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1. Introduction

For two integers p and ¢, let [p,q] = {i € Z : p < i < ¢q}. Let k > 0 be an integer and
G be a simple graph with maximum degree A. An edge k-coloring of G is a mapping ¢
from E(G) to [1, k], called colors, such that no two adjacent edges receive the same color
with respect to . The chromatic index of G, denoted x'(G), is the smallest k so that G
has an edge k-coloring. In 1960’s, Gupta [8] and, independently, Vizing [13] proved that
for all graphs G, A < x/(G) < A + 1. This leads to a natural classification of simple
graphs. Following Fiorini and Wilson [6], a graph G is of class 1 if x'(G) = A and of
class 2 if x'(G) = A+1. Holyer [11] showed that it is NP-complete to determine whether
an arbitrary graph is of class 1.

Following terminologies from [12], the core of G, denoted Ga, is the subgraph of G
induced by its vertices of degree A, and we call G overfull if |[E(G)| > A[|V(G)|/2].
Overfullness of graphs is closely related to the fractional chromatic index, x';(G). In the
area of edge coloring, the density of G, denoted p(G), is defined as the maximum of
|E(GIU))|/((JU| —1)/2) ranging over all U C V(G) with |U| odd and at least 3. In fact,
X3 (G) = max{A(G), p(G)}, and x;(G) can be computed in polynomial time [4]. From
the definition, we know that G contains an overfull subgraph of the same maximum
degree if and only if X} (G) > A(G).

Working on graphs whose core has a simple structure (see [12, Sect. 4.2]), Vizing [13]
proved that if G has at most two vertices then G is class 1; Fournier [7] and also inde-
pendently Ehrenfeucht, Faber, and Kierstead [5, Lemma 3] generalized Vizing’s result by
showing that if Ga contains no cycles then G is class 1. Thus a necessary condition for a
graph to be class 2 is to have a core that contains cycles. In 1996, Hilton and Zhao [10]
proposed the following conjecture.

Conjecture 1.1 (Core Congjecture). Let G be a simple connected graph with mazimum
degree A > 3 and A(Gp) < 2. Then G is class 2 implies that G is overfull or G = P*.

As a class 2 graph of maximum degree 2 is an odd cycle and odd cycles are overfull,
if true, the Core Conjecture implies that for connected graphs G with A(Ga) < 2,
determining whether G is class 2 can be done by checking whether |[E(G)| > A[|V(G)|/2]
if G # P*. We call a connected class 2 graph G with A(Ga) < 2 an HZ-graph. A
first breakthrough of the Core Conjecture was achieved in 2003, when Cariolaro and
Cariolaro [2] settled the base case A = 3. They proved that P* is the only HZ-graph
with maximum degree A = 3, an alternative proof was given later by Kral’, Sereny, and
Stiebitz (see [12, pp. 67-63]). The next case, A = 4, was recently solved by Cranston
and Rabern [3]: they proved that the only HZ-graph with maximum degree A = 4 is
the graph obtained from K5 with one edge removed. In this paper, we confirm the Core
Conjecture for all HZ-graphs G with A > 4. It worth mentioning that our proof implies a
polynomial-time algorithm that, given G with maximum degree A > 4 and A(Ga) < 2,
finds an optimal edge coloring of G.
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Theorem 1.2. Let G be a connected graph with mazimum degree A >4 and A(Ga) < 2.
Then G is class 2 if and only if G is overfull.

Since every overfull graph is class 2, we will only prove the “only if” statement in
Theorem 1.2. The remainder of the paper is organized as follows. In the next section,
we prove Theorem 1.2 by applying Theorems 2.3 to 2.5. In Section 3, we give necessary
definitions and list results from [1]. Theorems 2.3 to 2.5 will be proved in Sections 4, 5,
and 6, respectively.

2. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by applying Theorems 2.3 to 2.5. We start with
some concepts. For an integer & > 0, we denote by C*(G) the set of all edge k-colorings
of G. The symbol A is reserved for A(G), the maximum degree of G throughout this
paper.

Let G be a graph, v € V(G), and i > 0 be an integer. An i-vertez is a vertex of degree
7 in G, and an i-vertex from the neighborhood of v is called an i-neighbor of v. Define

Vi={w e V(G) : de(w) =i},  Ni(v)=Ng(v)NVi, and Nio] = Ni(v) U {v}.

For X C V(G), let Ng(X) = U,ex Na(z) and Ny(X) = Ng(X)N V.

Let e € E(G) and ¢ € C¥(G — e) for some integer k > 0. The set of colors present
at v is p(v) = {@(f) : f is incident to v}, and the set of colors missing at v is p(v) =
[1, k] \ ¢(v). If B(v) = {a} is a singleton for some « € [1, k], we also write B(v) = a. For
X CV(G), let B(X) = U,ex P(z). The set X is @-elementary if B(x) NB(y) = 0 for
any distinct z,y € X.

An edge e € E(G) is a critical edge of G if x'(G—e) < X'(G), and G is edge A-critical
or simply A-critical if G is connected, x'(G) = A + 1, and each of its edges is critical.
The following result by Hilton and Zhao in [9] reveals certain properties of an HZ graph.

Lemma 2.1. If G is an HZ-graph with maximum degree A, then the following holds.

(a) G is A-critical and G is 2-regular.
(b) 6(G)=A—1, or A=2 and G is an odd cycle.
(c) Every vertex of G has at least two neighbors in Ga.

Let A > 4 and let Oa be the set of all graphs obtained from two graphs H; and Hs
by adding all edges between V(H;) and V(Hs), where Hy is any 2-regular graph on n
vertices, Hs is any (A — 1 — ny)-regular graph on (A — 2) vertices, and ny € [3,A — 1]
such that ny + (A —2) is odd. Stiebitz et al. showed that Conjecture 1.1 is equivalent to
the conjecture below.
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Conjecture 2.2 ([12, Conjecture 4.10]). If G is an HZ-graph with maximum degree A,
then either G € Oa, or A =2 and G is an odd cycle, or A =3 and G = P*.

We will prove this equivalent form of the Core Conjecture for A > 4 by applying the
following results.

Theorem 2.3. If G is an HZ-graph with mazximum degree A > 4, then the following two
statements hold.

(i) For any two adjacent vertices u,v € Vo, Na_1(u) = Na_1(v).
(i) For any r € Va, there exist s € Na_1(r) and ¢ € CA(G — rs) such that Na_1[r]
is p-elementary.

For an HZ-graph G with maximum degree A > 4, each component of G is a cycle by
Lemma 2.1. So Theorem 2.3 (i) implies that Na_j(2) = Na_1(y) for any two vertices
x,y from the same cycle of Ga.

Theorem 2.4. If G is an HZ-graph with maximum degree A > 4, then for any two adjacent
vertices ,y € Va_1, Na(xz) = Na(y).

Theorem 2.5. Let G be an HZ-graph with maximum degree A > 7 and u,r € Va. If
Na_1(u) # Na_1(r) and Na_1(u) " Na_1(r) # 0, then |[Na_1(u) N Na_1(r)| = A — 3,
i.e. INa—1(u) \ Na—1(r)] = |Na—1(r)\ Na_1(u)] = 1.

Corollary 2.6. If G is an HZ-graph with mazimum degree A > T and there exist u,v € Va
such that Na_1(u) # Na_1(v), then Va_1 is an independent set in G.

Proof. Assume to the contrary that there exist z,y € Va_; such that 2y € E(G). By
Lemma 2.1, there exists w € Na(z). By the assumption that there exist u,v € Va such
that Na_1(u) # Na_1(v), there exists some w’ € Va such that Na_1(w) # Na_1(w').
We may further assume that the distance between w and w’ in G is shortest among
all pairs of vertices wy and w] such that wy € Na(z) and Na_q(wy) # Na—_1(w)). We
claim that Na_1(w) N Na_i(w’) # 0. Let P be a shortest path connecting w and w’
in G. By the choice of w and w’, (V(P) N Va) \ {w,w'} contains no vertex w* such
that Na_1(w*) = Na_1(w). Consequently, VAo N V(P) = {w,w’}. Since Nao_1(w) #
Na_1(w"), it follows that w and w’ are not on the same cycle of Ga and so ww’ € E(G)
by Theorem 2.3 (i). Thus P — {w,w’'} has at least one vertex. By Theorem 2.4, all
vertices of P — {w,w’} have in G the same set of neighbors from Va. Thus, both w and
w’ are A-neighbors of each vertex from P—{w,w’} and so Na_1(w)NNa_1(w’) # 0. By
Theorem 2.5, we have [Na_1(w) N Na_1(w’)| = A —3, which together with Theorem 2.4
implies z,y € Na—1(w) N Na_1(w’).

Let Na_1(w’) \ Na_1(w) = {z}. We claim that Na_1(z) = 0. For otherwise, let
z' € Na_1(z). Clearly z' # z. By Theorem 2.4, 2/ € Na_1(w’) \ Na_1(w), giving a
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contradiction to Na_1(w’) \ Na—1(w) = {z}. We then claim that Na(z) C Na(x). For
otherwise let w* € Na(z) \ Na(z). As x € Na_1(w') and = € Na_1(w*), it follows that
w* # w'. Since z € Na_1(w*) N Na_1(w’), it follows that |[Na_1(w*) N Na_1(w’)| >
A — 3 by Theorem 2.5 (it can happen that Na_i(w*) = Na_1(w’)). Thus Na_1(w*) N
Na_1(w’) contains at least one of z and y as z,y € Na_1(w'). As zy € E(G), we
have x,y € Na_1(w*) N Na_1(w') by Theorem 2.4. This gives a contradiction to the
choice of w*. Therefore we have Na_1(z) = @ and Na(z) € Na(z). However, dg(z) <
|INa(z)] < |Na(z)U{y}| < dg(z), contradicting dg(x) = dg(z) = A —1. This completes
the proof. O

We now prove Conjecture 2.2 for A > 4 as below.
Theorem 2.7. If G is an HZ-graph with mazximum degree A > 4, then G € Ox.

Proof. Let G be an HZ-graph with maximum degree A > 4. Then Ga is 2-regular
and V(G) = Va UVa_; by Lemma 2.1 (a) and (b). First assume that Na_j(u) =
Na_1(v) for every pair u,v € Vao. Then Va, Va_; and the edges between them form a
complete bipartite graph. As a consequence, G is (A — |Va_1]|)-regular and G[Va_1]
is (A — 1 — |Val)-regular. Then G is both 2-regular and (A — |Va_1]|)-regular implies
[Va_1l = A — 2. Let r € Va. The assumption that Na_i(u) = Na_1(v) for every
pair u,v € Vj also implies that Na_1(r) = Va_1. By Theorem 2.3 (ii), there exist
5 € Na_1(r) = Va_1 and ¢ € C*(G — rs) such that Na_[r] = Va_1 U {r} is ¢-
elementary, which thereby implies that V(G) is p-elementary. Thus each color class of
¢ is a matching that uncovers exactly one vertex of G, showing that |V(G)| is odd.
Therefore G € Oa.

