬁ(’))ﬁ(’—l), ﬁ(’—l)), (5.9)

where h}(,l’z)are convolution polynomials of degrees at most 2p — 1 in &”, 4,5 ~D 4 (= (one has to take the value of the function at
|n — n’| to obtain the matrix element between n and n’).
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Recall that ") has decay rate 4. Apply Lemma 5.1. After some simplifications, will have the right hand side of (5.9) will be bounded by

C(p)
87( 1000(r + ro)p) T — )
Iz

Since r > r and due to (reg6), the factor 8, will absorb any power of (r + o), thanks to the choice of ro or A being allowed to depend on p.

A similar calculation can be done to estimate the derivatives, assuming (reg2) and (reg3). We leave it to the reader.

Note that one can also estimate the off-diagonal entries of T (, directly by combining Lemma 5.1 with (sol2). However, this will produce
some extra polynomial factors that are cuambersome to deal with.

F. Step 3: Verification of the assumptions of the large deviation theorem

In this subsection, we will verify the assumptions of Proposition 3.2. A somewhat careful analysis is required, since the rate of decay of
the off-diagonal entries changes from scale to scale, and the rate of the change decreases as r gets larger. At the induction step r > ro, we will
be applying Proposition 3.2 to the operator T, at the scale

M =M(r) := [(log N)“| = | ((r+ro+1)log A) | ~ A™, (5.10)
where

_ Ciloglog N ~C log (ro + r+ 1) +log log A
log A t log A

rn

and C, is a large constant (say, Cr > 400). Here, ~ denotes the nearest possible value assuming r; is integer.
From Step 2, the off-diagonal entries of T () have the Téplitz decay rate is /,tfl). Since Proposition 3.2 is applied on the scale M, we would
have yu = ‘uﬁl), where M and r are related through (5.10). We would like the decay rate in the conclusion of 3.2 to be #52)) which corresponds

to yy = ‘ufz). Let s be an integer such that M(s) is closest possible to M*. The assumptions of Proposition 3.2 require y, < i — M~'°. On
the other hand, the scale of the size close to M” is used on the step s, and therefor y,,» ~ ‘uﬁs). In order for these inequalities to be consistent
with each other, it is sufficient to enforce

‘us(l) g,ufz) el

From the definitions of the above objects, it is sufficient to have

sxr+1; 100(r +1r0)* < ((r+ro + 1) log A)*“".
Clearly, both inequalities are achievable with, say, Cr > 10, ro > (logA)z, with margins sufficient to overcome rounding errors. Note that one
does not need to be particularly careful about these relations on scales smaller than M(ro ), since one does not need to match the exponents y

with y, and can start with a stronger decay in the initial scale of Proposition 3.2 which will gradually decrease to ,ufol) (or better) as the scales
reach M(ro). For example, the choice made in (5.7) is by far sufficient.
Let us also discuss the choice of small §. In view of Remarks 3.3 and 7.6, we would need

|6‘ < e_fcabs,dm

or, equivalently,
1

————— < T.
(log (1/5))1/%5,@

In view of (reg6), this also converts into
Cabsdio

Cabs,770 log A > 77
This choice also achievable by choosing large ry and/or A.
This completes verification of the assumptions of Proposition 3.2. As a consequence, we obtained a subset X3; ¢ R x [0, 27)such that,
for (6,¢) € R x [0,27)\X};, we have

<oy

(T (B.9)an) | <&

for any n,n’ € [-M, M]® with |n — n| > M***/'% we have

_ D’
(T, (8:9) ) (mm) < 7 7™
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We also have that, for every line segment L c R x [0,27), we have

_ M3

Leb; (LN Xy) <e (5.11)

G. Step 4: Estimates of (T ¢ |y )"

This step is the central part of the argument. We would like to advance (sol5) from the scale A™*" to the scale A™*"*! = N(*D) At this
stage, we do not change T »to T c+njust yet. This change will be performed once we obtain estimates for 28 Din later steps.

We will also be assuming that r > ro. While the induction steps will be carried over starting from r = 0, the estimates in (sol5) at small
scales, as explained during Step 1, are obtained directly from perturbation arguments. They are also not sensitive to the change between
T, and T 1)

Our goal is to apply Proposition 3.1, with the following data:

e The central box will be [-A"", A™"], and the operator will be T, . This comes from the induction assumptions.
o The size of small boxes will be, as in the previous calculations,

M :=|(log N)C"J =|((r+r+1)log A)C"J ~ A",

Ct log log N c log (ro +r+ 1) +log log A
log A t log A '

r

Here, ~ denotes the nearest possible value assuming 7, is integer, and Cy, is a large constant.

e We will construct a semi-algebraic subset of parameters (w, 1) so that each M-box away from the center of the large box (as required
for Proposition 3.1) is good for the operator T ) withrz = (log A)?ry.

e Assuming (reg6) and (w,A) € I,,, we have

80— 3O <20{) «

which implies the complete assumptions of Proposition 3.1 for the operators T, () (in other words, the bounds for M-boxes will remain
the same, up to a factor of 2, when we replace r, by r).

