On Gupta’s Co-density Conjecture
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Abstract

Let G = (V, E) be a multigraph. The cover index {(G) of G is the greatest integer k
for which there is a coloring of F with k colors such that each vertex of G is incident with
at least one edge of each color. Let §(G) be the minimum degree of G and let ®(G) be the
co-density of G, defined by

2|EH(U))

TEs : UCV, |U >3 and odd},

®(G) = min {
where ET(U) is the set of all edges of G with at least one end in U. It is easy to see that
¢(G) < min{é(G), |P(G)]}. In 1978 Gupta proposed the following co-density conjecture:
Every multigraph G satisfies £(G) > min{d(G) —1, |®(G) |}, which is the dual version of the
Goldberg-Seymour conjecture on edge-colorings of multigraphs. In this note we prove that
¢(G) > min{d(G)—1, |2(G)]} if ®(G) is not integral and £(G) > min{é(G)—2, |P(G)| -1}
otherwise. We also show that this co-density conjecture implies another conjecture concern-
ing cover index made by Gupta in 1967.
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1 Introduction

In this note we consider multigraphs, which may have parallel edges but contain no loops. Let
G = (V,E) be a multigraph. The chromatic index x'(G) of G is the least integer k for which
there is a coloring of E with k colors such that each vertex of G is incident with at most one
edge of each color. Let A(G) be the maximum degree of G and let I'(G) be the density of G,
defined by

2|E(U
I'(G) :max{ ]‘U\(— i’ : UCV, |Ul >3 and odd},

where E(U) is the set of all edges of G with both ends in U. Clearly, x'(G) > max{A(G), I'(G) };
this lower bound, as shown by Seymour [13] using Edmonds’ matching polytope theorem [5],
is precisely the fractional chromatic index of GG, which is the optimal value of the fractional
edge-coloring problem:

Minimize 17
subject to Ax =1
x >0,

where A is the edge-matching incidence matrix of G. In the early 1970s Goldberg [6] and
Seymour [13] independently made the following conjecture.

Conjecture 1.1. Every multigraph G satisfies x'(G) < max{A(G) + 1, [['(G)]}.

Over the past five decades this conjecture has been a subject of extensive research, and has
stimulated an important body of work, with contributions from many researchers; see McDonald
[10] for a survey on this conjecture and Stiebitz et al. [14] for a comprehensive account of edge-
colorings. In [4] three of the authors, Chen, Jing, and Zang, have announced a complete proof
of Conjecture 1.1.

The present note is devoted to the study of the dual version of the classical edge-coloring
problem (ECP), which asks for a coloring of the edges of G using the maximum number of colors
in such a way that at each vertex all colors occur. It is easy to see that each color class induces
an edge cover of G. (Recall that an edge cover is a subset F' of E such that each vertex of G is
incident to at least one edge in F'.) So this problem is actually the edge cover packing problem
(ECPP). Let £(G) denote the optimal value of ECPP, which we call the cover index of G. As
it is NP-hard [9] in general to determine the chromatic index x'(G) of a simple cubic graph G,
determining the cover index {(G) is also N P-hard.

Let §(G) be the minimum degree of G, let E(U) be the set of all edges of G with at least
one end in U for each U C V, and let ®(G) be the co-density of G, defined by

21E*(U)

o(G) = min{ UT+1

: UCV, |U|l >3 and odd}.

Obviously, £(G) < §(G). Since each edge cover contains at least (|[U] + 1)/2 edges in ET(U)
for any U C V with |U| > 3 and odd, ®(G) provides another upper bound for {(G). So



¢(G) < min{d(G), ®(G)}. Based on a polyhedral description of edge covers (see Theorem 27.3
in Schrijver [12]), Zhao, Chen, and Sang [15] observed that the parameter min{d(G), ®(G)} is

exactly the fractional cover index of G, the optimal value of the fractional edge cover packing
problem (FECPP):

1T

Maximize x
subject to Bx=1
x > 0,

where B is the edge-edge cover incidence matrix of G. They [15] also devised a combinatorial
polynomial-time algorithm for finding the co-density ®(G) of any multigraph G.

In 1978 Gupta [8] proposed the following co-density conjecture, which is the counterpart of
Conjecture 1.1 on ECPP.

Conjecture 1.2. Every multigraph G satisfies {(G) > min{dé(G) — 1, |®(G)]}.

