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ABSTRACT
We consider a discrete non-linear Schrödinger equation on Z and show that, after adding a small potential localized in the time-frequency
space, one can construct a three-parametric family of non-decaying spacetime quasiperiodic solutions to this equation. The proof is
based on the Craig–Wayne–Bourgain method combined with recent techniques of dealing with Anderson localization for two-dimensional
quasiperiodic operators with degenerate frequencies.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0166183

I. INTRODUCTION AND MAIN RESULTS
We study the nonlinear Schrödinger equation on Z:

i
∂

∂t
u = Δu + Vu + ∣u∣2pu, p ∈ N, (1.1)

where Δ is the discrete Laplacian:
(Δψ)(x) = ψ(x + 1) + ψ(x − 1), x ∈ Z,

and V is a small non-local potential whose exact form will be described in the end of the section. Consider first the linear equation with zero
potential:

i
∂

∂t
u = Δu. (1.2)

Generalized eigenfunctions of the discrete Laplacian Δ can be expressed in the form:

u(x) = eijλx; x ∈ Z, λ ∈ R, j ∈ Z,

with eigenvalues 2 cos( jλ), where j ∈ Z, x ∈ Z and λ ∈ R. The correspondence between pairs ( j, λ) and generalized eigenfunctions is not
one-to-one: two pairs ( j, λ) and ( j′, λ′) correspond to the same eigenfunction if and only if jλ − j ′λ′ ∈ 2πZ. This use of two parameters will
be convenient, as we later intend to fix λ and restrict ourselves to the sub-family of eigenfunctions parametrized by j.
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When λ is an irrational multiple of 2π, the above generalized eigenfunctions are quasiperiodic on Z. These eigenfunctions produce
solutions to (1.2):

u(x, t) = e−2it cos(jλ)eijλx.

A non-trivial linear combination of such solutions is quasiperiodic both in space and time. Let

h1,h2 ∈ Z/{0}; ω1 = 2 cos (h1λ), ω2 = 2 cos (h2λ), (1.3)

and assume that ω1 ≠ ω2. Then

u(0)(t, x) =
2

∑
k=1

uke
−iωkteihkλx (1.4)

is a two-parametric family of solutions to the linear Eq. (1.2). The goal of this paper is to show that there exist solutions to the non-linear
Eq. (1.1) which are small perturbations of (1.4), of the form

u(t, x) = ∑
(k,j)∈Z2

×Z

û(k, j)ei(k⋅ω)teijλx, (1.5)

where ω = (ω1,ω2) ∈ [−3, 3]2, λ ∈ [1, 2] are frequency parameters,

k ⋅ ω = k1ω1 + k2ω2,

t ∈ R+ is the time variable, and x ∈ Z is the space variable. We will always assume that {1,ω1,ω2} are linearly independent over Q. Most of
the analysis will be conducted in the space of variables (k, j) ∈ Z3. It will be convenient to combine them into a single variable

n ∶= (k, j) ∈ Z3.

Denote by S(λ,ω1,ω2) the class of functions u of the form (1.5) with

∑
n∈Z3

(1 + ∣n∣)r ∣û(n)∣ < +∞, ∀r ∈ N.

Denote also by Ŝ(λ,ω1,ω2) ⊂ ℓ
1
(Z3
) the class of the corresponding lattice functions û(⋅)on Z3. The above class is closed under convolution

and complex conjugation. As a consequence, for u ∈ S(λ,ω1,ω2), we have ∣u∣2pu ∈ S(λ,ω1,ω2), as well as ∂
∂tu and Δu. Therefore, this class is

a natural space to consider quasiperiodic solutions of the Eq. (1.1) and to define various transformations and functionals.
Ideally, one would like to consider the Eq. (1.1) with V = 0. Our current methods fall short of this goal, and, similarly to Refs. 3, 4,

and 10, we consider an additional term which will be small in magnitude and have small support in the momentum space. More pre-
cisely, let e1 = (1, 0), e2 = (0, 1), h1 ∈ Z/{0},h2 ∈ Z/{0} and h1 ≠ ±h2. Denote by V̂ the following function on Z2

× Z, supported on the
set {(e1,h1), (e2,h2)}:

V̂(n) = m11(−e1 ,h1)(n) +m21(−e2 ,h2)(n). (1.6)

It will be convenient to use the notation 1A for the indicator function of a subset A. In the case when A = {a} is a singleton, we will use 1a
instead, in the situations where it does not lead to a confusion.

Let δ be a small parameter (our results will be asymptotic as δ → 0+), and 𝜘 be a small absolute constant. The potential V will be defined
as the following convolution-type operator acting on the space of functions (1.5), or, equivalently, a multiplier acting on the coefficients û(n):

(Vu)(t, x) ∶= δ𝜘 ∑
n=(k,j)∈Z2

×Z

V̂(n)û(n)ei(k⋅ω)teijλx = ∑
s=1,2

δ𝜘msû(−es,hs)ei(−es ⋅ω)teihsλx.

Clearly, it defines an operator acting on S(λ,ω1,ω2). Rewrite (1.4) as

u(0)(t, x) = ∑
n∈Z2

×Z

û (0)(n)ei(k⋅ω
(0)
)teijλx, (1.7)

where
û (0)(n) = u11(−e1 ,h1)(n) + u21(−e2 ,h2)(n);

ω(0) = (ω(0)1 ,ω(0)2 ) = (2 cos (h1λ), 2 cos (h2λ)).
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The presence of the additional parameters m1,m2 will allow us to “fine tune” them in order to have the general procedure converge to a
solution. The following is our main result.

Theorem 1.1. For any ε > 0, there exist δ0 = δ0(ε,h1,h2) > 0 such that the following is true for any δ with 0 < δ < δ0. For ui ∈ (0, 1),
i = 1, 2, there exist a closed set I ⊂ [1,2]3 with

∣I∣ ≥ 1 − ε,

and a C1 map on (1, 2)3, (λ,m1,m2)↦ (λ,ω1(λ,m1,m2),ω2(λ,m1,m2)) such that, for any (λ,m1,m2) ∈ I, there is a spacetime quasiperiodic
solution of the form (1.5) to the nonlinear Schrödinger equation (1.1),

u(t, x) = ∑
n∈Z2

×Z

û(k, j)ei(k⋅ω)teijxλ, (1.8)

satisfying:
û(−e1,h1) = u1, û(−e2,h2) = u2,

∣û(n)∣ ≤ O(1)δpe−∣n∣ for any n ∈ Z3
/{(−e1,h1), (−e2,h2)},

ω1(λ,m1,m2) = 2 cos (h1λ) +m1δ𝜘 +O(δ2p); ω2(λ,m1,m2) = 2 cos (h2λ) +m2δ𝜘 +O(δ2p).

A. Motivation
Theorem 1.1 shows the existence of global in time, non-vanishing at infinity and uniformly ℓ∞ solutions to the nonlinear Eq. (1.1) on

Z. Previously, this type of L∞ solutions was found for the NLS on R.21 Note that many nonlinear PDE theories address solutions which are
localized, in appropriate Sobolev spaces on Rd, for example, or periodic (in space), in Sobolev spaces on the torus Td, which are compact. On
the line Z, the result see Ref. 9, Proposition 2 implies an a priori bound on the ℓ∞-norm, but it does not preclude growth. The results here and
in Ref. 21 provide extended state solutions to the nonlinear Schrödinger equations, with uniformly bounded ℓ∞-norms. These are new types
of solutions.

The analysis of non-localized solutions without symmetry, such as those in Theorem 1.1 and in Ref. 21 requires different tools. It
transforms the extended solution problem (on Z here) to a dual problem in a Fourier space. Establishing a nonlinear version of Anderson
localization in the Fourier space (here Z3) and using duality, lead to extended states solutions.

B. The nonlinear spacetime quasiperiodic problems
When the space direction is periodic, one may work on the torus Td. The analysis of time quasiperiodic solutions to nonlinear PDEs on

the torus has by now become almost a classical subject, see e.g., Refs. 3, 4, and 18, and the review article,20 see also Refs. 10 and 16. However,
most of these techniques are based on the existence of only one quasiperiodic direction, namely in time, and the other directions being elliptic,
such as in the nonlinear Schrödinger equations. For the nonlinear random Schrödinger equation on the lattice,6,11,15 the space direction Zd

is endowed with many parameters. The elliptic directions or the random parameters regularize the problem. The nonlinear problem in this
paper has two quasiperiodic directions, with non-decaying nonlinear term, so most of these techniques are not applicable. We need to develop
new tools.

Remark 1.2. The recent work Ref. 17 shows, however, that the space direction may be regularized with fewer parameters when the linear
problem has Anderson localization and, consequently, the nonlinear term is decaying in space.

C. The new tools
We combine the analysis of linear quasiperiodic problems in higher dimensions5,8,13 (cf. Ref. 7), with the Lyapunov–Schmidt approach

developed for nonlinear time quasiperiodic problems.4,18 In the space periodic case, the linearized operators are quasiperiodic only in the time
direction. In the spacetime quasiperiodic case, however, the linearized operators are quasiperiodic in at least two dimensions. We address this
by applying the only known techniques of dealing with multi-dimensional quasiperiodic localization and involving semi-algebraic geometry,
the matrix-valued Cartan theorem, and multi-scale procedures, to analyze nonlinear spacetime quasiperiodic problems.

D. Comparison with the space periodic case
Asmentioned earlier, the space periodic problemmay be reduced to that on the torus. The spectrum of the Laplacian in this case consists

of integers, and there are gaps of size at least 1 between non-equal eigenvalues. It is established in Ref. 18 that the NLS:

i
∂

∂t
u = Δu + ∣u∣2pu, p ∈ N, (1.9)
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on Td has time quasiperiodic solutions of arbitrary number of frequencies, in any dimension d. The method consists in extracting parameters
from the nonlinear term, and subsequently adapting the analysis in Ref. 4, Chap. 19. The uniform spectral gap of non-equal eigenvalues
permits to control small divisors using the extracted parameters, which are of lower order than o(1), since we seek small, o(1) solutions.

In the spacetime quasiperiodic case, such as here, the spectral gaps are no longer bounded from below. One may still extract parameters,
but they are not sufficient for the analysis. The simplest is then to work with related parameter dependent equations. Here we use the parameter
V . Note that in problems involving small-divisors, one often starts by studying related parameter dependent equations, such as in the setting
of Ref. 4. These parameters are then removed in Ref. 18, yielding solutions to the original NLS in (1.9).

E. On the parameters λ and V
We note that when V = 0, λ is the only parameter. From (1.3), the time frequencies ω = (ω1,ω2) are functions of λ. Therefore the

spacetime frequencies (λ,ω1,ω2) ∈ R3 provide only a parameter space of dimension one. In that case, our problem, which is on Z3, is
degenerate.

The recent paper8 analyzed a degenerate linear quasiperiodic Schrödinger operator on Z2. The main obstruction to carrying out Green’s
function estimates in d = 3 is the arithmetic lemma. In our case, due to the special structure of the operator, we have a version of the arithmetic
lemma, adapted from Ref. 8, that works in d = 3. The part that involves the linear analysis does not require the potential V and the parameters
(m1,m2). However, we had to introduce these parameters in order for the implicit function argument in Sec. VI to be able to run. However,
V = o(1) as δ → 0 is sufficient here, instead of V = O(1), which would have been more typical, cf. e.g., Refs. 3 and 4, Chap. 19. The general
scheme of the proof can be considered similar to that in Ref. 21, see also Ref. 19.

F. Structure of the paper
Sections II and III deal with the linearized problem. In Sec. II, we introduce some basic notation for the Green’s functions of the linearized

operators and state the corresponding arithmetic lemma. In Sec. III, we state a covering lemma (a highly specialized analogue of Ref. 7,
Lemma 2.2 and the covering lemma from Ref. 12) and the large deviation theorem which is, again, specialized for the current situation of
scale-dependent operators.

In Sec. IV, we state the iteration procedure for the non-linear problem and the role of P- and Q-equations. In Sec. V, we implement
the iteration procedure from Sec. IV. This is the most technical section of the paper, since the inductive procedure requires keeping track
of regularity and decay estimates of numerous objects at the same time, with some cumbersome relations between these estimates. While
these arguments are commonly assumed to be straightforward, we believe that some readers may benefit from the additional level of detail.
In Sec. VI, we finish the proof of the main result by using the implicit function theorem and reducing the assumptions on (λ,ω1,ω2) to
assumptions on (λ,m1,m2). In Sec. VII, we outline the proof of the large deviation theorem (Proposition 3.2) stated in Sec. III.

II. THE GOOD GREEN’S FUNCTIONS AND THE ARITHMETIC LEMMA
Let

Z3
pm ∶= Z

3
× {+,−}.

A lattice point n = (n1,n2,n3) ∈ Z3 will later be associated with a pair (k, j) with k ∈ Z2 and j ∈ Z, as in the original statement of the main
theorem. The study of the linearized problem will be centered around operators on ℓ2(Z3

pm), which can be associated with ℓ2(Z3;C2
). For an

operator H, we will denote its matrix elements by

H(n1,n2) ∈M2(C), n1,n2 ∈ Z3.

We will use the notation ∣H(n1,n2)∣ to denote the norm of the corresponding (2 × 2)-matrix; the particular choice of the norm does not
matter, and we can for example use the operator norm. We will also use the notation

∣n∣ ∶= ∣n∣1 = ∣n1∣ + ∣n2∣ + ∣n3∣, ∣n∣∞ ∶= max{∣n1∣, ∣n2∣, ∣n3∣}.

An operator H on ℓ2(Z3
pm) is Töplitz if:

H(n1 +m,n2 +m) = H(n1,n2), ∀n1,n2,m ∈ Z3.

In most cases, we will assume that there exists γ > 0 such that

∣H(n1,n2)∣ ≤ e−γ∣n1−n2 ∣. (2.1)
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Let D(θ,φ) be a family of operators on ℓ2(Z3
pm) parametrized by (θ,φ) ∈ R × [0, 2π):

D(θ,φ) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

D+ 0

0 D−

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2.2)

where D± are diagonal operators on ℓ2(Z3
) with entries

D±(n,n) = ±(n1ω1 + n2ω2 + θ) + 2 cos (n3λ + φ), n ∈ Z3.

Define also by T(θ,φ) the operator family on ℓ2(Z3
pm):

T(θ,φ) = D(θ,φ) + εH. (2.3)

Note that both D and T are unbounded. However, their domains do not depend on θ and φ.

A. Semi-algebraic sets
A subset S ⊂ Rn is called a (closed) semi-algebraic set if it is a finite union of sets defined by a finite number of polynomial inequalities

and/or equalities. More precisely, let {P1, . . . ,Ps} ⊂ R[x1, . . . , xn] be a family of real polynomials whose degrees are bounded by d. A (closed)
semi-algebraic set S is a subset of the form

S =⋃
j
⋂
ℓ∈Lj

{x ∈ Rn : Pℓ(x)∗ j,ℓ0}, (2.4)

where L j ⊂ {1, . . . , s} and∗j,ℓ ∈ {≤,=,≥}. In the above case, we say that S has degree at most sd. In general, the degree of a semi-algebraic set
S is defined to be the smallest possible value sd over all representations, and is denoted by deg (S).