At each step, we are essentially dealing with semi-algebraic subsets associated to the operator on smaller boxes, and not with the central box
(the central box estimate is contained in the induction assumptions). The fact that the boxes are of small size allows us to consider ugzrz instead

of #1$7);. Both of these considerations are important in order to have the degrees of the corresponding subsets not too large.
Let

Xy ={(6:9) : T, (6,9)|m isnotgood},

where “good” will mean slightly modified usual conditions

[(T e (8, @) ) ™| < 267

M999/ 1000

for any n,n’ € [-M, M]® with |n —n| > we have

_ T
(T, (8,9 a0) ™" (mm)] < 2710
Let also X}; be the set defined in Step 3, that is, the same set with u() replaced by 4 and the factor 2 removed. We have
Xynl,cXynl,

Indeed, if (6, ¢) €I, }\Xj, then the T ) (6, ¢)|u is good in the usual sense, which will be preserved, up to a factor 2, after switching u” by
u(™) due to (5.7). Therefore (6, ¢) ¢ X};. Note that (5.7) may not hold outside of I,,.
As mentioned above, the reason to consider r; instead of  is the degree. Define Xp := Xj; N I, Since u(™) is a rational function of degree

el log 4)’ (possibly different on each rectangle I,.;), we can assume without loss of generality that

deg Xy < exp {(r2 log A)" }e(r2 log 4)° exp {(log (r + ro + 1) log A)*“'}; (5.12)

here we assume A is large enough so that the extra log A absorbs C; and loglog A. Note that the first factor, which provides a large power of
log(ro + r + 1)log A, comes from the fact that the construction needs to be performed on each rectangle of I, ; separately, and the number of
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the rectangles I, j appears as an extra complexity factor. The degree argument would have also worked for | instead of r;, but the existing

bound on |[u{") — 4| is not good enough to conclude goodness of Green’s functions for T ) from thatof T ).
In order to apply Proposition 3.1, we would like to make all M-boxes under consideration good. In other words, to have

n- ((U,A) ¢XM, for ne [_Ar+rg+1)Ar+ro+1]3\[_Ar+r0+1/10)Ar+r0+1/10]3'

Let
Xy = {(w,4,61,0,9) : T ) (61 + 62, ¢)|u isnot good}.

Note that the “not good” property, in general, depends on w and A. The set X)s defined above is a section of X'y with (w,A) fixed. Due to

relations between Xy, X3, X7, and X'y, we have

_MV
Lebs(Xar) < 100e ™",

00

Leb4(XM(91)) +L€b4(XM(62)) + Leb4(XM((p)) < 1Ooe_Ml/s ’

Leb3(XM(91,92)) + Leb3(XM(92,(p)) + Leb3(XM(91,(/))) < 100€_M1/300,

where, for example, X'y (61, 0,) denotes the intersection of X'y with a hyperplane defined by 6, 6, fixed. We will follow the same idea as in
(3.26) of Ref. 5. Let

rrg+l rrg+l

g=A "1+, o=A"2 , & = 10A—(r+r0+1).
Apply Proposition 2.3 with € = &; and S = Xy, with x = (w,A) and y = (01, 6, ¢), and construct the sets S; and S,. We will have
Leb(ProijI) <exp {(log (r+ro+1)log A)Cabscabs,l le < A_(r+r°+1)/5,

The additional absolute constant appeared from applying Proposition 2.3. Note that r + ry large enough implies that (r + ro)log A dominates
(log (r + o) log A)°. This is where we used the fact that ro needs to be chosen large depending on A. Getting back to the second conclusion
of Proposition 2.3, for any (fixed) n = (k,j) with |ki], k2|, |j| > 100¢;", we have the following estimate on the three-dimensional measure:

1 q1/300

Lebs{ (@, 1) : (@,A k11, kawa, Aj) € S} < exp {(log (r + ro + 1) log A) 11 e s

- rc . ) -
Recall that M > (log N)“, which implies &7 < M By choosing a large Cr, (say, Cr, > 400) we can sum over all [k, k2|, |j| > 1007 " under
_m
consideration and, ultimately, guarantee that one can avoid S, after removing a subset of (w,1) of measure at most e M

Just as in Ref. 5, the argument is not yet complete, since the centers of the boxes under consideration do not necessarily have all individual
coordinates large. In order to consider the remaining cases, assume first that |k;| < A™ and, for fixed N, apply Proposition 2.3 with d;, = d, =
2 and ¢ = &, removing a small measure subset of (w»,1). Large Cp, again, would imply that one can absorb the factors appearing from
conditioning on such k;. After repeating for all three coordinates, we can guarantee that the box n + [-M, M]* will be good assuming that at
least two numbers among (|k1, |k2|,|j|) are larger than A™* (either from conditioning, or from the previous case). Finally, in the case where
only one coordinate is larger than A”'’, we can assume that the remaining two coordinates do not exceed A”* and apply Proposition 2.3 with
€ = &3, d1 = d» = 1, with both remaining coordinates being fixed.

Let us summarize what we have obtained so far. Every box Q = n + [-M, M]* with |n| > A" satisfies

6

(T lo) ™| < 26",

and for any n,n’ € Z* with [n — n’| > M**?1°%_ we have

_ @D n_n’
(T,0]a) ™ (mym')| < 2¢7# In0'|

Additionally, the central box [-A"", A" ] satisfies, by the induction assumptions,

[(T a0 ) ™| < Ores exp {((r + o) log A) >},

and for any [n — n’| >y,

(T 0 |aren0) ™ ()| < rebe I,
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As a consequence, for each n € [~A™*! A™"0*1] there exists a good box
1 1
Al c [_Ar+‘fo+ ,Ar+ro+ ]’ ne Al,

of size M or A", such that dist(n, [-A™"*, A™* 1\ A}) is at least M/2 or A" /10, respectively.

The set of (w, ) removed to achieve this has measure bounded by ¢™ " and has degree bounded by

exp{(log (r+ro+1)log A)ZC“‘”'1 1.