We now assume that there exist u, v € Va such that Na_1(u) # Na_1(v). We further
assume that Na_1(u) N Na_1(v) # 0 (using the same argument to find v and v as
for finding w and w’ in the proof of Corollary 2.6). By Theorem 2.3 (i), the cycle C,,
containing v and the cycle C, containing v from Ga are distinct. Let w € Na_1(u) N
Na—1(v). Then dg(w) > |V(Cy,)| + |V (Cy)| > 6 by Theorem 2.3 (i). Thus A = dg(w) +
1 > 7. Applying Corollary 2.6, it follows that Va_; is an independent set of G.

Let A C Va be the set of all vertices a satisfying Na_1(a) = Na_1(u), and let B C Va
be the set of all vertices b satisfying Na_1(b) # Na_1(u) and Na_1(b) N Na_1(u) # 0.
Clearly u € A and v € B, so A and B are non-empty. Partition B into non-empty subsets
By, Ba, ..., By such that for each i € [1,¢], all vertices in B; have the same neighborhood
in Va_;. By Theorem 2.3 (i), each of A, By, Bo, ..., B, induces a union of disjoint cycles
in Ga. So |A| > 3 and |B;| > 3 for each i € [1,1].

Now we claim ¢ > A — 2. Assume otherwise ¢ < A — 3. Since for each i € [1,¢],
INA—1(A) \ Na_1(B;)| = 1 by Theorem 2.5 and |Na_1(A4)| = A — 2, there exists z €
Na—1(A) such that z € Na_1(A) \ Na_1(B;) for each i € [1,¢], or equivalently, z €
Na-1(4) 1 (NiZ; Na-1(By)). Let 2 € Na_1(4) \ Na_1(By). Then
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[Al+ Y IBil =do(z) =da(z) < [Al+ ) |Bil,

1<i<t 2<i<t

achieving a contradiction. Hence ¢t > A — 2.

We now achieve a contradiction to the assumption A > 7 by counting the number
of edges in G between Na_1(A) and AU B. Note that [Na_1(A)| = A — 2. Since each
vertex in B has exactly A — 3 neighbors in Na_1(A) and |B;| > 3 for each i € [1,¢], we
have

|[E(AUB, Na_1(A))] = |A|(A—2)+|U_, Bi|(A—3) > 3(A—2)+3H(A—3) > 3(A—2)2

On the other hand, since Nao_1(A) is an independent set and every vertex in it has
degree A — 1 in G, we have

|[E(AN B, Na_1(A))] = (A — 1)(A —2).

Since A > 2, solving A in (A —1)(A —2) > 3(A —2)? gives A < 2.5, achieving a desired
contradiction. O

3. Definitions and previous results

In this section, we recall essential concepts from [1] and list a number of results that
we will use as lemmas in the proof of Theorems 2.3 to 2.5.

Let G be a graph, e € E(G), ¢ € C*(G — ¢) for some k > 0, and let o, 8 € [1,k].
Each component of G — e induced on edges colored by « or § is either a path or an even
cycle, which is called an («, 8)-chain of G — e with respect to ¢. Interchanging « and
on an («, 8)-chain C of G gives a new edge k-coloring, which is denoted by ¢/C'. This
operation is called a Kempe change.

For z,y € V(G), if z and y are contained in the same (o, 8)-chain, we say = and y are
(a, B)-linked with respect to . Otherwise, they are (a, 8)-unlinked. If an («, 8)-chain
P is a path with one endvertex as x, we also denote it by P.(«a, 8, ¢) and just write
P.(a, B) if ¢ is understood. For a vertex u and an edge uv contained in P, (a, 8, @), we
write u € Py(a, B, ) and wv € Py(a, B, ¢). If u,v € P.(a, B, ¢) such that u lies between
x and v on P, then we say that P, («a, 8, ) meets u before v.

Let T be an alternating sequence of vertices and edges of G. We denote by V(7))
the set of vertices contained in T, and by E(T) the set of edges contained in 7. We
simply write $(T) for p(V(T)). If V(T) is p-elementary and @(T) # 0, then for a
color 7 € (T, we denote by B, (1) the unique vertex in V/(7') at which 7 is missed. A
coloring ¢’ € C*(G —e) is (T, p)-stable if for every = € V(T) and every f € E(T), it holds
that @'(z) = §(z) and ¢'(f) = ¢(f). Clearly, ¢ is (T, p)-stable, and if p; € C*(G —e) is
(T, p)-stable, and @ € CF(G — e) is (T, 1 )-stable, then ¢ is also (T, ¢)-stable.
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3.1. Multifan

Let G be a graph, rs; € E(G) and ¢ € C*(G — rs;) for some k > 0. A multifan
centered at r with respect to rs; and ¢ is a sequence

Fu(r,s1:8p) = (r,751,51,752,52,...,75p, Sp)

with p > 1 consisting of distinct vertices and edges such that for every edge rs; with
i € [2,p], there is a vertex s; with j € [1,7 — 1] satisfying ¢(rs;) € B(s;). The following
result can be found in [12, Theorem 2.1].

Lemma 3.1. Let G be a class 2 graph and F(r,s1 : sp) be a multifan with respect to rs;
and ¢ € CA(G —rs1). Then the following statements hold.

(a) V(F) is p-elementary.
(b) For any o € B(r) and any B € B(s;) with i € [1,p], r and s; are (a, B)-linked with
respect to .

Let Fy(r,s1 : s,) be a multifan. We call sg,,5¢,,...,5,, a subsequence of
S2,...,8p, an a-inducing sequence for some a € [1,k] with respect to ¢ and F if
o(rse,) = a € P(s1) and p(rse,) € P(se,_,) for each i € [2,h]. (By this definition,
(r,781,81,780,, 50,5 -,78¢,,5¢,) 18 also a multifan with respect to rs; and ¢.) A color
in P(sy,) for any ¢ € [1,h] is an a-inducing color and is induced by «. For a; € P(sy,)
and a; € P(sg;) with @ < j and 4, j € [1, h], we write a; < ;. For convenience, « itself
is an a-inducing color and is induced by «, and a < 3 for any § € ®(sy,) and any
i € [1,h]. An a-inducing color § is called a last a-inducing color if there does not exist
any a-inducing color § such that 5 < 6.

By Lemma 3.1 (a), each color in $(F)\%(r) is induced by a unique color in $(s7). Also
if a; and agy are two distinct colors in ®(s1), then an «j-inducing sequence is disjoint
with an as-inducing sequence. The following result is a consequence of Lemma 3.1 (a).

Lemma 3.2 ([1, Lemma 8.2]). Let G be a class 2 graph and F,(r, s1 : sp) be a multifan
with respect to rsy and ¢ € C*(G — rs1). For any two colors 6, \ with § € B(s;) and
X € B(sj) for some distinct i,j € [1,p], the following statements hold.

(a) If § and X are induced by different colors from (s1), then s; and s; are (6, \)-linked
with respect to .

(b) If 6 and X are induced by the same color from @(s1) such that § < X and s; and s;
are (6, \)-unlinked with respect to o, then r € Py, (X, 0,¢).

By Lemma 2.1 (a), every edge of an HZ graph is critical. For an HZ-graph G with
maximum degree A > 3, we let rs; € E(G) with r € Va and s1 € Na_1(r) =
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{s1,82,...,5an_2}, and ¢ € C2(G — rs1). Then we call (G,rs1,¢) a coloring-triple. As
A-degree vertices in a multifan do not miss any color, for multifans in HZ-graphs, we
add a further requirement in its definition as follows and we use this new definition in
the remainder of this paper.

Assumption. For multifans in an HZ-graph, all of its vertices except the center have
degree A — 1.

Let (G,rs1,p) be a coloring-triple and F' := F_(r,s1 : sp) be a multifan. By its
definition, |@(s1)| = 2, |@(s;)] = 1 for each ¢ € [2,p], and so every color in B(F) \ B(r)
is induced by one of the two colors in B(s1). We call F a typical multifan, denoted
F,(r,s1:8q :58) = (7,751,51,752,82,...,7Sq; Sa, "Sa+t1, Sa+1, - - -, I'S3, S3), Where 5 :=
p, if B(r) = 1 (recall we denote (v) by a number if [g(v)| = 1), B(s1) = {2,A}, and
if |[V(F)| > 3, then ¢(rsa+1) = A and $(Sa+1) = a+ 2 (if § > «a), and for each
i € [2,8] with ¢ # a+ 1, p(rs;) = i and B(s;) = @ + 1. It is clear that so,..., S, is
the longest 2-inducing sequence and sq41, ..., Sg is the longest A-inducing sequence of
Fy(r,s1 : sq @ sg). By relabeling vertices and colors if necessary, any multifan in an
HZ-graph can be assumed to be a typical multifan, see Fig. 1 (a) for a depiction. If
a = 3, then we write Fi,(r, 81 : 8o) for F,(r,s1: sq : sg), and call it a typical 2-inducing
multifan.

3.2. Kierstead path

Let G be a graph, e = wov; € E(G), and ¢ € CF(G — e) for some in-
teger k > 0. A Kierstead path with respect to e and ¢ is a sequence K =
(vo,vov1, U1, V102, V2, . . ., Up—1, Up—1Up, Up) With p > 1 consisting of distinct vertices and
edges such that for every edge v;v;41 with ¢ € [1,p—1], there exists j € [0, i—1] satisfying
P(vivi1) € B(v;)).

A Kierstead path with at most 3 vertices is a multifan. We consider Kierstead paths
with 4 vertices. Statement (a) below was proved in Theorem 3.3 from [12] and statement
(b) is a consequence of (a).

Lemma 3.3. Let G be a class 2 graph, vov1 € E(G), and ¢ € CA(G — vov1). If K =
(vo, vou1, V1, V102, V2, Va3, v3) is a Kierstead path with respect to vovr and @, then the
following statements hold.

(a) If min{dg(v1),da(ve)} < A, then V(K) is -elementary.
(b) For any two colors o, § with o € P(vy) and 6 € P(vs), if min{dg(v1),dg(ve)} < A
and a & {p(v1v2), p(vav3)}, then v and vy are (o, §)-linked with respect to .
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Sa Sa+1 Sa Sa+1

-O
(b) ©

Fig. 1. (a) A typical multifan F,(r,s1 : so : sg), where @(r) = 1 and @(s1) = {2, A}; (b) A rotation centered
at r, where a dashed line at a vertex indicates a color missing at the vertex; (c¢) A lollipop centered at r,
where z can be the same as some s, for £ € [3 + 1, A — 2].

3.3. Pseudo-multifan

Let G be a graph, rs; € E(G) and ¢ € C*(G — rs;) for some k > 0. A multifan
Fy(r,s1 @ sp) is mazimum at r if |V(F)| is maximum among all multifans at r. A
pseudo-multifan with respect to rs; and ¢ is an alternating sequence S := S, (7,51 : 5¢ :
Sp) = (r,781,81,782,52, ..., 7S¢, St,TSt41, St4+1,- - - » Sp—1,TSp, Sp) With t,p > 1 of distinct
vertices and edges satisfying the following conditions:

(P1) the subsequence F := (r,rsy, $1,782,S2,...,T8t, S¢) is a maximum multifan at r.
(P2) V(9) is ¢'-elementary for every (F,p)-stable ¢’ € C*(G —rsy).