The following two facts about semi-algebraic sets will be used during the course of the proofs. See 4 for more applications. The first result
is a particular case of:1

Proposition 2.1. Let S ⊂ Rn be a semi-algebraic set of degree B. Then the number of connected components of S does not exceed (1 + B)C(n).

The second result is known as the Tarski–Seidenberg principle:

Proposition 2.2. Let S ⊂ Rd1+d2 be a semi-algebraic set of degree B. Then the projection of S onto Rd1

projx1(S) = {x1 ∈ R
d1 : ({x1} ×Rd2) ∩ S ≠ ∅}

is a semi-algebraic set with degree at most (1 + B)C(d1 ,d2).

Proposition 2.3. Let S ⊂ [0, 1]d1 × [0, 1]d2 = [0, 1]d be a semi-algebraic set of degree B and Lebd(S) < η, logB≪ log 1/η. Denote by (x, y) ∈
[0, 1]d1 × [0, 1]d2 the product variable. Fix ε > η1/d. Then there is a decomposition

S = S1⋃ S2,

with S1 satisfying

Leb(ProjxS1) ≤ BC(d)ε,

and S2 the transversality property

Leb(S2 ∩ L) ≤ BC(d)ε−1η1/d,

for any d2-dimensional hyperplane L in [0, 1]d1+d2 such that

max
1≤j≤d1

∣ProjL(ej)∣ ≤
1
100

ε,

where ej are the basis vectors for the x-coordinates.
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The notation logB≪ log 1/η means that there exists a (small) constant c = c(n) such that the conclusion of the lemma holds under
the assumption logB ≤ c log 1/η. The above lemma, referred to as the steep planes lemma, is the basic tool underlining the semi-algebraic
techniques used in the subject. It is stated as (1.5) in Ref. 5, cf., Lemma 9.94 and Proposition 5.1 Ref. 8, and relies on the Yomdin–Gromov
triangulation theorem. For a complete proof of the latter, see Ref. 2.

B. The arithmetic lemma
The Green’s function method of proving Anderson localization involves restrictions of the operator to various boxes. Let N ∈ N, and T

be an operator on ℓ2(Z3
pm). For a subset Λ ⊂ Z3, let Λpm ∶= Λ × {−,+} ⊂ Z3

pm, and

T∣Λ ∶= 1ΛpmT1Λpm ∣Ran 1Λpm

the block of T corresponding to the subspace ℓ2(Λpm), naturally embedded into ℓ2(Z3
pm), considered as an operator acting on a finite-

dimensional subspace. For boxes centered at the origin, we will use shorter notation

T∣N ∶= T∣[−N,N]3.

Let r(Λ) be the diameter of Λ. Denote by Xg
Λ,μ (the “good set”) the set of pairs (θ,φ) ∈ R × [0, 2π]such that

∥T(θ,φ)∣−1Λ ∥ ≤ e
r(Λ)

6
7 , (2.5)

and for any n,n′ ∈ Λ with ∣n − n′∣ ≥ r(Λ)999/1000, we have the following estimates for the matrix elements:

∣T(θ,φ)∣−1Λ (n,n
′
)∣ ≤ e−μ∣n−n

′
∣. (2.6)

Let Xb
Λ,μ = R × [0, 2π]/X

g
Λ,μ be the “bad set,” that is, the complement of Xg

Λ,μ. As always, we will use the notation Xb
N,μ and Xg

N,μ for the case
Λ = [−N,N]3.

In the multi-scale estimates, it will be important to consider different values of μ for different scales N. For large N, one would expect
μ < γ, since the factors with decay rate γ will appear in the resolvent identity. On each step of the multi-scale procedure, the rate deteriorates
(that is, gets weaker).

In the setting of the present paper, the situation will be complicated by the fact that the operator H itself, as well as the value of γ will
also change from scale to scale. One needs to be careful in obtaining a meaningful version of the multi-scale argument for the large deviation
theorem. We will formulate such a version in the end of Sec. III.

We will start from some preparations. Compared to the traditional quasiperiodic setting such as Ref. 7, the set of parameters θ,φ under
consideration is not compact. However, one can restrict the bad values of the parameters to a bounded N-dependent subset.

Lemma 2.4. Suppose that ∣ε∣ < e−10(1+γ) and ∣D±(n,n)∣ ≥ r(Λ)3 for all n ∈ Λ. Then (2.5) and (2.6) are satisfied. As a consequence, we have
the following inclusion:

Xb
Λ,μ ⊂ [−10N

3, 10N3
] × [0, 2π], ∀μ ∈ (γ/5, 5γ).

Proof. Both properties follow from considering T being a small perturbation of its diagonal part, and expanding it into the Neumann
series. Additionally, (2.5) becomes much stronger with O(N−1) in the right hand side. ◻

As in many results, we will need to introduce Diophantine conditions on the frequency vectors. Fix Cdio, δdio > 0. Let

DC1(Cdio, δdio,N) = {α ∈ R : dist(kα,Z) ≥ Cdio

∣k∣1+δdio
,∀k ∈ Z, 1 ≤ ∣k∣ ≤ N};

DC1(Cdio, δdio) ∶=⋂
N

DC1(Cdio, δdio,N).

We will often take δdio = 1/100 and denote Cdio by τ. To simplify the notations, in this case, we write the Diophantine condition as DC1(τ).
The following result is essentially proven in Ref. 8, Theorem 5.1. The argument in Ref. 8 assumes α1 = α2, but one can check that this

assumption is not necessary for the argument.
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Lemma 2.5. Assume α1,α2 ∈ DC1(Cdio, δdio). Let A ⊂ [0, 2 π)2 be a semi-algebraic subset. Assume that, for any unit line segment L ⊂
[0, 2 π)2, we have

Leb1(A ∩ L) ≤
1
2

min
1≤∣k∣≤2N

dist(k ⋅ α,Z).

Then
#{k = (k1, k2) ∈ Z2 : ∣k∣ ≤ N, (k1α1, k2α2) mod Z2

∈ A} ≤ (1 + deg A)CabsC−Cabs
dio N

3
4+3δdio. (2.7)

for N ≥ N0(α).

Here and in the future, Cabs > 0 denotes some positive absolute constant (not necessarily the same in different places).
The following is a modification of the above lemma which is essential for the multi-scale arguments afterwards.

Theorem 2.6. Let ∣ε∣ < e−10(1+γ) and γ/5 < μ < 5γ. Fix some ν2 > 0. Let ω1,ω2 ∈ (−3, 3) with ∣ω2∣ ≥ ν2 and ω1
ω2
∈ DC1(τ). Let λ ∈ (1, 2)

with λ ∈ DC1(Cdio, δdio).
Let Λ ⊂ Z3 with r(Λ) < N2. Assume that the set Xb

Λ,μ is contained in a semi-algebraic subset Xb,alg
Λ,μ with

Leb1(X
b,alg
Λ,μ ∩ L) ≤ e

−r(Λ)ρ , degXb,alg
Λ,μ ≤ r(Λ)

C, (2.8)

uniformly in all unit line segments L ⊂ R × [0, 2π). Then, for any (θ,φ) ∈ R × [0, 2π], we have

#{n ∈ Z3 : ∣n∣ ≤ N2, (θ + k ⋅ ω,φ + jλ) ∈ Xb
Λ,μ} ≤ (ν2τ)

−Cabs r(Λ)CN3/4+3δdio
2 , (2.9)

assuming N2 is large enough depending on (ω, λ) and ρ.

Proof. Without loss of generality, assume that ω2 > 0. Let η = ω1
ω2
. Denote by Yb

Λ the subset of [0, 1) × [0, 2π), defined by the following
condition:

(θ + k1ω1 + k2ω2,φ + jλ) ∈ Xb
Λ,μ⇔ ({k1η},{jλ}) ∈ Y

b
Λ.

To obtain YΛ from Xb
Λ,μ, one can first stretch the latter by ω−12 in the first coordinate. The resulting set will be contained in

[−10 r(Λ)3ν−12 , 10 r(Λ)3ν−12 ] × [0, 2π). One can then eliminate the variable k2 by slicing the set into O(r(Λ)3ν−12 ) pieces and translating
each piece into [0, 1) × [0, 2π). An additional translation, or a slight modification of the previous step, would also eliminate the dependence
on (θ,φ).

Since the constants are allowed to depend on ν2, the new set Yb
Λ will satisfy (2.8) with, say, e−r(Λ)

ρ
/2 in the right hand side. If Xb

Λ,μ was
contained in a semi-algebraic subset of degree B, then one can apply the same operations to that set and obtain a semialgebraic approximation
for Yb

Λ of degree at most 10Br(Λ)3ν−12 .
With the above preparations, Lemma 2.5 implies the desired bound for the number of pairs (k1, j). To complete the proof, recall

Lemma 2.4 and note that, once k1 is fixed, there are at most O(ν−12 r(Λ)3) possibilities to choose k2. The contribution from these possibilities
can be absorbed into the front factor. ◻

Remark 2.7. If ω2 ∈ DC1(τ), then ∣ω2∣ ≥ τ. However, the proof does not require the individual frequencies to be Diophantine. One
cannot remove the condition ∣ω2∣ ≥ ν2: in the extreme case ω2 = 0 we have O(k2) possibilities for k2 alone, which will make o(k2) impossible
to achieve. Since ω1

ω2
∈ DC1(τ), we have ∣ω1∣ ≥ τν2 as part of the assumptions.

In later applications of Theorem 2.6, it will be convenient to have ν2 = τ. In this case, the factor (τν)−Cabs becomes τ−Cabs .

III. COVERING LEMMA AND THE LARGE DEVIATION THEOREM
A. Resolvent identity and the covering lemma

Let Λ = Λ1 ∪Λ2 ⊂ Z3, and Λ1 ∩Λ2 = ∅. Let T be an operator on ℓ2(Λ). From the resolvent identity, we have

T∣−1Λ = T∣
−1
Λ1 + T∣

−1
Λ2 − (T∣

−1
Λ1 + T∣

−1
Λ2 )(T∣Λ − T∣Λ1 − T∣Λ2)T∣

−1
Λ . (3.1)

Here, we assume that T∣−1Λ j
is extended by zero into ℓ2((Λ/Λ j)pm), in order for the addition of operators to make sense. Assume that T satisfies

the Töplitz condition:
∣T(n1,n2)∣ ≤ e−γ∣n1−n2 ∣,

J. Math. Phys. 65, 011502 (2024); doi: 10.1063/5.0166183 65, 011502-7

Published under an exclusive license by AIP Publishing

 01 April 2024 15:28:41

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

and let n1 ∈ Λ1, n2 ∈ Λ. Then

∣T∣−1Λ (n1,n2)∣ ≤ ∣T∣−1Λ1 (n1,n2)∣1Λ1(n2)

+ ∑
n′∈Λ1 , n′′∈Λ2

e−γ∣n
′
−n′′ ∣
∣T∣−1Λ1 (n1,n′)∥T∣−1Λ (n2,n′′)∣. (3.2)

In the inductive procedure of constructing solutions to the P-equations, one needs to apply the above resolvent identity several times in a
specific way. In one way or another, these ideas have been used in most of the applications of the Craig–Wayne–Bourgain method. A detailed
scheme has been recently clarified in Ref. 12. For the convenience of the reader, we describe a version of this argument adapted to our setting.
We will start from the “covering lemma.” Suppose that T satisfies the following conditions

(cov1) The Töplitz condition ∣T(n1,n2)∣ ≤ e−γ∣n1−n2 ∣.
(cov2) There will be boxes of three sizes: the main box Λ = [−N,N]3, the central box Λc = [−N1,N1]

3, and several “small” boxes of the
form Λs = n + [−M,M]3 ⊂ Λ. We will assume

√
N ≤ N1 ≤ N/10; (log N)100 ≤M ≤ (log N)log log N.

All results will hold under the assumption that N is larger than an absolute constant (in particular, all logarithms are well defined).
(cov3) The box Λc is good in the following sense:

∥T∣−1Λc ∥ ≤ B,

∣T∣−1Λc (n1,n2)∣ ≤ e−μ∣n1−n2 ∣, for ∣n1 − n2∣ ≥ R,

where 100M ≤ R ≤ N999/1000
1 and 0 < B ≤ eN

999/1000
1 .

(cov4) For each point n ∈ Λ/ 12Λc, there exists a box Λs ⊂ Λ of size M, containing n, with dist(n,Λ/Λs) ≥M/20, which is good in the
following sense:

∥T∣−1Λs ∥ ≤ e
M6/7

,

∣T∣−1Λs (n1,n2)∣ ≤ e−μ∣n1−n2 ∣, for ∣n1 − n2∣ ≥M999/1000.

Here, γ, μ ∈ [1,+∞). For each point n ∈ Λ, the default choice of a “good box” will be Λs provided in (4) or Λc if n ∈ 1
2Λc.

Sometimes we will need to be more careful and still choose Λc even if a legitimate Λs exists.

Proposition 3.1. Under the above assumptions and for sufficiently large N, the Green’s function in the box Λ is good in the sense of the
following two bounds: the norm bound

∥T∣−1Λ ∥ ≤ 2(e
M6/7

+ B)

and the exponential decay bound: for ∣n1 − n2∣ ≥ R, we have

∣T∣−1Λ (n1,n2)∣ ≤ e−(min{γ,μ}− 1000 log N
M )(∣n1−n2 ∣−M999/1000

).

Proof. In multiple aspects, the proof follows standard arguments dating back to Ref. 7. Let us first consider the norm estimate. For each
n1 ∈ Λ, let Λ1 be the “default good box” around it; that is, Λ′ from (3) if it exists, or Λc. Apply (3.2) and first take the supremum over n2; then
take a supremum over n1; note that, since Λ1 depends on n1, the right hand side of (3.2) will be different each time. As a consequence, we
obtain

s(1 − t) ≤ (eM
6/7

+ B),

where
s = max

n1 ,n2∈Λ
∣T∣−1Λ (n1,n2)∣,

t ∶= ∑
Λ1⊂Λ,n∈Λ1 ,n′′∈Λ/Λ1 ,dist(n,∂Λ1/∂Λ)≥diam(Λ1)/40

e−∣n−n
′′
∣
∣T∣−1Λ1 (n1,n′)∣.

Here, N is assumed to be large enough so that the exponential factor, which is either bounded by e−M/100 or e−N1/100 absorbs the last factor
bounded by eM

6/7
or eN

6/7
, respectively, and all combinatorial factors. We also weakened the estimates by assuming that γ = μ = 1. It is clear

that we have t ≤ 1/2 for N larger than an absolute constant, which implies the norm estimate.
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Let us proceed with the exponential decay estimate. Let n1,n2 ∈ Λ and ∣n1 − n2∣ ≥ R. Find a good box Λ1 around n1 and apply (3.2).
Assume for now that n2 ∉ Λ1. Then we have

∣T∣−1Λ (n1,n2)∣ ≤ ∑
n∈Λ1 , n′′∈Λ/Λ1

e−γ∣n
′
−n′′ ∣−μ∣n1−n′ ∣∣T∣−1Λ (n2,n′′)∣.