Note that we are also assuming that (w, 1) € I, so that the above measure estimate is on how much needs to be removed from I,. While the
assumptions on small boxes start from (w,1) € I,, we also need the induction assumption for the central box to hold, requiring (w, 1) € I,.
The set I+ will be constructed during Step 9 in order to preserve nesting properties and rectangular structure.

Apply Proposition 3.1. Note that during the iterations we are using only off-diagonal entries of T which contain §*~". Therefore, 8
can be absorbed into it and we do not have any accumulation of negative powers of § as the iterations proceed. We thus obtain, for the box
A= [_Ar+r0+1)Ar+r0+l]3:

[T 1A ) < 267 (exp { (7 + ro) log 4)5 + M), (5.13)

Note that

Mo log A™*0)CL r+79) log A)L™!
M7 _ log ALy (r4m)log )

which implies the norm estimate in (sol5) with 4" on the box of the size A™"**! and with the exponential decay rate /“‘S)1 To summarize, we
have
I(T o | groror) ™| < 287t G, (5.14)
and for [n — n’| > D;, we have
- 1/2 e’
(T 0|y ) " (m,m)| < 8727t Il (5.15)

We can now address the stability of the obtained estimates. Note that the estimates in the definition of good M-boxes are stable under

perturbations of size ™ and 8, «< ¢ (here, we allow an extra 2 factor which can be absorbed into various constants appearing along the
way). The estimate for the central box, from the induction assumptions, is stable under perturbations of size 108,. As a consequence, provided
(sol3), we can replace i mby 7 (+D
this implies (reg7) on the next scale.

As discussed in the plan of the induction step, very small § may lead to an improvement in the measure bounds, since one can use direct
perturbation arguments instead of the steep planes lemma. It is easy to see that all the conclusions of the above considerations will be satisfied

on the set defined by (5.2) with o replaced by ro + r + 1. Therefore, it is more beneficial to use (5.2) as long as the measure estimates (5.3) are

, and the resulting bounds will be stable under perturbations of size 95,. As long is 6,41 is much smaller,

_ pp1/400 . .
better thane™ . Asa consequence, the actual measure estimate that one needs to remove is, say,

_p/400

_ ag1/500
min {AIOO('“"H)&ES, e }< SM2e M sh/2 exp{—((r+ry+1)log A)CL/SOO}. (5.16)

The factor s in front will be important during the final measure estimates.

H. Step 5: Construction of ¢"*1), 5¢+1)

We have the induction assumptions

F[ﬁ(r),ﬁ(r)“sc < K,e_“'lnl, VF[ﬁ(r), ﬁ(r)] ¢ < K,e_”"nl. (5.17)

The next step corrections are defined by

L:82:S1 ¥202 Iudv L0

a(r+l)
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We will apply Corollary 5.2, using (5.17) and the conclusions of Step 4 (5.14) and (5.15). For r < ry, we have D = 1, R = 100(r + r)*
in the notation of Corollary 5.2, which implies

1020(7 + 1’0)600 (4)|n\
e — .

-1 2 ) 1.2 —
+168,.,Gre ")e w5l GRe ™

452D (m) < ( (5.19)
Note that the extra factor of G, would absorb all other contributions. In order to estimate the gradient, one can use the formula V(Tﬁl) =
T~ (VT)T™". All factors in this formula have decay rate yfa)or better. Note that, while (sol6) only estimates off-diagonal entries of VT, the

diagonal entries have explicit form and can be estimated by ACC*™) Thus, a similar estimate follows from Corollary 5.2, with more iterations
of the convolution. However, one can easily check that the extra factors can also be absorbed into an extra G,. Thus,

1,0 —u®
(VD) (n)] < k6 GRe e 1. (5.20)
In the case 7 > ro, we now have a non-trivial factor ¢ #” = ¢ #" in the application of Corollary 5.2. However, G, is also larger. By choosing

Cabs,;3 > Cypsa, One can absorb it into an extra factor G, in a similar way. As a consequence, (5.19) and (5.20) are valid in the full range of values
of r.

Note that, since (sol3) has been obtained, one can use (reg7) and state that (sol5) now holds at the scale r + 1, with the decay rate y£3) (note
that the application of (reg7) does not cause deterioration in the exponential decay rate).

I. Step 6: Estimates of F[4 (™1, (™|

Recall that, from Remark 4.2, we have

’ Ucorr

F[[i1 + ftcores © + Deorr ] — F[ i1, 0] — F'[#1, 9] % = 8 R( i1, ficorr )

Ucorr

where the remainder is a convolution polynomial in # and ficorr and its conjugates, at least quadratic in ficorr and Dcorr. Apply the above equality
to ot = 11 4 4D and restrict everything to §°. By construction,

A (r+1)
Ucorr

A(r+1)
corr

= (T Lyroroe) F[ D, 0O oo s,

and in particular the left hand side is supported on S°. Therefore, we have

A (r+1)
corr

A(r+1)
corr

Fla 0,6 D)6 = Fla ", 6O jg + T ) +8%R(6 M, 0Dy,

which implies after a substitution

F[il (r+1), o (r+1)]

¢ = (T, Lrront = Ty )(Tyoo | o) " F[ 7, 0 O yrarger o + 62 R(5 7, 08D

=~ (1= Lyrargn ) Ty Lyrsront (T Lyrsront ) "L, 0O oo o + R(a 7, 25D,

Due to the construction of (", it is supported on [~A™", A™*"]*, and therefore F[:(", 4 (7 ]is supported on, say, [~6pA™", 6pA™ "],
Assume that A is large enough so that 3p < A/100. Then one can further expand