This conjecture was listed among the Twenty Pretty Edge Coloring Conjectures by Stiebitz
et al. [14]. Tts validity would imply that, first, there are only two possible values for the cover
index ¢(G) of a multigraph G: min{é(G) — 1, [®(G)|} and min{dé(G), |®(G)]}; second, any
multigraph has a cover index within one of its fractional cover index, so FECPP also has a
fascinating integer rounding property (see Schrijver [11, 12]); third, even if P # NP, the N P-
hardness of ECPP does not preclude the possibility of designing an efficient algorithm for finding
at least min{d(G) — 1, |®(G)]} disjoint edge covers in any multigraph G.

To our knowledge, the bound £(G) > min{L%L |®(G) |} established by Gupta [8] in
1978 remains to be the best approximate version of Conjecture 1.2.

As is well known, the inequality x'(G) < A(G) 4+ u(G) holds for any multigraph G, where
1(G) is the maximum multiplicity of an edge in G. This result has been successfully dualized
by Gupta [7] to packing edge covers: {(G) > §(G) — u(G). It is worthwhile pointing out that
this dual version follows from Conjecture 1.2 as a corollary, because ®(G) > §(G) — u(G). To
see this, let U be a subset of V with |U| > 3 and odd, let F(U) be the set of all edges of G with
precisely one end in U, and let G[U] be the subgraph of G induced by U. Since each vertex in U is
adjacent to at most (|[U|—1)u(G) edges in G[U] and at most |F'(U)| edges outside G[U], we have
(G) < (JU|-1)u(G)+|F(U)|, which implies that 6(G)|U|+|F(U)| > (6(G) —u(G))(|U|+1). As
21EF(U)| = 2|E(U)|+2|F(U)| = 6(G)|U|+|F(U)], we obtain 2| E*(U)| = (6(G) —u(G))(|U|+1)
and hence ®(G) > 0(G) — u(G), as desired. Various attempts have been made to strengthen and
generalize this dual result; see, for instance, Andersen [1]. When restricted to a simple graph,
it can be found in both Bondy and Murty [2] (see Exercise 6.2.8) and Bondy and Murty [3] (see
Exercise 17.2.14).

Gupta [7] demonstrated that the lower bound 6(G) — u(G) for £(G) is sharp when u(G) > 1
and §(G) = 2pu(G) — q, where p and ¢ are two integers satisfying ¢ > 0 and p > u(G) +
(¢ — 1)/2]. This led Gupta [7] to suggest the following conjecture, which aims to give a



complete characterization of all values of 6(G) and p(G) for which no multigraph G with {(G) =
I(G) — pu(G) exists.

Conjecture 1.3. Let G be a multigraph such that 6(G) cannot be expressed in the form 2pu(G)—
q, for any two integers p and q satisfying ¢ > 0 and p > uw(G) + |(¢ — 1)/2]. Then £(G) >
(G) — u(G) + 1.

As edge covers are more difficult to manipulate than matchings, it is no surprise that a direct
proof of conjecture 1.2 would be more complicated and sophisticated than that of Conjecture
1.1 (see [4], which is under review). One purpose of this note is to establish a slightly weaker
version of conjecture 1.2 by using Conjecture 1.1.

Theorem 1.1. (Assuming Conjecture 1.1) Let G be a multigraph. Then £(G) > min{dé(G) —
1, |2(G)]} if (G) is not integral and §(G) > min{d(G) — 2, |®(G)] — 1} otherwise.

Remark. Suppose ®(G) < §(G). By this theorem, we obtain {(G) = |®(G) ] if ®(G) is not
integral and ®(G) — 1 < {(G) < ®(G) otherwise, because £(G) < min{d(G), [P(G)]}.

In this note we also show that Conjecture 1.3 is contained in Conjecture 1.2 as a special case.
Theorem 1.2. Conjecture 1.2 implies Conjecture 1.3.

Throughout this note we shall repeatedly use the following terminology and notation. Let
G = (V,E) be a multigraph. A subset U of V is called an odd set if |U] is odd and |U| > 3.
For each v € V| let dg(v) be the degree of v in G. For each U C V', let Eg(U) be the set of all
edges of G with both ends in U, let Eér(U) be the set of all edges of G with at least one end in
U, and let Fg(U) be the set of all edges of G with exactly one end in U. For any two subsets
X and Y of V, let Eg(X,Y) be the set of all edges of G with one end in X and the other end
in Y. We write Eg(z,y) for Eq(X,Y) if X = {z} and Y = {y}. We shall drop the subscript G
if there is no danger of confusion.