For n and n′′ that produce the largest possible term in the summation, we have

∣T∣−1Λ (n1,n2)∣ ≤ ∣T∣−1Λ1 (n1,n2)∣1Λ1n2

+∣Λ1∥Λ∣e−min{γ,μ}(∣n1−n∣+∣n−n′′ ∣)∣T∣−1Λ (n
′′,n2)∣

≤ ∣T∣−1Λ1 (n1,n2)∣1Λ1n2 + ∣Λ1∥Λ∣e−min{γ,μ}∣n1−n′′ ∣∣T∣−1Λ (n
′′,n2)∣. (3.3)

Let n′′1 ∶= n′′. One can iterate the above inequality by applying it to ∥T∣−1Λ (n2,n′′1 )∥ with n1 replaced by n′′1 , and obtain a new “intermediate
point” n′′2 . The process can be repeated, and we obtain a “path” n′′1 ,n′′2 , . . .. For each point n′′k we find a good box Λ1 containing n′′k , and the
next point n′′k+1 will be outside of Λ1. We will call the jump from n′′k to n′′k+1 short or long depending on whether Λ1 is a large or small box.
Note that this terminology only reflects a lower bound on the size of the jump; the actual jump can be arbitrarily large within Λ, but cannot
be very small since the next point must be outside of Λ1.

The iterations can be repeated indefinitely. At each step, the number of terms increases at most by 1. Generally, we expect that the first
term in the right hand side of (3.2) would only appear at later stages, since n1 is not very close to n2. However, one can easily see that eventually
it will appear. In that case, we estimate the first term in the right hand side of (3.3) with the best available bound on the matrix element of
T∣−1Λ1

, which can either be eM
5/6
, B, or an exponentially decaying bound. Let us terminate the iterations once we meet the condition

∣n1 − n′′1 ∣ + ∣n
′′

1 − n
′′

2 ∣ + ⋅ ⋅ ⋅ + ∣n
′′

r−1 − n
′′

r ∣ ≥ 2N1;

recall that N1 is the size of the central box. In the last step, we estimate the matrix element of T∣−1Λ by the (already obtained) norm bound
2(B + eM

5/6
) ≤ 4B.

As a consequence, we have at most, say, 100N1/M terms. Each term corresponds to some sub-path of the initial path. It includes an
exponential factor (total length of the sub-path), a combinatorial factor (∣Λ1∥Λ∣)r , where r is the number of steps in the sub-path, and the
norm factor, which is either, say 4B or eM

5/6
.

To simplify the estimates, first note that the number of terms can be absorbed into the overall bound, and therefore one can deal with
the worst possible individual term. Let us consider the combinatorial factor. For a sub-path with r steps, the exponential factor is at most
(meaning at least as good as)

e−min{γ,μ} Mr
100 .

The combinatorial factor is bounded by

(∣Λ1∥Λ∣)r ≤ N100r
≤ e100r log N.

SinceM ≥ (logN)100, the combinatorial factor can always be absorbed into the exponential factor for large N, with some deterioration in the
factor min{γ, μ} as indicated in the statement of the proposition.

It remains to consider how to deal with the norm factors. Clearly, if the norm factor is eM
5/6
, then the length of the sub-path must

be at least ∣n1 − n2∣ −M999/1000, and therefore the norm factor is, again, absorbed by the exponential one. If the norm factor is 4B, it can
come either from a sub-path [corresponding to the first term of (3.3) at some iteration step], or from the second term through the length
termination condition. In the latter case, since B ≤ eN

999/1000
1 and the length of the path is at least 2N1, it will again be absorbed by the exponential

term.
It remains to consider the situations where the factor B appears in the first term. It can only happen if, at some stage, nk is inside of Λc/2

(so that we have to choose Λc as a good box), and ∣nk − n2∣ < R. In that case, note that nk−1 must be outside of Λc/2. Therefore, the jump from
nk−1 to nk must have been through a small box (using our terminology, a short jump), but the actual length of the jump, and therefore the
length of the path, is at least, say, N1/10. Thus, the exponential factor will also absorb B ≤ eN

999/1000
1 . ◻
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B. The large deviation theorem
Our next goal is the scale-dependent version of the large deviation theorem for the Green’s functions. Let

2γ∞ ≥ γ1 ≥ γ2 ≥ ⋅ ⋅ ⋅ ≥ γ∞, 2γ∞ ≥ γ′1 ≥ γ
′

2 ≥ ⋅ ⋅ ⋅ ≥ γ∞

be two non-increasing sequences of real numbers. As above, define a family of operators on ℓ2(Z3
pm):

Tk(θ,φ) = D(θ,φ) + εHk.

One can also consider their restrictions into Zd
pm/S for a finite subset S in the same way as described above. We omit this straightforward part

for simplicity. Assume the following conditions on Tk and Hk.

(ms1) Hk are Töplitz operators with the matrix elements satisfying

∣Hk(n,n
′
)∣ ≤ e−γk ∣n−n

′
∣.

(ms2) ∥Tk+1 − Tk∥ ≤ e−k
2
.

(ms3) γ′kCind ≤ min{γk, γ′k} − k
−10.

The following Proposition 3.2 is a version of the large deviation theorem. There no major difficulties in adapting the known proof
from Ref. 7 to the variable decay rate situation and to arbitrary dimension (in our case, d = 3), assuming that an appropriate version of the
arithmetic lemma holds (Theorem 2.6). However, one also needs to use modified versions of the covering lemmas Ref. 7, Lemmas 2.2, 2.4
which take into account the Töplitz form of the off-diagonal terms, more accurate counting of bad boxes, and stronger off-diagonal decay
(that is, ∣n − n′∣ ≥ N999/1000 rather than ∣n − n′∣ ≥ N/100). Such versions were stated in Refs. 12 and 14, with the latter being the most suitable
for our direct applications (the statement in Ref. 14 would have needed a minor modification).

It will be convenient to introduce a new arithmetic condition on the spacetime frequencies. Let

DCR(τ,N) = {(λ,ω1,ω2) ∈ (1, 2) × (−3, 3)2 : ∣ω2∣ ≥ τ,
ω1

ω2
∈ DC1(τ;N), λ ∈ DC1(τ;N)};

DCR(τ) =⋂
N

DCR(τ;N).

One can check that
Leb3(DCR(τ;N)/DCR(τ;N + 1)) ≤ 10τ2N−(2+2/100); (3.4)

Leb3((1, 2) × (−3, 3)2/DCR(τ)) ≤ 10τ. (3.5)

Proposition 3.2. There exists an absolute constant Cind ≥ 2 such that, for every γ
∞
∈ (1/2, 10) there exists ε0 > 0 such that, for any ε ∈

(0, ε0), we have the following. For every M ∈ N, and every (λ,ω1,ω2) ∈ DCR(τ,M10
) there exists a subset XM = XM(λ,ω1,ω2) ⊂ R × T such

that, for every (θ,φ) ∈ (R × T)/XM , we have

∥(Tk(θ,φ)∣M)
−1
∥ ≤ eM

6
7 , ∀k ≥M. (3.6)

and for all n,n ∈ [−M,M]3 with ∣n − n′∣ ≥ N999/1000 we have

∣(Tk(θ,φ)∣M)
−1
(n,n′)∣ ≤ e−γ

′

M ∣n−n
′
∣, ∀k ≥M. (3.7)

For every line segment L ⊂ (−3, 3)2, XM satisfies

Leb1(XM ∩ L) ≤ e−M
1
300 . (3.8)

Remark 3.3. For the convenience of the reader, the main steps of the proof will be outlined in Sec. VII. As previously, we assume that
δdio = 1/100 is fixed. An analysis of the proof shows that the choice

ε0 = exp{−τ−Cabs,dio}

is sufficient. See also Remark 7.6.
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Remark 3.4. We will be using the condition (3.8) only for horizontal and vertical line segments. In that way, the steep planes analysis in
Sec. V is more similar to Refs. 5 and 6 rather than.7 Most likely, the Proof of Proposition 3.2 can also be performed along the lines of Ref. 7.
However, the latter paper involves a non-explicit arithmetic condition on the frequency vector, which complicates quantitative estimates
needed for Remark 3.3. We believe that there is also some value in keeping the conditions on (λ,ω1,ω2) in Preposition 3.2 purely arithmetic,
even though they undergo an additional non-arithmetic parameter removal in Step 4 of Sec. V.We would like to thank the anonymous referee
whose suggestions lead to this remark.

IV. THE LYAPUNOV–SCHMIDT DECOMPOSITION
Recall that we have n = (n1,n2,n3) = (k, j). Write u using the Fourier series (1.5). Let ū be the complex conjugate of u, and

ū(t, x) = ū(t, x) = ∑
n∈Z3

¯̂u(n)e−i(k⋅ω)te−ijxλ = ∑
n∈Z3

¯̂u(−n)ei(k⋅ω)teijxλ. (4.1)

In other words, v̂(n) = ¯̂u(−n). The function v is only introduced for convenience of notation, in order to avoid multiple stacked conjugation
symbols. In the sequel, we will call v and u conjugate.

A. The functional F
Using (1.5) and (4.1), we can rewrite the original NLS Eq. (1.1) in the Fourier representation:

(k ⋅ ω + δ𝜘V̂(n) + 2 cos (jλ)) û(n) + δ2p((û ∗ v̂ )∗p ∗ û)(n) = 0, (4.2)

(−k ⋅ ω + δ𝜘V̂(−n) + 2 cos (jλ)) v̂(n) + δ2p((û∗v̂ )∗p∗v̂)(n) = 0, (4.3)

where we recall the definition of V̂(n)in (1.6):

V̂(n) = m11{−e1}(k)1{h1}( j) +m21{−e2}(k)1{h2}( j), n = (k, j) ∈ Z3.

The symbol ∗ denotes the standard convolution:

(A∗B)(n) = ∑
n′∈Z3

A(n − n′)B(n′),

and (û∗v̂ )∗p denotes the pth convolution power of û∗ v̂.
The expression in the left hand side of (4.2), as well as (4.3), is a function on Z3 (in the variable n). Let us combine the left hand sides

of (4.2) and (4.3) into a single function on Z3
pm, and denote the resulting function by F[û, v̂]. In some calculations, it will be convenient to

consider û and v̂ as independent variables, without explicitly using the fact that they are conjugate to each other.
Let ℓ0(Z3

) denote the space of all finitely supported functions onZ3.We can consider (û, v̂)↦ F[û, v̂]as a non-linearmap from ℓ0(Z3
) ×

ℓ0(Z3
) = ℓ0(Z3

pm) into itself. Its derivative at the point (û, v̂)is a linear map of the same type of the form

F′[û, v̂] = D + δ𝜘V + δ2pH[û, v̂],

where

D =
⎛
⎜
⎝

diag {k ⋅ ω + 2 cos (jλ)} 0

0 diag {−k ⋅ ω + 2 cos (jλ)}

⎞
⎟
⎠
, n ∈ Z3, (4.4)

and

V =
⎛
⎜
⎝

diag {V̂(n)} 0

0 diag {V̂(−n)}

⎞
⎟
⎠

are multiplication operators independent of û, v̂, and

H =
⎛
⎜
⎝

(p + 1)(û∗v̂ )∗p∗ p(û∗v̂ )∗p−1∗û∗ û∗

p(û∗v̂ )∗p−1 ∗ v̂∗v̂∗ (p + 1)(û∗v̂ )∗p∗

⎞
⎟
⎠

(4.5)

is a matrix of convolution-type operator. For example, (p + 1)(û∗v̂ )∗p∗ denotes an operator on ℓ0(Z3
) whose action on an element w ∈

ℓ0(Z3
) is given by (p + 1)(û∗v̂ )∗p ∗w.
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Note that the non-linear part of F in the original coordinate representation (before Fourier transform) is simply the map

f : R2
→ R2, f (u, v) = δ2p(uv)p

⎛
⎜
⎝

u

v

⎞
⎟
⎠
,

whose differential is the matrix

δ2p
⎛
⎜
⎝

(p + 1)upvp pup+1vp−1

pup−1vp+1 (p + 1)upvp
⎞
⎟
⎠
.

We would like to estimate the difference between the increment f (u + ucorr, v + vcorr) − f (u, v) and its linearization. Clearly, the linear part
will completely cancel in this estimate. We can express the difference as follows:

(u + ucorr)p(v + vcorr)p
⎛
⎜
⎝

u + ucorr

v + vcorr

⎞
⎟
⎠
− upvp

⎛
⎜
⎝

u

v

⎞
⎟
⎠
−
⎛
⎜
⎝

(p + 1)upvp pup+1vp−1

pup−1vp+1 (p + 1)upvp
⎞
⎟
⎠

⎛
⎜
⎝

ucorr

vcorr

⎞
⎟
⎠

= u2corrg1(u, v,ucorr, vcorr) + v
2
corrg2(u, v,ucorr, vcorr) + ucorrvcorrg3(u, v,ucorr, vcorr). (4.6)

One can easily check that g1, g2, g3 are polynomials of degrees at most, say, 10p with coefficients bounded by, say, 910p. As a consequence,

∥gj∥C1
[−B,B]4 ≤ 10

10p
(10 + B)10p, j = 1, 2, 3.

In other words, if one assumes that u, v, ucorr, vcorr are restricted to a bounded domain, then the difference between the increment of f and its
linear approximation is, as expected, quadratic in ucorr and vcorr. Moreover, if u and v additionally depend on a parameter, this estimate can
also be differentiated (possibly multiple times) with respect to that parameter, due to smoothness of the right hand side of (4.6). Naturally, the
estimate is only meaningful if ucorr and vcorr are small. Combining with the Fourier representation, we arrive to the following proposition for
the original functional F.