F[I:t (r+1), o (r+1)] _

Ar+10+l )_1 16pAr+'° F[I:l (r), 13 (r)]

= —(1 - 1A1+70+1 )Tu(r) (lAr+10+l - IA'HDH—GPA'MD )(Tu(r) S¢

+0PR(1 D, 1)), (5.21)

L:82:S1 ¥202 Iudv L0

J. Math. Phys. 65, 011502 (2024); doi: 10.1063/5.0166183 65, 011502-23
Published under an exclusive license by AIP Publishing


https://pubs.aip.org/aip/jmp

Journal of

i : ARTICLE i o
Mathematical Physics pubs.aip.org/aip/jmp

In the above expression, we used the fact that T, (m,n) =0 for [m—n|>6pA™™, since its off-diagonal part contains at most p
copies of convolution with i () In other words,

(1A1+10+1 - I)Tu(r) 1A'*'0“ = (IA'“U“ - I)Tu(y) 1A1+vo+1 (1 - IAH'OH—SPA”W )

Let us estimate the first term in (5.21). From the outcome of Step 4, we have

_ _ —_u®n_n’
o) g ) (mom')| < 872, (5.22)

(1= Lywo gy ) (T

with a similar estimate for the matrix elements of T (. Applying Corollary 5.2, we obtain that the first term is bounded in absolute value by,
say

Dhnl

( 100|n| (5.23)

100 @ 1
1+ u ) (1 - lAr+r0+l )K,eiﬂ’ Inl < EKrJrl(l - lAr+r0+l )67“4

Here we use that fact that, by (reg6), x, grows fast (super-exponentially in ), but still slow enough so that one can gain an extra factor of x4

by deteriorating the exponent from —/453)'[0 —y£4)(the first factor is also absorbed in the deterioration). It is important here that n is outside

the box [—A'H"“,A'H"“]3. See (5.26).
An estimate of the gradient is similar, with potentially more iterations of convolution due to the use of the formula V(T7") =

T (VT)T™" which may result in the larger power of |n| in the front factor (see Corollary 5.2).

We can now estimate the remaining “quadratic” term 6% R(i: 0 4+ ). Recall that R is a convolution polynomial, which contains at
least two factors ﬁg;;l)or zﬁg:}l). The polynomial has at most (say) 10 monomials. Each factor in each monomial has decay rate ;454)0r better.

At least two factors in each monomial will additionally have &, in front. Thus, after combining all bounds and applying Lemma 5.1, we obtain

1) A(r 1 EOIN
107 R (1, 55D Y ()] < E(FZP(SfG,e o Inl

Here, we chose for simplicity to absorb various polynomial and combinatorial factors into an extra factor G, as we did before. A similar
estimate holds for the gradient.

J. Step 7: Decay of small inductive parameters

Recall that

A~ (0 A (0 A~ (0
8O =l Conyy + olicomy 0O @) =5 (-n),

and

P[0, 5 Y5 (n)] < 6% max (|u], [ual) C(p)-

Note that, due to the presence of the diagonal part, F[i ), 5™ is not necessarily small. We also have that
supp F[x ¥, 0 V] < [=3p max ([, fa]), 3p mas (|, [z]) T
We will be choosing a large A depending on S and p, then a large ro depending on A. It will be convenient to have the choice of § being
e—Cahsvgm log A

< § < ¢ Gas0 log A. (5.24)

As of now, a smaller § is only better. However, avoiding too small values of § will make certain estimates more simple.
With all the above preparations, one can clearly choose ro and A in a way that xo = . The estimates in Steps 5 and 6 force us to choose

—1 -2 2 2
8r+1 > K,O}ESG,, Kr+l 2 1) pGr(SH_l.
As a consequence, we have the following recursion inequality for «;:

2p =2 5 2
ko =0, K1 2 678G k.
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We will choose a specific solution to this recursion by assuming
826k <1 (5.25)
and checking that it holds retroactively. The solution of the recursion
Ko =0, K1 =rl
is
Ky = SPBI2)" _ =PCans7ro(3/2)" log A (5.26)

It is easy to see that, assuming that C,ps7 is large enough, it satisfies (5.25), and therefore is a valid choice for the original recurrence. We have

also retroactively confirmed (5.23). Note that, if § is too small (say, 6 = e™"), the arguments that lead to (5.23) prevent «, from decaying as
fast as in the first equality in (5.26), and the recursive estimates become more cumbersome.

K. Step 8: Estimates of ¢ (1)

So far, we have

1 ()] < 1D (m)] + |80 ()] < (1 - 27Dyl g, e < (1 - 7))

since 8, < 2"*2. Gradient estimates are similar, in view of Vi © _.

L. Step 9: Structure of /; and extension into the full parameter space

In this subsection, we finalize the proofs of the inductive statements. In particular, we discuss the definition of the sets I, in order to
satisfy (i1)-(i3), degree bounds on i (Min order to establish (reg5), estimates of the measure of the bad set in terms of §, and extension of the
functions "), % Vinto the full parameter space.

1. The sets I, and the dyadic structure
Recall that the set Iy = I; = - - - = I,, is a union of at most A'° 5710 dyadic cubes with sides at least 8%. Forr > ro + 1, we will now describe
more explicitly the removed subsets of parameters. Let
F(Drc) . DCR(T)AIO(r+rq) )\DCR(T,AIO(r+rO+1))

be the set of Diophantine frequencies one needs to remove to enforce the Diophantine conditions on the next scale. We have

Lebs (I(2) < 10724700+,
Let also Fé;) be the set of parameters removed in the end of Step 4. We have

M/

L€b3(r§1r))) <ofie™ " o2 exp{—((r+ry+1)log A)C"/SOO}.