Every maximum multifan is a pseudo-multifan, and if S is a pseudo-multifan with
respect to ¢ and a multifan F', then by the definition above, S is a pseudo-multifan
under every (F, p)-stable coloring ¢'. We call a pseudo-multifan S typical (resp. typical
2-inducing) if the maximum multifan that is contained in S is typical (resp. typical
2-inducing).
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Let (G,rs1,9) be a coloring-triple. A sequence of distinct vertices wi,...,w; €
Na_1(r) form a rotation if {w1,...,w:} is p-elementary, and for each ¢ with ¢ € [1,],
it holds that ¢(rwe) = ®(we—1), where wy := w;. An example of a rotation is given in
Fig. 1 (b). Let 4,5 € [2, A — 2]. The shift from s; to s; is an operation that, for each ¢
with £ € [4, j], recolor rs; by the color in B(sg). We will apply a shift either on a sequence
of vertices from a multifan or on a rotation.

Lemma 3.4. Let (G,rs1,¢) be a coloring-triple. Then for every typical pseudo-multifan
S = S,(r,s1: 8¢ 1 8p), there exists a coloring ¢' € C2(G — rs;) and a pseudo-multifan
S* centered at r with respect to rs; and ¢’ such that V(S*) = V(S) and S* is typical
2-inducing.

Proof. Let F' = F(r,s1 : 54 : sg) be the typical multifan contained in S, where sg = s;.
If 8 = «, then we are done. Thus we assume 3 > a+1 > 3. Let ¢’ be obtained from ¢ by
uncoloring 7sg, shift from s,41 to sg_1 and coloring rs; by A. Now &' (sg) = {8, 5+ 1},
F* = (r,r88,58,7S8—1,58—1s- - -, "Sa+1, Sa+1,TS1; 51, - - -, "'Sa, So) 18 & f-inducing multi-
fan with respect to rsg and ¢’.

We next show that S* = (F*, 78441, St41, - - - , 7'Sp, Sp) is a pseudo-multifan with respect
to rsg and . Since |V(F*)| = |V(F)|, F* is also a maximum multifan at r. Thus it
suffices to show that for any (F*, ¢')-stable ¢ € C2(G —rsg), V(S*) is ¢"-elementary.
Suppose to the contrary that there exists (F*, ¢’)-stable ¢ € C2(G —rsg) but V(S*) is
not p”’-elementary. As ¢” is (F*, ¢')-stable, we can undo the operations we did before.
Specifically, let ¢’ be the coloring obtained from ¢” by uncoloring rs1, shift from s,1 to
sg—1 and coloring rsg by 8. Then ¢’ is (F, ¢)-stable and " (5*) = @"(S*). Thus, V(S*)
is not ¢"-elementary implies that V' (S*) is not ¢"’-elementary. Since V(5*) = V(S), this
contradicts the assumption that V(S) is elementary under any (F,p)-stable coloring.
Therefore, S* is a pseudo-multifan with respect to rsg and ¢’. By renaming colors and
vertices, we can assume that F™* is typical 2-inducing and so S* is typical 2-inducing. O

Lemma 3.5 ([1, Theorem 2.5]). Let (G,rs1,¢) be a coloring-triple, S := S,(r,s1 : 8¢ :
sa—2) be a pseudo-multifan with F := F,(r,s1 : s¢) being the mazimum multifan con-
tained in it. Let j € [t +1,A —2] and § € B(s;). Then

(a) {St41,-..,8a—2} can be partitioned into rotations with respect to .

(b) s; and r are (1,06)-linked with respect to ¢.

(c) For every color v € B(F) with v # 1, it holds that r € Py(v,6) = Ps,(7,0), where
y = B, (7). Furthermore, for = € Ng(r) such that p(rz) = v, Py(7,5) meets z
before r.

(d) For every 0* € ©(S) \ Pp(F) with §* # 0, it holds that P,(5,0*) = Ps,(5,6%), where
y =Pg" (6%). Furthermore, either r € Py,(8,6*) or P,(6,5*) is an even cycle.
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3.4. Lollipop

If F = (ay,...,a:) is a sequence, then for a new entry b, (F,b) denotes the sequence
(a1,...,as,b). Let (G,rs1,¢) be a coloring-triple. A lollipop centered at r is a sequence
L = (F,ru,u,ux,z) of distinct vertices and edges such that F' = F,(r,s1 : 5o : sg) is a
typical multifan, v € Na(r) and © € Na_1(u) with « & {s1,...,s3} (see Fig. 1 (c) for a
depiction).

Lemma 3.6 (/1, Lemma 5.1]). Let (G,rs1,¢) be a coloring-triple, F := F(r,s1 : Sq : 5p)
be a typical multifan, and L := (F,ru,u,uzx,x) be a lollipop centered at r such that
o(ru) =a+1 and p(x) = a+ 1. Then

(a) o(ux) #1 and ux € P.(1, p(ux)).
If p(ux) = 7 is a 2-inducing color with respect to ¢ and F, then the following
holds.
(b) Let P.(1,7) be the (1, 7)-chain starting at x in G —rsy —ux. Then Py(1,7) ends at

.
(c) For any 2-inducing color 6 of F with T < §, we have r € Py, (9, A) P, ,(6,A).
(d) For any A-inducing color 6 of F, we have r € Py, (a+1,9) = Ps_(a+1,6), where

sa—1 =81 4f 6 = A.
(e) For any 2-inducing color § of F with § < T, we have r € P;_(0,a+1) = Ps,;_, (6, a+
1).

Let (G,rs1, ) be a coloring-triple. For a color « € [1, A], a sequence of Kempe (c, *)-
changes is a sequence of Kempe changes that each involve the exchanging of the color a
with another color from [1, A].

Lemma 3.7 ([1, Lemma 5.2]). Let (G,rs1,p) be a coloring-triple, F := F(r,s1 : Sq : 5p)
be a typical multifan, and L = (F,ru,u,uzx,x) be a lollipop centered at r such that
o(ru) = a+ 1. Then for wi € {sg41,...,S5a—2} with (rwi) =7 € [+ 2,A —1], the
following statements hold.

(1) If exists a vertex w € V(G) \ (V(F) U {w1}) such that w € P.(1,71,¢") for every
(F, p)-stable ' € CA(G — rs1) with ¢'(ru) = o+ 1, then there exists a sequence of
distinct vertices wi, ..., wy € {Sg41,...,5a—2} satisfying the following conditions:

(a) p(rwiy1) =p(w;) € [B+2,A—1] for each i € [1,t —1];
(b) r and w; are (1,%(w;))-linked with respect to ¢ for each i € [1,t];
(¢) P(w) = 1.

(2) If 9(x) = o+ 1 and there exists a vertezx w € V(G) \ (V(F) U {w1}) such that
w € P.(1,71,¢") for every (L, ¢)-stable ¢’ € C*(G —rsy) obtained from ¢ through a
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sequence of Kempe (1, x)-changes not using r or x as endvertices, then there exists a
sequence of distinct vertices w1, ..., wy € {Sg41,.-.,Sa—2} satisfying the following
conditions:

(a) o(rwiy1) = @lrw;) € [B+2,A = 1] for each i € [1,t —1];

(b) r and w; are (1,p(w;))-linked with respect to ¢ for each i € [1,t — 1];

(c) B(wy) =11 or P(w) = a+ 1. If p(wy) = 71, then wy and r are (1,71)-linked
with respect to .

By the definition, the sequence wi,...,w; in Lemma 3.7 (1) and in the case of
Lemma 3.7 (2) when $(w;) = 7 form a rotation with the additional property that
P(w;) € [6+2,A —1] and r and w; are (1,(w;))-linked for each ¢ € [1,¢]. We call such
a rotation a stable rotation. In the case of Lemma 3.7 (2) when @(w:) = o + 1, we call
wi, ..., w; a near stable rotation. For u,v € V(G), we write u ~ v if u and v are adjacent
in G, and write u ¢ v otherwise.

Lemma 3.8 (/1, Corollary 2.7]). Let (G,rs1,¢) be a coloring-triple, F := F,(r,s1 : Sq)
be a typical 2-inducing multifan, and L := (F,ru,u,ux,x) be a lollipop centered at r. If
olru) =a+1, 5(z) =a+1, and p(uz) = A, then u % s1 and u % 8.

Lemma 3.9 ([, Theorem 2.8]). Let (G,rs1,¢) be a coloring-triple, F' := F,(r,s1 : Sq)
be a typical 2-inducing multifan, and L := (F,ru,u,ux,x) be a lollipop centered at r. If
o(ru) = a+1, g(x) = a+ 1, and p(ux) = p € B(F) is a 2-inducing color of F', then

Uk su—1 and u s,

Let G be a graph, rs; € E(G) and ¢ € C*(G — rs1). Let a, 8,7, 7 € [1,A] and
xz,y € V(G). If P is an («, 8)-chain containing both x and y such that P is a path, we
denote by Py, y(a, 3, ) the subchain of P that has endvertices = and y.

Suppose |[@(z) N {«a, f}| = 1. Then an (o, B)-swap at x is just the Kempe change on
P, (a, B, ¢). By convention, an («, a)-swap at « does nothing at z. If also |[g(y)N{c, 8} =
1, then an (a, 8)-swap at both x and y is the Kempe change on P,(a, 3, ) if  and y
are («, f)-linked with respect to ¢, and is obtained from ¢ by first doing an («, §)-swap
at x and then doing an (a, §)-swap at y if = and y are (a, 8)-unlinked with respect to
. Suppose By € p(x) and By, ... 8 € p(x) for colors By, ..., B € [1,A] for some integer
t > 1. Then a

(Bo, 1) — (B1,B2) — ... — (Bi—1, Br) — swap

at x consists of ¢ Kempe changes: let pg = ¢, then ¢; = p;—1/Py(Bi-1, Bi, vi—1) for each
€ [1,t]. Suppose the current color of an edge wv of G is «, the notation uv: o —
means to recolor the edge uv using the color 5.
We will use a matrix with two rows to denote a sequence of coloring operations taken
based on ¢. For example, the matrix below indicates three operations taken on the graph:



166 Y. Cao et al. / Journal of Combinatorial Theory, Series B 166 (2024) 154—-182

Poyy(o,B,9) scisa Ts
Oé/ﬁ shift Y= T

Step 1 Exchange a and 8 on the (a, #)-subchain P, 4(c, B, ¢).

Step 2 Based on the coloring obtained from Step 1, shift from s. to s4 for vertices
Scy+--58d-

Step 3 Based on the coloring obtained from Step 2, do rs: v — 7.

In the remainder, for simpler description, we may skip the phrase “with respect to ¢”
in related notation, which then needs to be understood with respect to the current edge
coloring.

4. Proof of Theorem 2.3

We prove the following version of Theorem 2.3.

