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1. Introduction

For two integers p and q, let [p, q] = {i ∈ Z : p ≤ i ≤ q}. Let k ≥ 0 be an integer and 
G be a simple graph with maximum degree Δ. An edge k-coloring of G is a mapping ϕ
from E(G) to [1, k], called colors, such that no two adjacent edges receive the same color 
with respect to ϕ. The chromatic index of G, denoted χ′(G), is the smallest k so that G
has an edge k-coloring. In 1960’s, Gupta [8] and, independently, Vizing [13] proved that 
for all graphs G, Δ ≤ χ′(G) ≤ Δ + 1. This leads to a natural classification of simple 
graphs. Following Fiorini and Wilson [6], a graph G is of class 1 if χ′(G) = Δ and of 
class 2 if χ′(G) = Δ +1. Holyer [11] showed that it is NP-complete to determine whether 
an arbitrary graph is of class 1.

Following terminologies from [12], the core of G, denoted GΔ, is the subgraph of G
induced by its vertices of degree Δ, and we call G overfull if |E(G)| > Δ�|V (G)|/2�. 
Overfullness of graphs is closely related to the fractional chromatic index, χ′

f(G). In the 
area of edge coloring, the density of G, denoted ρ(G), is defined as the maximum of 
|E(G[U ])|/((|U | − 1)/2) ranging over all U ⊆ V (G) with |U | odd and at least 3. In fact, 
χ′
f (G) = max{Δ(G), ρ(G)}, and χ′

f (G) can be computed in polynomial time [4]. From 
the definition, we know that G contains an overfull subgraph of the same maximum 
degree if and only if χ′

f (G) > Δ(G).
Working on graphs whose core has a simple structure (see [12, Sect. 4.2]), Vizing [13]

proved that if GΔ has at most two vertices then G is class 1; Fournier [7] and also inde-
pendently Ehrenfeucht, Faber, and Kierstead [5, Lemma 3] generalized Vizing’s result by 
showing that if GΔ contains no cycles then G is class 1. Thus a necessary condition for a 
graph to be class 2 is to have a core that contains cycles. In 1996, Hilton and Zhao [10]
proposed the following conjecture.

Conjecture 1.1 (Core Conjecture). Let G be a simple connected graph with maximum 
degree Δ ≥ 3 and Δ(GΔ) ≤ 2. Then G is class 2 implies that G is overfull or G = P ∗.

As a class 2 graph of maximum degree 2 is an odd cycle and odd cycles are overfull, 
if true, the Core Conjecture implies that for connected graphs G with Δ(GΔ) ≤ 2, 
determining whether G is class 2 can be done by checking whether |E(G)| > Δ�|V (G)|/2�
if G �= P ∗. We call a connected class 2 graph G with Δ(GΔ) ≤ 2 an HZ-graph. A 
first breakthrough of the Core Conjecture was achieved in 2003, when Cariolaro and 
Cariolaro [2] settled the base case Δ = 3. They proved that P ∗ is the only HZ-graph 
with maximum degree Δ = 3, an alternative proof was given later by Král’, Sereny, and 
Stiebitz (see [12, pp. 67–63]). The next case, Δ = 4, was recently solved by Cranston 
and Rabern [3]: they proved that the only HZ-graph with maximum degree Δ = 4 is 
the graph obtained from K5 with one edge removed. In this paper, we confirm the Core 
Conjecture for all HZ-graphs G with Δ ≥ 4. It worth mentioning that our proof implies a 
polynomial-time algorithm that, given G with maximum degree Δ ≥ 4 and Δ(GΔ) ≤ 2, 
finds an optimal edge coloring of G.
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Theorem 1.2. Let G be a connected graph with maximum degree Δ ≥ 4 and Δ(GΔ) ≤ 2. 
Then G is class 2 if and only if G is overfull.

Since every overfull graph is class 2, we will only prove the “only if” statement in 
Theorem 1.2. The remainder of the paper is organized as follows. In the next section, 
we prove Theorem 1.2 by applying Theorems 2.3 to 2.5. In Section 3, we give necessary 
definitions and list results from [1]. Theorems 2.3 to 2.5 will be proved in Sections 4, 5, 
and 6, respectively.

2. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by applying Theorems 2.3 to 2.5. We start with 
some concepts. For an integer k ≥ 0, we denote by Ck(G) the set of all edge k-colorings 
of G. The symbol Δ is reserved for Δ(G), the maximum degree of G throughout this 
paper.

Let G be a graph, v ∈ V (G), and i ≥ 0 be an integer. An i-vertex is a vertex of degree 
i in G, and an i-vertex from the neighborhood of v is called an i-neighbor of v. Define

Vi = {w ∈ V (G) : dG(w) = i}, Ni(v) = NG(v) ∩ Vi, and Ni[v] = Ni(v) ∪ {v}.

For X ⊆ V (G), let NG(X) =
⋃

x∈X NG(x) and Ni(X) = NG(X) ∩ Vi .
Let e ∈ E(G) and ϕ ∈ Ck(G − e) for some integer k ≥ 0. The set of colors present

at v is ϕ(v) = {ϕ(f) : f is incident to v}, and the set of colors missing at v is ϕ(v) =
[1, k] \ϕ(v). If ϕ(v) = {α} is a singleton for some α ∈ [1, k], we also write ϕ(v) = α. For 
X ⊆ V (G), let ϕ(X) =

⋃
x∈X ϕ(x). The set X is ϕ-elementary if ϕ(x) ∩ ϕ(y) = ∅ for 

any distinct x, y ∈ X.
An edge e ∈ E(G) is a critical edge of G if χ′(G −e) < χ′(G), and G is edge Δ-critical

or simply Δ-critical if G is connected, χ′(G) = Δ + 1, and each of its edges is critical. 
The following result by Hilton and Zhao in [9] reveals certain properties of an HZ graph.

Lemma 2.1. If G is an HZ-graph with maximum degree Δ, then the following holds.

(a) G is Δ-critical and GΔ is 2-regular.
(b) δ(G) = Δ − 1, or Δ = 2 and G is an odd cycle.
(c) Every vertex of G has at least two neighbors in GΔ.

Let Δ ≥ 4 and let OΔ be the set of all graphs obtained from two graphs H1 and H2

by adding all edges between V (H1) and V (H2), where H1 is any 2-regular graph on n1

vertices, H2 is any (Δ − 1 − n1)-regular graph on (Δ − 2) vertices, and n1 ∈ [3, Δ − 1]
such that n1 + (Δ − 2) is odd. Stiebitz et al. showed that Conjecture 1.1 is equivalent to 
the conjecture below.
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Conjecture 2.2 ([12, Conjecture 4.10]). If G is an HZ-graph with maximum degree Δ, 
then either G ∈ OΔ, or Δ = 2 and G is an odd cycle, or Δ = 3 and G = P ∗.

We will prove this equivalent form of the Core Conjecture for Δ ≥ 4 by applying the 
following results.

Theorem 2.3. If G is an HZ-graph with maximum degree Δ ≥ 4, then the following two 
statements hold.

(i) For any two adjacent vertices u, v ∈ VΔ, NΔ−1(u) = NΔ−1(v).
(ii) For any r ∈ VΔ, there exist s ∈ NΔ−1(r) and ϕ ∈ CΔ(G − rs) such that NΔ−1[r]

is ϕ-elementary.

For an HZ-graph G with maximum degree Δ ≥ 4, each component of GΔ is a cycle by 
Lemma 2.1. So Theorem 2.3 (i) implies that NΔ−1(x) = NΔ−1(y) for any two vertices 
x, y from the same cycle of GΔ.

Theorem 2.4. If G is an HZ-graph with maximum degree Δ ≥ 4, then for any two adjacent 
vertices x, y ∈ VΔ−1, NΔ(x) = NΔ(y).

Theorem 2.5. Let G be an HZ-graph with maximum degree Δ ≥ 7 and u, r ∈ VΔ. If 
NΔ−1(u) �= NΔ−1(r) and NΔ−1(u) ∩NΔ−1(r) �= ∅, then |NΔ−1(u) ∩NΔ−1(r)| = Δ − 3, 
i.e. |NΔ−1(u) \NΔ−1(r)| = |NΔ−1(r) \NΔ−1(u)| = 1.

Corollary 2.6. If G is an HZ-graph with maximum degree Δ ≥ 7 and there exist u, v ∈ VΔ
such that NΔ−1(u) �= NΔ−1(v), then VΔ−1 is an independent set in G.

Proof. Assume to the contrary that there exist x, y ∈ VΔ−1 such that xy ∈ E(G). By 
Lemma 2.1, there exists w ∈ NΔ(x). By the assumption that there exist u, v ∈ VΔ such 
that NΔ−1(u) �= NΔ−1(v), there exists some w′ ∈ VΔ such that NΔ−1(w) �= NΔ−1(w′). 
We may further assume that the distance between w and w′ in G is shortest among 
all pairs of vertices w1 and w′

1 such that w1 ∈ NΔ(x) and NΔ−1(w1) �= NΔ−1(w′
1). We 

claim that NΔ−1(w) ∩ NΔ−1(w′) �= ∅. Let P be a shortest path connecting w and w′

in G. By the choice of w and w′, (V (P ) ∩ VΔ) \ {w, w′} contains no vertex w∗ such 
that NΔ−1(w∗) = NΔ−1(w). Consequently, VΔ ∩ V (P ) = {w, w′}. Since NΔ−1(w) �=
NΔ−1(w′), it follows that w and w′ are not on the same cycle of GΔ and so ww′ �∈ E(G)
by Theorem 2.3 (i). Thus P − {w, w′} has at least one vertex. By Theorem 2.4, all 
vertices of P − {w, w′} have in G the same set of neighbors from VΔ. Thus, both w and 
w′ are Δ-neighbors of each vertex from P −{w, w′} and so NΔ−1(w) ∩NΔ−1(w′) �= ∅. By 
Theorem 2.5, we have |NΔ−1(w) ∩NΔ−1(w′)| = Δ −3, which together with Theorem 2.4
implies x, y ∈ NΔ−1(w) ∩NΔ−1(w′).

Let NΔ−1(w′) \ NΔ−1(w) = {z}. We claim that NΔ−1(z) = ∅. For otherwise, let 
z′ ∈ NΔ−1(z). Clearly z′ �= z. By Theorem 2.4, z′ ∈ NΔ−1(w′) \ NΔ−1(w), giving a 
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contradiction to NΔ−1(w′) \NΔ−1(w) = {z}. We then claim that NΔ(z) ⊆ NΔ(x). For 
otherwise let w∗ ∈ NΔ(z) \NΔ(x). As x ∈ NΔ−1(w′) and x �∈ NΔ−1(w∗), it follows that 
w∗ �= w′. Since z ∈ NΔ−1(w∗) ∩ NΔ−1(w′), it follows that |NΔ−1(w∗) ∩ NΔ−1(w′)| ≥
Δ − 3 by Theorem 2.5 (it can happen that NΔ−1(w∗) = NΔ−1(w′)). Thus NΔ−1(w∗) ∩
NΔ−1(w′) contains at least one of x and y as x, y ∈ NΔ−1(w′). As xy ∈ E(G), we 
have x, y ∈ NΔ−1(w∗) ∩ NΔ−1(w′) by Theorem 2.4. This gives a contradiction to the 
choice of w∗. Therefore we have NΔ−1(z) = ∅ and NΔ(z) ⊆ NΔ(x). However, dG(z) ≤
|NΔ(x)| < |NΔ(x) ∪{y}| ≤ dG(x), contradicting dG(x) = dG(z) = Δ −1. This completes 
the proof. �

We now prove Conjecture 2.2 for Δ ≥ 4 as below.

Theorem 2.7. If G is an HZ-graph with maximum degree Δ ≥ 4, then G ∈ OΔ.

Proof. Let G be an HZ-graph with maximum degree Δ ≥ 4. Then GΔ is 2-regular 
and V (G) = VΔ ∪ VΔ−1 by Lemma 2.1 (a) and (b). First assume that NΔ−1(u) =
NΔ−1(v) for every pair u, v ∈ VΔ. Then VΔ, VΔ−1 and the edges between them form a 
complete bipartite graph. As a consequence, GΔ is (Δ − |VΔ−1|)-regular and G[VΔ−1]
is (Δ − 1 − |VΔ|)-regular. Then GΔ is both 2-regular and (Δ − |VΔ−1|)-regular implies 
|VΔ−1| = Δ − 2. Let r ∈ VΔ. The assumption that NΔ−1(u) = NΔ−1(v) for every 
pair u, v ∈ VΔ also implies that NΔ−1(r) = VΔ−1. By Theorem 2.3 (ii), there exist 
s ∈ NΔ−1(r) = VΔ−1 and ϕ ∈ CΔ(G − rs) such that NΔ−1[r] = VΔ−1 ∪ {r} is ϕ-
elementary, which thereby implies that V (G) is ϕ-elementary. Thus each color class of 
ϕ is a matching that uncovers exactly one vertex of G, showing that |V (G)| is odd. 
Therefore G ∈ OΔ.