Let T”) be the union of all dyadic cubes with sides at least ¢, contained in (Fgg U Fé{,)) N I,. Define for r > ro:

Iy = I\TUD,

From (reg7) and the choice of the sizes of the dyadic cubes, one can see that the conclusions of Step 4 will still be valid for the sets I,. The
dyadic structure implies the nesting properties, as well as the bounds on the number of cubes. Therefore, we have obtained (i1)-(i3). The sets
I,j can be simply chosen to be the corresponding dyadic cubes. On each step, we are dividing some cubes into smaller cubes and remove some
of the new cubes.
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2. Degree bounds on ("
We will prove the degree bounds by induction. Assume deg i (" (n) < A((+70) 108 4 Recall
A (r+1)

Ucorr —1pra N
A(m)) = (T Lyroroe) F[ D, 0O s g

corr

Then we have, due to the convolution bounds,
deg F[i1, 0]y ¢ < 100pel 18" deg T (), (m,m) < 100pe T+ 108 47,

Due to Cramer’s rule, we also have
(T, o)™ (mym) < AZCH0) L 100 (H70) 108 4)°

Overall, assuming A is large depending on p,
deg ilg:;}) < A40(r+r0) e((r+r0) log A)?
= exp {40(r +r0)log A+ ((r+ro)log A)*} < exp {((r+ro+1)log A)*},
provided log A > 20. This implies the degree bounds on the next step.
3. Estimates of the measure of the bad set in terms of §
Recall from Step 3 that the choice of § is made based on the Diophantine parameter 7:

|5‘ < effcabs,dio

or, equivalently,
1

————— < T.
(log (1/6))1/Cabs,dio
In view of (reg6), this implies
Leb3(1"(')) < 10724700t | 52 exp{—((r+ro+1)log A)CL/SOO}

< 1061/Cabs,7 =8(r+ro+1) + 8Cabs,9/cabs,7
"~ (log (1/8))*/Cwete

Note that the actual constants are not particularly important. However, the estimate

exp {~((r +ro +1)log )%/}, (5.27)

> Lebs (7)) = 0(5),

r>rg

which follows from (5.27), is of crucial importance, since the measure will be multiplied by §* in the end of Sec. V1.
4. Extension to the whole parameter space
For each dyadic cube Q c I, consider a smaller (not necessarily dyadic) cube Q with the same center and
diam(Q) = diam(Q) — diam(Q)>.

For each such Q, consider a smooth cutoff function 7, that is equal to 1 on Qand zero on R*\Q. Let 7" := Y.qMq- Note that, by construction,
11(0) == 17("’), since the set I, does not change. Let

—(r) . ﬂ(r), OSTSTO
BV = H;zm }1(1)’ r> ro.

Replace ugzr by g u§;2r Note that, since 27 c I, = dom izggr, this defines a smooth extension of ugzr into the whole space (1,2) x (-3, 3)2

(or into R? if necessary).

L:82:S1 ¥202 Iudv L0

J. Math. Phys. 65, 011502 (2024); doi: 10.1063/5.0166183 65, 011502-26
Published under an exclusive license by AIP Publishing


https://pubs.aip.org/aip/jmp

Journal of

i : ARTICLE i o
Mathematical Physics pubs.aip.org/aip/jmp

One can easily check that, within the above constraints, we have

|v5(r)| < {Alooroar_ez) 0<r<rg

10M*
e s r > 1.

In both cases, it follows from (reg6) that one can absorb this additional correction to the gradient into §,. As a consequence, the sequence
i (’)converges to a function u in C*((1,2) x (=3,3)). For the “good” values of parameters

Lo, w) € (1,2) x (=3,3)2\J T

u becomes a solution to the non-linear equation (m; and m;, are obtained from the Q-equations on each scale, and also clearly converge).
For general values of (A, w;,w,), one can still perform some of the induction steps, and then the sequence will “freeze,” thus providing an
approximate solution to the non-linear equation, with the error ;.

Remark 5.4. The reason for multiplying the cut-off functions in the expression g - T, n(j )for r > ry is that, without the multipli-

cation, the supports of the cut-off functions do not necessarily decrease, since larger cubes may have larger neighborhood of their boundary
removed.

VI. Q-EQUATIONS USING PARAMETERS m AND A: COMPLETION OF THE PROOF

As discussed in Sec. V, we have constructed solutions 4™ and v which converge, respectively, to functions u and v for (A, w, w,) €
(1,2) x (-3,3)\ U, I'+, and obtained all stated properties of those solutions. It remains to consider the Q-equations

2p
wy =2 cos () + my 8™ + i—((i{ﬂrﬁ)”’*ﬁ)(fek,hk), k=1,2,
k

where u; are the values of the initial iteration i ©on s:

ui, n= (*el,hl);
#Pm)={w, n=(-eh);

0, ne Z3\8+.