Proposition 4.1. Assume that ∥û∥1, ∥v̂∥1, ∥ûcorr∥1, ∥v̂corr∥1 ≤ B, where ∥ ⋅ ∥1 denotes the norm in ℓ1(Z3
). Assume that û and v̂ are conjugate

to each other. Then
XXXXXXXXXXXXX

F[û + ûcorr, v̂ + v̂corr] − F[û, v̂] − F′[û, v̂]
⎛
⎜
⎝

ûcorr

v̂corr

⎞
⎟
⎠

XXXXXXXXXXXXX1

≤ δ2p1011p(10 + B)10p∥ûcorr∥21. (4.7)

Suppose, in addition, that û, v̂, ûcorr, v̂corr depend on several parameters. Let ∇ denote the derivatives with respect to the above parameters. Then
one has

XXXXXXXXXXXXX

∇
⎛
⎜
⎝
F[û + ûcorr, v̂ + v̂corr] − F[û, v̂] − F′[û, v̂]

⎛
⎜
⎝

ûcorr

v̂corr

⎞
⎟
⎠

⎞
⎟
⎠

XXXXXXXXXXXXX1

≤ δ2p1011p(10 + B)10p∥ûcorr∥1(∥ûcorr∥1 + ∥∇ûcorr∥1). (4.8)

Remark 4.2. One can also restate the above bounds in the form of the following convolution-type relation:

F[û + ûcorr, v̂ + v̂corr] − F[û, v̂] − F′[û, v̂]∗
⎛
⎜
⎝

ûcorr

v̂corr

⎞
⎟
⎠

= δ2pûcorr ∗ ûcorr ∗ h1(û, v̂, ûcorr, v̂corr) + δ2pûcorr ∗ v̂corr ∗ h2(û, v̂, ûcorr, v̂corr)

+δ2p v̂corr ∗ v̂corr ∗ h3(û, v̂, ûcorr, v̂corr),

where h1, h2, h3, similarly to the above, are convolution polynomials of degrees at most 10p with coefficients bounded by, say, 910p.
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B. The Lyapunov–Schmidt decomposition
Let

S+ = {(−e1,h1), (−e2,h2)}, S− = −S+ = {(e1,−h1), (e2,−h2)},

and
S ∶= (S+ × {+}) ∪ (S− × {−}) ⊂ Z3

pm. (4.9)

The Lyapunov–Schmidt decomposition is a decomposition of the system of Eqs. (4.2) and (4.3) F[û, v̂] = 0 into two systems, by restricting it
into S and Z3

pm/S, respectively. The first system
F[û, v̂]∣Z3

pm/S = F[û, v̂]∣Sc = 0, (4.10)

namely, for any n ∈ Z3
/S+,

(k ⋅ ω + 2 cos (jλ))û(n) + δ2p((û∗v̂ )∗p∗û)(n) = 0, (4.11)

and for any n ∈ Z3
/S−,

(−k ⋅ ω + 2 cos (jλ))v̂(n) + δ2p((û∗v̂ )∗p∗v̂)(n) = 0 (4.12)

is usually referred to as P-equations. The restriction into S is called the Q-equations:

F[û, v̂]∣S = 0. (4.13)

We will impose û(−ek,hk) = uk for k = 1, 2. With this assumption and using the conjugacy relation between û and v̂, we can see that the
Q-equations reduce to the following system:

ωk = 2 cos (hkλ) +mkδ
𝜘
+
δ2p

uk
((û∗v̂ )∗p ∗ û)(−ek,hk), k = 1, 2. (4.14)

We remark that only the Q-equations depend explicitly on m, and the P-equations (4.11) and (4.12) do not. The latter enables us to solve the
P-equations in the (ω, λ) variables and is a simplifying feature.

C. The P -equations and the multi-scale Newton scheme
We use a Newton scheme to solve the P-equations. Fix a conjugate pair (u, v), and let Tu be the linearized operator on ℓ2(Z3

pm/S):

Tu = F′[û, v̂]∣Sc = (D + δ
2pH[û, v̂])∣Sc. (4.15)

Recall the formal Newton scheme:
⎛
⎜
⎝

ûcorr

v̂corr

⎞
⎟
⎠
= −(Tu)

−1F[û, v̂]∣Sc. (4.16)

Here, F[û, v̂]∣Sc is an element of ℓ2(Sc), and Tu is an operator acting on the same space. Therefore, both ûcorr and v̂corr are elements of
ℓ2(Z3

/S+) and ℓ2(Z3
/S−), respectively. One can easily check that ûcorr and v̂corr are conjugate, that is,

ûcorr(n) = ¯̂vcorr(−n).

We adopt amultiscale Newton scheme as follows. Start from the zero iteration

û (0)(n) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

u1, n = (−e1,h1);
u2, n = (−e2,h2);
0, n ∈ Z3

/S+.

Consider a sequence of scales N(0)
≤ N(1)

≤ . . .. At the iteration step (r + 1), consider

Tu∣N = Tu∣[−N,N]3pm/S.
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Note that, since Tu is already restricted to Z3
pm/S in the original definition, this is the same notation as in Sec. II. Define the (r + 1)-th

correction to be:

⎛
⎜
⎝

û(r+1)corr

v̂
(r+1)
corr

⎞
⎟
⎠
= −(Tu(r) ∣N(r+1))

−1F[û (r), v̂ (r)]∣N(r+1) ,Sc (4.17)

and obtain the next iterations by

û (r+1) ∶= û (r) + û(r)corr; v̂ (r+1) ∶= v̂ (r) + v̂
(r)
corr; v̂ (r+1)(n) = ¯̂u (r+1)(−n), (4.18)

where one can easily check that the last two equalities imply one another.
We will use the terminology finite volume for the above iterated equations and their solutions u(r), v(r), û (r), v̂ (r), and infinite volume for

the original non-linear equations and their solutions.

D. The Q -equations
At each iteration step, the values of û (r)and v̂ (r)on S do not change, and are always equal to those of û (0), v̂ (0). As a consequence,

the iteration process for the P-equations is consistent. In other words, the outcome of the Newton iterations for the P-equations is sufficient
to determine the input for the next iterations. As a consequence, finite volume versions of the Q equations can be essentially ignored. If the
above Newton iterations for the P equations converge to an infinite volume solution, one can interpret the Q-equations (4.14) as the final
relation between λ,m1,m2,ω1,ω2. During the iteration, we will require (λ,ω1,ω2) to belong avoid certain “bad” subsets, from the application
of Proposition 2.3 (“steep planes lemma”). In Sec. VI, we will restate this as a condition completely in terms of (λ,m1,m2), as required by the
statement of the main result, Theorem 1.1.

V. INDUCTIVE PROCEDURE FOR THE P -EQUATIONS
In this section, we will implement the multi-scale Newton scheme described above, for the P-equations. This is the most technical section

of the paper.
As discussed above, we start from the initial iteration

û (0)(n) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

u1, n = (−e1,h1);
u2, n = (−e2,h2);
0, n ∈ Z3

/S+,

(5.1)

and v̂ (0)being the conjugate of û (0). For a sequence of scales N(r) = Ar+r0 , define

⎛
⎜
⎝

û(r+1)corr

v̂
(r+1)
corr

⎞
⎟
⎠
= −(Tu(r) ∣N(r+1))

−1F[û (r), v̂ (r)]∣N(r+1) ,Sc ,

û (r+1) ∶= û (r) + û(r+1)corr ; v̂ (r+1) ∶= v̂ (r) + v̂
(r+1)
corr ; v̂ (r+1)(n) = û (r+1)(−n).

The goal of this section is to establish several inductive estimates on û (r)and v̂ (r), each of which will be supported on [−Ar+r0 ,Ar+r0].
Recall

DCR(τ,N) = {(λ,ω1,ω2) ∈ (1, 2) × (−3, 3)2 : ∣ω2∣ ≥ τ,
ω1

ω2
∈ DC1(τ;N), λ ∈ DC1(τ;N)}.

Let

I′0 ∶= {(ω, λ) ∈ DCR(τ,A
10r0) : ∣D(n)∣ ≥ δres for alln ∈ [−A2r0 ,A2r0]

3
}. (5.2)

Let I0 be the union of all dyadic cubes contained in I′0 with side at least δ2res. It is easy to see that, say

Leb3(DCR(τ,A10r0)/I0) ≤ A100r0δres. (5.3)

J. Math. Phys. 65, 011502 (2024); doi: 10.1063/5.0166183 65, 011502-14

Published under an exclusive license by AIP Publishing

 01 April 2024 15:28:41

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

We will show that there exist subsets I0 = I1 = I2 = I3 = ⋅ ⋅ ⋅ = Ir0 ⊃ Ir0+1 ⊃ . . . satisfying:

(i1) Ir can be split into a disjoint union of exp{((r + r0) log A)Cabs,1} closed rectangles Ir,j, each of which is of diameter at most
exp{−((r + r0) log A)Cabs,2} and has edges parallel to the coordinate axes.

(i2) The rectangles in Ir,j are nested: for each Ir,j there exists Ir−1,j′ such that Ir,j ⊂ Ir−1,j′ .
(i3) We have Leb3(Ij/I j+1) ≤ e−Cabs,6(r+r0) log A.

For (ω, λ) ∈ Ir , we will show:

(sol1) û (r)and v̂ (r)are supported on [−Ar+r0 ,Ar+r0]
3 for r ≥ 1.

(sol2) ∣û (r)(n)∣ ≤ (1 − 2−(r+1))e−μr ∣n∣, for ∣n∣ ∈ Z3
/S+.

(sol3) ∣û(r+1)corr (n)∣ ≤ δr+1e−μ
(3)
r ∣n∣ ≤ δr+1e−μr+1 ∣n∣, see (5.6) for details on notation.

(sol4) ∣F[û (r), v̂ (r)]∣Sc(n)∣ ≤ κre−μr ∣n∣.
(sol5) Let

Gr ∶=

⎧⎪⎪
⎨
⎪⎪⎩

exp (C′abs,3(r + r0) log A), 0 ≤ r ≤ r0;
exp (((r + r0) log A)Cabs,3), r > r0.

Dr ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1, 0 ≤ r ≤ r0;
((r + r0) log A)Cabs,4 , r > r0.

We have the following Green’s function bounds:
∥(Tu(r) ∣Ar+r0 )

−1
∥ ≤ δ−1resGr , (5.4)

and for ∣n − n′∣ ≥ Dr , we have
∣(Tu(r) ∣Ar+r0 )

−1
(n,n′)∣ ≤ δp−1/2e−μr ∣n−n

′
∣. (5.5)

(sol6) The matrix elements of the operator Tu(r)satisfy

∣Tu(r)(n,n
′
)∣ ≤ δ2p−1e−μ

(1)
r ∣n−n

′
∣, n ≠ n′.

∥∇Tu(r)(n,n
′
)∥ ≤ δ2p−1e−μ

(1)
r ∣n−n

′
∣, n ≠ n′.

The operator Tu(r)satisfies the conclusion of Proposition 3.2 at the scale

M =M(r) = ⌊((r + r0) log A)CL⌋,

where CL is a large absolute constant (say, CL = 300), and γ′M(r) = μr −
1

50(r+r0)99
.

In addition to the above, we will establish the following regularity properties.

(reg1) The map (ω, λ)↦ û (r)can be extended to a map of the class

C1
((1, 2) × (−3, 3); ℓ1([−Ar+r0 ,Ar+r0]

3
)).

(reg2) On (−3, 3)2 × (1, 2), we have ∣∇û (r)(n)∣ ≤ (1 − 2−r−1)δ1+3p/8e−μr ∣n∣.
(reg3) For (ω, λ) ∈ Ir , we have ∣∇û(r+1)corr (n)∣ ≤ δr+1e−μ

(4)
r ∣n∣, where∇ denotes the gradient with respect to ω1, ω2, λ.

(reg4) For (ω, λ) ∈ Ir , we have ∣∇F[û (r), v̂ (r)]∣Sc(n)∣ ≤ κre−μr ∣n∣.
(reg5) For (ω, λ) ∈ Ir,j, the components of u(r)(ω, λ) are rational functions of ω1, ω2, cos λ of degree at most e((r+r0) log A)2 .
(reg6) The small parameters in the above bounds satisfy the estimate

κr = δp(3/2)
r

= e−pCabs,7r0(3/2)r log A, δr+1 = G2
rδ
−1
resκr.

We will also have
e−Cabs,8r0 log A

≤ δ ≤ e−Cabs,7r0 log A
≤ δres ≤ e−Cabs,9r0 log A.

(reg7) The bounds in (sol5) for r ≥ r0 are stable under perturbations of u(r) of size e−M
2
in the ℓ∞ norm (see the notation of Steps 3 and 4).

Since δr ≪ e−M
2
, they are also stable under perturbations of size 10δr . For r ≤ r0, the bounds are stable under perturbations of size

δ2res. The same is true for perturbations of the parameters ω, λ.
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A. Some conventions about the estimates
The below estimates are quite technical and involve multiple r-dependent parameters. We will try to introduce some conventions in

order to have more structure and lesser chance of errors.

(1) The exponential decay rate of several involved quantities is denoted by μr . In the transition from r to r + 1, we will have to introduce
several auxiliary decay rates:

μ(0)r = μr , μ( j+1)r = μ( j)r −
1

100(r + r0)99
, j = 1, 2, . . . , 4. (5.6)

In the end, we will take μr+1 ∶= μ(5)r . Each sub-step will slightly decrease the rate of decay. This, together with the choice of small δ, will
guarantee

μr ∈ (γ/2, γ)

for some 3 ≤ γ ≤ 10 and all r ≥ 0.
(2) For a given scale r, in most of the calculations one can assume the constant prefactor to be 1 in (sol2) and (reg2), and then subsequently

use (sol2) and (reg2) to confirm that one can use (1 − 2−r−2) for the scale r + 1.

B. The induction step: Plan
The induction procedure involves multiple estimates related to each other. Here, we outline the order in which we prove them. We

assume that the induction assumptions are obtained at step r.

(1) Check all estimates at the initial scale for u(0) (for small δ using direct perturbation arguments).
(2) Using the induction assumptions on u(r), construct the operator Tu(r)and check the first two estimates in (sol6). The off-diagonal decay

rate for matrix elements of Tu(r)will be μ
(1)
r .

(3) Check the assumptions of the large deviation theorem (Proposition 3.2) on the relevant scales, thus confirming the remaining claims
in (sol6). The decay rate in the output of LDT will be μ(2)r . This step will only be required only for r ≥ r0 and will use the corresponding
scale-dependent Diophantine condition. Quantitative aspects of the Diophantine condition will be discussed during Step 9.

(4) Obtain estimates (sol5) of (Tu(r) ∣Ar+r0+1)
−1, using the estimates on Tu(r) ∣N(r)and the large deviation theorem. The exponential decay rate

in this version of (sol5) will be μ(3)r . During this process, a small subset of the parameters (ω, λ)will be removed through an application
of the steep planes lemma, in addition to the Diophantine condition. This removal of the parameters (ω, λ) is not optimal for some
smaller scales (depending on δres), compared to a direct perturbation argument. We will also determine the range of scales for which a
conclusion of this step can be achieved by a direct perturbation approach with better measure estimates, and combine them into one
estimate which will have power law decay as δ → 0.

(5) Construct û(r+1)corr and estimate it using the previous step and the induction assumptions on F[û (r), v̂ (r)], obtaining (sol3) and (reg3).
The decay rate in these estimates will be μ(4)r . This also implies (sol5) at the scale r + 1 with decay rate μ(3)r .

(6) Estimate F[û (r+1), v̂ (r+1)]∣N(r+1) ,Sc using the results of the previous steps. The decay rate will be μ
(5)
r . At this step, we will take advantage

of the Newton approximation argument in order to get a quadratic improvement. The rate μ(5)r will be the weakest possible among those
obtained at step r, and we declare μr+1 ∶= μ(5)r .

(7) Summarize the inductive assumptions on smallness of various constants and justify (reg6).
(8) Use the definition û (r+1) = û (r) + û(r+1)corr to estimate û (r+1)and establish (sol3), (reg3) with the decay rate μ(4)r .
(9) Complete the semi-algebraic bounds (degree and rectangular structure) and extensions to the full parameter space.

C. Some bounds on convolution-type operators
We will need some elementary bounds on convolutions and convolution-type operators.