We now assume that there exist u, v ∈ VΔ such that NΔ−1(u) �= NΔ−1(v). We further 
assume that NΔ−1(u) ∩ NΔ−1(v) �= ∅ (using the same argument to find u and v as 
for finding w and w′ in the proof of Corollary 2.6). By Theorem 2.3 (i), the cycle Cu

containing u and the cycle Cv containing v from GΔ are distinct. Let w ∈ NΔ−1(u) ∩
NΔ−1(v). Then dG(w) ≥ |V (Cu)| + |V (Cv)| ≥ 6 by Theorem 2.3 (i). Thus Δ = dG(w) +
1 ≥ 7. Applying Corollary 2.6, it follows that VΔ−1 is an independent set of G.

Let A ⊆ VΔ be the set of all vertices a satisfying NΔ−1(a) = NΔ−1(u), and let B ⊆ VΔ

be the set of all vertices b satisfying NΔ−1(b) �= NΔ−1(u) and NΔ−1(b) ∩NΔ−1(u) �= ∅. 
Clearly u ∈ A and v ∈ B, so A and B are non-empty. Partition B into non-empty subsets 
B1, B2, . . . , Bt such that for each i ∈ [1, t], all vertices in Bi have the same neighborhood 
in VΔ−1. By Theorem 2.3 (i), each of A, B1, B2, . . . , Bt induces a union of disjoint cycles 
in GΔ. So |A| ≥ 3 and |Bi| ≥ 3 for each i ∈ [1, t].

Now we claim t ≥ Δ − 2. Assume otherwise t ≤ Δ − 3. Since for each i ∈ [1, t], 
|NΔ−1(A) \ NΔ−1(Bi)| = 1 by Theorem 2.5 and |NΔ−1(A)| = Δ − 2, there exists z ∈
NΔ−1(A) such that z �∈ NΔ−1(A) \ NΔ−1(Bi) for each i ∈ [1, t], or equivalently, z ∈
NΔ−1(A) ∩

(⋂t
i=1 NΔ−1(Bi)

)
. Let z′ ∈ NΔ−1(A) \NΔ−1(B1). Then
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|A| +
∑

1≤i≤t

|Bi| = dG(z) = dG(z′) ≤ |A| +
∑

2≤i≤t

|Bi|,

achieving a contradiction. Hence t ≥ Δ − 2.
We now achieve a contradiction to the assumption Δ ≥ 7 by counting the number 

of edges in G between NΔ−1(A) and A ∪ B. Note that |NΔ−1(A)| = Δ − 2. Since each 
vertex in B has exactly Δ − 3 neighbors in NΔ−1(A) and |Bi| ≥ 3 for each i ∈ [1, t], we 
have

|EG(A∪B,NΔ−1(A))| = |A|(Δ−2)+|∪t
i=1Bi|(Δ−3) ≥ 3(Δ−2)+3t(Δ−3) ≥ 3(Δ−2)2.

On the other hand, since NΔ−1(A) is an independent set and every vertex in it has 
degree Δ − 1 in G, we have

|EG(A ∩B,NΔ−1(A))| = (Δ − 1)(Δ − 2).

Since Δ ≥ 2, solving Δ in (Δ − 1)(Δ − 2) ≥ 3(Δ − 2)2 gives Δ ≤ 2.5, achieving a desired 
contradiction. �
3. Definitions and previous results

In this section, we recall essential concepts from [1] and list a number of results that 
we will use as lemmas in the proof of Theorems 2.3 to 2.5.

Let G be a graph, e ∈ E(G), ϕ ∈ Ck(G − e) for some k ≥ 0, and let α, β ∈ [1, k]. 
Each component of G − e induced on edges colored by α or β is either a path or an even 
cycle, which is called an (α, β)-chain of G − e with respect to ϕ. Interchanging α and β
on an (α, β)-chain C of G gives a new edge k-coloring, which is denoted by ϕ/C. This 
operation is called a Kempe change.

For x, y ∈ V (G), if x and y are contained in the same (α, β)-chain, we say x and y are 
(α, β)-linked with respect to ϕ. Otherwise, they are (α, β)-unlinked. If an (α, β)-chain 
P is a path with one endvertex as x, we also denote it by Px(α, β, ϕ) and just write 
Px(α, β) if ϕ is understood. For a vertex u and an edge uv contained in Px(α, β, ϕ), we 
write u ∈ Px(α, β, ϕ) and uv ∈ Px(α, β, ϕ). If u, v ∈ Px(α, β, ϕ) such that u lies between 
x and v on P , then we say that Px(α, β, ϕ) meets u before v.

Let T be an alternating sequence of vertices and edges of G. We denote by V (T )
the set of vertices contained in T , and by E(T ) the set of edges contained in T . We 
simply write ϕ(T ) for ϕ(V (T )). If V (T ) is ϕ-elementary and ϕ(T ) �= ∅, then for a 
color τ ∈ ϕ(T ), we denote by ϕ−1

T (τ) the unique vertex in V (T ) at which τ is missed. A 
coloring ϕ′ ∈ Ck(G −e) is (T, ϕ)-stable if for every x ∈ V (T ) and every f ∈ E(T ), it holds 
that ϕ′(x) = ϕ(x) and ϕ′(f) = ϕ(f). Clearly, ϕ is (T, ϕ)-stable, and if ϕ1 ∈ Ck(G − e) is 
(T, ϕ)-stable, and ϕ2 ∈ Ck(G − e) is (T, ϕ1)-stable, then ϕ2 is also (T, ϕ)-stable.
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3.1. Multifan

Let G be a graph, rs1 ∈ E(G) and ϕ ∈ Ck(G − rs1) for some k ≥ 0. A multifan
centered at r with respect to rs1 and ϕ is a sequence

Fϕ(r, s1 : sp) := (r, rs1, s1, rs2, s2, . . . , rsp, sp)

with p ≥ 1 consisting of distinct vertices and edges such that for every edge rsi with 
i ∈ [2, p], there is a vertex sj with j ∈ [1, i − 1] satisfying ϕ(rsi) ∈ ϕ(sj). The following 
result can be found in [12, Theorem 2.1].

Lemma 3.1. Let G be a class 2 graph and Fϕ(r, s1 : sp) be a multifan with respect to rs1
and ϕ ∈ CΔ(G − rs1). Then the following statements hold.

(a) V (F ) is ϕ-elementary.
(b) For any α ∈ ϕ(r) and any β ∈ ϕ(si) with i ∈ [1, p], r and si are (α, β)-linked with 

respect to ϕ.

Let Fϕ(r, s1 : sp) be a multifan. We call s�1 , s�2 , . . . , s�h , a subsequence of 
s2, . . . , sp, an α-inducing sequence for some α ∈ [1, k] with respect to ϕ and F if 
ϕ(rs�1) = α ∈ ϕ(s1) and ϕ(rs�i) ∈ ϕ(s�i−1) for each i ∈ [2, h]. (By this definition, 
(r, rs1, s1, rs�1 , s�1 , . . . , rs�h , s�h) is also a multifan with respect to rs1 and ϕ.) A color 
in ϕ(s�i) for any i ∈ [1, h] is an α-inducing color and is induced by α. For αi ∈ ϕ(s�i)
and αj ∈ ϕ(s�j ) with i < j and i, j ∈ [1, h], we write αi ≺ αj . For convenience, α itself 
is an α-inducing color and is induced by α, and α ≺ β for any β ∈ ϕ(s�i) and any 
i ∈ [1, h]. An α-inducing color β is called a last α-inducing color if there does not exist 
any α-inducing color δ such that β ≺ δ.

By Lemma 3.1 (a), each color in ϕ(F ) \ϕ(r) is induced by a unique color in ϕ(s1). Also 
if α1 and α2 are two distinct colors in ϕ(s1), then an α1-inducing sequence is disjoint 
with an α2-inducing sequence. The following result is a consequence of Lemma 3.1 (a).

Lemma 3.2 ([1, Lemma 3.2]). Let G be a class 2 graph and Fϕ(r, s1 : sp) be a multifan 
with respect to rs1 and ϕ ∈ CΔ(G − rs1). For any two colors δ, λ with δ ∈ ϕ(si) and 
λ ∈ ϕ(sj) for some distinct i, j ∈ [1, p], the following statements hold.

(a) If δ and λ are induced by different colors from ϕ(s1), then si and sj are (δ, λ)-linked 
with respect to ϕ.

(b) If δ and λ are induced by the same color from ϕ(s1) such that δ ≺ λ and si and sj
are (δ, λ)-unlinked with respect to ϕ, then r ∈ Psj (λ, δ, ϕ).

By Lemma 2.1 (a), every edge of an HZ graph is critical. For an HZ-graph G with 
maximum degree Δ ≥ 3, we let rs1 ∈ E(G) with r ∈ VΔ and s1 ∈ NΔ−1(r) :=
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{s1, s2, . . . , sΔ−2}, and ϕ ∈ CΔ(G − rs1). Then we call (G, rs1, ϕ) a coloring-triple. As 
Δ-degree vertices in a multifan do not miss any color, for multifans in HZ-graphs, we 
add a further requirement in its definition as follows and we use this new definition in 
the remainder of this paper.

Assumption. For multifans in an HZ-graph, all of its vertices except the center have 
degree Δ − 1.

Let (G, rs1, ϕ) be a coloring-triple and F := Fϕ(r, s1 : sp) be a multifan. By its 
definition, |ϕ(s1)| = 2, |ϕ(si)| = 1 for each i ∈ [2, p], and so every color in ϕ(F ) \ ϕ(r)
is induced by one of the two colors in ϕ(s1). We call F a typical multifan, denoted 
Fϕ(r, s1 : sα : sβ) := (r, rs1, s1, rs2, s2, . . . , rsα, sα, rsα+1, sα+1, . . . , rsβ , sβ), where β :=
p, if ϕ(r) = 1 (recall we denote ϕ(v) by a number if |ϕ(v)| = 1), ϕ(s1) = {2, Δ}, and 
if |V (F )| ≥ 3, then ϕ(rsα+1) = Δ and ϕ(sα+1) = α + 2 (if β > α), and for each 
i ∈ [2, β] with i �= α + 1, ϕ(rsi) = i and ϕ(si) = i + 1. It is clear that s2, . . . , sα is 
the longest 2-inducing sequence and sα+1, . . . , sβ is the longest Δ-inducing sequence of 
Fϕ(r, s1 : sα : sβ). By relabeling vertices and colors if necessary, any multifan in an 
HZ-graph can be assumed to be a typical multifan, see Fig. 1 (a) for a depiction. If 
α = β, then we write Fϕ(r, s1 : sα) for Fϕ(r, s1 : sα : sβ), and call it a typical 2-inducing 
multifan.

3.2. Kierstead path

Let G be a graph, e = v0v1 ∈ E(G), and ϕ ∈ Ck(G − e) for some in-
teger k ≥ 0. A Kierstead path with respect to e and ϕ is a sequence K =
(v0, v0v1, v1, v1v2, v2, . . . , vp−1, vp−1vp, vp) with p ≥ 1 consisting of distinct vertices and 
edges such that for every edge vivi+1 with i ∈ [1, p −1], there exists j ∈ [0, i −1] satisfying 
ϕ(vivi+1) ∈ ϕ(vj).

A Kierstead path with at most 3 vertices is a multifan. We consider Kierstead paths 
with 4 vertices. Statement (a) below was proved in Theorem 3.3 from [12] and statement 
(b) is a consequence of (a).

Lemma 3.3. Let G be a class 2 graph, v0v1 ∈ E(G), and ϕ ∈ CΔ(G − v0v1). If K =
(v0, v0v1, v1, v1v2, v2, v2v3, v3) is a Kierstead path with respect to v0v1 and ϕ, then the 
following statements hold.

(a) If min{dG(v1), dG(v2)} < Δ, then V (K) is ϕ-elementary.
(b) For any two colors α, δ with α ∈ ϕ(v0) and δ ∈ ϕ(v3), if min{dG(v1), dG(v2)} < Δ

and α �∈ {ϕ(v1v2), ϕ(v2v3)}, then v3 and v0 are (α, δ)-linked with respect to ϕ.
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Fig. 1. (a) A typical multifan Fϕ(r, s1 : sα : sβ), where ϕ(r) = 1 and ϕ(s1) = {2, Δ}; (b) A rotation centered 
at r, where a dashed line at a vertex indicates a color missing at the vertex; (c) A lollipop centered at r, 
where x can be the same as some s� for � ∈ [β + 1, Δ − 2].

3.3. Pseudo-multifan

Let G be a graph, rs1 ∈ E(G) and ϕ ∈ Ck(G − rs1) for some k ≥ 0. A multifan 
Fϕ(r, s1 : sp) is maximum at r if |V (F )| is maximum among all multifans at r. A 
pseudo-multifan with respect to rs1 and ϕ is an alternating sequence S := Sϕ(r, s1 : st :
sp) := (r, rs1, s1, rs2, s2, . . . , rst, st, rst+1, st+1, . . . , sp−1, rsp, sp) with t, p ≥ 1 of distinct 
vertices and edges satisfying the following conditions:

(P1) the subsequence F := (r, rs1, s1, rs2, s2, . . . , rst, st) is a maximum multifan at r.
(P2) V (S) is ϕ′-elementary for every (F, ϕ)-stable ϕ′ ∈ Ck(G − rs1).