Note that, for all » > 0, we have

ﬁ(r)(_eb]’k) = Uy, k= 1,2,

so that the iterations only change the values of # (Doutside S.
Fix (e1,,), (€2,],), 1, 12, and let

FO U on ) o= (050 P (e )
k > > M >

k=12 (6.1)
Uy
Then, one can write a finite volume version of the Q-equations as follows:
w” =2 cos (hA) + mPO 8 + 67 D (L wn, w2),  k=1,2. (6.2)

Note that we do not actually enforce these equations for finite r. Due to the results of Sec. VV L 4, the right hand side of (6.1) converges in C
to some function f. Thus, we can rewrite the infinite volume Q-equations as

w = 2 cos () + md* + 67 f (A, w1, w02),
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or, equivalently,
me(d, w1, @2) = 8wy + 0% cos (d) = 8777 fi (A, w1, wz). (6.3)

Recall that we were requiring

(L wi,w2) € (1,2) x (=3,3)\J T

Recall (5.27). Since the differential of the map (6.3) is bounded by, say, 106~ *(|h1| + |h2|), we can ultimately conclude that the set of bad
parameters (A, m1, m; ) that one needs to exclude will have measure bounded by at most

—x ( 1081/Cabs,7
=1 \ (log (1/8) )Z/Cabs,di()

which can be made arbitrarily small with small »x depending on the various absolute constants chosen in the course of the inductive procedure.
Note that the logarithmic factor can be absorbed by the power of § in the numerator.

AT G/ Can oy {~((r+r+1)log A)CL/SOO}), (6.4)

Remark 6.1. Instead of just enforcing the infinite volume Q-equation, one can enforce a stronger condition: that is, that all modulated
frequencies wlgr)in the left hand side of (6.2) actually belong to the good set. Indeed, in that case one needs perform a similar removal with
fi(A, w1, w2) in (6.3) replaced by f ,Er) (A, w1, w2), and take the union over all r. One can check that || fy — f ,Er) lc, $ &r. As a consequence, the

removed set of parameters (1, m;, m,) will expand by O(8,) which does not affect smallness of the expression (6.4). However, this additional
requirement does not appear to be necessary.

VIIl. ON THE LARGE DEVIATION THEOREM

In this section, we will discuss the Proof of Proposition 3.2, which is a large deviation theorem for Green’s function for scale-dependent
operators Hy. The proof is standard and is based on the techniques that date back to Ref. 7, and we assume that the reader has some familiarity
with these techniques. The main difference of the current setting from the one in Refs. 7 and 8 is the presence of non-local operators, with the
exponential decay rate of non-local terms varying between scales. A version of the LDT in the non-local setting has been developed in Ref. 14,
however, it needs to be modified in order to prevent too fast deterioration of the decay rate. A detailed argument with full control of the
exponents has been developed in Ref. 12 in the setting of Ref. 4, Chap. 18. In the latter setting, the operator families are one-parametric, and
the (much stronger version of) the arithmetic lemma follows from the Diophantine condition on the frequency vector. In our setting, we need
to deal with two-parametric families and two-dimensional semi-algebraic subsets; however, the main ingredient (the arithmetic Lemma 2.6)
is already at our disposal. Combining the ideas from””'*"" is relatively straightforward. For the convenience of the reader, we would like to
provide more detail on such combination. We will take advantage of several lemmas that can be used without any changes, and try to provide
the main steps of the argument, as streamlined as possible, for the remaining proof.

A. The initial scale

Recall the definition of the operator T:

D, (6, 0
T(6,9) =D(0,9) +¢H = +(0:9) +¢H,

0 D_(6,9¢),

where

Di(n,n) = £(mw) + naws + 6) +2 cos (n3A +¢), neZ’;
H(n; + m,n; + m) = H(ny,nz), Vnj,np,me 73,

|H(n1, n2)| < e_V|n1—n2|.

An elementary region in Z* is a subset of the form R\ (R + n), where R is a rectangle in Z*> and n € Z is a non-zero lattice vector. The class of
elementary regions of diameter M is denoted by ER(M).
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For the purpose of the following proposition, fix y, 0 < b < 1,0 < § < 1. We will say that a region A € ER(M)is good if

_ b
IT(6,9)[x'| <€, @7.1)
and for all n,n” € A with |n— n'\ >MP , we have the following estimates for the matrix elements:

IT(6,9)[2' (n,n')] < e 7.2)

Proposition 7.1. Suppose that T = T (6, ¢) is defined as above. For every My € N,0 <y, <y,,0<p<b<f <1 and (A w,w:) € R?, there
exists & = &0 (Mo, yy» p> b, ) and My = My (yo, y1,p> b, B)such that, for every A € ER(M)with My < M < Mg and y, <y < y,, the set

Xum ={(6,¢) ¢ RxT: Aisnotgood }

satisfies

Leb; (XynL) <e™

for every unit line segment L c R x T.
Proof. Fixa €R,andlet (6, ¢) := 0+ 2cos(a + ¢). It is easy to see that, for every b € R and every unit line segment L € R x T, we have
Lebi (L {(6,9) : [f(6,9) = bl > }) <™, ¥ e (0,1). (7.3)
This follows from the fact that no more than two derivatives of f can vanish simultaneously at a given point. One can also consider it as an
elementary case of the Lojasiewicz inequality.

LetO<p<p <b <b<l.LetA e ER(M),and

Mh1

X:={(6,9) e RxT:|Ds(n,n)|+ |D-(n,n)|>e" forsomen € A}.