Theorem 4.1. If G is an HZ-graph with maximum degree A > 4, then for every vertex
r € Va, the following two statements hold.

(i) For every u € Na(r), Na—1(r) = Na_1(u).

(ii) There exist s1 € Na_1(r) and ¢ € C*(G — rs1) such that Na_1[r] is the vertex
set of a typical 2-inducing pseudo-multifan with respect to rs1 and . Consequently
Na_1[r] is p-elementary.

Proof. Let Nao_1(r) = {s1,...,8a_2}. We choose a vertex in Na_1(r), say s1, a coloring
¢ € CA(G —rs1) and a multifan F with respect to rs; and ¢ such that F is maximum
at r. That is, |V(F)| is maximum among all multifans with respect to rs; for any i €
[1,A — 2] and any ¢’ € C2(G — rs;). Assume that B(r) = 1 and §(s;1) = {2,A}, and
F = F,(r,s1 : sp) is such a multifan. Furthermore, by relabeling vertices and colors,
we assume that F' is typical. As a maximum multifan at r is itself a pseudo-multifan,
by Lemma 3.4, we assume that F,(r,s1 : sp) = F,(r,s1 : so) is a typical 2-inducing
multifan, where a = p.

Let u € Na(r) and assume Na_1(r) # Na_1(u). Roughly speaking, the main proof
idea is the following. By assuming p(ru) = o+ 1 and (z) = a+ 1 for € Na_1(u) \
Na_1(r), we will apply Lemmas 3.8 and 3.9 to show that u has at least two (A — 1)-
neighbors outside of Na_1(r). By further applying Lemmas 3.8 and 3.9, we can even
find three (A — 1)-neighbors of u outside of Na_1(r). A contradiction is then deduced
at that point.

Claim 4.1. We may assume that p(ru) = « + 1, which is the last 2-inducing color of
Fu(r,s1: 8q).
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Proof of Claim 4.1. Since F,(r,s1 : so) is a maximum typical 2-inducing multifan,
o(ru) € {a +1,A}. Assume instead that ¢(ru) = A. If o = 1, then we are done by
exchanging the roles of 2 and A. Thus we assume that o > 2. Shift from ss to so_1,
color rs1 by 2 and uncolor rs,. Then F* = (r,754, Sa, "Sa—1, Sa—1,---,TS1,81) I8 an
a-inducing multifan such that A is the last a-inducing color. Now, relabeling colors and
vertices in F* by making F™* typical 2-inducing yields the desired assumption. <

Claim 4.2. For any z € Na_1(u) \ V(F) and any (F,)-stable ¢' € C*(G — rs1), if
O(ru) =a+1 and @' (z) = a+ 1, then ¢’ (uz) € ¢'(F) \ {1}.

Proof of Claim 4.2. Assume to the contrary that ¢'(uz) € {1,a+2,...,A —1}. We first
claim that ¢'(uz) # 1. As otherwise, P.(1,a + 1,¢’) = ruz, contradicting Lemma 3.1
(b) that r and s, are (1, @ + 1)-linked with respect to ¢’. Let ¢'(uz) =7 € [a + 2, A —
1], and w1 € Na_1(r) such that ¢'(rwq) = 7. By Lemma 3.6 (a), uz € P.(1,7,¢")
for every (L,¢')-stable ¢’ € C2(G — rsy), where L = (F,ru,u,uz,z) is a lollipop.
Applying Lemma 3.7 (2) on L with u playing the role of w, we find a sequence of distinct
vertices wy, ..., wt € {Sa41,--.,Sa—2} that forms either a stable rotation or a near stable
rotation.

Assume first that wy, . .., w; is a stable rotation, which in particular gives P.(1, 7, ') =
Pwt,
equivalently, P, (1,7, ¢’) meets u before z, we do the following operations:

(1,7,¢"). By Lemma 3.6 (a), uz € P.(1,7,¢"). If P.(1,7,¢’) meets z before u, or

Py(1,71,¢) ru uz
1/7 a+l—=7 7a+1]’
Denote the new coloring by ¢”. Now (r,7s1,51,...,54) is a multifan, but " (s,) =

—/!

@' (r) = a+1, giving a contradiction to Lemma 3.1 (a). Thus P.(1, 7, ¢’) meets u before

z, or equivalently, Py, (1,7, ¢’) meets z before w. Shift from w; to ws to get ¢”. Then

¢
P.(1,7,¢") meets z before u, giving back to the previous case as ¢” is (F, ¢')-stable.

Assume now that wy,...,w; is a near stable rotation, i.e., @'(w) = a+ 1. If z # wy,
then we shift from w; to wy, and do ru : a+1 — 7, uz : 7 — « + 1. Denote the
new coloring by ¢”. As ¢"” is (F,¢’)-stable and so is (F,p)-stable, we see that F* =
(F, rwy, wy, rws—1, Wy—1, . .., 7wy, wi) is a multifan that contains more vertices than F
does, showing a contradiction to the choice of F.

Thus we assume that z = wy. Since ¢'(rz) # ¢'(uz) = 7, we have ¢ > 2. Note that
uz € P.(1,7,¢") = Py,(1,7,¢") for some vertex w € V(G) \ (V(F) U{wy,...,w}). If
P,(1,7,¢") meets u before z, we do the following operations:

Pryu(1,7,¢") U uz
1/7 a+l—=1 7—=a+1]"
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Denote the new coloring by ¢”. Now (r,7s1,51,...,54) is a multifan, but " (s,) =
©"(r) = a+1, giving a contradiction to Lemma 3.1 (a). If P, (1,7, ¢’) meets z before u,

we do the following operations:

Prp (1, 7,0") wiiwe  rwg=rz U uz
1/7 shift  ¢'(rz) =1 a+l—=7 7oa+1]
Denote the new coloring by ¢”. Now (7,751,51,...,8) is a multifan, but ®”(s,) =

©"(r) = a+ 1, giving a contradiction to Lemma 3.1 (a). <

By Claim 4.2, 7 € {2,...,a + 1,A}. Applying Lemmas 3.8 and 3.9, we have the
following claim.

Claim 4.3. Let z € Na_1(u) \ V(F) and any (F, p)-stable ¢’ € C*(G — rsy) such that
O(ru) = a+1 and @(z) = a+ 1, and let ¢'(uz) = 7. Then 7 € @' (F) \ {1}, and
uob $1,8q ff T=A; and u % sp_1, 87 if T € [2,a+1].

Claim 4.4. Suppose that Na_1(r) = Na_1(u) for every u € Na(r). Then for every
(F, p)-stable coloring o' € C*(G—rsy1), Na_1[r] is ¢'-elementary. In particular, Na_1[r]
is the vertex set of a typical 2-inducing pseudo-multifan with respect to rs* and p* €
CA(G —rs*) for some s* € Na_1(r).

Proof of Claim 4.4. Assume to the contrary that there exists an (F,p)-stable coloring
¢ € CA(G —rsy) such that Na_1[r] is not ¢'-elementary. Since V(F) is ¢'-elementary,
there exists z € Na_1[r] \ V(F) such that @'(z) € @ (F) or there exists z* # z with
z* € Na_1[r] \ V(F') such that @'(z) = @' (2*). Let @'(z) = 4. If 6 € ¥'(F), then z and r
are (1, §)-unlinked, so we do (9,1)—(1, a+1)-swaps at z; if @' (z) = @' (z*), we may assume,
without loss of generality, that z and r are (1, §)-unlinked, we again do (4,1) — (1, +1)-
swaps at z. In either case, we find an (F, ¢')-stable coloring ¢ € C*(G —rs;) such that
©"(z) = a+ 1. Since for any u € Na(r), it holds that Na_1(r) = Na_1(u), we can
choose u € Na(r) such that ¢”(ur) = a+ 1, where a + 1 is the last 2-inducing color of
Fuin(r,s1: 8q). Since Na_1(r) = Na_1(u), we have uz € E(G) and so L = (Fyr(r,s1 :
Sa), TU, U, uz, z) is a lollipop with respect to ¢”. By Claim 4.3, u is not adjacent to at least
one vertex in Na_1(r), which in turn shows Na_1(r) # Na_1(u), giving a contradiction.

Therefore, for every (F,p)-stable coloring ¢’ € C*(G — rs1), it holds that Na_1[r]
is ¢’-elementary. Consequently, there is a pseudo-multifan with vertex set Na_1[r]. By
renaming colors and vertices from Na_1(r), we can assume the pseudo-multifan with
vertex set Na_1[r] is typical. By Lemma 3.4, we can further assume that the pseudo-
multifan is typical 2-inducing. <

By Claim 4.4, it suffices to only show Theorem 4.1 (i). Assume to the contrary that
there exists u € Na(r) such that Na_1(u)\ Na_1(r) # 0.

Claim 4.5. For every z € Na_1(u) \ Na_1(r), there is an (F,¢)-stable coloring ¢’ €
CA(G —rs1) such that @' (ru) = a+ 1 and @' (2) = a + 1.
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Proof of Claim 4.5. By Claim 4.1, we assume o(ru) = a+1. Let p(2) =0. lf § = a + 1,
we simply let ¢’ = p. So d Za+ 1. If 6 € B(F), we let ¢’ be obtained from ¢ by doing
(0,1) — (1, + 1)-swaps at 2. This gives that @'(z) = o + 1. By Lemma 3.1 (b), ¢’ is
(F, p)-stable and ¢'(ru) = p(ru) = a + 1. Thus ¢’ is a desired coloring.

Assume now that 6 € [a + 2, A — 1]. If there is an (F,p)-stable ¢’ € C2(G — rs)
with ¢”(ru) = « + 1 such that z € P.(1,d,¢") (so z and r are (1,0)-unlinked), let
¢’ be obtained from ¢” by doing (,1) — (1, + 1)-swaps at z. Since ¢’ (ru) = a +1
and r and s, are (1, + 1)-linked with respect to ¢” by Lemma 3.1 (b), it holds that
¢’ is (F,¢")-stable and so (F,p)-stable with ¢'(ru) = ¢”(ru) = a + 1. Thus, ¢’ is a
desired coloring and we are done. Therefore every (F,p)-stable ¢ € C2(G — rs;) with
¢ (ru) = a+1 satisfies z € P,(1, 4, ¢”). Applying Lemma 3.7 (1) with z playing the role
of w, there exists wy € Na_1(r)\V(F) such that p(w;) = 6 and w; and r are (1, §)-linked
with respect to . This is a contradiction by noting wy # z, since ¢ is (F, ¢)-stable but
2 ¢ P(1,6,¢). ©

Claim 4.6. |[Na_1(u)\ Na_1(r)| > 2.

Proof of Claim 4.6. Let z € Na_1(u)\Na—_1(r). By Claim 4.5, we choose an (F, ¢)-stable
coloring from C2(G —7s1) and call it still ¢ such that ¢(ru) = a+1 and §(z) = a+1. By
Claim 4.3, p(uz) € {2,...,a+1,A}. If [V(F)| > 3, then Claim 4.3 gives that |[Na_1(u)\
Na_1(r)] > 2. Thus we have V(F) = {r, s;}. Consequently, « + 1 = 2, and ¢(uzx) = A
by the fact that p(uz) € {2, A}. We may assume further that Na_1(u)\ Na_1(r) = {z}.