Every maximum multifan is a pseudo-multifan, and if S is a pseudo-multifan with 
respect to ϕ and a multifan F , then by the definition above, S is a pseudo-multifan 
under every (F, ϕ)-stable coloring ϕ′. We call a pseudo-multifan S typical (resp. typical 
2-inducing) if the maximum multifan that is contained in S is typical (resp. typical 
2-inducing).
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Let (G, rs1, ϕ) be a coloring-triple. A sequence of distinct vertices w1, . . . , wt ∈
NΔ−1(r) form a rotation if {w1, . . . , wt} is ϕ-elementary, and for each 
 with 
 ∈ [1, t], 
it holds that ϕ(rw�) = ϕ(w�−1), where w0 := wt. An example of a rotation is given in 
Fig. 1 (b). Let i, j ∈ [2, Δ − 2]. The shift from si to sj is an operation that, for each 

with 
 ∈ [i, j], recolor rs� by the color in ϕ(s�). We will apply a shift either on a sequence 
of vertices from a multifan or on a rotation.

Lemma 3.4. Let (G, rs1, ϕ) be a coloring-triple. Then for every typical pseudo-multifan 
S := Sϕ(r, s1 : st : sp), there exists a coloring ϕ′ ∈ CΔ(G − rst) and a pseudo-multifan 
S∗ centered at r with respect to rst and ϕ′ such that V (S∗) = V (S) and S∗ is typical 
2-inducing.

Proof. Let F = Fϕ(r, s1 : sα : sβ) be the typical multifan contained in S, where sβ = st. 
If β = α, then we are done. Thus we assume β ≥ α+1 ≥ 3. Let ϕ′ be obtained from ϕ by 
uncoloring rsβ, shift from sα+1 to sβ−1 and coloring rs1 by Δ. Now ϕ′(sβ) = {β, β+1}, 
F ∗ = (r, rsβ , sβ , rsβ−1, sβ−1, . . . , rsα+1, sα+1, rs1, s1, . . . , rsα, sα) is a β-inducing multi-
fan with respect to rsβ and ϕ′.

We next show that S∗ = (F ∗, rst+1, st+1, . . . , rsp, sp) is a pseudo-multifan with respect 
to rsβ and ϕ′. Since |V (F ∗)| = |V (F )|, F ∗ is also a maximum multifan at r. Thus it 
suffices to show that for any (F ∗, ϕ′)-stable ϕ′′ ∈ CΔ(G − rsβ), V (S∗) is ϕ′′-elementary. 
Suppose to the contrary that there exists (F ∗, ϕ′)-stable ϕ′′ ∈ CΔ(G − rsβ) but V (S∗) is 
not ϕ′′-elementary. As ϕ′′ is (F ∗, ϕ′)-stable, we can undo the operations we did before. 
Specifically, let ϕ′′′ be the coloring obtained from ϕ′′ by uncoloring rs1, shift from sα+1 to 
sβ−1 and coloring rsβ by β. Then ϕ′′′ is (F, ϕ)-stable and ϕ′′′(S∗) = ϕ′′(S∗). Thus, V (S∗)
is not ϕ′′-elementary implies that V (S∗) is not ϕ′′′-elementary. Since V (S∗) = V (S), this 
contradicts the assumption that V (S) is elementary under any (F, ϕ)-stable coloring. 
Therefore, S∗ is a pseudo-multifan with respect to rsβ and ϕ′. By renaming colors and 
vertices, we can assume that F ∗ is typical 2-inducing and so S∗ is typical 2-inducing. �

Lemma 3.5 ([1, Theorem 2.5]). Let (G, rs1, ϕ) be a coloring-triple, S := Sϕ(r, s1 : st :
sΔ−2) be a pseudo-multifan with F := Fϕ(r, s1 : st) being the maximum multifan con-
tained in it. Let j ∈ [t + 1, Δ − 2] and δ ∈ ϕ(sj). Then

(a) {st+1, . . . , sΔ−2} can be partitioned into rotations with respect to ϕ.
(b) sj and r are (1, δ)-linked with respect to ϕ.
(c) For every color γ ∈ ϕ(F ) with γ �= 1, it holds that r ∈ Py(γ, δ) = Psj (γ, δ), where 

y = ϕ−1
F (γ). Furthermore, for z ∈ NG(r) such that ϕ(rz) = γ, Py(γ, δ) meets z

before r.
(d) For every δ∗ ∈ ϕ(S) \ ϕ(F ) with δ∗ �= δ, it holds that Py(δ, δ∗) = Psj (δ, δ∗), where 

y = ϕ−1
S (δ∗). Furthermore, either r ∈ Psj (δ, δ∗) or Pr(δ, δ∗) is an even cycle.
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3.4. Lollipop

If F = (a1, . . . , at) is a sequence, then for a new entry b, (F, b) denotes the sequence 
(a1, . . . , at, b). Let (G, rs1, ϕ) be a coloring-triple. A lollipop centered at r is a sequence 
L = (F, ru, u, ux, x) of distinct vertices and edges such that F = Fϕ(r, s1 : sα : sβ) is a 
typical multifan, u ∈ NΔ(r) and x ∈ NΔ−1(u) with x �∈ {s1, . . . , sβ} (see Fig. 1 (c) for a 
depiction).

Lemma 3.6 ([1, Lemma 5.1]). Let (G, rs1, ϕ) be a coloring-triple, F := Fϕ(r, s1 : sα : sβ)
be a typical multifan, and L := (F, ru, u, ux, x) be a lollipop centered at r such that 
ϕ(ru) = α + 1 and ϕ(x) = α + 1. Then

(a) ϕ(ux) �= 1 and ux ∈ Pr(1, ϕ(ux)).
If ϕ(ux) = τ is a 2-inducing color with respect to ϕ and F , then the following 

holds.
(b) Let Px(1, τ) be the (1, τ)-chain starting at x in G − rs1 − ux. Then Px(1, τ) ends at 

r.
(c) For any 2-inducing color δ of F with τ ≺ δ, we have r ∈ Ps1(δ, Δ) = Psδ−1(δ, Δ).
(d) For any Δ-inducing color δ of F , we have r ∈ Psδ−1(α+1, δ) = Psα(α+1, δ), where 

sΔ−1 = s1 if δ = Δ.
(e) For any 2-inducing color δ of F with δ ≺ τ , we have r ∈ Psα(δ, α+1) = Psδ−1(δ, α+

1).

Let (G, rs1, ϕ) be a coloring-triple. For a color α ∈ [1, Δ], a sequence of Kempe (α, ∗)-
changes is a sequence of Kempe changes that each involve the exchanging of the color α
with another color from [1, Δ].

Lemma 3.7 ([1, Lemma 5.2]). Let (G, rs1, ϕ) be a coloring-triple, F := Fϕ(r, s1 : sα : sβ)
be a typical multifan, and L := (F, ru, u, ux, x) be a lollipop centered at r such that 
ϕ(ru) = α + 1. Then for w1 ∈ {sβ+1, . . . , sΔ−2} with ϕ(rw1) = τ1 ∈ [β + 2, Δ − 1], the 
following statements hold.

(1) If exists a vertex w ∈ V (G) \ (V (F ) ∪ {w1}) such that w ∈ Pr(1, τ1, ϕ′) for every 
(F, ϕ)-stable ϕ′ ∈ CΔ(G − rs1) with ϕ′(ru) = α + 1, then there exists a sequence of 
distinct vertices w1, . . . , wt ∈ {sβ+1, . . . , sΔ−2} satisfying the following conditions:

(a) ϕ(rwi+1) = ϕ(wi) ∈ [β + 2, Δ − 1] for each i ∈ [1, t − 1];
(b) r and wi are (1, ϕ(wi))-linked with respect to ϕ for each i ∈ [1, t];
(c) ϕ(wt) = τ1.

(2) If ϕ(x) = α + 1 and there exists a vertex w ∈ V (G) \ (V (F ) ∪ {w1}) such that 
w ∈ Pr(1, τ1, ϕ′) for every (L, ϕ)-stable ϕ′ ∈ CΔ(G − rs1) obtained from ϕ through a 
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sequence of Kempe (1, ∗)-changes not using r or x as endvertices, then there exists a 
sequence of distinct vertices w1, . . . , wt ∈ {sβ+1, . . . , sΔ−2} satisfying the following 
conditions:

(a) ϕ(rwi+1) = ϕ(rwi) ∈ [β + 2, Δ − 1] for each i ∈ [1, t − 1];
(b) r and wi are (1, ϕ(wi))-linked with respect to ϕ for each i ∈ [1, t − 1];
(c) ϕ(wt) = τ1 or ϕ(wt) = α + 1. If ϕ(wt) = τ1, then wt and r are (1, τ1)-linked 

with respect to ϕ.

By the definition, the sequence w1, . . . , wt in Lemma 3.7 (1) and in the case of 
Lemma 3.7 (2) when ϕ(wt) = τ1 form a rotation with the additional property that 
ϕ(wi) ∈ [β + 2, Δ − 1] and r and wi are (1, ϕ(wi))-linked for each i ∈ [1, t]. We call such 
a rotation a stable rotation. In the case of Lemma 3.7 (2) when ϕ(wt) = α + 1, we call 
w1, . . . , wt a near stable rotation. For u, v ∈ V (G), we write u ∼ v if u and v are adjacent 
in G, and write u �∼ v otherwise.

Lemma 3.8 ([1, Corollary 2.7]). Let (G, rs1, ϕ) be a coloring-triple, F := Fϕ(r, s1 : sα)
be a typical 2-inducing multifan, and L := (F, ru, u, ux, x) be a lollipop centered at r. If 
ϕ(ru) = α + 1, ϕ(x) = α + 1, and ϕ(ux) = Δ, then u �∼ s1 and u �∼ sα.

Lemma 3.9 ([1, Theorem 2.8]). Let (G, rs1, ϕ) be a coloring-triple, F := Fϕ(r, s1 : sα)
be a typical 2-inducing multifan, and L := (F, ru, u, ux, x) be a lollipop centered at r. If 
ϕ(ru) = α + 1, ϕ(x) = α + 1, and ϕ(ux) = μ ∈ ϕ(F ) is a 2-inducing color of F , then 
u �∼ sμ−1 and u �∼ sμ.

Let G be a graph, rs1 ∈ E(G) and ϕ ∈ CΔ(G − rs1). Let α, β, γ, τ ∈ [1, Δ] and 
x, y ∈ V (G). If P is an (α, β)-chain containing both x and y such that P is a path, we 
denote by P[x,y](α, β, ϕ) the subchain of P that has endvertices x and y.

Suppose |ϕ(x) ∩ {α, β}| = 1. Then an (α, β)-swap at x is just the Kempe change on 
Px(α, β, ϕ). By convention, an (α, α)-swap at x does nothing at x. If also |ϕ(y) ∩{α, β}| =
1, then an (α, β)-swap at both x and y is the Kempe change on Px(α, β, ϕ) if x and y
are (α, β)-linked with respect to ϕ, and is obtained from ϕ by first doing an (α, β)-swap 
at x and then doing an (α, β)-swap at y if x and y are (α, β)-unlinked with respect to 
ϕ. Suppose β0 ∈ ϕ(x) and β1, . . . βt ∈ ϕ(x) for colors β0, . . . , βt ∈ [1, Δ] for some integer 
t ≥ 1. Then a

(β0, β1) − (β1, β2) − . . .− (βt−1, βt) − swap

at x consists of t Kempe changes: let ϕ0 = ϕ, then ϕi = ϕi−1/Px(βi−1, βi, ϕi−1) for each 
i ∈ [1, t]. Suppose the current color of an edge uv of G is α, the notation uv : α → β

means to recolor the edge uv using the color β.
We will use a matrix with two rows to denote a sequence of coloring operations taken 

based on ϕ. For example, the matrix below indicates three operations taken on the graph:
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[
P[a,b](α, β, ϕ) sc : sd rs

α/β shift γ → τ

]
.

Step 1 Exchange α and β on the (α, β)-subchain P[a,b](α, β, ϕ).
Step 2 Based on the coloring obtained from Step 1, shift from sc to sd for vertices 

sc, . . . , sd.
Step 3 Based on the coloring obtained from Step 2, do rs : γ → τ .

In the remainder, for simpler description, we may skip the phrase “with respect to ϕ” 
in related notation, which then needs to be understood with respect to the current edge 
coloring.

4. Proof of Theorem 2.3

We prove the following version of Theorem 2.3.

Theorem 4.1. If G is an HZ-graph with maximum degree Δ ≥ 4, then for every vertex 
r ∈ VΔ, the following two statements hold.

(i) For every u ∈ NΔ(r), NΔ−1(r) = NΔ−1(u).
(ii) There exist s1 ∈ NΔ−1(r) and ϕ ∈ CΔ(G − rs1) such that NΔ−1[r] is the vertex 

set of a typical 2-inducing pseudo-multifan with respect to rs1 and ϕ. Consequently 
NΔ−1[r] is ϕ-elementary.