2 Approximate Version

We present a proof of Theorem 1.1 in this section. Let G = (V, E) be a multigraph and let
Z CV. Aset CC FE is called a Z-cover if every vertex of Z is incident with at least one edge
of C. Note that if Z =V, then Z-covers are precisely edge covers of G. Let e € E(x,y) and let
G’ be obtained from G by adding a new vertex 2’ and making e incident with z’ instead of x
(yet still incident with y); we say that G’ arises from G by splitting off e from z. To prove the
theorem, we shall actually establish the following variant.

Theorem 2.1. Let G = (V, E) be a multigraph, let Z C V, let k be a positive integer, and let €
be 0 or 1. If d(2) > k+1 for all z € Z and |[ET(U)| > ‘U‘TﬂkﬁLe for all odd sets U C Z, then
G contains k — 1 + € disjoint Z-covers.



To see that Theorem 1.1 follows from Theorem 2.1, set Z =V, k = min{0(G) — 1, |®(G)]},
e =1 if ®(G) is not an integer, and € = 0 otherwise.

Proof of Theorem 2.1. Splitting off edges from vertices outside Z if necessary, we may
assume that all vertices outside Z have degree one. Suppose for a contradiction that Theorem
2.1 is false. We reserve the triple (G, Z, k) for a counterexample with the minimum }__, d(z).

For convenience, we call an odd set U C Z optimal if |ET(U)| = |U|T+1k +e.
By hypothesis, d(z) > k + 1 for all z € Z, which can be strengthened as follows.

Claim. d(z) =k + 1 for all z € Z.

Otherwise, d(z) > k + 2 for some z € Z. If z is contained in no optimal odd set U C Z,
letting H be obtained from G by splitting off an edge from z, then (H, Z, k) would be a smaller
counterexample than (G, Z, k), a contradiction. Hence

(1) there exists an optimal odd set U; C Z containing z; subject to this, we assume that |U;|
is minimum.

Since (|Ui] + 1)k + 2¢ = 2|E*(Uh)| = 2|E(Uh)| + 2|F(U1)| > (k + D|U1| + |[F(Uy)], we have
|F(U1)| < k— Uil +2e <k <d(z). So z is adjacent to some vertex y € U;. Let H be arising
from G by splitting off one edge e € E(y, z) from z. We propose to show that

(2) (H,Z, k) is a smaller counterexample than (G, Z, k).

Assume the contrary. Then |E};(Us)| < %kz—{—e for some odd set Us C Z by the hypothesis
of this theorem. Thus

(3) z € Uz, y ¢ Uy, and |EF(U)| = P2 g 4 e

Let Ty = U;\Us and Ty = Us\U;. By (3), we have y € Uy \Us, so T} # 0. By the minimality
assumption on |Uj| (see (1)), Uz is not a proper subset of U, which implies 7o # (. Since
z € U; N U, we obtain |U; NUs| > 1. Let us consider two cases, according to the parity of
|U1 N U2|.

Case 1. |U; NUs| is odd.

It is a routine matter to check that

(4) [ET(U V)| + |[EF (UL NTa)| = [ET(U1)] + |EF(U2)| — 2| E(Th, T2).

In this case, Uy U Us is an odd set. So |ET(U; U Us)| > %k + € by the hypothesis of
this theorem.

(5) |EH (U NUy)| > W0l g 4 ey 1,

To justify this, note that if U3 NUs| = 1, then |[E*T(U; NUy)| = d(2) > k + 2. So (5) holds.
If |Uy NUs| > 3, then Uy N Uz is not an optimal odd set by the minimality assumption on |Uj|
(see (1)). Thus (5) is also true.

From (4) and (5) we deduce that 222 4o < |EH(U, UUY)| < |EX(U))] + |ET(Us)| —
|[ET (U NUs)| < %k—l—e—%%k—l—e— %k‘—e—l = %kﬁte—l, a contradiction.

Case 2. |U; NUs| is even.

It is easy to see that

(6) |EF(U1)[+|ET(U2)| = [ET(T1)| + [ET(T2)| + 2|E(U1 N Us)| + |F(U1 N U2)|.