By Claim 4.3, u 7 s1. We consider two cases. Assume first that there exists an (F, ¢)-
stable ' € C®(G — rs1) such that Na_1[r] is not ¢’-elementary. By exchanging the
roles of 2 and A if necessary, we may assume ¢'(ru) = 2. Since V(F') is ¢'-elementary,
there exists z € Na_1(r) \ V(F') such that @'(z) € @'(F) or there exists z* # z with
z* € Na—1(r)\V(F) such that @'(z) = @'(2*). Let ¥'(2) = 6. If § € ¥'(F), then as r and
z are (1,d)-unlinked, we do (d,1) — (1,2)-swaps at z; if ¢’'(z) = @'(2*), we may assume,
without loss of generality, that z and r are (1, d)-unlinked, we again do (4,1)—(1, 2)-swaps
at z. In either case, we find an (F,¢’)-stable coloring ¢ € C2(G — rs;) with ¢ (ru) =
¢'(ru) = 2 and @"’(z) = 2. Note that z € Na_1(u) since u # s1, $1 # z, and Na_1(u) \
Na_1(r) = {z}. By Claim 4.2, ¢"(uz) € {2, A}, which implies ¢”(uz) = A by noting
¢" (ru) = 2. Furthermore, we assume uz € Py, (1, A, ¢") = P.(1, A, ¢") (otherwise, after
a (1, A)-swap on the chain containing uz, we obtain a contradiction to Claim 4.2). Since
¢"(ru) = 2 and ¢"(uz) = A, ¢"(ux) # 2, A. Thus ¢"(uz) € {1,3,4,...,A — 1}, which
implies @ (x) # 2 by Claim 4.2. Let ¥’ (z) = 7 and ¢”(uz) = X. Note that if 7 = A then
A#£ 1 asuz € Py, (1,A,¢") = P.(1,A,¢"”). Thus if 7 = A or 1, we do (7,1) — (1,2)-
swaps at x. As the color of ux is not A after these swaps, we get a contradiction to
Claim 4.2. Thus, we assume that 7 € [3, A — 1], and that P,(1,7,¢"") = P.(1,7,¢"") for
any (L, ¢'")-stable coloring ¢"’, where L = (F, ru, u,uz, z) is a lollipop. Let w; € Na_1(r)
such that ¢”(rw;) = 7. Applying Lemma 3.7 (2) on L with z playing the role of w, we
find a sequence of distinct vertices wi,...,ws € {Sat1,-..,Sa—2} that forms either a
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stable rotation or a near stable rotation. As x and r are (1, 7)-linked, we conclude that
wi, ..., w; form a near stable rotation and so @ (w;) = 2. As " (uz) = A, " (ur) = 2,
if wy # z, then " (vwy) € {1,3,4,...,A — 1}. This gives a contradiction to Claim 4.2.
Thus we assume that wy = z. Notice that r € Py, (2,7, ¢"”) by the maximality of |V (F)|.
Since r € Py(2,7,¢") by Claim 4.2, we have r € P,(2,7,¢") = Py, (2,7,¢"). So w;
is (2, 7)-unlinked with any of s;,z and r with respect to ¢”. We do a (2,7)-swap at
wy and then shift from w; to w;. This gives a coloring such that s; and x are (2,7)-
unlinked with respect to the coloring. Again, with respect to the current coloring, r
and s; are (2,7)-linked by the maximality of |V (F)|. We do a (2,7)-swap at x to get
a coloring ", Note that ¢/ (ru) = ¢"(ru) = 2, ¢"'(uz) = ¢ (uz) = X\, §"(z) = 2,
and ¢ (uz) = ¢"(uz) = A. Therefore, ¢"'(uz) = X € {1,3,4,...,A — 1}, showing a
contradiction to Claim 4.2.

Thus we assume that Na_1[r] is ¢/-elementary for every (F,p)-stable ¢/ € C*(G —
rs1). In particular, No_1[r] is ¢-elementary, and as |V(F)| = 2 and F is maximum at
r, we know that Na_1[r] is contained in a pseudo-multifan S = S,(r,s1 : 51 : SA_2).
Let 6 € §(S) \ B(F). By Lemma 3.5 (c), §g () is (2,6)- and (8, A)-linked with s; and
the corresponding chains contain the vertex r with respect to . Recall that ¢(ru) =
2,o(ux) = A, and p(z) = 2. Let ¢’ be obtained from ¢ by doing a (2,d) — (6, A) —
(A,1)—(1,2)-swap at . Since ¢’ is (F, p)-stable, ¢'(ru) = 2, ¢'(uz) = §, and @' (z) = 2,
we get a contradiction to Claim 4.2. <

Claim 4.7. Let z,y € Na_1(u) \ Na_1(r) be distinct, and ¢’ € C2(G — rsy) be any
(F, p)-stable coloring with ¢’ (ru) = a+ 1. Suppose @'(z) € @'(F) and @' (z) # 1. Then
©'(y) € P (F). Furthermore, y and r are (1,9 (y))-linked with respect to ¢'.

Proof of Claim 4.7. The second part of the claim follows easily from the first part. Since
otherwise, a (1,%'(y))-swap at y implies that 1 is missing at y, contradicting the first
part.

Assume to the contrary that @' (z) € @' (F) and @' (y) € @' (F). We claim that we may
assume @' () = @ (y) = a+1or P(z) = a+1 and ¥ (y) = 1. By doing (@'(z),1) —
(1,a+ 1)-swaps at x, we assume that @'(z) = a+1. Since 1, +1 € @' (F'), we still have
P (y) € P (F). If ¥ (y) = a+ 1, then we are done. Otherwise, doing a (1,%'(y))-swap at
y gives a desired coloring. Let ¢'(ux) = 7 and ¢'(uy) = A. We consider now two cases
to finish the proof of Claim 4.7.

Case A. P/ () =9'(y) = a+ 1.

By Claim 4.2, 7, A € @' (F)\{1}. Assume, without loss of generality, that 7 # A. Then

7€ {2,...,a+1} is a 2-inducing color of F', since F' is assumed to be typical 2-inducing.
By Lemma 3.6 (d) that r € P,_(a + 1,A) = Py, (o + 1,A), we know A # A. Thus
A€ {2,...,a+ 1} is also a 2-inducing color. By symmetry between x and y, we assume

A < 7. Shift from sy to s)y_1, uncolor rsy, then color rs; by 2. Denote the resulting
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coloring by ¢”. Now F* = (7,78, Sx; TS 115 SA+1y - -+, "Sas Sas TSA—15 SA—1; - - - , 'S1, 81) 18
a new multifan with respect to ¢” that has the same vertex set as F/(r,s1 : 54). In
this new multifan F*, X\ is itself a A-inducing color, 7 is a (A + 1)-inducing color, and
a + 1 is the last (A + 1)-inducing color. We can further assume that F* is typical by
relabeling colors and vertices. However, r € P,(a + 1, A, ¢"), shows a contradiction to
Lemma 3.6 (d) that r € Ps_(a+ 1,A,¢") = Ps, (a + 1, A, ¢").

Case B. ¥'(z) =a+1and ¥'(y) = 1.

We assume that z and y are (1, + 1)-linked with respect to ¢’. For otherwise, a
(1, + 1)-swap at y reduces the problem to Case A.

We show that 7,A # A. If this is not the case, then by swapping colors along
Py (1,a +1,¢") and exchanging the roles of x and y if necessary, we assume that
7# A and A = A. Let ¢ be obtained from ¢’ by a (1, A)-swap at y. By Lemma 3.6 (d),
r € Py, (a+1,A,¢") = P,_(a+1,A,¢"). Thus, we can do an (a+1, A)-swap at y without
affecting the coloring of F, (r,s1 : sq) and ¢”(ru). Thus, let ¢* = ¢"/P,(a+1,A,¢").
We see that P.(1,a + 1,¢*) = ruy, showing a contradiction to Lemma 3.1 (b) that r
and s, are (1, + 1)-linked with respect to ¢*.

Since 7, A # A, both 7 and A are 2-inducing colors of F' by Claim 4.2. By swapping
colors along P, (1, + 1,¢’) and exchanging the roles of x and y if necessary, we
assume 7 < A\. Note that r € Ps, (A, A, ¢') = Ps, (M A ¢')and r € Py, (a+1,A,¢') =
P, (a+1,A,¢") by Lemma 3.6 (c) and (d), respectively. Let ¢” be obtained from ¢’ by
doing a (1,A) — (A, A) — (A, 1) — (1, A) — (A, a + 1)-swap at y. Note that ¢ is (F, ¢')-
stable, and that P.(1,a + 1,¢"”) = ruy, showing a contradiction to Lemma 3.1 (b) that
r and s, are (1, a + 1)-linked with respect to ¢”. <

By Claim 4.5 and Claim 4.6, we let z,y € Na_1(u) \ Na_1(r) with  # y, and
assume that ¢(ru) = a + 1 and @(z) = o + 1. By Claim 4.7, we also assume that
P(y) =90 € [a+2,A —1] and y and r are (1, 0)-linked with respect to such a coloring
@. Let wy € Na_1(r) such that ¢(rw;,) = ¢ and L = (F,ru,u,ux,z). By Claim 4.7, for
any L-stable ¢’ € C2(G — rsy), it holds that y € P.(1,9,¢’). Applying Lemma 3.7 (2)
on L with y playing the role of w, we find a sequence of distinct vertices wi,...,w; €
{Sat+1,---,8a—2} that forms either a stable rotation or a near stable rotation. Since
y and r are (1,9)-linked with respect to ¢, wi,...,w; is a near stable rotation, i.e.,

P(w) =a+ 1.

Claim 4.8. |[Na_1(u) \ Na_1(r)| > 3.

Proof of Claim 4.8. Let p(uz) = 7 and ¢(uy) = A. Since ¢(ru) = a + 1, we have
a+1¢{r,\d}. By Claim 4.3, 7 € (F) \ {1}, and

51,80 & Na—1(u) it 7= A,
Sr—1,8: € Na_1(u) if 7 # A.
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We then show that
$1,8a0 & Na—1(u) if A=A, 2)
Sx—1,8x € Na_1(u) if X #A.

To see this, let ¢’ be obtained from ¢ by first doing a (1, + 1)-swap at both z
and wy, and then shift from w; to wy. Now, @'(r) = § and ¢'(uzx) = p(uz) = 7. Let
¢ = ¢ /P (a+ 1,6,¢"). Note that ¢"(uz) = ¢'(ux) = 7 and ¢"(uy) = ¢’ (uy) = A
Applying Claim 4.2 to the coloring ¢”, we get " (uy) =X € P"(F)\ {6}. As 1, A\, 8, a +
1 € @"(F) and they are all distinct, |V(F)| > |{6,7,A\,a + 1} =1 = 3. Then (2)
follow from Claim 4.3. This fact, together with (1), implies that either s1, so, Sx—1, 5\ &
Na_1(u),0rs1,8q,87—1,8: &€ Na_1(u). Note that s; # s, by |V(F)| > 3. We obtain
INa—1(uw) \ Na—1(r)| > 3 from the above unless either A\=a=2or 7 =a =2.