Proof. Let NΔ−1(r) = {s1, . . . , sΔ−2}. We choose a vertex in NΔ−1(r), say s1, a coloring 
ϕ ∈ CΔ(G − rs1) and a multifan F with respect to rs1 and ϕ such that F is maximum 
at r. That is, |V (F )| is maximum among all multifans with respect to rsi for any i ∈
[1, Δ − 2] and any ϕ′ ∈ CΔ(G − rsi). Assume that ϕ(r) = 1 and ϕ(s1) = {2, Δ}, and 
F = Fϕ(r, s1 : sp) is such a multifan. Furthermore, by relabeling vertices and colors, 
we assume that F is typical. As a maximum multifan at r is itself a pseudo-multifan, 
by Lemma 3.4, we assume that Fϕ(r, s1 : sp) = Fϕ(r, s1 : sα) is a typical 2-inducing 
multifan, where α = p.

Let u ∈ NΔ(r) and assume NΔ−1(r) �= NΔ−1(u). Roughly speaking, the main proof 
idea is the following. By assuming ϕ(ru) = α + 1 and ϕ(x) = α + 1 for x ∈ NΔ−1(u) \
NΔ−1(r), we will apply Lemmas 3.8 and 3.9 to show that u has at least two (Δ − 1)-
neighbors outside of NΔ−1(r). By further applying Lemmas 3.8 and 3.9, we can even 
find three (Δ − 1)-neighbors of u outside of NΔ−1(r). A contradiction is then deduced 
at that point.

Claim 4.1. We may assume that ϕ(ru) = α + 1, which is the last 2-inducing color of 
Fϕ(r, s1 : sα).
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Proof of Claim 4.1. Since Fϕ(r, s1 : sα) is a maximum typical 2-inducing multifan, 
ϕ(ru) ∈ {α + 1, Δ}. Assume instead that ϕ(ru) = Δ. If α = 1, then we are done by 
exchanging the roles of 2 and Δ. Thus we assume that α ≥ 2. Shift from s2 to sα−1, 
color rs1 by 2 and uncolor rsα. Then F ∗ = (r, rsα, sα, rsα−1, sα−1, . . . , rs1, s1) is an 
α-inducing multifan such that Δ is the last α-inducing color. Now, relabeling colors and 
vertices in F ∗ by making F ∗ typical 2-inducing yields the desired assumption. �
Claim 4.2. For any z ∈ NΔ−1(u) \ V (F ) and any (F, ϕ)-stable ϕ′ ∈ CΔ(G − rs1), if 
ϕ′(ru) = α + 1 and ϕ′(z) = α + 1, then ϕ′(uz) ∈ ϕ′(F ) \ {1}.

Proof of Claim 4.2. Assume to the contrary that ϕ′(uz) ∈ {1, α+ 2, . . . , Δ − 1}. We first 
claim that ϕ′(uz) �= 1. As otherwise, Pr(1, α + 1, ϕ′) = ruz, contradicting Lemma 3.1
(b) that r and sα are (1, α + 1)-linked with respect to ϕ′. Let ϕ′(uz) = τ ∈ [α + 2, Δ −
1], and w1 ∈ NΔ−1(r) such that ϕ′(rw1) = τ . By Lemma 3.6 (a), uz ∈ Pr(1, τ, ϕ′′)
for every (L, ϕ′)-stable ϕ′′ ∈ CΔ(G − rs1), where L = (F, ru, u, uz, z) is a lollipop. 
Applying Lemma 3.7 (2) on L with u playing the role of w, we find a sequence of distinct 
vertices w1, . . . , wt ∈ {sα+1, . . . , sΔ−2} that forms either a stable rotation or a near stable 
rotation.

Assume first that w1, . . . , wt is a stable rotation, which in particular gives Pr(1, τ, ϕ′) =
Pwt

(1, τ, ϕ′). By Lemma 3.6 (a), uz ∈ Pr(1, τ, ϕ′). If Pr(1, τ, ϕ′) meets z before u, or 
equivalently, Pwt

(1, τ, ϕ′) meets u before z, we do the following operations:

[
P[r,z](1, τ, ϕ′) ru uz

1/τ α + 1 → τ τ → α + 1

]
.

Denote the new coloring by ϕ′′. Now (r, rs1, s1, . . . , sα) is a multifan, but ϕ′′(sα) =
ϕ′′(r) = α+1, giving a contradiction to Lemma 3.1 (a). Thus Pr(1, τ, ϕ′) meets u before 
z, or equivalently, Pwt

(1, τ, ϕ′) meets z before u. Shift from w1 to wt to get ϕ′′. Then 
Pr(1, τ, ϕ′′) meets z before u, giving back to the previous case as ϕ′′ is (F, ϕ′)-stable.

Assume now that w1, . . . , wt is a near stable rotation, i.e., ϕ′(wt) = α + 1. If z �= wt, 
then we shift from w1 to wt, and do ru : α + 1 → τ , uz : τ → α + 1. Denote the 
new coloring by ϕ′′. As ϕ′′ is (F, ϕ′)-stable and so is (F, ϕ)-stable, we see that F ∗ =
(F, rwt, wt, rwt−1, wt−1, . . . , rw1, w1) is a multifan that contains more vertices than F
does, showing a contradiction to the choice of F .

Thus we assume that z = wt. Since ϕ′(rz) �= ϕ′(uz) = τ , we have t ≥ 2. Note that 
uz ∈ Pr(1, τ, ϕ′) = Pw(1, τ, ϕ′) for some vertex w ∈ V (G) \ (V (F ) ∪ {w1, . . . , wt}). If 
Pw(1, τ, ϕ′) meets u before z, we do the following operations:

[
P[w,u](1, τ, ϕ′) ru uz

]
.

1/τ α + 1 → 1 τ → α + 1
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Denote the new coloring by ϕ′′. Now (r, rs1, s1, . . . , sα) is a multifan, but ϕ′′(sα) =
ϕ′′(r) = α+ 1, giving a contradiction to Lemma 3.1 (a). If Pw(1, τ, ϕ′) meets z before u, 
we do the following operations:

[
P[w,z](1, τ, ϕ′) w1 : wt rwt = rz ru uz

1/τ shift ϕ′(rz) → 1 α + 1 → τ τ → α + 1

]
.

Denote the new coloring by ϕ′′. Now (r, rs1, s1, . . . , sα) is a multifan, but ϕ′′(sα) =
ϕ′′(r) = α + 1, giving a contradiction to Lemma 3.1 (a). �

By Claim 4.2, τ ∈ {2, . . . , α + 1, Δ}. Applying Lemmas 3.8 and 3.9, we have the 
following claim.

Claim 4.3. Let z ∈ NΔ−1(u) \ V (F ) and any (F, ϕ)-stable ϕ′ ∈ CΔ(G − rs1) such that 
ϕ′(ru) = α + 1 and ϕ′(z) = α + 1, and let ϕ′(uz) = τ . Then τ ∈ ϕ′(F ) \ {1}, and 
u �∼ s1, sα if τ = Δ; and u �∼ sτ−1, sτ if τ ∈ [2, α + 1].

Claim 4.4. Suppose that NΔ−1(r) = NΔ−1(u) for every u ∈ NΔ(r). Then for every 
(F, ϕ)-stable coloring ϕ′ ∈ CΔ(G −rs1), NΔ−1[r] is ϕ′-elementary. In particular, NΔ−1[r]
is the vertex set of a typical 2-inducing pseudo-multifan with respect to rs∗ and ϕ∗ ∈
CΔ(G − rs∗) for some s∗ ∈ NΔ−1(r).

Proof of Claim 4.4. Assume to the contrary that there exists an (F, ϕ)-stable coloring 
ϕ′ ∈ CΔ(G − rs1) such that NΔ−1[r] is not ϕ′-elementary. Since V (F ) is ϕ′-elementary, 
there exists z ∈ NΔ−1[r] \ V (F ) such that ϕ′(z) ∈ ϕ′(F ) or there exists z∗ �= z with 
z∗ ∈ NΔ−1[r] \ V (F ) such that ϕ′(z) = ϕ′(z∗). Let ϕ′(z) = δ. If δ ∈ ϕ′(F ), then z and r
are (1, δ)-unlinked, so we do (δ, 1) −(1, α+1)-swaps at z; if ϕ′(z) = ϕ′(z∗), we may assume, 
without loss of generality, that z and r are (1, δ)-unlinked, we again do (δ, 1) − (1, α+1)-
swaps at z. In either case, we find an (F, ϕ′)-stable coloring ϕ′′ ∈ CΔ(G − rs1) such that 
ϕ′′(z) = α + 1. Since for any u ∈ NΔ(r), it holds that NΔ−1(r) = NΔ−1(u), we can 
choose u ∈ NΔ(r) such that ϕ′′(ur) = α + 1, where α + 1 is the last 2-inducing color of 
Fϕ′′(r, s1 : sα). Since NΔ−1(r) = NΔ−1(u), we have uz ∈ E(G) and so L = (Fϕ′′(r, s1 :
sα), ru, u, uz, z) is a lollipop with respect to ϕ′′. By Claim 4.3, u is not adjacent to at least 
one vertex in NΔ−1(r), which in turn shows NΔ−1(r) �= NΔ−1(u), giving a contradiction.

Therefore, for every (F, ϕ)-stable coloring ϕ′ ∈ CΔ(G − rs1), it holds that NΔ−1[r]
is ϕ′-elementary. Consequently, there is a pseudo-multifan with vertex set NΔ−1[r]. By 
renaming colors and vertices from NΔ−1(r), we can assume the pseudo-multifan with 
vertex set NΔ−1[r] is typical. By Lemma 3.4, we can further assume that the pseudo-
multifan is typical 2-inducing. �

By Claim 4.4, it suffices to only show Theorem 4.1 (i). Assume to the contrary that 
there exists u ∈ NΔ(r) such that NΔ−1(u) \NΔ−1(r) �= ∅.

Claim 4.5. For every z ∈ NΔ−1(u) \ NΔ−1(r), there is an (F, ϕ)-stable coloring ϕ′ ∈
CΔ(G − rs1) such that ϕ′(ru) = α + 1 and ϕ′(z) = α + 1.
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Proof of Claim 4.5. By Claim 4.1, we assume ϕ(ru) = α+ 1. Let ϕ(z) = δ. If δ = α+ 1, 
we simply let ϕ′ = ϕ. So δ �= α + 1. If δ ∈ ϕ(F ), we let ϕ′ be obtained from ϕ by doing 
(δ, 1) − (1, α + 1)-swaps at z. This gives that ϕ′(z) = α + 1. By Lemma 3.1 (b), ϕ′ is 
(F, ϕ)-stable and ϕ′(ru) = ϕ(ru) = α + 1. Thus ϕ′ is a desired coloring.

Assume now that δ ∈ [α + 2, Δ − 1]. If there is an (F, ϕ)-stable ϕ′′ ∈ CΔ(G − rs1)
with ϕ′′(ru) = α + 1 such that z �∈ Pr(1, δ, ϕ′′) (so z and r are (1, δ)-unlinked), let 
ϕ′ be obtained from ϕ′′ by doing (δ, 1) − (1, α + 1)-swaps at z. Since ϕ′′(ru) = α + 1
and r and sα are (1, α + 1)-linked with respect to ϕ′′ by Lemma 3.1 (b), it holds that 
ϕ′ is (F, ϕ′′)-stable and so (F, ϕ)-stable with ϕ′(ru) = ϕ′′(ru) = α + 1. Thus, ϕ′ is a 
desired coloring and we are done. Therefore every (F, ϕ)-stable ϕ′′ ∈ CΔ(G − rs1) with 
ϕ′′(ru) = α+1 satisfies z ∈ Pr(1, δ, ϕ′′). Applying Lemma 3.7 (1) with z playing the role 
of w, there exists wt ∈ NΔ−1(r) \V (F ) such that ϕ(wt) = δ and wt and r are (1, δ)-linked 
with respect to ϕ. This is a contradiction by noting wt �= z, since ϕ is (F, ϕ)-stable but 
z /∈ Pr(1, δ, ϕ). �
Claim 4.6. |NΔ−1(u) \NΔ−1(r)| ≥ 2.

Proof of Claim 4.6. Let x ∈ NΔ−1(u) \NΔ−1(r). By Claim 4.5, we choose an (F, ϕ)-stable 
coloring from CΔ(G −rs1) and call it still ϕ such that ϕ(ru) = α+1 and ϕ(x) = α+1. By 
Claim 4.3, ϕ(ux) ∈ {2, . . . , α+1, Δ}. If |V (F )| ≥ 3, then Claim 4.3 gives that |NΔ−1(u) \
NΔ−1(r)| ≥ 2. Thus we have V (F ) = {r, s1}. Consequently, α + 1 = 2, and ϕ(ux) = Δ
by the fact that ϕ(ux) ∈ {2, Δ}. We may assume further that NΔ−1(u) \NΔ−1(r) = {x}.