Using (7.3), we have for every unit line segment L c R x T:
1 —
Lebi(XnL) < 2M cpse M M
b
Suppose that (6,¢) € R x T\X and e < M~"°¢™", Then
_M? 1 _ap
IDi(n,n)| 2 e™", neA; |eH| < 5¢ M
Using the Neumann series argument, we obtain the first estimate
-1 M M
IT(6.9)['| <26 <™
In order to obtain the exponential decay estimate, let us use the shorter notation T(6, ¢)|a = Ta = Da + éHa. We have
Tx' = D)' = eDy'HAD}' + €Dy ' H\Dy'HAD}' - - - -
Let us estimate individually the contributions of each term of the above series. The first term does not have any off-diagonal component. In
the next terms, one can estimate each matrix element using matrix multiplication. The combinatorial factors and the products of D' can

be absorbed into the powers of ¢. After the matrix multiplication, the total exponential factor contributing into Ty"(ny,n,) will be at least
yln1 — ny|. After the summation of the series, we can obtain, say

b
IT2 (ng,m)| < M+ ! /2e7rmmml,

which implies (7.2) after a suitable choice of M. o
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B. Covering lemma, coupling lemma, and Cartan lemma

The following lemma will be referred to as the covering lemma. In this form, it is stated in Ref. 12. The proof is very similar to the one of
Proposition 3.1.

Lemma 7.2. Let A c 7 be a finite subset with |A| = N and T be an operator on £*(A). Let
0<6<1, 0<b<l, 0<7<l, br < 6, a>0, p>0.
Let also
(log N)loﬂ7 <M<N".

|T(m,n)| < Ml min, myneA,
and for every m € A there exists an elementary region U(m) c A containing m such that

[U(m)| =M, dist(m,A\U(m)) > M/2,
such that

I Tlom | <"

and

Tl (€™ ™, for m,ne U(m), |m—n|)M".

Then, we have

b b
IT7') < 2N%e™ < &,

|T—1 (m’ n)|<e—(p—(10g N)‘”)\mfn\, |m _ n|)N0,

assuming N > No(a, b, d, p,0,7).

The next lemma will be referred as the coupling lemma. Its original form dates back to Ref. 7, Lemma 2.4 for d = 2. A refined version for
arbitrary d was obtained in Ref. 14. In the following form, it is proved in Ref. 12.

Lemma 7.3. Let T be an operator on *(Ao), where Ay € ER(N) c Z°. Let

1-2
0<t<b<O<l, B> T,
1-71
and let
N" <M, <2N".
Assume that Assume that the matrix elements of T satisfy
IT(m,n)| <e?™ ™ m=n, mneA,, (7.4)
and for any A € ER(L)withany L € (N*,N), we have
_ b
1Tl ] < e

We will say that an elementary region A € ER(L), A c Ao is good if we have, in addition to the above,

~plm-n|
:

|T|5" (m,n)| <e for myneA, Im —n| > I¥.
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Otherwise A is called bad. Assume that for any family F of pairwise disjoint bad M'-regions in Ay with Mo+ 1< M’ <2Mo + 1, we

have
NP
#F < —.
My
Then, we have
-5
|T71(m,n)|(ef(p7N Jim=n|_ for m,n € Ag, |m—n|)N’,

where N > No(b,d,1,3) and § = §(b,d,7,3) > 0.

Remark 7.4. In both results, the Toplitz decay condition (7.4) can be replaced by a similar condition with a polynomial factor in front:
|T(m,n)| < (1+|m- n\)Pefplmfnl, m#n, m,neA,.
In this case, the assumption on largeness of the initial scale will depend on p. The reasoning is based on the fact that the calculations in the
proof already involve various (polynomial) combinatorial factors of similar kind which are absorbed into the exponential decay estimates.
Finally, we will need the following matrix-valued Cartan theorem (“Cartan lemma”), see Refs. 4 and 5.
Lemma 7.5. Let A(0) be a self-adjoint D x D matrix function of a real parameter o € [ -6, 8], satisfying the following conditions:

(1) A(o) is real analytic in 0, and admits a holomorphic extension to the strip (=61, 01) + i(=82, 82), satisfying in that strip

1A(z)] < B:.

(2) Foreacho € [-81,01), there is a subset A c [1,D], such that

-1
|A| < Do, H(R[l,N]\AA(U)R[l,N]\A) | < B.

(3) |{O‘ € [—51,51] : HA(G)_IH > B3} < 10_382(1 +Bl)_l(1 +Bz)_l|.

)—lODg

Then, for any x < (1 + By + B, , we have

. o o clog ¢
{o € (=61/2,81/2) : |A(o) " | >} < exp Do log (Do + B1 + B + B)’ (7.5)

C. Proof of proposition 3.2

One can easily check that all the estimates hold for any finite number of scales by choosing a small €. Therefore, we can assume that the

2
scales are large enough (depending on 7 and v,). Note also that the estimates are stable under perturbations of size e , and therefore one can
essentially ignore the differences between k and k + 1.
While the main result is stated with particular numerical values of the parameters, it will be convenient to denote them by letters:

B =999/1000, b=6/7, p=1/300.

Assume that the theorem has been proven for the scales [0, M] with the exponent y. Let C; be a large constant chosen later. Let M €
[0,M] and M; = M©. The first step is to “propagate” (3.6) into the scales up to Mg '. In the process, we would like to obtain stronger bounds:

say, with ™M™ in the right hand side. Later, these stronger bounds will be needed in order to satisfy the assumptions of Lemma 7.3.
Let A € ER(M1), and let

A=UgAy, Ag=AnN Qa)

Qu € [~Mo, Mo] + 2MoZ.