Lemma 5.1. Suppose that

0 ≤ fj(n) ≤ e−μ∣n∣, 1 ≤ j ≤ p.
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Then

f (n) ∶= ( f1 ∗ f2 ∗ ⋅ ⋅ ⋅ ∗ fp)(n) ≤ 26p−1eμ(
∣n∣3p

μ
+
(3p)!
μ3p+1

)e−μ∣n∣.

For R ≥ 1, we also have

f (n) ≤ 26p−1eμ(
(10pR)6p

μ
+
(3p)!
μ3p+1

)e−(μ−R
−1
)∣n∣.

Proof. We have

f (n) ≤
+∞

∑
k=∣n∣

e−μk#{(n1, . . . ,np) : ∣n1∣ + ⋅ ⋅ ⋅ + ∣np∣ = k} ≤ 23p
+∞

∑
k=∣n∣

k3pe−μk

≤ 23peμ∫
+∞

∣n∣
s3pe−μs ds = 23peμe−μ∣n∣∫

+∞

0
(s + ∣n∣)3pe−μs ds

≤ 26p−1eμe−μ∣n∣∫
+∞

0
(s3p + ∣n∣3p)e−μs ds ≤ 26p−1eμ(

∣n∣3p

μ
+
(3p)!
μ3p+1

)e−μ∣n∣.

The second estimate follows from the fact that, for ∣n∣ ≥ 100p2R2, the extra factor e−R
−1
∣n∣ will absorb ∣n∣3p. ◻

We will also need another more specific convolution-type estimate.

Corollary 5.2. Suppose that g j , f : Z3
→ R+ and for j = 1, 2, . . . , p − 1 we have

gj(n) ≤
⎧⎪⎪
⎨
⎪⎪⎩

e−μ∣n∣, ∣n∣ ≥ D;
G, ∣n∣ < D.

with G > 1. Suppose also that f (n) ≤ e−μ∣n∣ for all n ∈ Z3. Then

(g1∗g2∗ ⋅ ⋅ ⋅ ∗gp−1∗ f )(n) ≤ 27p−1eμ(
∣n∣3p

μ
+
(3p)!
μ3p+1

+ (3p)!)e−μ∣n∣ +Gp−1
(4D)3pe2(p−1)μDe−μ∣n∣.

For R ≥ 1, we also have

(g1∗g2∗ ⋅ ⋅ ⋅ ∗gp−1∗ f )(n) ≤

≤ 27p−1eμ(
(10pR)6p

μ
+
(3p)!
μ3p+1

+ (3p)!)e−(μ−R
−1
)∣n∣
+Gp−1

(4D)3pe2(p−1)μDe−μ∣n∣.

Proof. Since gi(n) ≤ e
−μ∣n∣1∣n∣≥D +G1∣n∣<D, one can expand the left hand side into 2p−1 terms, by considering two possible choices for

each g j. By adding an extra factor 2p and after a small weakening of the estimates to ensure monotonicity in p, one can restrict themselves to
two extreme cases, with either first or second choice made for all g j at the same time. We leave the details to the reader. ◻

Remark 5.3. The bounds in Lemma 5.1 and Corollary 5.2 are of pointwise type. As a consequence, one can replace convolution-type
operators by more general operators with matrix elements satisfying ∣g j(m,n)∣ ≤ g j(n −m).

D. Step 1: The initial scale and some perturbative estimates
While we will construct u(1),u(2), . . . inductively, it is convenient to obtain bounds (in particular Step 4) “in advance,” since the bounds

obtained as a results of the inductive procedure would be too weak on small scales. Suppose that (ω, λ) ∈ I0. Recall that, from (sol6), we have
(after simplifying some notation)

T ∶= Tu(r) = (D + δ
2pH[û (r), v̂ (r)])∣Sc =: D + δ

2p−1H, ∣H(n1,n2)∣ ≤ e−μr ∣n1−n2 ∣,
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For 0 ≤ r ≤ r0, we have ∥D−1∥ ≤ δ−1res . We assume that T is restricted to an appropriate box [−Ar+r0 ,Ar+r0], although it does not affect the
argument much (however, a larger box will require stronger assumptions to maintatin the bound ∥D−1∥ ≤ δ−1res). Assume that δ is small enough
so that ∥δ2p−1H∥ ≤ 1

2δres. One has the Neumann series expansion:

T−1 = D−1 + δ2p−1D−1HD−1 + δ4p−2D−1HD−1HD−1 + ⋅ ⋅ ⋅

Assume also that ∣δ∣ < A−100r0p. Then the factors δ(2p−1)k will absorb all factors of the form D−1 and all polynomial/combinatorial factors,
leaving with exponential factors from convolutions of several copies of H. As a consequence, in the above range we have

∥T−1∥ ≤
1
2
δ−1res ;

∥T−1(m,n)∥ ≤ δp−1/2e−μr+1 ∣n−m∣, n ≠m.

Summarizing the above, the estimates (sol5) are obtained in the range 0 ≤ r ≤ r0 assuming the estimates from (sol6).

E. Step 2: The operator Tu(r)
We recall that

Tu = (D + δ2pH[û, v̂])∣Sc ,

where

D =
⎛
⎜
⎝

diag {k ⋅ ω + 2 cos (jλ)} 0

0 diag {−k ⋅ ω + 2 cos (jλ)}

⎞
⎟
⎠
, (k, j) = n ∈ Z3,

and H is a (2 × 2)-matrix of convolution-type operators:

H =
⎛
⎜
⎝

(p + 1)(û∗v̂ )∗p∗ p(û∗v̂ )∗p−1 ∗ û∗ û∗

p(û∗v̂ )∗p−1∗v̂∗v̂∗ (p + 1)(û∗v̂ )∗p∗

⎞
⎟
⎠
.

Assume the choice of δ made at Step 1. Note that, since û contains the values of û on S+ which are not necessarily small, they may spread to
the translations of the points of S+ after taking the convolution. Assume, in addition to the former, that the choice of large A, r0 absorbs these
values. For example one can choose them so that

δuj ≤ e−100p∣hj ∣, j = 1, 2. (5.7)

With the above choices, one can see that both bounds hold for 0 ≤ r ≤ r0, assuming (sol3) and (reg3). Indeed, polynomial factors from the
convolution can be absorbed into the upper bound on δ.

For the larger scales, it will be convenient to prove a stronger bound

∣Tu(r)(n,n
′
)∣ ≤ δ2p−1(1 − 2−r−1)e−μ

(1)
r ∣n−n

′
∣, n ≠ n′

inductively, by estimating the difference
Tu(r−1)(n,n

′
) − Tu(r)(n,n

′
). (5.8)

Indeed, the above difference can be expressed as a sum of 2p convolution-type operators, each of which contains û(r)corror v̂
(r)
corr, and the

remaining factors are of the form û (r−1), û (r), v̂ (r−1), v̂ (r). As an example, for the top left matrix element we have

(p + 1)(û (r)∗v̂ (r))∗p − (p + 1)(û (r−1)∗v̂ (r−1))∗p

= (p + 1){(û (r−1) + û(r)corr)
∗p
∗(v̂ (r−1) + v̂

(r)
corr)

∗p
− (û (r−1)∗v̂ (r−1))∗p}

= û(r)corr∗h
(1)
p (û

(r), v̂ (r), û (r−1), v̂ (r−1)) + v̂
(r)
corr∗h

(2)
p (û

(r), v̂ (r), û (r−1), v̂ (r−1)), (5.9)

where h(1,2)p are convolution polynomials of degrees at most 2p − 1 in û (r), v̂ (r), û (r−1), v̂ (r−1)(one has to take the value of the function at
∣n − n′∣ to obtain the matrix element between n and n′).

J. Math. Phys. 65, 011502 (2024); doi: 10.1063/5.0166183 65, 011502-18

Published under an exclusive license by AIP Publishing

 01 April 2024 15:28:41

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

Recall that u(r) has decay rate μ(r). Apply Lemma 5.1. After some simplifications, will have the right hand side of (5.9) will be bounded by

δr(
1000(r + r0)p

μ
)

C(p)

e−μ
(1)
r ∣n−n

′
∣
≤ 2−r−1e−μ

(1)
r ∣n−n

′
∣.

Since r ≥ r0 and due to (reg6), the factor δr will absorb any power of (r + r0), thanks to the choice of r0 or A being allowed to depend on p.
A similar calculation can be done to estimate the derivatives, assuming (reg2) and (reg3). We leave it to the reader.
Note that one can also estimate the off-diagonal entries of Tu(r)directly by combining Lemma 5.1 with (sol2). However, this will produce

some extra polynomial factors that are cumbersome to deal with.

F. Step 3: Verification of the assumptions of the large deviation theorem
In this subsection, we will verify the assumptions of Proposition 3.2. A somewhat careful analysis is required, since the rate of decay of

the off-diagonal entries changes from scale to scale, and the rate of the change decreases as r gets larger. At the induction step r ≥ r0, we will
be applying Proposition 3.2 to the operator Tu(r)at the scale

M =M(r) ∶= ⌊(log N)CL⌋ = ⌊((r + r0 + 1) log A)CL⌋ ∼ Ar1 , (5.10)

where
r1 ∼

CL log log N
log A

∼ CL
log (r0 + r + 1) + log log A

log A

and CL is a large constant (say, CL ≥ 400). Here, ∼ denotes the nearest possible value assuming r1 is integer.
From Step 2, the off-diagonal entries of Tu(r)have the Töplitz decay rate is μ

(1)
r . Since Proposition 3.2 is applied on the scaleM, we would

have γM = μ(1)r , whereM and r are related through (5.10). We would like the decay rate in the conclusion of 3.2 to be μ(2)r , which corresponds
to γ′M = μ

(2)
r . Let s be an integer such that M(s) is closest possible to M2. The assumptions of Proposition 3.2 require γM2 ≤ γ′M −M−10. On

the other hand, the scale of the size close to M2 is used on the step s, and therefor γM2 ∼ μ(s)1 . In order for these inequalities to be consistent
with each other, it is sufficient to enforce

μ(1)s ≤ μ(2)r −M
−10.

From the definitions of the above objects, it is sufficient to have

s ≥ r + 1; 100(r + r0)99 ≤ ((r + r0 + 1) log A)2CL.

Clearly, both inequalities are achievable with, say, CL ≥ 10, r0 ≥ (logA)2, with margins sufficient to overcome rounding errors. Note that one
does not need to be particularly careful about these relations on scales smaller thanM(r0), since one does not need to match the exponents γ
with μ, and can start with a stronger decay in the initial scale of Proposition 3.2 which will gradually decrease to μ(1)r0 (or better) as the scales
reachM(r0). For example, the choice made in (5.7) is by far sufficient.

Let us also discuss the choice of small δ. In view of Remarks 3.3 and 7.6, we would need

∣δ∣ ≤ e−τ
−Cabs,dio

or, equivalently,
1

(log (1/δ))1/Cabs,dio
≤ τ.

In view of (reg6), this also converts into
Cabs,7r0 log A ≥ τ−Cabs,dio.

This choice also achievable by choosing large r0 and/or A.
This completes verification of the assumptions of Proposition 3.2. As a consequence, we obtained a subset X′′M ⊂ R × [0, 2π)such that,

for (θ,φ) ∈ R × [0, 2π)/X′′M , we have

∥(Tu(r)(θ,φ)∣M)
−1
∥ ≤ eM

6
7 ;

for any n,n′ ∈ [−M,M]3 with ∣n − n∣ ≥M999/1000 we have

∣(Tu(r)(θ,φ)∣M)
−1
(n,n′)∣ ≤ e−μ

(2)
r ∣n−n

′
∣.
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We also have that, for every line segment L ⊂ R × [0, 2π), we have

Leb1(L ∩ X′′M) ≤ e
−M1/300

. (5.11)

G. Step 4: Estimates of (Tu(r) ∣Ar+r0+1)−1

This step is the central part of the argument. We would like to advance (sol5) from the scale Ar+r0 to the scale Ar+r0+1 = N(r+1). At this
stage, we do not change Tu(r) to Tu(r+1) just yet. This change will be performed once we obtain estimates for û(r+1)corr in later steps.

We will also be assuming that r ≥ r0. While the induction steps will be carried over starting from r = 0, the estimates in (sol5) at small
scales, as explained during Step 1, are obtained directly from perturbation arguments. They are also not sensitive to the change between
Tu(r)and Tu(r+1) .

Our goal is to apply Proposition 3.1, with the following data:

● The central box will be [−Ar+r0 ,Ar+r0], and the operator will be Tu(r) . This comes from the induction assumptions.
● The size of small boxes will be, as in the previous calculations,

M ∶= ⌊(log N)CL⌋ = ⌊((r + r0 + 1) log A)CL⌋ ∼ Ar1 ,

r1 ∼
CL log log N

log A
∼ CL

log (r0 + r + 1) + log log A
log A

.

Here, ∼ denotes the nearest possible value assuming r1 is integer, and CL is a large constant.
● We will construct a semi-algebraic subset of parameters (ω, λ) so that eachM-box away from the center of the large box (as required

for Proposition 3.1) is good for the operator Tu(r2) with r2 = (logA)2r1.
● Assuming (reg6) and (ω, λ) ∈ Ir2 , we have

∥û (r2) − û (r)∥ ≤ 2û(r2)corr ≪ e−M
2

,

which implies the complete assumptions of Proposition 3.1 for the operators Tu(r) (in other words, the bounds forM-boxes will remain
the same, up to a factor of 2, when we replace r2 by r).

At each step, we are essentially dealing with semi-algebraic subsets associated to the operator on smaller boxes, and not with the central box
(the central box estimate is contained in the induction assumptions). The fact that the boxes are of small size allows us to consider û(r2)corr instead
of û(r)corr. Both of these considerations are important in order to have the degrees of the corresponding subsets not too large.

Let
X′M ∶= {(θ,φ) : Tu(r2)(θ,φ)∣M is not good},

where “good” will mean slightly modified usual conditions

∥(Tu(r2)(θ,φ)∣M)
−1
∥ ≤ 2eM

6
7 ;

for any n,n′ ∈ [−M,M]3 with ∣n − n∣ ≥M999/1000 we have

∣(Tu(r2)(θ,φ)∣M)
−1
(n,n′)∣ ≤ 2e−μ

(2)
r ∣n−n

′
∣.

Let also X′′M be the set defined in Step 3, that is, the same set with u(r2) replaced by u(r) and the factor 2 removed. We have

X′M ∩ Ir2 ⊂ X
′′

M ∩ Ir2.

Indeed, if (θ,φ) ∈ Ir2 , j/X
′′

M , then the Tu(r)(θ,φ)∣M is good in the usual sense, which will be preserved, up to a factor 2, after switching u(r) by
u(r2) due to (5.7). Therefore (θ,φ) ∉ X′M . Note that (5.7) may not hold outside of Ir2 .