By Claim 4.3, u �∼ s1. We consider two cases. Assume first that there exists an (F, ϕ)-
stable ϕ′ ∈ CΔ(G − rs1) such that NΔ−1[r] is not ϕ′-elementary. By exchanging the 
roles of 2 and Δ if necessary, we may assume ϕ′(ru) = 2. Since V (F ) is ϕ′-elementary, 
there exists z ∈ NΔ−1(r) \ V (F ) such that ϕ′(z) ∈ ϕ′(F ) or there exists z∗ �= z with 
z∗ ∈ NΔ−1(r) \V (F ) such that ϕ′(z) = ϕ′(z∗). Let ϕ′(z) = δ. If δ ∈ ϕ′(F ), then as r and 
z are (1, δ)-unlinked, we do (δ, 1) − (1, 2)-swaps at z; if ϕ′(z) = ϕ′(z∗), we may assume, 
without loss of generality, that z and r are (1, δ)-unlinked, we again do (δ, 1) −(1, 2)-swaps 
at z. In either case, we find an (F, ϕ′)-stable coloring ϕ′′ ∈ CΔ(G − rs1) with ϕ′′(ru) =
ϕ′(ru) = 2 and ϕ′′(z) = 2. Note that z ∈ NΔ−1(u) since u �∼ s1, s1 �= z, and NΔ−1(u) \
NΔ−1(r) = {x}. By Claim 4.2, ϕ′′(uz) ∈ {2, Δ}, which implies ϕ′′(uz) = Δ by noting 
ϕ′′(ru) = 2. Furthermore, we assume uz ∈ Ps1(1, Δ, ϕ′′) = Pr(1, Δ, ϕ′′) (otherwise, after 
a (1, Δ)-swap on the chain containing uz, we obtain a contradiction to Claim 4.2). Since 
ϕ′′(ru) = 2 and ϕ′′(uz) = Δ, ϕ′′(ux) �= 2, Δ. Thus ϕ′′(ux) ∈ {1, 3, 4, . . . , Δ − 1}, which 
implies ϕ′′(x) �= 2 by Claim 4.2. Let ϕ′′(x) = τ and ϕ′′(ux) = λ. Note that if τ = Δ then 
λ �= 1, as uz ∈ Ps1(1, Δ, ϕ′′) = Pr(1, Δ, ϕ′′). Thus if τ = Δ or 1, we do (τ, 1) − (1, 2)-
swaps at x. As the color of ux is not Δ after these swaps, we get a contradiction to 
Claim 4.2. Thus, we assume that τ ∈ [3, Δ − 1], and that Px(1, τ, ϕ′′′) = Pr(1, τ, ϕ′′′) for 
any (L, ϕ′′)-stable coloring ϕ′′′, where L = (F, ru, u, uz, z) is a lollipop. Let w1 ∈ NΔ−1(r)
such that ϕ′′(rw1) = τ . Applying Lemma 3.7 (2) on L with x playing the role of w, we 
find a sequence of distinct vertices w1, . . . , wt ∈ {sα+1, . . . , sΔ−2} that forms either a 
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stable rotation or a near stable rotation. As x and r are (1, τ)-linked, we conclude that 
w1, . . . , wt form a near stable rotation and so ϕ′′(wt) = 2. As ϕ′′(uz) = Δ, ϕ′′(ur) = 2, 
if wt �= z, then ϕ′′(uwt) ∈ {1, 3, 4, . . . , Δ − 1}. This gives a contradiction to Claim 4.2. 
Thus we assume that wt = z. Notice that r ∈ Ps1(2, τ, ϕ′′) by the maximality of |V (F )|. 
Since r ∈ Px(2, τ, ϕ′′) by Claim 4.2, we have r ∈ Px(2, τ, ϕ′′) = Ps1(2, τ, ϕ′′). So wt

is (2, τ)-unlinked with any of s1, x and r with respect to ϕ′′. We do a (2, τ)-swap at 
wt and then shift from w1 to wt. This gives a coloring such that s1 and x are (2, τ)-
unlinked with respect to the coloring. Again, with respect to the current coloring, r
and s1 are (2, τ)-linked by the maximality of |V (F )|. We do a (2, τ)-swap at x to get 
a coloring ϕ′′′. Note that ϕ′′′(ru) = ϕ′′(ru) = 2, ϕ′′′(ux) = ϕ′′(ux) = λ, ϕ′′′(x) = 2, 
and ϕ′′′(uz) = ϕ′′(uz) = Δ. Therefore, ϕ′′′(ux) = λ ∈ {1, 3, 4, . . . , Δ − 1}, showing a 
contradiction to Claim 4.2.

Thus we assume that NΔ−1[r] is ϕ′-elementary for every (F, ϕ)-stable ϕ′ ∈ CΔ(G −
rs1). In particular, NΔ−1[r] is ϕ-elementary, and as |V (F )| = 2 and F is maximum at 
r, we know that NΔ−1[r] is contained in a pseudo-multifan S = Sϕ(r, s1 : s1 : sΔ−2). 
Let δ ∈ ϕ(S) \ ϕ(F ). By Lemma 3.5 (c), ϕ−1

S (δ) is (2, δ)- and (δ, Δ)-linked with s1 and 
the corresponding chains contain the vertex r with respect to ϕ. Recall that ϕ(ru) =
2, ϕ(ux) = Δ, and ϕ(x) = 2. Let ϕ′ be obtained from ϕ by doing a (2, δ) − (δ, Δ) −
(Δ, 1) − (1, 2)-swap at x. Since ϕ′ is (F, ϕ)-stable, ϕ′(ru) = 2, ϕ′(ux) = δ, and ϕ′(x) = 2, 
we get a contradiction to Claim 4.2. �
Claim 4.7. Let x, y ∈ NΔ−1(u) \ NΔ−1(r) be distinct, and ϕ′ ∈ CΔ(G − rs1) be any 
(F, ϕ)-stable coloring with ϕ′(ru) = α + 1. Suppose ϕ′(x) ∈ ϕ′(F ) and ϕ′(x) �= 1. Then 
ϕ′(y) �∈ ϕ′(F ). Furthermore, y and r are (1, ϕ′(y))-linked with respect to ϕ′.

Proof of Claim 4.7. The second part of the claim follows easily from the first part. Since 
otherwise, a (1, ϕ′(y))-swap at y implies that 1 is missing at y, contradicting the first 
part.

Assume to the contrary that ϕ′(x) ∈ ϕ′(F ) and ϕ′(y) ∈ ϕ′(F ). We claim that we may 
assume ϕ′(x) = ϕ′(y) = α + 1 or ϕ′(x) = α + 1 and ϕ′(y) = 1. By doing (ϕ′(x), 1) −
(1, α+1)-swaps at x, we assume that ϕ′(x) = α+1. Since 1, α+1 ∈ ϕ′(F ), we still have 
ϕ′(y) ∈ ϕ′(F ). If ϕ′(y) = α+ 1, then we are done. Otherwise, doing a (1, ϕ′(y))-swap at 
y gives a desired coloring. Let ϕ′(ux) = τ and ϕ′(uy) = λ. We consider now two cases 
to finish the proof of Claim 4.7.

Case A. ϕ′(x) = ϕ′(y) = α + 1.

By Claim 4.2, τ, λ ∈ ϕ′(F ) \{1}. Assume, without loss of generality, that τ �= Δ. Then 
τ ∈ {2, . . . , α+1} is a 2-inducing color of F , since F is assumed to be typical 2-inducing. 
By Lemma 3.6 (d) that r ∈ Psα(α + 1, Δ) = Ps1(α + 1, Δ), we know λ �= Δ. Thus 
λ ∈ {2, . . . , α + 1} is also a 2-inducing color. By symmetry between x and y, we assume 
λ ≺ τ . Shift from s2 to sλ−1, uncolor rsλ, then color rs1 by 2. Denote the resulting 



Y. Cao et al. / Journal of Combinatorial Theory, Series B 166 (2024) 154–182 171
coloring by ϕ′′. Now F ∗ = (r, rsλ, sλ, rsλ+1, sλ+1, . . . , rsα, sα, rsλ−1, sλ−1, . . . , rs1, s1) is 
a new multifan with respect to ϕ′′ that has the same vertex set as Fϕ′(r, s1 : sα). In 
this new multifan F ∗, λ is itself a λ-inducing color, τ is a (λ + 1)-inducing color, and 
α + 1 is the last (λ + 1)-inducing color. We can further assume that F ∗ is typical by 
relabeling colors and vertices. However, r ∈ Py(α + 1, λ, ϕ′′), shows a contradiction to 
Lemma 3.6 (d) that r ∈ Psα(α + 1, λ, ϕ′′) = Psλ(α + 1, λ, ϕ′′).

Case B. ϕ′(x) = α + 1 and ϕ′(y) = 1.

We assume that x and y are (1, α + 1)-linked with respect to ϕ′. For otherwise, a 
(1, α + 1)-swap at y reduces the problem to Case A.

We show that τ, λ �= Δ. If this is not the case, then by swapping colors along 
P[x,y](1, α + 1, ϕ′) and exchanging the roles of x and y if necessary, we assume that 
τ �= Δ and λ = Δ. Let ϕ′′ be obtained from ϕ′ by a (1, Δ)-swap at y. By Lemma 3.6 (d), 
r ∈ Ps1(α+1, Δ, ϕ′′) = Psα(α+1, Δ, ϕ′′). Thus, we can do an (α+1, Δ)-swap at y without 
affecting the coloring of Fϕ′′(r, s1 : sα) and ϕ′′(ru). Thus, let ϕ∗ = ϕ′′/Py(α+ 1, Δ, ϕ′′). 
We see that Pr(1, α + 1, ϕ∗) = ruy, showing a contradiction to Lemma 3.1 (b) that r
and sα are (1, α + 1)-linked with respect to ϕ∗.

Since τ, λ �= Δ, both τ and λ are 2-inducing colors of F by Claim 4.2. By swapping 
colors along P[x,y](1, α + 1, ϕ′) and exchanging the roles of x and y if necessary, we 
assume τ ≺ λ. Note that r ∈ Ps1(λ, Δ, ϕ′) = Psλ−1(λ, Δ, ϕ′) and r ∈ Ps1(α+ 1, Δ, ϕ′) =
Psα(α+1, Δ, ϕ′) by Lemma 3.6 (c) and (d), respectively. Let ϕ′′ be obtained from ϕ′ by 
doing a (1, Δ) − (Δ, λ) − (λ, 1) − (1, Δ) − (Δ, α + 1)-swap at y. Note that ϕ′′ is (F, ϕ′)-
stable, and that Pr(1, α + 1, ϕ′′) = ruy, showing a contradiction to Lemma 3.1 (b) that 
r and sα are (1, α + 1)-linked with respect to ϕ′′. �

By Claim 4.5 and Claim 4.6, we let x, y ∈ NΔ−1(u) \ NΔ−1(r) with x �= y, and 
assume that ϕ(ru) = α + 1 and ϕ(x) = α + 1. By Claim 4.7, we also assume that 
ϕ(y) = δ ∈ [α + 2, Δ − 1] and y and r are (1, δ)-linked with respect to such a coloring 
ϕ. Let w1 ∈ NΔ−1(r) such that ϕ(rw1) = δ and L = (F, ru, u, ux, x). By Claim 4.7, for 
any L-stable ϕ′ ∈ CΔ(G − rs1), it holds that y ∈ Pr(1, δ, ϕ′). Applying Lemma 3.7 (2)
on L with y playing the role of w, we find a sequence of distinct vertices w1, . . . , wt ∈
{sα+1, . . . , sΔ−2} that forms either a stable rotation or a near stable rotation. Since 
y and r are (1, δ)-linked with respect to ϕ, w1, . . . , wt is a near stable rotation, i.e., 
ϕ(wt) = α + 1.

Claim 4.8. |NΔ−1(u) \NΔ−1(r)| ≥ 3.

Proof of Claim 4.8. Let ϕ(ux) = τ and ϕ(uy) = λ. Since ϕ(ru) = α + 1, we have 
α + 1 /∈ {τ, λ, δ}. By Claim 4.3, τ ∈ ϕ(F ) \ {1}, and

{
s1, sα �∈ NΔ−1(u) if τ = Δ,

sτ−1, sτ �∈ NΔ−1(u) if τ �= Δ.
(1)
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We then show that {
s1, sα �∈ NΔ−1(u) if λ = Δ,

sλ−1, sλ �∈ NΔ−1(u) if λ �= Δ.
(2)

To see this, let ϕ′ be obtained from ϕ by first doing a (1, α + 1)-swap at both x
and wt, and then shift from w1 to wt. Now, ϕ′(r) = δ and ϕ′(ux) = ϕ(ux) = τ . Let 
ϕ′′ = ϕ′/Py(α + 1, δ, ϕ′). Note that ϕ′′(ux) = ϕ′(ux) = τ and ϕ′′(uy) = ϕ′(uy) = λ. 
Applying Claim 4.2 to the coloring ϕ′′, we get ϕ′′(uy) = λ ∈ ϕ′′(F ) \ {δ}. As τ, λ, δ, α+
1 ∈ ϕ′′(F ) and they are all distinct, |V (F )| ≥ |{δ, τ, λ, α + 1}| − 1 = 3. Then (2)
follow from Claim 4.3. This fact, together with (1), implies that either s1, sα, sλ−1, sλ �∈
NΔ−1(u), or s1, sα, sτ−1, sτ �∈ NΔ−1(u). Note that s1 �= sα by |V (F )| ≥ 3. We obtain 
|NΔ−1(u) \NΔ−1(r)| ≥ 3 from the above unless either λ = α = 2 or τ = α = 2.