One can check that A, € ER(M") with My < M’ < 2M, except for finitely many (bounded by an absolute constant) values of a.
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From the induction assumptions, there exists a semi-algebraic subset A c R x [0, 27r)such that, for (6, ¢) € R x [0,27)\ A, we have (3.6)

and (3.7) for all elementary regions A containing the origin with diam(A) € [Mo,2M,]. The set A is of degree at most M{** and intersects

—MP
any unit line segment in R x [0,27)in a subset of one-dimensional measure at most M ¢,

By Theorem 2.6 (“arithmetic lemma”), and assuming that M is large enough (depending on the Diophantine constants of (w, 1)), we

have

#{neZ’ :(0+n-wp+mld)e A} < MOC“bSMf/4+6, (7.6)

where § can be made arbitrary small depending on the Diophantine constants of (w, ). Let us call an elementary region A4 good if all points
from A, are outside of the above set. Let

Agood = Ngood (8, 9) = | {Aa © At Agis good; diam(Aq € [Mo,2Mo])}.

Standard application of the covering Lemma 7.2 implies, after absorbing the constants,

_ b
IT(8,9)[xk| < e,

and we have, from the definition of Agyod,

A\ Agood| < MM/,

We will also need to introduce an additional scale
M} = | (10My)'/7].

Similar considerations with boxes of size M, imply that, outside of a semi-algebraic subset of [0,27) x R with sectional measures bounded by

)
e, we have

_ 1\b
I T8, 9)[x"| < ).

Let L be a unit line segment in R x [0, 27), and 6(t), ¢(t) be the natural parametrization of L (by length). Let T(¢) := T(6(t), ¢(t)). Apply
Cartan’s lemma to the family T(¢), with:

(1) By =10M;.

2) Do= MOC“bSMf/ 449 (the cardinality of the bad set).

(3) By= e(3M“)b (upper bound on the inversion of restriction to the good set).

(4) Bs= e(3M<;)b. This way, Assumption (3) of the Cartan’s lemma reduces to M) g 10M0 e7(4M°)b and therefore holds for large

scales.
Then, for
Cabs 1 13/4+0
_ MCabs pp
x<e ° oy
the measure estimate in (7.5) becomes
clog ¢

eXp ———77 275
Cabs+b/p 5 s3/4+8
MO Ml

b
In order to obtain the inductive conclusion, we choose { = e~ This is possible assuming

C. 3
bs 2 L 8<h
C 4
This reduces the estimate of the measure in (7.5) to
_3_5_ b _ Cabs
exp{-cM, ' " 1}

To summarize, we start from assuming the proposition for an interval of scales

[Mo, (10M,) /7]
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and conclude that, for the scale M, = MOC !, the first estimate (3.6) holds outside of a subset of section measure estimated by

3 b _ Cabs

4 pCy C }

We would like M; > MOC‘, so that the conclusion is meaningful, and also get ™™ in the last estimate. Overall, this leads to the following
assumptions:

3 b Cap Cab

b—=—-6- — - —=>1000p; .

4 pC1 C1 p C1

+Z+6<b; Cip > 10.

These assumptions can be satisfied as long as b > 3/4, by first requiring the Diophantine properties to imply 0 < § < b — 3/4, then choos-
ing a large C; so that the left hand side of the first inequality becomes positive (say, for p = 1), and then choosing a large p to satisfy the
inequality.

Once the above parameters are fixed, one needs to additionally assume that the scales are large enough (depending on these para-
meters and the Diophantine constants of the frequency vector). This is achievable by taking a small e. Note that one can also achieve same
results for range of constants C; (say, [Ci,C;]) instead of an individual value. The choice of large M, and then & will then depend on
C; and C;.

The next step is to propagate the exponential decay bounds. Let us start from the same assumption as before: that LDT is proven in the
range of scales [ Mo, (IOMO)I/ P] with the exponent y. Let M; = MOC ', where C; satisfies the constraints from the previous part (we may impose
more conditions on it later). Our goal is to prove an exponential decay bound on the scale M. Due to application of Lemma 7.3 (“coupling
lemma”), the exponent y will change, and we will need to keep track of that. We will use an auxiliary scale M ~ M| ~ MOC 1" (here ~ denotes
nearest integer) and apply Lemma 7.3 with N = M.

Similarly to the previous step, define A to be a semi-algebraic subset with sectional measures at most ¢/, such that, outside of
A we have all elementary regions containing the origin of sizes between My and 2M, satisfy (3.6) and (3.7). Note that the combinato-
rial factors are absorbed into the deterioration of exponent from —M) to —M? /2. Consider now elementary regions of size M inside of
the M;-region. If an M-region does not have any bad My-regions inside of it, one can apply Lemma 7.2 and conclude that the M-box
satisfies the exponential decay estimates with the exponent y — (log M)™°. The number of disjoint bad M-regions inside of M,-region is

bounded b
Y M3/4+5+Cabs/C1+T

MgabsMi/HB ! A

Let us assume
3/4+ 8+ Cys/C1 +T< b

This will satisfy the sub-linear bound in the assumptions of Lemma 7.3. To satisfy the remaining assumption, we need to enforce (3.6) on all
scales between M and M, using the previous part. This will require removing a subset of sectional measure at most

MO MO
~e ! .

In order to be consistent with the conclusion of LDT, we would thus like to have 7 > 1/999. As long as § + 3/4 + 1/999 < 1, this is possible to
achieve by choosing b and 7.

Remark 7.6. We can now provide more details on the relation between ¢ and 7. In the induction step, the choice of the large scale in

relation to T was made in (7.6), in order for the factor M? to absorb C(w,A) = 77 in Theorem 2.6 (see also Remark 2.7). Once the choice of
the parameters p, b, 8 above is fixed and an appropriate C is selected, it ultimately forces the initial scale M to satisfy My > 7~ . This choice

b
of initial scale forces & < M~ %¢ ™o, which implies the claim in Remark 3.3. Here, C,ps and c,ps are absolute constants.
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