As mentioned above, the reason to consider r2 instead of r is the degree. Define XM ∶= X′M ∩ Ir2 . Since u
(r2) is a rational function of degree

e(r2 log A)2 (possibly different on each rectangle Ir,j), we can assume without loss of generality that

degXM ≤ exp{(r2 log A)Cabs,1}e(r2 log A)2
≤ exp{(log (r + r0 + 1) log A)2Cabs,1}; (5.12)

here we assume A is large enough so that the extra logA absorbs CL and log logA. Note that the first factor, which provides a large power of
log(r0 + r + 1)logA, comes from the fact that the construction needs to be performed on each rectangle of Ir2 , j separately, and the number of
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the rectangles Ir2 , j appears as an extra complexity factor. The degree argument would have also worked for r1 instead of r2, but the existing
bound on ∥u(r1) − u(r)∥ is not good enough to conclude goodness of Green’s functions for Tu(r1) from that of Tu(r) .

In order to apply Proposition 3.1, we would like to make allM-boxes under consideration good. In other words, to have

n ⋅ (ω, λ) ∉ XM , for n ∈ [−Ar+r0+1,Ar+r0+1]
3
/[−Ar+r0+1/10,Ar+r0+1/10]3.

Let
XM ∶= {(ω, λ, θ1, θ2,φ) : Tu(r2)(θ1 + θ2,φ)∣M is not good}.

Note that the “not good” property, in general, depends on ω and λ. The set XM defined above is a section of XM with (ω, λ) fixed. Due to
relations between XM ,X′M ,X

′′

M , and XM , we have

Leb5(XM) ≤ 100e−M
1/300

,

Leb4(XM(θ1)) + Leb4(XM(θ2)) + Leb4(XM(φ)) ≤ 100e−M
1/300

,

Leb3(XM(θ1, θ2)) + Leb3(XM(θ2,φ)) + Leb3(XM(θ1,φ)) ≤ 100e−M
1/300

,

where, for example, XM(θ1, θ2) denotes the intersection of XM with a hyperplane defined by θ1, θ2 fixed. We will follow the same idea as in
(3.26) of Ref. 5. Let

ε1 = A−
r+r0+1

4 , ε2 = A−
r+r0+1

2 , ε3 = 10A−(r+r0+1).

Apply Proposition 2.3 with ε = ε1 and S = XM , with x = (ω, λ) and y = (θ1, θ2,φ), and construct the sets S1 and S2. We will have

Leb(ProjxS1) ≤ exp{(log (r + r0 + 1) log A)CabsCabs,1}ε1 ≤ A−(r+r0+1)/5.

The additional absolute constant appeared from applying Proposition 2.3. Note that r + r0 large enough implies that (r + r0)logA dominates
(log (r + r0) log A)C. This is where we used the fact that r0 needs to be chosen large depending on A. Getting back to the second conclusion
of Proposition 2.3, for any (fixed) n = (k, j) with ∣k1∣, ∣k2∣, ∣ j∣ ≥ 100ε−11 , we have the following estimate on the three-dimensional measure:

Leb3{(ω, λ) : (ω, λ, k1ω1, k2ω2, λj) ∈ S2} ≤ exp{(log (r + r0 + 1) log A)CabsCabs,1}ε−11 e−
1
6M

1/300

.

Recall thatM ≥ (log N)CL , which implies ε−11 ≤ e
M1/CL . By choosing a large CL (say, CL ≥ 400) we can sum over all ∣k1∣, ∣k2∣, ∣ j∣ ≥ 100ε−11 under

consideration and, ultimately, guarantee that one can avoid S2 after removing a subset of (ω, λ) of measure at most e−M
1/400

.
Just as in Ref. 5, the argument is not yet complete, since the centers of the boxes under consideration do not necessarily have all individual

coordinates large. In order to consider the remaining cases, assume first that ∣k1∣ ≤ Ar/4 and, for fixed N1, apply Proposition 2.3 with d1 = d2 =
2 and ε = ε2, removing a small measure subset of (ω2, λ). Large CL, again, would imply that one can absorb the factors appearing from
conditioning on such k1. After repeating for all three coordinates, we can guarantee that the box n + [−M,M]3 will be good assuming that at
least two numbers among (∣k1∣, ∣k2∣, ∣j∣) are larger than Ar/2 (either from conditioning, or from the previous case). Finally, in the case where
only one coordinate is larger than Ar/10, we can assume that the remaining two coordinates do not exceed Ar/2 and apply Proposition 2.3 with
ε = ε3, d1 = d2 = 1, with both remaining coordinates being fixed.

Let us summarize what we have obtained so far. Every box Q = n + [−M,M]3 with ∣n∣ ≥ Ar/10 satisfies

∥(Tu(r) ∣Q)
−1
∥ ≤ 2eM

6
7 ,

and for any n,n′ ∈ Z3 with ∣n − n′∣ ≥M999/1000, we have

∣(Tu(r) ∣Q)
−1
(n,n′)∣ ≤ 2e−μ

(2)
r ∣n−n

′
∣.

Additionally, the central box [−Ar+r0 ,Ar+r0]
3 satisfies, by the induction assumptions,

∥(Tu(r) ∣Ar+r0 )
−1
∥ ≤ δ−1res exp{((r + r0) log A)Cabs,3},

and for any ∣n − n′∣ > rCabs,4 ,

∣(Tu(r) ∣Ar+r0 )
−1
(n,n′)∣ ≤ δ−1rese

−μr ∣n−n′ ∣.

J. Math. Phys. 65, 011502 (2024); doi: 10.1063/5.0166183 65, 011502-21

Published under an exclusive license by AIP Publishing

 01 April 2024 15:28:41

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

As a consequence, for each n ∈ [−Ar+r0+1,Ar+r0+1], there exists a good box

Λ1 ⊂ [−Ar+r0+1,Ar+r0+1], n ∈ Λ1,

of sizeM or Ar+r0 , such that dist(n, [−Ar+r0+1,Ar+r0+1]/Λ1) is at leastM/2 or Ar+r0/10, respectively.
The set of (ω, λ) removed to achieve this has measure bounded by e−M

1/400
and has degree bounded by

exp{(log (r + r0 + 1) log A)2Cabs,1}.

Note that we are also assuming that (ω, λ) ∈ Ir , so that the above measure estimate is on how much needs to be removed from Ir . While the
assumptions on small boxes start from (ω, λ) ∈ Ir2 , we also need the induction assumption for the central box to hold, requiring (ω, λ) ∈ Ir .
The set Ir+1 will be constructed during Step 9 in order to preserve nesting properties and rectangular structure.

Apply Proposition 3.1. Note that during the iterations we are using only off-diagonal entries of Tu(r)which contain δ2p−1. Therefore, δ−1res
can be absorbed into it and we do not have any accumulation of negative powers of δ as the iterations proceed. We thus obtain, for the box
Λ = [−Ar+r0+1,Ar+r0+1]

3:

∥(Tu(r)∣Ar+1
)
−1
∥ ≤ 2δ−1res(exp{((r + r0) log A)Cabs,3 + eM

6/7

). (5.13)

Note that

eM
6/7

= e(log Ar+r0 )CL
= A((r+r0) log A)CL−1 ,

which implies the norm estimate in (sol5) with u(r) on the box of the size Ar+r0+1 and with the exponential decay rate μ(3)r+1. To summarize, we
have

∥(Tu(r) ∣Ar+r0+1)
−1
∥ ≤ 2δ−1resGr , (5.14)

and for ∣n − n′∣ ≥ Dr , we have

∣(Tu(r) ∣Ar+r0+1)
−1
(n,n′)∣ ≤ δp−1/2e−μ

(3)
r ∣n−n

′
∣. (5.15)

We can now address the stability of the obtained estimates. Note that the estimates in the definition of good M-boxes are stable under
perturbations of size e−M

2
, and δr ≪ e−M

2
(here, we allow an extra 2 factor which can be absorbed into various constants appearing along the

way). The estimate for the central box, from the induction assumptions, is stable under perturbations of size 10δr . As a consequence, provided
(sol3), we can replace û (r)by û (r+1), and the resulting bounds will be stable under perturbations of size 9δr . As long is δr+1 is much smaller,
this implies (reg7) on the next scale.

As discussed in the plan of the induction step, very small δmay lead to an improvement in the measure bounds, since one can use direct
perturbation arguments instead of the steep planes lemma. It is easy to see that all the conclusions of the above considerations will be satisfied
on the set defined by (5.2) with r0 replaced by r0 + r + 1. Therefore, it is more beneficial to use (5.2) as long as the measure estimates (5.3) are
better than e−M

1/400
. As a consequence, the actual measure estimate that one needs to remove is, say,

min{A100(r+r0+1)δres, e−M
1/400

} ≤ δ1/2res e
−M1/500

= δ1/2res exp{−((r + r0 + 1) log A)CL/500}. (5.16)

The factor δres in front will be important during the final measure estimates.

H. Step 5: Construction of û(r+1)corr , v̂(r+1)corr

We have the induction assumptions

F[û (r), v̂ (r)]∣Sc ≤ κre
−μr ∣n∣, ∇F[û (r), v̂ (r)]∣Sc ≤ κre

−μr ∣n∣. (5.17)

The next step corrections are defined by

⎛
⎜
⎝

û(r+1)corr

v̂
(r+1)
corr

⎞
⎟
⎠
= −(Tu(r) ∣Ar+r0+1)

−1F[û (r), v̂ (r)]∣Ar+r0+1 ,Sc. (5.18)
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We will apply Corollary 5.2, using (5.17) and the conclusions of Step 4 (5.14) and (5.15). For r ≤ r0, we have D = 1, R = 100(r + r0)99

in the notation of Corollary 5.2, which implies

∣û(r+1)corr (n)∣ ≤ κr(
1020(r + r0)600

μ3
+ 16δ−1resGre2μ)e−μ

(4)
r ∣n∣ ≤ κrδ−1resG

2
r e
−μ(4)r ∣n∣. (5.19)

Note that the extra factor of Gr would absorb all other contributions. In order to estimate the gradient, one can use the formula ∇(T−1) =
T−1(∇T)T−1. All factors in this formula have decay rate μ(3)r or better. Note that, while (sol6) only estimates off-diagonal entries of ∇T, the
diagonal entries have explicit form and can be estimated by AC(r+r0). Thus, a similar estimate follows from Corollary 5.2, with more iterations
of the convolution. However, one can easily check that the extra factors can also be absorbed into an extra Gr . Thus,

∣(∇û(r+1)corr )(n)∣ ≤ κrδ
−1
resG

2
r e
−μ(4)r ∣n∣. (5.20)

In the case r ≥ r0, we now have a non-trivial factor e2 μD
= e2 μDr in the application of Corollary 5.2. However, Gr is also larger. By choosing

Cabs,3 ≫ Cabs,4, one can absorb it into an extra factorGr in a similar way. As a consequence, (5.19) and (5.20) are valid in the full range of values
of r.

Note that, since (sol3) has been obtained, one can use (reg7) and state that (sol5) now holds at the scale r + 1, with the decay rate μ(3)r (note
that the application of (reg7) does not cause deterioration in the exponential decay rate).

I. Step 6: Estimates of F[û (r+1), v̂ (r+1)]∣Sc
Recall that, from Remark 4.2, we have

F[û + ûcorr, v̂ + v̂corr] − F[û, v̂] − F′[û, v̂]∗
⎛
⎜
⎝

ûcorr

v̂corr

⎞
⎟
⎠
= δ2pR(û, ûcorr),

where the remainder is a convolution polynomial in û and ûcorr and its conjugates, at least quadratic in ûcorr and v̂corr. Apply the above equality
to û (r+1) = û (r) + û(r+1)corr and restrict everything to Sc. By construction,

⎛
⎜
⎝

û(r+1)corr

v̂
(r+1)
corr

⎞
⎟
⎠
= −(Tu(r) ∣Ar+r0+1)

−1F[û (r), v̂ (r)]∣Ar+r0+1 ,Sc ,

and in particular the left hand side is supported on Sc. Therefore, we have

F[û (r+1), v̂ (r+1)]∣Sc = F[û
(r), v̂ (r)]∣Sc + Tu(r)

⎛
⎜
⎝

û(r+1)corr

v̂
(r+1)
corr

⎞
⎟
⎠
+ δ2pR(û (r), û(r+1)corr ),

which implies after a substitution

F[û (r+1), v̂ (r+1)]∣Sc = (Tu(r) ∣Ar+r0+1 − Tu(r))(Tu(r) ∣Ar+r0+1)
−1F[û (r), v̂ (r)]∣Ar+r0+1 ,Sc + δ

2pR(û (r), û(r+1)corr )

= −(1 − 1Ar+r0+1)Tu(r)1Ar+r0+1(Tu(r) ∣Ar+r0+1)
−1F[û (r), v̂ (r)]∣Ar+r0+1 ,Sc + R(û

(r), û(r+1)corr ).

Due to the construction of û (r), it is supported on [−Ar+r0 ,Ar+r0]
3, and therefore F[û (r), v̂ (r)]is supported on, say, [−6pAr+r0 , 6pAr+r0]

3.
Assume that A is large enough so that 3p < A/100. Then one can further expand

F[û (r+1), v̂ (r+1)] =

= −(1 − 1Ar+r0+1)Tu(r)(1Ar+r0+1 − 1Ar+r0+1−6pAr+r0 )(Tu(r) ∣Ar+r0+1)
−116pAr+r0 F[û (r), v̂ (r)]∣Sc

+δ2pR(û (r), û(r+1)corr ). (5.21)
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In the above expression, we used the fact that Tu(r)(m,n) = 0 for ∣m − n∣ ≥ 6pAr+r0 , since its off-diagonal part contains at most p
copies of convolution with û (r). In other words,

(1Ar+r0+1 − 1)Tu(r)1Ar+r0+1 = (1Ar+r0+1 − 1)Tu(r)1Ar+r0+1(1 − 1Ar+r0+1−6pAr+r0 ).

Let us estimate the first term in (5.21). From the outcome of Step 4, we have

∣((1 − 1Ar+r0+1−3pAr+r0 )(Tu(r) ∣Ar+r0+1)
−113pAr+r0 )(n,n′)∣ ≤ δp−1/2e−μ

(3)
r ∣n−n

′
∣, (5.22)

with a similar estimate for the matrix elements of Tu(r) . Applying Corollary 5.2, we obtain that the first term is bounded in absolute value by,
say

(
100∣n∣
1 + μ

)

100

(1 − 1Ar+r0+1)κre−μ
(3)
r ∣n∣ ≤

1
2
κr+1(1 − 1Ar+r0+1)e

−μ(4)r ∣n∣. (5.23)

Here we use that fact that, by (reg6), κr grows fast (super-exponentially in r), but still slow enough so that one can gain an extra factor of κr+1
by deteriorating the exponent from −μ(3)r to −μ(4)r (the first factor is also absorbed in the deterioration). It is important here that n is outside
the box [−Ar+r0+1,Ar+r0+1]

3. See (5.26).
An estimate of the gradient is similar, with potentially more iterations of convolution due to the use of the formula ∇(T−1) =

T−1(∇T)T−1 which may result in the larger power of ∣n∣ in the front factor (see Corollary 5.2).
We can now estimate the remaining “quadratic” term δ2pR(û (r), û(r+1)corr ). Recall that R is a convolution polynomial, which contains at

least two factors û(r+1)corr or v̂(r+1)corr . The polynomial has at most (say) 10p monomials. Each factor in each monomial has decay rate μ(4)r or better.
At least two factors in each monomial will additionally have δr in front. Thus, after combining all bounds and applying Lemma 5.1, we obtain

∣δ2pR(û (r), û(r+1)corr )(n)∣ ≤
1
2
δ2pδ2rGre−μ

(5)
r ∣n∣.