Therefore we assume α = 2 and {λ, τ} = {2, Δ}. Furthermore, we may assume that 
|NΔ−1(u) \ NΔ−1(r)| = 2, since (1) and (2) imply that s1, s2 �∈ NΔ−1(u). Therefore 
NΔ−1(r) \{s1, s2} ⊆ NΔ−1(u). In particular, wt ∈ NΔ−1(u). Since r and sα are (1, α+1)-
linked with respect to ϕ and ϕ(wt) = α + 1, it follows that ϕ(uwt) �= 1. This, together 
with the facts that ϕ(F ) = {1, 2, 3, Δ}, ϕ(ru) = 3, and {λ, τ} = {2, Δ}, implies that 
ϕ(uwt) ∈ [4, Δ − 1], showing a contradiction to Claim 4.2. �

By Claim 4.8, let z ∈ NΔ−1(u) \ NΔ−1(r) with z �= x, y. By Claim 4.7, we assume 
ϕ(z) = λ ∈ [α+2, Δ −1], and z and r are (1, λ)-linked with respect to ϕ. Since ϕ(y) = δ, 
and also y and r are (1, δ)-linked with respect to ϕ, we have λ �= δ.

Recall w1, . . . , wt is a near stable rotation at r with ϕ(rw1) = δ =: δ1. Let ϕ(wi) = δi+1
for each i ∈ [1, t − 1]. As z and r are (1, λ)-linked with respect to ϕ and wi and r are 
(1, δi+1)-linked for each i ∈ [1, t − 1], λ �= δi for each i ∈ [2, t]. Let λ1 = λ and w∗

1 be the 
neighbor of r such that ϕ(rw∗

1) = λ1. For any (L, ϕ)-stable coloring ϕ′ ∈ CΔ(G − rs1), 
z ∈ Pr(1, λ, ϕ′). Applying Lemma 3.7 (2) on L = (F, ru, u, ux, x) and z, we find a 
sequence of distinct vertices w∗

1 , . . . , w
∗
k ∈ {sα+1, . . . , sΔ−2} that forms either a stable 

rotation or a near stable rotation. If ϕ(w∗
k) = λ1, then since w∗

k and r are (1, λ1)-
linked, a (1, λ1)-swap at z gives a contradiction to Claim 4.7. Thus ϕ(w∗

k) = α + 1. Let 
ϕ(w∗

i ) = λi+1 for each i ∈ [1, k − 1].
Recall that w∗

1 �= wi for each i ∈ [1, t]. Furthermore, as wi and r are (1, δi+1)-linked 
for each i ∈ [1, t − 1] and w∗

j and r are (1, λj+1)-linked for each j ∈ [1, k − 1], w∗
1 �= wi

for each i ∈ [1, t] implies that λ2 �∈ {δ1, . . . , δt}. Consequently, w∗
2 �= wi for each i ∈ [1, t]. 

Repeating the same process, we get w∗
j �= wi for each j ∈ [1, k] and each i ∈ [1, t].

We claim that wt and x are (1, α + 1)-linked with respect to ϕ. For otherwise, first 
doing a (1, α + 1)-swap at wt, then shift from w1 to wt gives a coloring ϕ′ such that 
ϕ′(ru) = ϕ(ru) = α + 1, ϕ′(y) = ϕ′(r) = δ1, while ϕ′(x) = α + 1. Based on ϕ′, after 
doing a (1, δ1)-swap on all (1, δ1)-chains in G − rs1, we obtain an (F, ϕ)-stable coloring 
ϕ′′. However, ϕ′′(x) = α + 1 and ϕ′′(y) = 1, showing a contradiction to Claim 4.7. As 
wt and x are (1, α+ 1)-linked, we do a sequence of Kempe changes around r from w∗

k to 
w∗

1 as below: let ϕ0 = ϕ and λk+1 = α + 1,



Y. Cao et al. / Journal of Combinatorial Theory, Series B 166 (2024) 154–182 173
ϕj = ϕj−1/Pw∗
k−(j−1)

(1, λk+1−(j−1), ϕj−1) for each j ∈ [1, k].

Note that

Pr(1, λk−(j−1), ϕj) = rw∗
k−(j−1) for each j ∈ [1, k],

and that ϕk is (F, ϕ)-stable, ϕk(ru) = ϕ(ru), ϕk(ux) = ϕ(ux), and ϕk(x) = ϕ(x) = α+1, 
but z and r are (1, λ)-unlinked with respect to ϕk. Now doing a (1, λ)-swap at z gives a 
contradiction to Claim 4.7. This finishes the proof of Theorem 2.3. �
5. Proof of Theorem 2.4

Theorem 2.4. If G is an HZ-graph with maximum degree Δ ≥ 4, then for any two adjacent 
vertices x, y ∈ VΔ−1, NΔ(x) = NΔ(y).

Proof. Assume to the contrary that NΔ(x) �= NΔ(y). Then there exists a vertex r ∈
NΔ(x) \ NΔ(y). Equivalently, x ∈ NΔ−1(r) and y �∈ NΔ−1(r). By Theorem 4.1 (ii), let 
s1 ∈ NΔ−1(r) and ϕ ∈ CΔ(G − rs1), and F = Fϕ(r, s1 : sα) be the typical 2-inducing 
multifan such that either V (F ) = NΔ−1[r] or F is contained in a pseudo-multifan S with 
V (S) = NΔ−1[r]. Let NΔ−1(r) = {s1, . . . , sΔ−2}. We consider two cases according to if 
x ∈ V (F ) to finish the proof.

Assume first that x /∈ V (F ). This implies that V (F ) �= NΔ−1[r]. Applying Theo-
rem 4.1 (ii), it then follows that NΔ−1[r] is the vertex set of a typical 2-inducing pseudo-
multifan. Let ϕ(x) = δ and ϕ(y) = λ. Since V (S) = NΔ−1[r] is ϕ-elementary, δ, λ ∈ ϕ(S). 
By Lemma 3.1 (b) or Lemma 3.5 (b), we know that ϕ−1

S (λ) and r are (1, λ)-linked and 
x and r are (1, δ)-linked. By doing a (λ, 1) − (1, δ)-swap at y, we find (S, ϕ)-stable 
ϕ′ ∈ CΔ(G − rs1) such that ϕ′(y) = δ. Let ϕ′(xy) = τ . Then Px(δ, τ, ϕ′) = xy, showing 
a contradiction to Lemma 3.5 (c) or (d) depending on τ ∈ ϕ′(F ) or τ ∈ ϕ′(S) \ ϕ′(F ).

Assume then that x ∈ V (F ). We claim that we may assume x = s1. Let x = si for some 
i ∈ [1, α], and ϕ′ be obtained from ϕ by shift from s2 to si−1, uncoloring rsi, and coloring 
rs1 by 2. The sequence F ∗ = (r, rsi, si, rsi+1, si+1, . . . , rsα, sα, rsi−1, si−1, . . . , rs1, s1) is 
a multifan with respect to ϕ′. Since the shift and “changing” the uncolored edge operation 
like above is reversible, and V (S) and ϕ(S) are kept unchanged under such an operation, 
we conclude that NΔ−1[r] is still the vertex set of a pseudo-multifan. By permuting the 
names of the colors and the labels of the vertices in NΔ−1(r), we may assume that x = s1. 
Still denote the current coloring by ϕ, the multifan by F , and the pseudo-multifan by S.

By doing a (1, ϕ(y))-swap at y, we assume ϕ(y) = 1. Let ϕ(s1y) = τ . By exchanging 
the roles of the color 2 and Δ if necessary, we may assume that ϕ(s1y) is either a 
2-inducing color of F or is a color from ϕ(S) \ ϕ(F ). Let ϕ′ = ϕ/Py(1, Δ, ϕ). Now 
Ps1(τ, Δ, ϕ′) = s1y. This gives a contradiction to Lemma 3.2 (b) that s1 and ϕ′ −1

F (τ)
are (τ, Δ)-linked if τ is 2-inducing, and gives a contradiction to Lemma 3.5 (c) that s1
and ϕ′ −1

S (τ) are (τ, Δ)-linked if τ ∈ ϕ(S) \ ϕ(F ). �
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6. Proof of Theorem 2.5

Theorem 2.5. Let G be an HZ-graph with maximum degree Δ ≥ 7 and u, r ∈ VΔ. If 
NΔ−1(u) �= NΔ−1(r) and NΔ−1(u) ∩NΔ−1(r) �= ∅, then |NΔ−1(u) ∩NΔ−1(r)| = Δ − 3, 
i.e. |NΔ−1(u) \NΔ−1(r)| = |NΔ−1(r) \NΔ−1(u)| = 1.

Proof. Assume to the contrary that there exist u, r ∈ NΔ such that 1 ≤ |NΔ−1(r) ∩
NΔ−1(u)| ≤ Δ − 4. By Theorem 4.1 (ii), there exist s1 ∈ NΔ−1(r) and ϕ ∈ CΔ(G − rs1)
such that NΔ−1[r] is the vertex set of a typical 2-inducing pseudo-multifan. By this 
assumption of being typical, we have NΔ−1(r) = {s1, . . . , sΔ−2}, ϕ(r) = 1, and ϕ(s1) =
{2, Δ}. Let x, y ∈ NΔ−1(u) \ NΔ−1(r) be two distinct vertices, and S := Sϕ(r, s1 :
sα : sΔ−2) be this pseudo-multifan with Fϕ(r, s1 : sα) being the typical 2-inducing 
multifan contained in S. Since V (S) = NΔ−1[r] and V (S) is ϕ-elementary, it follows 
that ϕ(S) = [1, Δ]. We consider two cases.
Case 1. V (S) �= V (F ).

In this case, we will repeatedly apply Lemma 3.5 (b), (c) or (d). Assume first that 
for each i ∈ [1, α], si /∈ NΔ−1(u) ∩ NΔ−1(r). Then by NΔ−1(r) ∩ NΔ−1(u) �= ∅, there 
exists w1 ∈ {sα+1, . . . , sΔ−2} such that w1 ∈ NΔ−1(u) ∩NΔ−1(r). Let ϕ(rw1) = δ1 and 
ϕ(w1) = δ2. Note that δ1, δ2 ∈ ϕ(S) \ ϕ(F ). We claim that we may assume ϕ(ux) = δ2. 
Otherwise, let ϕ(ux) = δ∗ �= δ2. By Lemma 3.5 (b), (c) or (d) depending on what ϕ(x)
is, we can do a (ϕ(x), δ2) − (δ2, δ∗)-swap at x in getting an (S, ϕ)-stable coloring, still 
call it ϕ such that ϕ(ux) = δ2. Let ϕ(w1u) = τ and ϕ′ be obtained from ϕ by doing a 
(ϕ(x), δ1) − (δ1, τ)-swap at x. By Lemma 3.5 (b), (c) or (d), ϕ′ is (S, ϕ)-stable such that 
ϕ′(w1u) = ϕ(w1u) = τ and ϕ′(x) = τ . However, Pw1(δ2, τ, ϕ′) = w1ux = Px(δ2, τ, ϕ′), 
showing a contradiction to Lemma 3.5 (b), (c) or (d) (depending on if τ = 1, τ ∈
ϕ(F ) \ {1} or τ ∈ ϕ(S) \ϕ(F )) that w1 and ϕ−1

S (τ) are (δ2, τ)-linked with respect to ϕ′.
Assume now that there exists si ∈ NΔ−1(u) ∩ NΔ−1(r) for some i ∈ [1, α]. By shift 

from s2 to si−1, uncoloring rsi, and coloring rs1 by 2, we obtain a new multifan F ∗ =
(r, rsi, si, rsi+1, si+1, . . . , rsα, sα, rsi−1, si−1, . . . , rs1, s1). By permuting the names of the 
colors and the labels of the vertices in NΔ−1(r) such that i + 1 is permuted to 2 and si
is renamed as s1, we assume that s1 ∈ NΔ−1(u) ∩NΔ−1(r) and F ∗ is a typical multifan.