Therefore we assume « = 2 and {\, 7} = {2, A}. Furthermore, we may assume that
INa—1(uw) \ Na_1(r)] = 2, since (1) and (2) imply that s1,s2 & Na_1(u). Therefore
Na—1(r)\{s1, 82} € Na_1(u). In particular, wy € Na_1(u). Since r and s, are (1, a+1)-
linked with respect to ¢ and P(w;) = a + 1, it follows that p(uws) # 1. This, together
with the facts that (F) = {1,2,3,A}, p(ru) = 3, and {\, 7} = {2, A}, implies that
o(uwy) € [4,A — 1], showing a contradiction to Claim 4.2. <

By Claim 4.8, let z € Na_1(u) \ Na_1(r) with z # z,y. By Claim 4.7, we assume
?(z) =X € [a+2,A—1],and z and r are (1, A)-linked with respect to ¢. Since B(y) = 4,
and also y and r are (1, d)-linked with respect to ¢, we have X # 4.

Recall wy, . .., w; is a near stable rotation at r with ¢(rw;) = § =: §;. Let (w;) = §;4+1
for each i € [1,¢ — 1]. As z and r are (1, A)-linked with respect to ¢ and w; and r are
(1, 6;41)-linked for each i € [1,¢ — 1], X # §; for each i € [2,¢]. Let Ay = X and w] be the
neighbor of r such that ¢(rw}) = A;. For any (L, ¢)-stable coloring ¢’ € C*(G — rs1),
z € P.(1,\ ¢). Applying Lemma 3.7 (2) on L = (F,ru,u,uz,z) and z, we find a
sequence of distinct vertices wj,...,w; € {Sat1,...,5a_2} that forms either a stable
rotation or a near stable rotation. If B(w}) = A1, then since w} and r are (1,A1)-
linked, a (1, A1)-swap at z gives a contradiction to Claim 4.7. Thus @(w;) = o + 1. Let
P(wr) = Aiyq1 for each i € [1,k —1].

Recall that w} # w; for each i € [1,t]. Furthermore, as w; and r are (1, ;11)-linked
for each i € [1,¢ — 1] and w} and r are (1, Aj+1)-linked for each j € [1,k — 1], wi # w;
for each i € [1,¢] implies that Ay & {d1,...,d:}. Consequently, w3 # w; for each i € [1,1].
Repeating the same process, we get w} # w; for each j € [1,k] and each 7 € [1,¢].

We claim that wy and = are (1, « + 1)-linked with respect to ¢. For otherwise, first
doing a (1, 4 1)-swap at wy, then shift from w; to w; gives a coloring ¢’ such that
O (ru) = p(ru) = a+ 1, @' (y) = @'(r) = 1, while ¥'(z) = a + 1. Based on ¢’, after
doing a (1,41 )-swap on all (1,4 )-chains in G — rs;, we obtain an (F, )-stable coloring
¢©". However, @”’(z) = a+ 1 and @”(y) = 1, showing a contradiction to Claim 4.7. As
wy and z are (1, o+ 1)-linked, we do a sequence of Kempe changes around r from w; to
wi as below: let 9 = ¢ and Ap41 =+ 1,
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@i =pj—1/Pu;_ (L Xep1-(j-1),j-1) for each j € [1,k].

Note that
Pr(lv Ak—(j—l)a QDJ) = rw;;—(j—l) for each ] € [17 k]a

and that @y, is (F, ¢)-stable, o (ru) = p(ru), pr(uz) = p(uz), and g, (z) = p(x) = a+1,
but z and r are (1, A\)-unlinked with respect to ¢x. Now doing a (1, \)-swap at z gives a
contradiction to Claim 4.7. This finishes the proof of Theorem 2.3. O

5. Proof of Theorem 2.4

Theorem 2.4. If G is an HZ-graph with maximum degree A > 4, then for any two adjacent
vertices x,y € Va_1, Na(z) = Na(y).

Proof. Assume to the contrary that Na(xz) # Na(y). Then there exists a vertex r €
Na(z)\ Na(y). Equivalently, x € Na_1(r) and y € Na_1(r). By Theorem 4.1 (ii), let
s1 € Na_1(r) and ¢ € C2(G —rs1), and F = F,(r,s;1 : s,) be the typical 2-inducing
multifan such that either V/(F) = Na_1[r] or F is contained in a pseudo-multifan S with
V(S) = Na_1[r]. Let Na_1(r) = {s1,...,8a—2}. We consider two cases according to if
x € V(F) to finish the proof.

Assume first that @ ¢ V(F'). This implies that V(F) # Na_1[r]. Applying Theo-
rem 4.1 (ii), it then follows that Na_1[r] is the vertex set of a typical 2-inducing pseudo-
multifan. Let (x) = § and B(y) = . Since V(S) = Na_1[r] is p-elementary, §, A € B(S5).
By Lemma 3.1 (b) or Lemma 3.5 (b), we know that 75" (\) and r are (1, \)-linked and
x and r are (1,0)-linked. By doing a (A,1) — (1,d)-swap at y, we find (5, ¢)-stable
¢' € CA(G —rsp) such that @ (y) = 4. Let ¢'(zy) = 7. Then P.(J,7,¢’) = xy, showing
a contradiction to Lemma 3.5 (c) or (d) depending on 7 € @'(F) or 7 € ¢'(S) \ @' (F).

Assume then that z € V(F'). We claim that we may assume x = s1. Let = s, for some
i € [1,a], and ¢’ be obtained from ¢ by shift from s3 to s;_1, uncoloring rs;, and coloring
rs1 by 2. The sequence F* = (7,78, 8i, 7'Sit 1, Sit1y -« TSas Saus I'Si—1s Sim1y- -+, 781,81) I8
a multifan with respect to ¢’. Since the shift and “changing” the uncolored edge operation
like above is reversible, and V(S) and @(S) are kept unchanged under such an operation,
we conclude that Na_1[r] is still the vertex set of a pseudo-multifan. By permuting the
names of the colors and the labels of the vertices in Na_1(r), we may assume that x = s;.
Still denote the current coloring by ¢, the multifan by F', and the pseudo-multifan by S.

By doing a (1,%(y))-swap at y, we assume p(y) = 1. Let ¢(s1y) = 7. By exchanging
the roles of the color 2 and A if necessary, we may assume that @(s1y) is either a
2-inducing color of F or is a color from B(S) \ B(F). Let ¢’ = ¢/P,(1,A, ). Now
Py, (1,A,¢') = s1y. This gives a contradiction to Lemma 3.2 (b) that s; and @ '(7)
are (7, A)-linked if 7 is 2-inducing, and gives a contradiction to Lemma 3.5 (¢) that s;
and @ '(7) are (7, A)-linked if 7 € B(S) \ B(F). O
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6. Proof of Theorem 2.5

Theorem 2.5. Let G be an HZ-graph with maximum degree A > 7 and u,r € Va. If
Na—1(u) # Na—1(r) and Na_1(u) " Na_1(r) # 0, then [Na—1(u) N Na_1(r)| = A =3,
i.e. INA—1(u)\ Na_1(r)| = |[Na—1(r) \ Na_1(u)| = 1.

Proof. Assume to the contrary that there exist u,r” € Na such that 1 < |[Na_1(r) N
Na_1(u)| < A —4. By Theorem 4.1 (ii), there exist 51 € Na_1(r) and ¢ € C2(G —rs;)
such that Na_q[r] is the vertex set of a typical 2-inducing pseudo-multifan. By this
assumption of being typical, we have Na_1(r) = {s1,...,8a_2}, §(r) =1, and B(s1) =
{2,A}. Let z,y € Na_1(u) \ Na—1(r) be two distinct vertices, and S := S,(r,s1 :
Sq : Sa—2) be this pseudo-multifan with F,(r,s1 : sq) being the typical 2-inducing
multifan contained in S. Since V(S) = Na_1[r] and V(S) is ¢-elementary, it follows
that $(S) = [1, A]. We consider two cases.

Case 1. V(S) A V(F).

In this case, we will repeatedly apply Lemma 3.5 (b), (c¢) or (d). Assume first that
for each i € [1,a], s; ¢ Na_1(u) N Na_1(r). Then by Na_1(r) N Na_1(u) # 0, there
exists wy € {Sq+1,---,SA_2} such that wy € Na_1(u) N Na_1(r). Let ¢(rwy) = §; and
P(wy) = 02. Note that 01,02 € B(S) \ (F'). We claim that we may assume p(ux) = 2.
Otherwise, let p(ux) = 6* # 5. By Lemma 3.5 (b), (c¢) or (d) depending on what @(z)
is, we can do a (@(x),d2) — (d2,0)-swap at x in getting an (S, p)-stable coloring, still
call it ¢ such that p(uz) = d2. Let p(wiu) = 7 and ¢’ be obtained from ¢ by doing a
(®(z), 1) — (61, 7)-swap at x. By Lemma 3.5 (b), (c) or (d), ¢’ is (S, )-stable such that
¢ (wiu) = p(wiu) = 7 and @' (z) = 7. However, Py, (02,7, ¢") = wiuz = P,(d2,7,¢),
showing a contradiction to Lemma 3.5 (b), (c) or (d) (depending on if 7 = 1, 7 €
B(F)\ {1} or 7 € B(S) \ B(F)) that w; and Z5' (1) are (Ja, 7)-linked with respect to .

Assume now that there exists s; € Na_1(u) N Na_1(r) for some i € [1,a]. By shift
from s to s;_1, uncoloring rs;, and coloring rs; by 2, we obtain a new multifan F* =
(ry 7S5y SiyTSidt1y Sit1y -+ s TSas Sy TSi—1, Si—1, - - -, T'S1, 81). By permuting the names of the
colors and the labels of the vertices in Na_1(r) such that ¢ 4+ 1 is permuted to 2 and s;
is renamed as s1, we assume that s € Na_1(u) N Na_1(r) and F* is a typical multifan.

Recall that @ € Na_1(u) \ Na—1(r). Let B(z) = A. By Lemma 3.1 (b) or Lemma 3.5
(b), we know that 75" (\) and r are (1, \)-linked. By doing a (1, \)-swap at z if necessary,
we assume p(z) = 1. By exchanging the roles of the colors 2 and A, we assume that
@(s1u) equals 1, or is a 2-inducing color of F', or is a color from $(S) \ B(F). Note that
by Lemma 3.5 (c), for a color § € 3(S) \ #(F), and for any color 7 € B(F), 75" (5) and
?5 (1) are (8, 7)-linked and r € PE?(&)((S, T, Q).