Here, we chose for simplicity to absorb various polynomial and combinatorial factors into an extra factor Gr as we did before. A similar
estimate holds for the gradient.

J. Step 7: Decay of small inductive parameters
Recall that

û (0) = u11{(−e1 ,h1)} + u21{(−e2 ,h2)}, v̂ (0)(n) = û (0)(−n),

and

∣F[û (0), v̂ (0)]∣Sc(n)∣ ≤ δ
2pmax (∣u1∣, ∣u2∣)pC(p).

Note that, due to the presence of the diagonal part, F[û (r), v̂ (r)]∣S is not necessarily small. We also have that

supp F[û (0), v̂ (0)] ⊂ [−3pmax (∣h1∣, ∣h2∣), 3pmax (∣h1∣, ∣h2∣)]3.

We will be choosing a large A depending on S and p, then a large r0 depending on A. It will be convenient to have the choice of δ being

e−Cabs,8r0 log A
≤ δ ≤ e−Cabs,7r0 log A. (5.24)

As of now, a smaller δ is only better. However, avoiding too small values of δ will make certain estimates more simple.
With all the above preparations, one can clearly choose r0 and A in a way that κ0 = δp. The estimates in Steps 5 and 6 force us to choose

δr+1 ≥ κrδ−1resG
2
r , κr+1 ≥ δ2pGrδ2r+1.

As a consequence, we have the following recursion inequality for κr :

κ0 = δp, κr+1 ≥ δ2pδ−2resG
5
rκ

2
r .
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We will choose a specific solution to this recursion by assuming

δ2pδ−2resG
5
rκ

1/2
r ≤ 1 (5.25)

and checking that it holds retroactively. The solution of the recursion

κ0 = δp, κr+1 = κ3/2r

is

κr = δp(3/2)
r

= e−pCabs,7r0(3/2)r log A. (5.26)

It is easy to see that, assuming that Cabs,7 is large enough, it satisfies (5.25), and therefore is a valid choice for the original recurrence. We have
also retroactively confirmed (5.23). Note that, if δ is too small (say, δ = e−A

r0 ), the arguments that lead to (5.23) prevent κr from decaying as
fast as in the first equality in (5.26), and the recursive estimates become more cumbersome.

K. Step 8: Estimates of û (r+1)

So far, we have

∣û (r+1)(n)∣ ≤ ∣û (r)(n)∣ + ∣û(r+1)corr (n)∣ ≤ (1 − 2
−(r+1)

)e−μr ∣n∣ + δr+1e−μ
(4)
r ∣n∣ ≤ (1 − 2−(r+2))e−μ

(4)
r ∣n∣,

since δr ≤ 2r+2. Gradient estimates are similar, in view of∇û (0) = 0.

L. Step 9: Structure of I j and extension into the full parameter space
In this subsection, we finalize the proofs of the inductive statements. In particular, we discuss the definition of the sets Ir in order to

satisfy (i1)–(i3), degree bounds on û (r)in order to establish (reg5), estimates of the measure of the bad set in terms of δ, and extension of the
functions û (r), v̂ (r)into the full parameter space.

1. The sets I r and the dyadic structure
Recall that the set I0 = I1 = ⋅ ⋅ ⋅ = Ir0 is a union of at mostA100r0δ−10res dyadic cubes with sides at least δ2res. For r ≥ r0 + 1, we will now describe

more explicitly the removed subsets of parameters. Let

Γ(r)DC ∶= DCR(τ,A
10(r+r0))/DCR(τ,A10(r+r0+1))

be the set of Diophantine frequencies one needs to remove to enforce the Diophantine conditions on the next scale. We have

Leb3(Γ(r)DC) ≤ 10τ
2A−9(r+r0+1).

Let also Γ(r)SP be the set of parameters removed in the end of Step 4. We have

Leb3(Γ(r)SP ) ≤ δ
1/2
res e

−M1/500

= δ1/2res exp{−((r + r0 + 1) log A)CL/500}.

Let Γ(r) be the union of all dyadic cubes with sides at least e−M
2
, contained in (Γ(r)DC ∪ Γ

(r)
SP ) ∩ Ir . Define for r ≥ r0:

Ir+1 ∶= Ir/Γ(r+1).

From (reg7) and the choice of the sizes of the dyadic cubes, one can see that the conclusions of Step 4 will still be valid for the sets Ir . The
dyadic structure implies the nesting properties, as well as the bounds on the number of cubes. Therefore, we have obtained (i1)–(i3). The sets
Ir,j can be simply chosen to be the corresponding dyadic cubes. On each step, we are dividing some cubes into smaller cubes and remove some
of the new cubes.
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2. Degree bounds on û (r)

We will prove the degree bounds by induction. Assume deg û (r)(n) ≤ A((r+r0) log A)2 . Recall

⎛
⎜
⎝

û(r+1)corr

v̂
(r+1)
corr

⎞
⎟
⎠
= −(Tu(r) ∣Ar+r0+1)

−1F[û (r), v̂ (r)]∣Ar+r0+1 ,Sc.

Then we have, due to the convolution bounds,

degF[û (r), v̂ (r)]∣Ar+r0+1 ,Sc ≤ 100pe
((r+r0) log A)2 , degTu(r) ∣Ar+r0+1(m,n) ≤ 100pe((r+r0) log A)2.

Due to Cramer’s rule, we also have
(Tu(r) ∣Ar+r0+1)

−1
(m,n) ≤ A20(r+r0) ⋅ 100pe((r+r0) log A)2.

Overall, assuming A is large depending on p,

deg û(r+1)corr ≤ A
40(r+r0)e((r+r0) log A)2

= exp{40(r + r0) log A + ((r + r0) log A)2} ≤ exp{((r + r0 + 1) log A)2},

provided logA ≥ 20. This implies the degree bounds on the next step.

3. Estimates of the measure of the bad set in terms of δ
Recall from Step 3 that the choice of δ is made based on the Diophantine parameter τ:

∣δ∣ ≤ e−τ
−Cabs,dio

or, equivalently,
1

(log (1/δ))1/Cabs,dio
≤ τ.

In view of (reg6), this implies

Leb3(Γ(r)) ≤ 10τ2A−9(r+r0+1) + δ1/2res exp{−((r + r0 + 1) log A)CL/500}

≤
10δ1/Cabs,7

(log (1/δ))2/Cabs,dio
A−8(r+r0+1) + δCabs,9/Cabs,7 exp{−((r + r0 + 1) log A)CL/500}. (5.27)

Note that the actual constants are not particularly important. However, the estimate

∑
r≥r0

Leb3(Γ(r)) = O(δcabs),

which follows from (5.27), is of crucial importance, since the measure will be multiplied by δ−𝜘 in the end of Sec. VI.

4. Extension to the whole parameter space
For each dyadic cube Q ⊂ Ir , consider a smaller (not necessarily dyadic) cube Q̃ with the same center and

diam(Q̃) = diam(Q) − diam(Q)2.

For each such Q, consider a smooth cutoff function ηQ that is equal to 1 on Q̃ and zero on R3
/Q. Let η(r) ∶= ∑QηQ. Note that, by construction,

η(0) = ⋅ ⋅ ⋅ = η(r0), since the set Ir does not change. Let

Ξ(r) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

η(r), 0 ≤ r ≤ r0
∏

r
j=r0

η( j), r > r0.

Replace û(r)corr by Ξ(r)û
(r)
corr. Note that, since Ξ(r) ⊂ Ir = dom û(r)corr, this defines a smooth extension of û(r)corr into the whole space (1, 2) × (−3, 3)2

(or into R3 if necessary).
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One can easily check that, within the above constraints, we have

∣∇Ξ(r)∣ ≤
⎧⎪⎪
⎨
⎪⎪⎩

A100r0δ−3res , 0 ≤ r ≤ r0;

e10M
2

, r > r0.

In both cases, it follows from (reg6) that one can absorb this additional correction to the gradient into δr . As a consequence, the sequence
û (r)converges to a function u in C1

((1, 2) × (−3, 3)). For the “good” values of parameters

(λ,ω1,ω2) ∈ (1, 2) × (−3, 3)2/⋃
r
Γ(r)

u becomes a solution to the non-linear equation (m1 and m2 are obtained from the Q-equations on each scale, and also clearly converge).
For general values of (λ,ω1,ω2), one can still perform some of the induction steps, and then the sequence will “freeze,” thus providing an
approximate solution to the non-linear equation, with the error κr .

Remark 5.4. The reason for multiplying the cut-off functions in the expression Ξ(r) =∏r
j=r0 η

( j)for r ≥ r0 is that, without the multipli-
cation, the supports of the cut-off functions do not necessarily decrease, since larger cubes may have larger neighborhood of their boundary
removed.

VI. Q -EQUATIONS USING PARAMETERS m AND λ: COMPLETION OF THE PROOF
As discussed in Sec. V, we have constructed solutions u(r) and v(r) which converge, respectively, to functions u and v for (λ,ω1,ω2) ∈

(1, 2) × (−3, 3)/⋃r Γr , and obtained all stated properties of those solutions. It remains to consider the Q-equations

ωk = 2 cos (hkλ) +mkδ
𝜘
+
δ2p

uk
((û∗v̂ )∗p∗û)(−ek,hk), k = 1, 2,

where uk are the values of the initial iteration û (0)on S:

û (0)(n) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

u1, n = (−e1,h1);
u2, n = (−e2,h2);
0, n ∈ Z3

/S+.

Note that, for all r ≥ 0, we have

û (r)(−ek, jk) = uk, k = 1, 2,

so that the iterations only change the values of û (r)outside S+.
Fix (e1, j1), (e2, j2), u1, u2, and let

f (r)k (λ,ω1,ω2) ∶=
((û (r)∗v̂ (r))∗p∗û (r))(−ek,hk)

uk
, k = 1, 2. (6.1)

Then, one can write a finite volume version of the Q-equations as follows:

ω(r)k = 2 cos (hkλ) +m
(r)
k δ𝜘 + δ2p f (r)k (λ,ω1,ω2), k = 1, 2. (6.2)

Note that we do not actually enforce these equations for finite r. Due to the results of Sec. V L 4, the right hand side of (6.1) converges in C1

to some function f . Thus, we can rewrite the infinite volume Q-equations as

ωk = 2 cos (hkλ) +mkδ
𝜘
+ δ2p f (λ,ω1,ω2),
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or, equivalently,

mk(λ,ω1,ω2) = δ−𝜘ωk + δ
−𝜘 cos (hkλ) − δ

2p−𝜘 fk(λ,ω1,ω2). (6.3)

Recall that we were requiring

(λ,ω1,ω2) ∈ (1, 2) × (−3, 3)/⋃
r
Γ(r).

Recall (5.27). Since the differential of the map (6.3) is bounded by, say, 10δ−𝜘(∣h1∣ + ∣h2∣), we can ultimately conclude that the set of bad
parameters (λ,m1,m2) that one needs to exclude will have measure bounded by at most

δ−𝜘∑
r≥r0
(

10δ1/Cabs,7

(log (1/δ))2/Cabs,dio
A−8(r+r0+1) + δCabs,9/Cabs,7 exp{−((r + r0 + 1) log A)CL/500}), (6.4)

which can be made arbitrarily small with small 𝜘 depending on the various absolute constants chosen in the course of the inductive procedure.
Note that the logarithmic factor can be absorbed by the power of δ in the numerator.

Remark 6.1. Instead of just enforcing the infinite volume Q-equation, one can enforce a stronger condition: that is, that all modulated
frequencies ω(r)k in the left hand side of (6.2) actually belong to the good set. Indeed, in that case one needs perform a similar removal with
fk(λ,ω1,ω2) in (6.3) replaced by f (r)k (λ,ω1,ω2), and take the union over all r. One can check that ∥ fk − f (r)k ∥C1 ≲ δ̃r . As a consequence, the
removed set of parameters (λ,m1,m2) will expand by O(δ̃r) which does not affect smallness of the expression (6.4). However, this additional
requirement does not appear to be necessary.

VII. ON THE LARGE DEVIATION THEOREM
In this section, we will discuss the Proof of Proposition 3.2, which is a large deviation theorem for Green’s function for scale-dependent

operatorsHk. The proof is standard and is based on the techniques that date back to Ref. 7, and we assume that the reader has some familiarity
with these techniques. The main difference of the current setting from the one in Refs. 7 and 8 is the presence of non-local operators, with the
exponential decay rate of non-local terms varying between scales. A version of the LDT in the non-local setting has been developed in Ref. 14,
however, it needs to be modified in order to prevent too fast deterioration of the decay rate. A detailed argument with full control of the
exponents has been developed in Ref. 12 in the setting of Ref. 4, Chap. 18. In the latter setting, the operator families are one-parametric, and
the (much stronger version of) the arithmetic lemma follows from the Diophantine condition on the frequency vector. In our setting, we need
to deal with two-parametric families and two-dimensional semi-algebraic subsets; however, the main ingredient (the arithmetic Lemma 2.6)
is already at our disposal. Combining the ideas from6,7,12,14 is relatively straightforward. For the convenience of the reader, we would like to
provide more detail on such combination. We will take advantage of several lemmas that can be used without any changes, and try to provide
the main steps of the argument, as streamlined as possible, for the remaining proof.

A. The initial scale
Recall the definition of the operator T:

T(θ,φ) = D(θ,φ) + εH =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

D+(θ,φ) 0

0 D−(θ,φ),

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ εH,

where

D±(n,n) = ±(n1ω1 + n2ω2 + θ) + 2 cos (n3λ + φ), n ∈ Z3;

H(n1 +m,n2 +m) = H(n1,n2), ∀n1,n2,m ∈ Z3;

∣H(n1,n2)∣ ≤ e−γ∣n1−n2 ∣.

An elementary region in Z3 is a subset of the form R/(R + n), where R is a rectangle in Z3 and n ∈ Z3 is a non-zero lattice vector. The class of
elementary regions of diameterM is denoted by ER(M).
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For the purpose of the following proposition, fix γ, 0 < b < 1, 0 < β < 1. We will say that a region Λ ∈ ER(M)is good if

∥T(θ,φ)∣−1Λ ∥ ≤ e
Mb

, (7.1)

and for all n,n′ ∈ Λ with ∣n − n′∣ ≥Mβ, we have the following estimates for the matrix elements:

∣T(θ,φ)∣−1Λ (n,n
′
)∣ ≤ e−γ∣n−n

′
∣. (7.2)

Proposition 7.1. Suppose that T = T(θ,φ) is defined as above. For every M0 ∈ N, 0 < γ0 < γ1, 0 < ρ < b < β < 1, and (λ,ω1,ω2) ∈ R3, there
exists ε0 = ε0(M0, γ0, ρ, b,β) and M

′

0 =M
′

0(γ0, γ1, ρ, b,β)such that, for every Λ ∈ ER(M)with M′0 ≤M ≤M0 and γ0 ≤ γ ≤ γ1, the set

XM = {(θ,φ) ∈ R × T : Λ is not good }

satisfies

Leb1(XM ∩ L) ≤ e−M
ρ

for every unit line segment L ⊂ R × T.