Recall that x ∈ NΔ−1(u) \NΔ−1(r). Let ϕ(x) = λ. By Lemma 3.1 (b) or Lemma 3.5
(b), we know that ϕ−1

S (λ) and r are (1, λ)-linked. By doing a (1, λ)-swap at x if necessary, 
we assume ϕ(x) = 1. By exchanging the roles of the colors 2 and Δ, we assume that 
ϕ(s1u) equals 1, or is a 2-inducing color of F , or is a color from ϕ(S) \ ϕ(F ). Note that 
by Lemma 3.5 (c), for a color δ ∈ ϕ(S) \ ϕ(F ), and for any color τ ∈ ϕ(F ), ϕ−1

S (δ) and 
ϕ−1
S (τ) are (δ, τ)-linked and r ∈ Pϕ−1

S (δ)(δ, τ, ϕ).
Let ϕ(ux) = τ . If τ is a 2-inducing color of F or is from ϕ(S) \ ϕ(F ), we do (1, Δ) −

(Δ, τ) − (τ, 1)-swaps at x. If τ is a Δ-inducing color of F , let δ ∈ ϕ(S) \ ϕ(F ), we do 
(1, δ) − (δ, τ) − (τ, 1) − (1, Δ) − (Δ, δ) − (δ, 1)-swaps at x. In both cases, we let ϕ′ be the 
resulting coloring. We have ϕ′(ux) = Δ and ϕ′(x) = 1. Since ϕ(s1u) �= Δ, τ , still ϕ′(s1u)
equals 1, or is a 2-inducing color of F , or is from ϕ(S) \ ϕ(F ).
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Let ϕ′(s1u) = γ. Since s1 and r are (1, Δ)-linked with respect to ϕ′, γ �= 1. Thus, γ
is a 2-inducing color of F , or is from ϕ(S) \ ϕ(F ). By Lemma 3.2 (a) or Lemma 3.5 (c), 
u ∈ Px(1, γ, ϕ′) (otherwise, s1 and x are (γ, Δ)-linked after a (1, γ)-swap at x). Let 
ϕ′′ = ϕ′/Px(1, γ, ϕ′). Now ϕ′′(s1u) = 1, ϕ′′(x) = γ, and K = (r, rs1, s1, s1u, u, ux, x) is a 
Kierstead path with respect to rs1 and ϕ′′. Let δ ∈ ϕ′′(S) \ϕ′′(F ). If γ ∈ ϕ′′(S) \ϕ′′(F ), we 
do nothing. Otherwise, we do a (γ, δ)-swap at x (by Lemma 3.5 (c), this swap does not end 
at any vertex of S). Denote by ϕ′′′ the resulting coloring. Since dG(s1) = Δ − 1, in both 
cases, by Lemma 3.3 (b), x and s1 are (2, ϕ′′′(x))-linked. Since ϕ′′′(x) ∈ ϕ′′′(S) \ ϕ′′(F ), 
we achieve a contradiction to Lemma 3.5 (c).
Case 2. V (S) = V (F ).

We claim that we may choose s1 such that s1 ∈ NΔ−1(u) ∩NΔ−1(r). If s1 ∈ NΔ−1(u) ∩
NΔ−1(r), then we are done. Otherwise, let si ∈ NΔ−1(u) ∩NΔ−1(r). We shift from s2 to 
si−1, uncolor rsi and color rs1 by 2. By relabeling colors and vertices, we may assume 
that s1 ∈ NΔ−1(u) ∩NΔ−1(r) and F ∗ = (r, rsi, si, rsi+1, si+1, . . . , rsα, sα, rsi−1, si−1, . . . ,
rs1, s1) is a typical multifan. We let Fϕ(r, s1 : sα : sΔ−2) be such a typical multifan.

For a coloring ψ ∈ CΔ(G −rs1), if ϕ(s1) = ψ(s1), ϕ(F ) = ψ(F ), and some permutation 
of F is still a multifan with respect to rs1 and ψ, we call ψ a near (F, ϕ)-stable coloring. 
As only colors in ϕ(s1) will be essential for the proof, we will not distinguish between 
ϕ and any near (F, ϕ)-stable coloring. As the vertex set of all the resulting multifans is 
always NΔ−1[r], for a color α ∈ [1, Δ], we use ψ

−1(α) to denote the vertex from NΔ−1[r]
that misses α with respect to ψ.

Let ψ ∈ CΔ(G − rs1) be near (F, ϕ)-stable and F ∗ be the corresponding multifan. 
The following two facts will be used frequently in the proof without being mentioned.

Fact 1 For any i ∈ [2, Δ], since r and ψ
−1(i) are (1, i)-linked by Lemma 3.1 (b), doing 

a (1, i)-swap at vertices outside of V (F ∗) gives an (F ∗, ψ)-stable and so a near 
(F, ϕ)-stable coloring.

Fact 2 For any 2-inducing color τ and Δ-inducing color δ of F ∗, ψ−1(τ) and ψ
−1(δ)

are (τ, δ)-linked by Lemma 3.2 (a). Thus doing a (τ, δ)-swap at a vertex outside 

of V (F ∗) or, when τ �= 2 and δ �= Δ, doing a (τ, δ)-swap at ψ−1(τ) if r �∈
P
ψ

−1(τ)(τ, δ, ψ) gives a near (F ∗, ψ)-stable and so a near (F, ϕ)-stable coloring.

We denote by S(u; s1, x, y) the star subgraph of G that is centered at u consisting of 
edges us1, ux, and uy. Recall that x, y ∈ NΔ−1(u) \NΔ−1(r) are distinct vertices.

Claim 6.1. We may assume that ϕ(x) = 2 and ϕ(y) = Δ or ϕ(x) = ϕ(y) = Δ.

Proof of Claim 6.1. By doing (ϕ(x), 1) − (1, 2)-swaps at x, we find (F, ϕ)-stable ϕ′ ∈
CΔ(G −rs1) such that ϕ′(x) = 2. Now, let ϕ′(y) = λ. If λ = 2, then doing (2, 1) − (1, Δ)-
swaps at both x and y, we find (F, ϕ′)-stable ϕ′′ ∈ CΔ(G −rs1) such that ϕ′′(x) = ϕ′′(y) =
Δ. If λ �= 2, by doing (λ, 1) − (1, Δ)-swaps at y, we find (F, ϕ′)-stable ϕ′′ ∈ CΔ(G − rs1)
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Fig. 2. Coloring of S(u; s1, x, y).

such that ϕ′′(x) = 2 and ϕ′′(y) = Δ. As ϕ′′ is (F, ϕ′)-stable and ϕ′ is (F, ϕ)-stable, it 
follows that ϕ′′ is (F, ϕ)-stable. So we can take ϕ′′ to be ϕ. �

By Claim 6.1, we assume ϕ(x) = 2 and ϕ(y) = Δ or ϕ(x) = ϕ(y) = Δ and so consider 
two cases below.

Subcase 2.1. ϕ(x) = 2 and ϕ(y) = Δ.

Note that by doing first a (2, 1)-swap at x, then a (1, Δ)-swap at both x and y, and 
finally a (1, 2)-swap at y, we can always identify this current case with the case that 
ϕ(x) = Δ and ϕ(y) = 2. Let ϕ(ux) = τ and ϕ(uy) = λ. By exchanging the roles of the 
two colors 2 and Δ, we consider two cases below: (A) ϕ(uy) = λ = 1; and (B) ϕ(uy) = λ

is 2-inducing. (When ϕ(uy) is Δ-inducing, by assuming ϕ(x) = Δ and ϕ(y) = 2, the 
argument will be symmetric to the argument for case (B) above.)

In both cases of (A) and (B), we do (Δ, λ) − (λ, 1)-swaps at y and call the result-
ing coloring ϕ1 and the resulting multifan F1. Note that ϕ1 is near (F, ϕ)-stable. Let 
ϕ1(s1u) = δ. The current coloring on S(u; s1, x, y) is as shown in J1 of Fig. 2.

Claim 6.2. The color ϕ1 can be modified into a near (F1, ϕ1)-stable coloring such that 
the color on S(u; s1, x, y) is as in J2 of Fig. 2.

Proof of Claim 6.2. Since s1 and r are (1, Δ)-linked by Lemma 3.1 (b), we know 
ϕ(s1u) = δ �= 1. If u ∈ Py(1, δ, ϕ1), then a (1, δ)-swap at y gives J2. Thus, we assume 
u �∈ Py(1, δ, ϕ1). This implies that δ is Δ-inducing with respect to F1 and ϕ1. (Otherwise, 
after a (1, δ)-swap at y, s1 and ϕ−1

1 (δ) are (δ, Δ)-unlinked, showing a contradiction to 
Lemma 3.2 (a).)

Let ϕ2 = ϕ1/Py(1, δ, ϕ1) (see Fig. 2). We claim that τ is 2-inducing with respect 
to F1 and ϕ2. Otherwise τ is 1 or is Δ-inducing with respect to F1 and ϕ2. We do 
(2, τ) − (τ, 1)-swaps at x and call the resulting coloring ϕ′

2 and the resulting multifan F ′
1. 

Again, as Ps1(δ, Δ, ϕ′
2) = s1uy, δ is still a Δ-inducing color of F ′

1 with respect to ϕ′
2 by 

Lemma 3.2 (a). Since ϕ′
2(ux) = 2, we must have u ∈ Px(1, δ, ϕ′

2): otherwise, after a (1, δ)-
swap at x, s1 and x are (2, δ)-linked with respect to the current coloring, contradicting 
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Lemma 3.2 (a). Now, let ϕ∗
2 be obtained from ϕ′

2 by doing a (1, δ)-swap at both x and 
y. We get Ps1(1, Δ, ϕ∗

2) = s1uy, showing a contradiction to Lemma 3.1 (b) that s1 and 
r are (1, Δ)-linked with respect to ϕ∗

2.
Thus τ is 2-inducing with respect to F1 and ϕ2. First, we let ϕ3 = ϕ2/Px(1, 2, ϕ2). 

Note that u �∈ Px(1, δ, ϕ3) and u �∈ Py(1, δ, ϕ3). Since otherwise, after a (1, δ)-swap at 
both x and y, s1 and y are (1, Δ)-linked with respect to the current coloring, showing 
a contradiction to Lemma 3.1 (b) that s1 and r are (1, Δ)-linked. Since δ is Δ-inducing 
and τ is 2-inducing with respect to F1 and ϕ3, ϕ−1

3 (δ) and ϕ−1
3 (τ) are (δ, τ)-linked by 

Lemma 3.2 (a). Then we let ϕ4 be obtained from ϕ3 by doing a (1, δ)-swap at both 
x and y (see Fig. 2), and doing a (τ, δ)-swap at ϕ−1

3 (δ) (and so also at ϕ−1
3 (τ)). Since 

ϕ4 is near (F1, ϕ3) stable, we let F2 be the resulting multifan. Note that δ is a 2-
inducing color and τ is a Δ-inducing color of F2 with respect to ϕ4. As a consequence, 
u ∈ Py(1, δ, ϕ4). Since otherwise, after a (1, δ)-swap at y, s1 and y are (δ, Δ)-linked, 
contradicting Lemma 3.2 (a). We then let ϕ5 be obtained from ϕ4 by doing a (1, δ)-swap 
at both x, y (and so also u), and then a (1, 2)-swap at x. We obtain the desired coloring 
on S(u; s1, x, y). �

By Claim 6.2, we let ϕ2 ∈ CΔ(G − rs1) be a near (F1, ϕ1)-stable coloring and F2 be 
a corresponding multifan such that under ϕ2, the color on S(u; s1, x, y) is as in J2 of 
Fig. 2. Now K = (r, rs1, s1, s1u, u, uy, y) is a Kierstead path with respect to rs1 and ϕ2. 
Since dG(s1) = Δ − 1, by Lemma 3.3 (b), y and s1 are (2, δ)-linked. This implies that 
δ must be a 2-inducing color of F2, as otherwise, s1 and ϕ−1

2 (δ) should be (2, δ)-linked. 
If τ is Δ-inducing of F2, then as ϕ−1

2 (δ) and ϕ−1
2 (τ) are (δ, τ)-linked by Lemma 3.2 (a), 

we do a (δ, τ)-swap at y. Again by Lemma 3.3 (b), y and s1 are (2, τ)-linked, showing 
a contradiction to Lemma 3.2 (a) that ϕ−1

2 (τ) and s1 are (2, τ)-linked. Therefore, τ is a 
2-inducing color of F2. We first do (2, 1) − (1, Δ) swaps at x, and let ϕ3 be the resulting 
coloring (see Fig. 3). At this step, ϕ3(s1u) = 1, ϕ3(uy) = Δ, ϕ3(y) = δ, and y and s1

are (2, δ)-linked with respect to ϕ3 by Lemma 3.3 (b). Call this fact (∗).
Let ϕ4 = ϕ3/Px(τ, Δ, ϕ3) (see Fig. 3) and F3 be the resulting multifan. Since ϕ−1

3 (τ)
appears before the edge with color τ in F2, τ is still a 2-inducing color of F3. As s1 and r
are (1, Δ)-linked by Lemma 3.1 (b), we have u ∈ Px(1, τ, ϕ4). Let ϕ5 = ϕ4/Px(1, τ, ϕ4). 
The coloring of S(u; s1, x, y) is now as in J3 of Fig. 3. Since 2, δ �∈ {1, τ, Δ}, y and s1

are still (2, δ)-linked with respect to ϕ5 by fact (∗), which further implies that δ is a 2-
inducing color of F3 with respect to ϕ5. Since ϕ5 is (F3, ϕ4)-stable, τ is still a 2-inducing 
colors of F3 with respect to ϕ5. We consider two cases to finish the remaining part of 
the proof.

Subcase 2.1.1. τ ≺ δ in F3 with respect to ϕ5.

Let si ∈ NΔ−1(r) such that ϕ5(si) = δ. Since y and s1 are still (2, δ)-linked with 
respect to ϕ5 and δ is 2-inducing of F3, by Lemma 3.2 (b), r ∈ Psi(2, δ, ϕ5). We reach a 
contradiction through the following operations:
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Fig. 3. Coloring of S(u; s1, x, y).