Let p(ux) = 7. If 7 is a 2-inducing color of F' or is from $(S) \ §(F'), we do (1,A) —
(A,7) — (7,1)-swaps at x. If 7 is a A-inducing color of F, let 6 € B(S) \ §(F), we do
(1,8) — (6, 7) = (1,1) — (1,A) — (A, d) — (6, 1)-swaps at z. In both cases, we let ¢’ be the
resulting coloring. We have ¢’ (uz) = A and @' (z) = 1. Since p(s1u) # A, 7, still ¢’(s1u)
equals 1, or is a 2-inducing color of F, or is from 3(S) \ @(F).
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Let ¢'(syu) = 7. Since s; and r are (1, A)-linked with respect to ¢’, v # 1. Thus, ¥
is a 2-inducing color of F', or is from $(S) \ $(F'). By Lemma 3.2 (a) or Lemma 3.5 (c),
u € P.(1,7v,¢") (otherwise, s; and z are (v, A)-linked after a (1,7)-swap at z). Let
O =¢'/P(1,7,¢"). Now ¢"(s1u) = 1, 9" (z) = v, and K = (r,rs1, 81, S10, U, uz, T) is a
Kierstead path with respect to rs; and ¢”. Let § € @ (S)\@"(F). If v € §"(S)\@" (F), we
do nothing. Otherwise, we do a (v, §)-swap at 2 (by Lemma 3.5 (¢), this swap does not end
at any vertex of S). Denote by ¢"’ the resulting coloring. Since dg(s1) = A — 1, in both
cases, by Lemma 3.3 (b), z and s; are (2,%"(x))-linked. Since " (z) € " (S) \ ¢"(F),
we achieve a contradiction to Lemma 3.5 (c).

Case 2. V(S) =V(F).

We claim that we may choose s such that s; € Na_1(u)NNa_1(r). If s € Na_1(u)N
Na—1(r), then we are done. Otherwise, let s; € Na_1(u) N Na_1(r). We shift from s3 to
Si—1, uncolor rs; and color rs; by 2. By relabeling colors and vertices, we may assume
that 51 € Na_1(u)NNa_1(r) and F* = (7,784, 8, 7Sit 15 Sit1y -« TSas Sas TSi—15 Sie1ly -« - s
rs1,s1) is a typical multifan. We let Fi,(r, 51 : 8o : Sa—2) be such a typical multifan.

For a coloring ¢ € C2(G—rs1),if B(s1) = (1), B(F) = ¢(F), and some permutation
of F is still a multifan with respect to rs; and 1, we call ¥ a near (F, p)-stable coloring.
As only colors in $(s1) will be essential for the proof, we will not distinguish between
 and any near (F,)-stable coloring. As the vertex set of all the resulting multifans is
always Na_1[r], for a color a € [1, A], we use E_l(a) to denote the vertex from Na_1[r]
that misses a with respect to 1.

Let ¢ € C2(G — rs1) be near (F,p)-stable and F* be the corresponding multifan.
The following two facts will be used frequently in the proof without being mentioned.

Fact 1 For any i € [2, A], since r and @_1(1') are (1,7)-linked by Lemma 3.1 (b), doing
a (1,i)-swap at vertices outside of V(F*) gives an (F™*,)-stable and so a near
(F, ¢)-stable coloring.

Fact 2 For any 2-inducing color 7 and A-inducing color § of F*, % () and ¥ (9)
are (7,0)-linked by Lemma 3.2 (a). Thus doing a (7, d)-swap at a vertex outside
of V(F*) or, when 7 # 2 and § # A, doing a (7,d)-swap at Eil(T) if r &
PE—l(T)(T, 0,%) gives a near (F*,1)-stable and so a near (F, ¢)-stable coloring.

We denote by S(u;s1,,y) the star subgraph of G that is centered at w consisting of
edges usy, uz, and uy. Recall that x,y € Na_1(u) \ Na_1(r) are distinct vertices.

Claim 6.1. We may assume that p(z) =2 and P(y) = A or p(x) = p(y) = A.

Proof of Claim 6.1. By doing ((x),1) — (1,2)-swaps at z, we find (F,p)-stable ¢’ €
CA(G —rsy) such that @ () = 2. Now, let @' (y) = . If A = 2, then doing (2,1) — (1, A)-
swaps at both z and y, we find (F, ¢')-stable ¢ € C*(G—rs;) such that 7’ (z) = " (y) =
A.TIf X # 2, by doing (A, 1) — (1, A)-swaps at y, we find (F,¢’)-stable ¢” € C2(G —rs1)
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Fig. 2. Coloring of S(u;s1,z,y).

such that @”(z) = 2 and @' (y) = A. As ¢” is (F,¢)-stable and ¢’ is (F,)-stable, it
follows that ¢” is (F,¢)-stable. So we can take ¢” to be 9. <&

By Claim 6.1, we assume @(z) = 2 and p(y) = A or (x) = p(y) = A and so consider
two cases below.

Subcase 2.1. B(z) = 2 and B(y) = A.

Note that by doing first a (2, 1)-swap at z, then a (1, A)-swap at both x and y, and
finally a (1,2)-swap at y, we can always identify this current case with the case that
P(z) = A and B(y) = 2. Let p(ux) = 7 and ¢(uy) = A. By exchanging the roles of the
two colors 2 and A, we consider two cases below: (A) p(uy) = A = 1; and (B) p(uy) = A
is 2-inducing. (When ¢(uy) is A-inducing, by assuming @(z) = A and p(y) = 2, the
argument will be symmetric to the argument for case (B) above.)

In both cases of (A) and (B), we do (A, A) — (A, 1)-swaps at y and call the result-
ing coloring ¢; and the resulting multifan Fj. Note that ¢ is near (F,y)-stable. Let
©1(s1u) = 4. The current coloring on S(u;s1,z,y) is as shown in J; of Fig. 2.

Claim 6.2. The color @1 can be modified into a near (Fy,¢1)-stable coloring such that
the color on S(u;s1,x,y) s as in Jo of Fig. 2.

Proof of Claim 6.2. Since s; and r are (1,A)-linked by Lemma 3.1 (b), we know
p(s1u) = 6 # 1. If uw € Py(1,6,¢1), then a (1,6)-swap at y gives Jo. Thus, we assume
u & Py(1,9, p1). This implies that 0 is A-inducing with respect to F; and ;. (Otherwise,
after a (1,6)-swap at y, s; and @; *(8) are (8, A)-unlinked, showing a contradiction to
Lemma 3.2 (a).)

Let w2 = ¢1/Py(1,0,¢1) (see Fig. 2). We claim that 7 is 2-inducing with respect
to F1 and py. Otherwise 7 is 1 or is A-inducing with respect to F; and ¢3. We do
(2,7) — (7, 1)-swaps at x and call the resulting coloring ¢/ and the resulting multifan F7.
Again, as Ps, (0, A, @) = syuy, 6 is still a A-inducing color of F| with respect to ¢/, by
Lemma 3.2 (a). Since 4 (ux) = 2, we must have u € P, (1,0, ¢5): otherwise, after a (1, §)-
swap at z, s; and z are (2,0)-linked with respect to the current coloring, contradicting
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Lemma 3.2 (a). Now, let ¢} be obtained from ¢} by doing a (1,0)-swap at both z and
y. We get Ps, (1, A, ¢3) = sjuy, showing a contradiction to Lemma 3.1 (b) that s; and
r are (1, A)-linked with respect to ¢3.

Thus 7 is 2-inducing with respect to Fy and @q. First, we let w3 = w2/ P:(1,2, p2).
Note that u ¢ Py(1,6,¢3) and u & Py(1,6,p3). Since otherwise, after a (1,4)-swap at
both z and y, s; and y are (1, A)-linked with respect to the current coloring, showing
a contradiction to Lemma 3.1 (b) that s; and r are (1, A)-linked. Since § is A-inducing
and 7 is 2-inducing with respect to Fy and o3, B *(6) and @5 *(7) are (6, 7)-linked by
Lemma 3.2 (a). Then we let ¢4 be obtained from ¢3 by doing a (1,d)-swap at both
x and y (see Fig. 2), and doing a (7,d)-swap at @5 *(6) (and so also at @5 *(7)). Since
gy is near (Fi,s3) stable, we let Fy be the resulting multifan. Note that § is a 2-
inducing color and 7 is a A-inducing color of F» with respect to ¢4. As a consequence,
u € Py(1,6,p4). Since otherwise, after a (1,6)-swap at y, s; and y are (6, A)-linked,
contradicting Lemma 3.2 (a). We then let @5 be obtained from ¢4 by doing a (1, d)-swap
at both z, y (and so also ), and then a (1,2)-swap at x. We obtain the desired coloring
on S(u;sy,z,y). <

By Claim 6.2, we let @5 € C2(G — rsy) be a near (Fy, ¢;)-stable coloring and F, be
a corresponding multifan such that under s, the color on S(u;si,z,y) is as in Jo of
Fig. 2. Now K = (r,7s1, 81, s1u, u, uy, y) is a Kierstead path with respect to rs; and ¢s.
Since dg(s1) = A — 1, by Lemma 3.3 (b), y and s; are (2, d)-linked. This implies that
§ must be a 2-inducing color of Fy, as otherwise, s; and @, *(8) should be (2, §)-linked.
If 7 is A-inducing of Fy, then as @, '(6) and %, (1) are (6, 7)-linked by Lemma 3.2 (a),
we do a (0, 7)-swap at y. Again by Lemma 3.3 (b), y and s; are (2, 7)-linked, showing
a contradiction to Lemma 3.2 (a) that @, '(7) and s; are (2, 7)-linked. Therefore, 7 is a
2-inducing color of Fy. We first do (2,1) — (1, A) swaps at z, and let @3 be the resulting
coloring (see Fig. 3). At this step, ¢3(s1u) = 1, p3(uy) = A, P3(y) = 0, and y and s;
are (2, 6)-linked with respect to @3 by Lemma 3.3 (b). Call this fact ().

Let ¢4 = @3/ Py(7, A, p3) (see Fig. 3) and F3 be the resulting multifan. Since @3 *(7)
appears before the edge with color 7 in F5, 7 is still a 2-inducing color of F3. As s; and r
are (1, A)-linked by Lemma 3.1 (b), we have u € P,(1,7,p4). Let @5 = w4/ Py(1,7,p4).
The coloring of S(u;s1,x,y) is now as in J3 of Fig. 3. Since 2,6 & {1,7,A}, y and s;
are still (2, 0)-linked with respect to 5 by fact (), which further implies that ¢ is a 2-
inducing color of F3 with respect to ¢s. Since 5 is (F3, ¢4)-stable, 7 is still a 2-inducing
colors of F3 with respect to 5. We consider two cases to finish the remaining part of
the proof.