Proof. Fix a ∈ R, and let f (θ,φ) ∶= θ + 2 cos(a + φ). It is easy to see that, for every b ∈ R and every unit line segment L ∈ R × T, we have

Leb1(L ∩ {(θ,φ) : ∣ f (θ,φ) − b∣ ≥ ζ}) ≤ cabsζ
1/2, ∀ζ ∈ (0, 1). (7.3)

This follows from the fact that no more than two derivatives of f can vanish simultaneously at a given point. One can also consider it as an
elementary case of the Łojasiewicz inequality.

Let 0 < ρ < ρ1 < b1 < b < 1. Let Λ ∈ ER(M), and

X ∶= {(θ,φ) ∈ R × T : ∣D+(n,n)∣ + ∣D−(n,n)∣ ≥ e−M
b1

for somen ∈ Λ}.

Using (7.3), we have for every unit line segment L ⊂ R × T:

Leb1(X ∩ L) ≤ 2M3cabse
−

1
2M

ρ1
≪ e−M

ρ

.

Suppose that (θ,φ) ∈ R × T/X and ε <M−10e−M
b
. Then

∣D±(n,n)∣ ≥ e−M
b1
, n ∈ Λ; ∥εH∥ ≤

1
2
e−M

b

.

Using the Neumann series argument, we obtain the first estimate

∥T(θ,φ)∣−1Λ ∥ ≤ 2e
Mb1
≪ eM

b

.

In order to obtain the exponential decay estimate, let us use the shorter notation T(θ,φ)∣Λ = TΛ = DΛ + εHΛ. We have

T−1Λ = D
−1
Λ − εD

−1
Λ HΛD−1Λ + ε

2D−1Λ HΛD−1Λ HΛD−1Λ − ⋅ ⋅ ⋅

Let us estimate individually the contributions of each term of the above series. The first term does not have any off-diagonal component. In
the next terms, one can estimate each matrix element using matrix multiplication. The combinatorial factors and the products of D−1Λ can
be absorbed into the powers of ε. After the matrix multiplication, the total exponential factor contributing into T−1Λ (n1,n2) will be at least
γ∣n1 − n2∣. After the summation of the series, we can obtain, say

∣T−1Λ (n1,n2)∣ ≤ eM
b1
+ ε1/2e−γ∣n1−n2 ∣,

which implies (7.2) after a suitable choice ofM′0. ◻
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B. Covering lemma, coupling lemma, and Cartan lemma
The following lemma will be referred to as the covering lemma. In this form, it is stated in Ref. 12. The proof is very similar to the one of

Proposition 3.1.

Lemma 7.2. Let Λ ⊂ Zd be a finite subset with ∣Λ∣ = N and T be an operator on ℓ2(Λ). Let

0 < θ < 1, 0 < b < 1, 0 < τ < 1, bτ < θ, α > 0, ρ > 0.

Let also

(log N)10/b <M < Nτ.

∣T(m,n)∣ ≤ e−ρ∣m−n∣, m ≠ n, m,n ∈ Λ,

and for everym ∈ Λ there exists an elementary region U(m) ⊂ Λ containing m such that

∣U(m)∣ =M, dist(m,Λ/U(m)) >M/2,

such that

∥T∣−1U(m)∥ < e
Mb

,

and

T∣−1U(m)⟨e
−ρ∣m−n∣, for m,n ∈ U(m), ∣m − n∣⟩Mθ.

Then, we have

∥T−1∥ < 2NdeM
b

< eN
b

,

∣T−1(m,n)∣⟨e−(ρ−(log N)−50)∣m−n∣, ∣m − n∣⟩Nθ,

assuming N ≥ N0(α, b,d, ρ, θ, τ).

The next lemma will be referred as the coupling lemma. Its original form dates back to Ref. 7, Lemma 2.4 for d = 2. A refined version for
arbitrary d was obtained in Ref. 14. In the following form, it is proved in Ref. 12.

Lemma 7.3. Let T be an operator on ℓ2(Λ0), where Λ0 ∈ ER(N) ⊂ Zd. Let

0 < τ ≤ b ≤ θ < 1, β ≥
1 − 2τ
1 − τ

,

and let

Nτ
<M0 < 2Nτ.

Assume that Assume that the matrix elements of T satisfy

∣T(m,n)∣ ≤ e−ρ∣m−n∣, m ≠ n, m,n ∈ Λ0, (7.4)

and for any Λ ∈ ER(L)with any L ∈ (Nτ ,N), we have

∥T∣−1Λ ∥ ≤ e
Lb.

We will say that an elementary region Λ ∈ ER(L), Λ ⊂ Λ0 is good if we have, in addition to the above,

∥T∣−1Λ (m,n)∥ < e−ρ∣m−n∣, for m,n ∈ Λ, ∣m − n∣ ≥ Lβ.
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Otherwise Λ is called bad. Assume that for any family F of pairwise disjoint bad M′-regions in Λ0 with M0 + 1 ≤M′ ≤ 2M0 + 1, we
have

#F < Nb

M0
.

Then, we have
∣T−1(m,n)∣⟨e−(ρ−N

−δ
)∣m−n∣, for m,n ∈ Λ0, ∣m − n∣⟩Nθ,

where N ≥ N0(b,d, τ,β) and δ = δ(b,d, τ,β) > 0.

Remark 7.4. In both results, the Töplitz decay condition (7.4) can be replaced by a similar condition with a polynomial factor in front:

∣T(m,n)∣ ≤ (1 + ∣m − n∣)pe−ρ∣m−n∣, m ≠ n, m,n ∈ Λ0.

In this case, the assumption on largeness of the initial scale will depend on p. The reasoning is based on the fact that the calculations in the
proof already involve various (polynomial) combinatorial factors of similar kind which are absorbed into the exponential decay estimates.

Finally, we will need the following matrix-valued Cartan theorem (“Cartan lemma”), see Refs. 4 and 5.

Lemma 7.5. Let A(σ) be a self-adjoint D ×D matrix function of a real parameter σ ∈ [−δ, δ], satisfying the following conditions:

(1) A(σ) is real analytic in σ, and admits a holomorphic extension to the strip (−δ1, δ1) + i(−δ2, δ2), satisfying in that strip

∥A(z)∥ ≤ B1.

(2) For each σ ∈ [−δ1, δ1], there is a subset Λ ⊂ [1,D], such that

∣Λ∣ < D0, ∥(R[1,N]/ΛA(σ)R[1,N]/Λ)
−1
∥ < B2.

(3) ∣{σ ∈ [−δ1, δ1] : ∥A(σ)−1∥ > B3} < 10−3δ2(1 + B1)
−1
(1 + B2)

−1
∣.

Then, for any 𝜘 < (1 + B1 + B2)
−10D0 , we have

∣{σ ∈ (−δ1/2, δ1/2) : ∥A(σ)−1∥ > ζ−1}∣ < exp
c log ζ

D0 log (D0 + B1 + B2 + B3)
. (7.5)

C. Proof of proposition 3.2
One can easily check that all the estimates hold for any finite number of scales by choosing a small ε. Therefore, we can assume that the

scales are large enough (depending on τ and ν2). Note also that the estimates are stable under perturbations of size e−k
2
, and therefore one can

essentially ignore the differences between k and k + 1.
While the main result is stated with particular numerical values of the parameters, it will be convenient to denote them by letters:

β = 999/1000, b = 6/7, ρ = 1/300.

Assume that the theorem has been proven for the scales [0,M] with the exponent γ. Let C1 be a large constant chosen later. Let M0 ∈

[0,M] andM1 =MC1 . The first step is to “propagate” (3.6) into the scales up toMC1
0 . In the process, we would like to obtain stronger bounds:

say, with e−M
1000ρ
1 in the right hand side. Later, these stronger bounds will be needed in order to satisfy the assumptions of Lemma 7.3.

Let Λ ∈ ER(M1), and let
Λ = ∪αΛα, Λα = Λ ∩Qα,

Qα ∈ [−M0,M0] + 2M0Z3.

One can check that Λα ∈ ER(M′) withM0 ≤M′ ≤ 2M0, except for finitely many (bounded by an absolute constant) values of α.
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From the induction assumptions, there exists a semi-algebraic subset A ⊂ R × [0, 2π)such that, for (θ,φ) ∈ R × [0, 2π)/A, we have (3.6)
and (3.7) for all elementary regions Λ containing the origin with diam(Λ) ∈ [M0, 2M0]. The set A is of degree at most MCabs

0 and intersects
any unit line segment in R × [0, 2π)in a subset of one-dimensional measure at mostMCabs

1 e−M
ρ
0 .

By Theorem 2.6 (“arithmetic lemma”), and assuming that M0 is large enough (depending on the Diophantine constants of (ω, λ)), we
have

#{n ∈ Z3 : (θ + n ⋅ ω,φ + n3λ) ∈ A} ≤MCabs
0 M3/4+δ

1 , (7.6)

where δ can be made arbitrary small depending on the Diophantine constants of (ω, λ). Let us call an elementary region Λα good if all points
from Λα are outside of the above set. Let

Λgood = Λgood(θ,φ) =⋃{Λα ⊂ Λ : Λα is good; diam(Λα ∈ [M0, 2M0])}.

Standard application of the covering Lemma 7.2 implies, after absorbing the constants,

∥T(θ,φ)∣−1Λgood∥ ≤ e
(3M0)

b

,

and we have, from the definition of Λgood,

∣Λ/Λgood∣ ≤M
Cabs
0 M3/4+δ

1 .

We will also need to introduce an additional scale
M′0 = ⌊(10M0)

1/ρ
⌋.

Similar considerations with boxes of sizeM′0 imply that, outside of a semi-algebraic subset of [0, 2π) ×R with sectional measures bounded by
e−5M

′

0 , we have

∥T(θ,φ)∣−1Λ ∥ ≤ e
(3M′0)

b

.

Let L be a unit line segment in R × [0, 2π), and θ(t),φ(t) be the natural parametrization of L (by length). Let T(t) ∶= T(θ(t),φ(t)). Apply
Cartan’s lemma to the family T(t), with:

(1) B1 = 10M1.
(2) D0 =MCabs

0 M3/4+δ
1 (the cardinality of the bad set).

(3) B2 = e(3M0)
b
(upper bound on the inversion of restriction to the good set).

(4) B3 = e(3M
′

0)
b
. This way, Assumption (3) of the Cartan’s lemma reduces to e−(M

′

0)
ρ
∼ e−10M0 ≪ e−(4M0)

b
and therefore holds for large

scales.

Then, for

𝜘 < e−M
Cabs
0 M3/4+δ

1 ,

the measure estimate in (7.5) becomes

exp
c log ζ

MCabs+b/ρ
0 M3/4+δ

1

.

In order to obtain the inductive conclusion, we choose ζ = e−M
b
1 . This is possible assuming

Cabs

C1
+
3
4
+ δ < b.

This reduces the estimate of the measure in (7.5) to

exp{−cM
b− 3

4−δ−
b

ρC1
−

Cabs
C1

1 }.

To summarize, we start from assuming the proposition for an interval of scales

[M0, (10M0)
1/ρ
]
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and conclude that, for the scaleM1 =MC1
0 , the first estimate (3.6) holds outside of a subset of section measure estimated by

exp{−cM
b− 3

4−δ−
b

ρC1
−

Cabs
C1

1 }.

We would like M1 >MC1
0 , so that the conclusion is meaningful, and also get e−M

1000ρ
1 in the last estimate. Overall, this leads to the following

assumptions:

b −
3
4
− δ −

b
ρC1
−
Cabs

C1
> 1000ρ;

Cabs

C1
+
3
4
+ δ < b; C1ρ > 10.

These assumptions can be satisfied as long as b > 3/4, by first requiring the Diophantine properties to imply 0 < δ < b − 3/4, then choos-
ing a large C1 so that the left hand side of the first inequality becomes positive (say, for ρ = 1), and then choosing a large ρ to satisfy the
inequality.

Once the above parameters are fixed, one needs to additionally assume that the scales are large enough (depending on these para-
meters and the Diophantine constants of the frequency vector). This is achievable by taking a small ε. Note that one can also achieve same
results for range of constants C1 (say, [C1,C2]) instead of an individual value. The choice of large M0 and then ε will then depend on
C1 and C2.

The next step is to propagate the exponential decay bounds. Let us start from the same assumption as before: that LDT is proven in the
range of scales [M0, (10M0)

1/ρ
] with the exponent γ. LetM1 =MC1

0 , where C1 satisfies the constraints from the previous part (we may impose
more conditions on it later). Our goal is to prove an exponential decay bound on the scale M1. Due to application of Lemma 7.3 (“coupling
lemma”), the exponent γ will change, and we will need to keep track of that. We will use an auxiliary scale M ∼Mτ

1 ∼M
C1τ
0 (here ∼ denotes

nearest integer) and apply Lemma 7.3 with N =M1.
Similarly to the previous step, define A to be a semi-algebraic subset with sectional measures at most e−M

ρ
0/2, such that, outside of

A we have all elementary regions containing the origin of sizes between M0 and 2M0 satisfy (3.6) and (3.7). Note that the combinato-
rial factors are absorbed into the deterioration of exponent from −Mρ

0 to −Mρ
0/2. Consider now elementary regions of size M inside of

the M1-region. If an M-region does not have any bad M0-regions inside of it, one can apply Lemma 7.2 and conclude that the M-box
satisfies the exponential decay estimates with the exponent γ − (logM)−50. The number of disjoint bad M-regions inside of M1-region is
bounded by

MCabs
0 M3/4+δ

1 ∼
M3/4+δ+Cabs/C1+τ

1
M

.

Let us assume
3/4 + δ + Cabs/C1 + τ ≤ b.

This will satisfy the sub-linear bound in the assumptions of Lemma 7.3. To satisfy the remaining assumption, we need to enforce (3.6) on all
scales betweenM andM1 using the previous part. This will require removing a subset of sectional measure at most

e−M
999ρ

∼ e−M
999ρτ
1 .

In order to be consistent with the conclusion of LDT, we would thus like to have τ > 1/999. As long as δ + 3/4 + 1/999 < 1, this is possible to
achieve by choosing b and τ.

Remark 7.6. We can now provide more details on the relation between ε0 and τ. In the induction step, the choice of the large scale in
relation to τ was made in (7.6), in order for the factorMδ to absorb C(ω, λ) = τ−cabs in Theorem 2.6 (see also Remark 2.7). Once the choice of
the parameters ρ, b,β above is fixed and an appropriate C1 is selected, it ultimately forces the initial scaleM0 to satisfyM0 ≥ τ−Cabs . This choice
of initial scale forces ε0 <M−10e−M

b
0 , which implies the claim in Remark 3.3. Here, Cabs and cabs are absolute constants.
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