[
si (also at r) x and si sj : si
(2, δ)-swap (1, 2)-swap shift

]
,

where we assume that ϕ5(rsj) = τ for some j ∈ [2, Δ − 2] and sj , sj+1, . . . , si is 
the 2-inducing sequence of F3 starting at sj and ending at si. Denote the new col-
oring by ϕ6. Now, ϕ6(r) = τ , ϕ6(s1u) = τ , ϕ6(ux) = Δ, and ϕ6(x) = 2, and 
K = (r, rs1, s1, s1u, u, ux, x) is a Kierstead path with respect to rs1 and ϕ6. Since 
dG(s1) = Δ − 1, we get a contradiction to Lemma 3.3 (a) that {r, s1, u, x} is ϕ6-
elementary.

Subcase 2.1.2. δ ≺ τ in F3 with respect to ϕ5.

We only show that by performing Kempe changes, we can find an (F3, ϕ5)-stable 
coloring such that the color on S(u; s1, x, y) with respect to it is as given in J4 of Fig. 3. 
Then the proof follows the same ideas as in Subcase 2.1.1 by exchanging the roles of τ
and δ. Based on the coloring in J3 of Fig. 3, do a (1, δ)-swap at both x and y and denote 
the resulting coloring by ϕ6.

Claim 6.3. u ∈ Py(1, τ, ϕ6).

Proof of Claim 6.3. Assume to the contrary that u �∈ Py(1, τ, ϕ6). Under this assumption, 
it must be the case that u ∈ Pr(1, τ, ϕ6) (otherwise, performing a (δ, Δ)-swap at x and 
a (1, τ)-swap at u shows that s1 and y are (1, Δ)-linked, showing a contradiction to 
Lemma 3.1 (b) that s1 and r are (1, Δ)-linked). Since u ∈ Pr(1, τ, ϕ6), let ϕ7 be obtained 
by doing a (1, τ)-swap at y and (δ, Δ)-swap at x, and let F ∗

3 be the resulting multifan. 
Then Ps1(τ, Δ, ϕ7) = s1uy, implying that τ is a Δ-inducing color of F ∗

3 by Lemma 3.2
(a). Note that δ is still a 2-inducing color of F ∗

3 as the only operation that changes the 
color sequence of F3 was the (δ, Δ)-swap we did to get ϕ7 from ϕ6. Thus, ϕ−1

7 (δ) and 
ϕ−1

7 (τ) are (δ, τ)-linked by Lemma 3.2 (a). Also, since τ is Δ-inducing and δ is 2-inducing 
of F ∗

3 , we know u �∈ Py(τ, δ, ϕ7). Since otherwise, after a (τ, δ)-swap at y, s1 and y are 
(δ, Δ)-linked, showing a contradiction to Lemma 3.2 (a).
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Let ϕ8 = ϕ7/Py(τ, δ, ϕ7). Now Py(δ, Δ, ϕ8) = yux. Note also that u ∈ Pϕ−1
8 (δ)(δ, τ, ϕ8) =

Pϕ−1
8 (τ)(δ, τ, ϕ8). For otherwise, after a (τ, δ)-swap at u, s1 and y are (δ, Δ)-linked, show-

ing a contradiction to the fact that δ is still a 2-inducing color of the resulting multifan. 
Note that Px(δ, Δ, ϕ8) = xuy. Let ϕ9 = ϕ8/Px(δ, Δ, ϕ8). Now ϕ−1

9 (δ) and ϕ−1
9 (τ) are 

(δ, τ)-unlinked. However, since ϕ9 is (F ∗
3 , ϕ8)-stable, τ is still a Δ-inducing color and δ

is 2-inducing of F ∗
3 with respect to ϕ9, we get a contradiction to Lemma 3.2 (a). �

Thus by Claim 6.3, u ∈ Py(1, τ, ϕ6). Do a (1, τ)-swap at y (and u), and denote the 
resulting coloring by ϕ7. Note that u ∈ Px(1, δ, ϕ7) (as otherwise, after a (1, δ)-swap at 
x, s1 and x are (1, Δ)-linked, showing a contradiction to Lemma 3.1 (b) that s1 and r are 
(1, Δ)-linked). Let ϕ8 = ϕ7/Px(1, δ, ϕ7). Now with respect to ϕ8, we have the coloring 
in J4 of Fig. 3. By the definition, ϕ8 is (F3, ϕ5)-stable so we still have δ ≺ τ in F3 with 
respect to ϕ8. The remaining proof follows the same ideas as in Subcase 2.1.1.
Subcase 2.2. ϕ(x) = Δ and ϕ(y) = Δ.

Claim 6.4. We may assume that |NΔ−1(u) ∩NΔ−1(r)| = Δ − 4.

Proof of Claim 6.4. We may assume that x and y are (1, Δ)-linked. For other-
wise, performing (Δ, 1) − (1, 2)-swaps at x reduces the problem to Subcase 2.1. Since 
|NΔ−1(u) ∩NΔ−1(r)| > Δ −4 implies |NΔ−1(u) ∩NΔ−1(r)| = Δ −3 already, we assume to 
the contrary that |NΔ−1(u) ∩NΔ−1(r)| ≤ Δ −5. Then there exists z ∈ NΔ−1(u) \NΔ−1(r)
such that z �= x, y. Let ϕ(z) = λ. If λ = 2, by exchanging the roles of x and z, we reduce 
the problem to Subcase 2.1. Thus, λ �= 2. Doing (λ, 1) −(1, 2)-swaps at z and exchanging 
the roles of x and z reduces the problem to Subcase 2.1. �
Claim 6.5. We may assume that F (r, s1 : sα : sΔ−2) is a typical multifan with two 
sequences. That is, F contains both 2-inducing sequence and Δ-inducing sequence.

Proof of Claim 6.5. Recall that Fϕ(r, s1 : sα : sΔ−2) is a typical multifan. As Δ ≥ 7, 
|NΔ−1(u) ∩NΔ−1(r)| = Δ − 4 ≥ 3 by Claim 6.4. If F is a typical 2-inducing multifan, 
then let si ∈ NΔ−1(u) ∩ NΔ−1(r) such that si �= s1 and that ϕ(si) is not the last 2-
inducing color of F . Then we shift from s2 to si−1, uncolor rsi, and color rs1 by 2. 
Now F ∗ = (r, rsi, si, rsi+1, si+1, . . . , rsΔ−2, sΔ−2, rsi−1, si−1, . . . , rs1, s1) is a multifan 
with two sequences. By permuting the names of the colors and the labels of vertices in 
{s1, . . . , sΔ−2}, we can assume that F = F ∗ is a typical multifan with two sequences. 
�

Let ϕ(s1u) = δ, ϕ(ux) = τ , and ϕ(uy) = λ. By exchanging the roles of the two colors 
2 and Δ, we have two possibilities for ϕ(uy): (A) ϕ(uy) = λ = 1; and (B) ϕ(uy) = λ is 
2-inducing. (When ϕ(uy) is Δ-inducing, we will first assume that ϕ(x) = 2 and ϕ(y) = 2
(by performing (Δ, 1) − (1, 2)-swaps at both x and y). Then all the argument will be 
symmetric to the argument for the case (B) above.) We now consider two cases to finish 
the proof.
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Fig. 4. Coloring of S(u; s1, x, y).

Subcase 2.2.1. λ is not the last 2-inducing color of F .
We first perform (Δ, λ) − (λ, 1)-swaps at both x and y. Denote by ϕ1 the resulting 

coloring and F1 the corresponding multifan. Since λ is not the last 2-inducing color of 
F , F1 still has two sequences with respect to ϕ1. The current coloring of S(u; s1, x, y) is 
given in L1 of Fig. 4. Since s1 and r are (1, Δ)-linked by Lemma 3.1 (b), δ �= 1. We next 
show u ∈ Py(1, δ, ϕ1) that will lead to the coloring in L2 of Fig. 4 after a (1, δ)-swap at 
both x and y.

Claim 6.6. u ∈ Py(1, δ, ϕ1).

Proof of Claim 6.6. Assume to the contrary that u �∈ Py(1, δ, ϕ1). This implies that δ is a 
Δ-inducing color of F1 (since after doing a (1, δ)-swap at y, s1 and y are (δ, Δ)-linked). If 
τ is a Δ-inducing of F1, then we let ϕ2 be obtained by performing (1, 2) − (2, τ) − (1, τ)-
swaps at both x and y based on the coloring of L1 in Fig. 4. Now, we must have that 
u ∈ Px(1, δ, ϕ2) or u ∈ Py(1, δ, ϕ2) since δ is either 2-inducing or Δ-inducing with respect 
to F1. Let ϕ3 be obtained from ϕ2 by performing a (1, δ)-swap at both x and y. Then 
both K1 = (r, rs1, s1, su, u, ux, x) and K2 = (r, rs1, s1, su, u, uy, y) are Kierstead paths 
with respect to rs1 and ϕ3. Since dG(s1) = Δ −1, applying Lemma 3.3 (b), x and s1 are 
(δ, Δ)-linked and y and s1 are (2, δ)-linked. However, by Lemma 3.2 (a), s1 and ϕ−1

3 (δ)
are either (δ, 2) or (δ, Δ)-linked, showing a contradiction.

Thus we assume that τ is a 2-inducing color of F1. Based on the coloring of 
S(u; s1, x, y) as given in L1 of Fig. 4, we perform (1, τ) − (τ, δ)-swaps at both x and 
y and let ϕ2 be the resulting coloring. Note that either ϕ2(s1u) = δ or ϕ2(s1u) = τ . If 
ϕ2(s1u) = δ, then after doing a (1, δ)-swap at both x and y, s1 and y are (1, Δ)-linked, 
which gives a contradiction to Lemma 3.1 (b) that s1 and r are (1, Δ)-linked. Thus 
ϕ2(s1u) = τ . We first do a (1, δ)-swap at both x and y. Then since τ is a 2-inducing 
color of F1, u ∈ Py(1, τ, ϕ2) (since otherwise, after doing a (1, τ)-swap at y, s1 and y
are (τ, Δ)-linked, showing a contradiction to Lemma 3.2 (a)). Thus we do a (1, τ)-swap 
at both x and y and let ϕ3 be the new coloring. Note that δ is still Δ-inducing and τ
is 2-inducing with respect to F1 and ϕ3. Thus ϕ−1

3 (δ) and ϕ−1
3 (τ) are (δ, τ)-linked by 
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Lemma 3.2 (a). Let ϕ4 be obtained from ϕ3 by doing a (δ, τ)-swap at y, and let F ∗
1 be the 

resulting multifan. Then K = (r, rs1, s1, s1u, u, uy, y) is a Kierstead path with respect 
to rs1 and ϕ4. Since dG(s1) = Δ −1, applying Lemma 3.3 (b), y and s1 are (2, δ)-linked. 
Since δ is still Δ-inducing and τ is 2-inducing with respect to F ∗

1 and ϕ4, we achieve a 
contradiction to the fact that s1 and ϕ−1

4 (δ) are (2, δ)-linked by Lemma 3.2 (a). Therefore 
it must be the case that u ∈ Py(1, δ, ϕ1). �

Since u ∈ Py(1, δ, ϕ1), we perform a (1, δ)-swap at both x and y gives L2 in Fig. 4. 
Call the resulting coloring ϕ2. Now K = (r, rs1, s1, su, u, uy, y) is a Kierstead path with 
respect to rs1 and ϕ2. Since dG(s1) = Δ −1, by Lemma 3.3 (b), y and s1 are (2, δ)-linked. 
It deduces that δ must be a 2-inducing color of F1 with respect to ϕ2. Recall that F1 still 
has two sequences with respect to ϕ2. Let γ be a Δ-inducing color of F1. Since ϕ−1

2 (δ)
and ϕ−1

2 (γ) are (δ, γ)-linked by Lemma 3.2 (a), we do a (δ, γ)-swap at y to get ϕ3. Still, δ
is a 2-inducing color and γ is a Δ-inducing color of the resulting multifan. By Lemma 3.3
(b), s1 and y are (2, γ)-linked, showing a contradiction to the fact that s1 and ϕ−1

3 (γ)
are (2, γ)-linked.
Subcase 2.2.2. λ is the last 2-inducing color of F .

If τ is 2-inducing, then τ ≺ λ. This gives back to the previous case by exchanging 
the roles of τ and λ. If τ is Δ-inducing and τ is not the last Δ-inducing color, then by 
doing (Δ, 1) − (1, 2)-swaps at x and y, a similar proof follows as in the previous case by 
exchanging the roles of 2 and Δ. Thus τ is the last Δ-inducing color of F .

Let Cu be the cycle in GΔ containing u. By Theorem 4.1 (i), for every vertex on Cu, 
its (Δ − 1)-neighborhood is NΔ−1(u). As |V (Cu)| ≥ 3, there exist u∗, u′ ∈ V (Cu) \ {u}
such that one of ϕ(u∗y) and ϕ(u′y) is neither τ nor λ. Assume that ϕ(u∗y) �∈ {τ, λ}. 
Letting u∗ play the role of u, we reduce the problem to the previous case, finishing the 
proof of Theorem 2.5. �
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