Subcase 2.1.1. 7 < ¢ in F3 with respect to ¢s5.
Let s; € Na_1(r) such that $5(s;) = J. Since y and s; are still (2, d)-linked with

respect to @5 and ¢ is 2-inducing of F3, by Lemma 3.2 (b), r € Py, (2,4, ¢5). We reach a
contradiction through the following operations:
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Fig. 3. Coloring of S(u;s1,z,y).

s; (also at r) zands; s
(2,0)-swap  (1,2)-swap shift |’

where we assume that ¢5(rs;) = 7 for some j € [2,A — 2] and sj,5j41,...,5; is
the 2-inducing sequence of F3 starting at s; and ending at s;. Denote the new col-
oring by @s. Now, Bg(r) = 7, ws(s1u) = 7, peluzr) = A, and Pg(z) = 2, and
K = (r,rs1, 81,510, u,uzx,x) is a Kierstead path with respect to rs; and pg. Since
da(s1) = A — 1, we get a contradiction to Lemma 3.3 (a) that {r,s1,u,z} is pe-
elementary.

Subcase 2.1.2. § < 7 in F3 with respect to 5.

We only show that by performing Kempe changes, we can find an (Fj, p5)-stable
coloring such that the color on S(u; s1,,y) with respect to it is as given in Jy of Fig. 3.
Then the proof follows the same ideas as in Subcase 2.1.1 by exchanging the roles of
and §. Based on the coloring in J3 of Fig. 3, do a (1,0)-swap at both x and y and denote
the resulting coloring by s.

Claim 6.3. u € P, (1,7, ).

Proof of Claim 6.3. Assume to the contrary that u ¢ P,(1, T, ¢s). Under this assumption,
it must be the case that u € P.(1,7,¢s) (otherwise, performing a (9, A)-swap at « and
a (1,7)-swap at u shows that s; and y are (1,A)-linked, showing a contradiction to
Lemma 3.1 (b) that s; and r are (1, A)-linked). Since u € P.(1, 7, ), let p7 be obtained
by doing a (1,7)-swap at y and (§, A)-swap at x, and let F3 be the resulting multifan.
Then P, (1, A, p7) = sjuy, implying that 7 is a A-inducing color of F5 by Lemma 3.2
(a). Note that J is still a 2-inducing color of F5 as the only operation that changes the
color sequence of F3 was the (8, A)-swap we did to get @7 from ¢g. Thus, 7, () and
?7 (1) are (8, 7)-linked by Lemma 3.2 (a). Also, since 7 is A-inducing and § is 2-inducing
of F3, we know u ¢ Py(7,9,p7). Since otherwise, after a (7,d)-swap at y, s; and y are
(0, A)-linked, showing a contradiction to Lemma 3.2 (a).
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Let pg = @7/ Py (7,6, p7). Now P, (6, A, pg) = yux. Note also that u € P50, 7, vs) =
P@:l(ﬂ(é, 7,s). For otherwise, after a (7, d)-swap at u, s; and y are (9, A)-linked, show-
ing a contradiction to the fact that § is still a 2-inducing color of the resulting multifan.
Note that P,(5, A, ¢s) = zuy. Let pg = pg/Pu(d, A, ¢g). Now By () and B, (1) are
(0, 7)-unlinked. However, since g is (Fy, ¢g)-stable, 7 is still a A-inducing color and §
is 2-inducing of Fy with respect to g, we get a contradiction to Lemma 3.2 (a). <

Thus by Claim 6.3, u € Py(1,7,¢6). Do a (1,7)-swap at y (and u), and denote the
resulting coloring by ¢7. Note that u € P,(1, 6, ¢7) (as otherwise, after a (1,d)-swap at
x, s1 and x are (1, A)-linked, showing a contradiction to Lemma 3.1 (b) that s; and r are
(1, A)-linked). Let pg = w7/P:(1,9,¢7). Now with respect to ¢s, we have the coloring
in Jy of Fig. 3. By the definition, ¢g is (F3, ¢5)-stable so we still have § < 7 in F3 with
respect to ¢g. The remaining proof follows the same ideas as in Subcase 2.1.1.

Subcase 2.2. B(x) = A and P(y) = A.

Claim 6.4. We may assume that |[Na_1(u) " Na_1(r)] = A —4.

Proof of Claim 6.4. We may assume that z and y are (1,A)-linked. For other-
wise, performing (A, 1) — (1,2)-swaps at x reduces the problem to Subcase 2.1. Since
INA—1(uw)NNa_1(r)] > A—4 implies [Na_1(u)NNa_1(r)] = A—3 already, we assume to
the contrary that |Na_1(u)NNa—1(r)| < A—5. Then there exists 2 € Na_1(u)\Na_1(r)
such that z # z,y. Let (z) = A. If A = 2, by exchanging the roles of z and z, we reduce
the problem to Subcase 2.1. Thus, A # 2. Doing (A, 1) — (1, 2)-swaps at z and exchanging
the roles of  and z reduces the problem to Subcase 2.1. <

Claim 6.5. We may assume that F(r,s1 : Sq : Sa—2) is a typical multifan with two
sequences. That is, F' contains both 2-inducing sequence and A-inducing sequence.

Proof of Claim 6.5. Recall that F,(r,s1 : sq : sa—2) is a typical multifan. As A > 7,
INA—1(u) N Na_1(r)] = A —4 > 3 by Claim 6.4. If F is a typical 2-inducing multifan,
then let s; € Na_1(u) N Na_1(r) such that s; # sy and that B(s;) is not the last 2-
inducing color of F. Then we shift from sy to s;_1, uncolor rs;, and color rs; by 2.
Now F* = (1,78i,8isTSit1,Sidt1s--+,TSA—2, SA—2,TSi—1,8i—1,---,781,81) is a multifan
with two sequences. By permuting the names of the colors and the labels of vertices in
{s1,...,8a_2}, we can assume that F = F* is a typical multifan with two sequences.
O

Let p(s1u) =9, ¢(ux) = 7, and p(uy) = . By exchanging the roles of the two colors
2 and A, we have two possibilities for p(uy): (A) p(uy) = A =1; and (B) p(uy) = A is
2-inducing. (When ¢(uy) is A-inducing, we will first assume that g(z) = 2 and B(y) = 2
(by performing (A, 1) — (1,2)-swaps at both z and y). Then all the argument will be
symmetric to the argument for the case (B) above.) We now consider two cases to finish
the proof.
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L1 L2

Fig. 4. Coloring of S(u;s1,z,y).

Subcase 2.2.1. )\ is not the last 2-inducing color of F'.

We first perform (A, A) — (A, 1)-swaps at both x and y. Denote by ¢; the resulting
coloring and F} the corresponding multifan. Since A is not the last 2-inducing color of
F, F still has two sequences with respect to ;1. The current coloring of S(u; s1,z,y) is
given in L of Fig. 4. Since s and r are (1, A)-linked by Lemma 3.1 (b), § # 1. We next
show u € Py(1,6, 1) that will lead to the coloring in Lo of Fig. 4 after a (1,6)-swap at
both = and y.

Claim 6.6. u € Py(1,0,¢1).

Proof of Claim 6.6. Assume to the contrary that u & Py(1,d,¢1). This implies that ¢ is a
A-inducing color of Fy (since after doing a (1, §)-swap at y, s; and y are (§, A)-linked). If
7 is a A-inducing of Fy, then we let 2 be obtained by performing (1,2) — (2,7) — (1, 7)-
swaps at both x and y based on the coloring of L; in Fig. 4. Now, we must have that
u € Pp(1,0,¢2) or u € Py(1,9, p2) since ¢ is either 2-inducing or A-inducing with respect
to Fi. Let @3 be obtained from ¢o by performing a (1,)-swap at both x and y. Then
both K1 = (r,rs1, 81, 84, u,ux,x) and Ko = (1,781, $1, Sy, u, uy,y) are Kierstead paths
with respect to rs; and 3. Since dg(s1) = A — 1, applying Lemma 3.3 (b), x and s; are
(6, A)-linked and y and s; are (2, 6)-linked. However, by Lemma 3.2 (a), s; and 35 *(0)
are either (4,2) or (4, A)-linked, showing a contradiction.

Thus we assume that 7 is a 2-inducing color of Fj. Based on the coloring of
S(u;s1,x,y) as given in Ly of Fig. 4, we perform (1,7) — (7,)-swaps at both = and
y and let ¢y be the resulting coloring. Note that either po(s1u) = 6 or o(sju) = 7. If
p2(s1u) = 4, then after doing a (1,0)-swap at both  and y, s; and y are (1, A)-linked,
which gives a contradiction to Lemma 3.1 (b) that s; and r are (1, A)-linked. Thus
w2(s1u) = 7. We first do a (1,6)-swap at both 2 and y. Then since 7 is a 2-inducing
color of Fi, u € Py(1,7,¢2) (since otherwise, after doing a (1,7)-swap at y, s; and y
are (7, A)-linked, showing a contradiction to Lemma 3.2 (a)). Thus we do a (1, 7)-swap
at both x and y and let ¢3 be the new coloring. Note that § is still A-inducing and 7
is 2-inducing with respect to F; and 3. Thus $5 *(5) and 5 ' (1) are (J,7)-linked by
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Lemma 3.2 (a). Let ¢4 be obtained from ¢3 by doing a (§, 7)-swap at y, and let F}* be the
resulting multifan. Then K = (r,rs1, s1, s1u,u, uy,y) is a Kierstead path with respect
to rs; and @4. Since dg(s1) = A —1, applying Lemma 3.3 (b), y and s; are (2, 9)-linked.
Since § is still A-inducing and 7 is 2-inducing with respect to F}* and ¢4, we achieve a
contradiction to the fact that s; and @, *(8) are (2, §)-linked by Lemma 3.2 (a). Therefore
it must be the case that u € P,(1,0,¢1). <

Since u € Py(1,6,¢1), we perform a (1,6)-swap at both x and y gives Ly in Fig. 4.
Call the resulting coloring 2. Now K = (r, 781, $1, Su, U, uy, y) is a Kierstead path with
respect to rsy and s. Since dg(s1) = A—1, by Lemma 3.3 (b), y and s; are (2, )-linked.
It deduces that § must be a 2-inducing color of F; with respect to 5. Recall that Fj still
has two sequences with respect to . Let v be a A-inducing color of F}. Since @51(5)
and @, () are (6, )-linked by Lemma 3.2 (a), we do a (4, v)-swap at y to get @3. Still, &
is a 2-inducing color and + is a A-inducing color of the resulting multifan. By Lemma 3.3
(b), 51 and y are (2,7)-linked, showing a contradiction to the fact that s; and 33 ()
are (2,7)-linked.

Subcase 2.2.2. ) is the last 2-inducing color of F.

If 7 is 2-inducing, then 7 < A. This gives back to the previous case by exchanging
the roles of 7 and A. If 7 is A-inducing and 7 is not the last A-inducing color, then by
doing (A, 1) — (1,2)-swaps at & and y, a similar proof follows as in the previous case by
exchanging the roles of 2 and A. Thus 7 is the last A-inducing color of F.

Let C, be the cycle in Ga containing u. By Theorem 4.1 (i), for every vertex on C,
its (A — 1)-neighborhood is Na_1(u). As |V(C,)| > 3, there exist u*, v € V(C,) \ {u}
such that one of p(u*y) and p(u'y) is neither 7 nor A. Assume that p(u*y) & {7, A\}.
Letting u* play the role of u, we reduce the problem to the previous case, finishing the
proof of Theorem 2.5. O
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