(More precisely, |[ET(Uy)| + |ET(Uz)| = |ET(Th)| + |ET(T2)| + 2| E(Uy NUs)| + |E(Uy N Uy, Th U
To)|+2|E(U;NUs2, Uy U Us)|, where Uy UUs =V — (U; UUs). But we do not need this statement
in our proof.) In this case, |T;| is odd, so |[ET(T})| > %k + € for i = 1,2 by the hypothesis of
this theorem on odd sets (resp. degrees) if |T;| > 3 (resp. if |T;| = 1). It follows from (3) and
(6) that g e 108y o o5 I o IRl 4 o4 9| B(U, N T)| + |[F (UL N TR)| >
%k—i—e—i— %k—i—e—i— |UiNUsl(k+1) = %k—ke—i— %k—i—e%— |U1 NUs|, a contradiction.
Combining the above two cases, we obtain (2). This contradiction justifies the claim.

For each odd set U C Z, by the above claim, we obtain |U|(k + 1) = 2|E(U)| + |F(U)| =

[EW)|+|EF(U)] > [BWU)|+ T k+e. Thus [BW)| < D2 (k+2)+1—e. Hence 250 < k43

if e =0 and 2“5&?‘ < k+2if e = 1. By Conjecture 1.1, the chromatic index of G[Z] is at most

k4 3 — €. Since all vertices outside Z have degree one, we further obtain x'(G) < k+3 —e€. So

E can be partitioned into k + 3 — € matchings My, Mo, ..., My 3.

Let us first consider the case when € = 0. By the above claim,

(7) each vertex z € Z is disjoint from precisely two of My, M, ..., M3 (as d(z) =k +1).

Let H be the subgraph of GG induced by edges in My U M1 U M1 0U Mgy 3, and let N be an
orientation of H such that |d%(v) — dy(v)] < 1 for each vertex v. (It is well known that every
multigraph admits such an orientation.) From (7) and this orientation we see that

(8) if a vertex z € Z is disjoint from precisely one of My, My, ..., My_1, then dg(z) = 3
and dy(z) > 1; if z is disjoint from precisely two of M, My, ..., Mj_1, then dg(z) = 4 and
dy(z) =2.

For each i = 1,2,....,k — 1, let C; be obtained from M; as follows: for each z € Z, if z
is not covered by M;, add an edge from N that is directed to z and has not yet been used in
C1UCU. . .UC;_1, where Cy = (). From this construction and (8) we deduce that Cy, Cy, ..., Cx_1
are pairwise disjoint and each of them is a Z-cover in G.

It remains to consider the case when ¢ = 1. Now

(9) each vertex z € Z is disjoint from precisely one of My, My, ..., My s.

Let H be the subgraph of GG induced by edges in M1 U M2, and let N be an orientation
of H such that |d};(v) —dy(v)| < 1 for each vertex v. From (9) and this orientation we see that

(10) if a vertex z € Z is disjoint from precisely one of Mi, Mo, ..., My, then dy(z) = 2 and
dy(z) =1.

For each i = 1,2, ..., k, let C; be obtained from M; as follows: for each z € Z, if z is not
covered by M;, add an edge from N that is directed to z. From this construction and (10) we
deduce that C, Cy, ..., C} are pairwise disjoint and each of them is a Z-cover in G. |

3 Implication

The purpose of this section is to show that Conjecture 1.3 can be deduced from Conjecture 1.2.

Proof of Theorem 1.2. We may assume that



(1) G is connected.

To see this, let G1,Go, ..., G be all the components of G. For each i = 1,2,...,k, we aim to
establish the inequality £(G;) > §(G) — u(G). If §(G;) — u(G;) > 0(G) — u(G), then the desired
inequality holds, because £(G;) > 0(G;)—p(Gi). So we assume that §(G;) —u(G;) < §(G)—u(G).
Since 0(G;) > §(G) and p(G;) < u(G), from this assumption we deduce that §(G;) = 6(G) and
w(G;) = u(G). Thus G; satisfies the hypothesis of Conjecture 1.3. Hence we may assume that
G is connected, otherwise we consider its components separately.

By hypothesis, §(G) cannot be expressed in the form 2pu(G) — ¢, for any two integers p
and ¢ satisfying ¢ > 0 and p > u(G) + [(¢ — 1)/2]; these two inequalities are equivalent to
0 <q<2p—2u(G). Setting ¢ = 0,1,...,2p — 2u(G) respectively, we see that 6(G) does not
belong to the set

Qp ={2(p + D(G) = 2p,2(p + Du(G) — 2p+ 1,..., 2pu(G) },

where p > u(G). Note that 2u(G)? is the only member of €, and that the gap between
the largest member of €2, and the smallest member of €),,; consists of all integers 7 with
2pp(G)+1<i<2(p+2)u(G) — (2p+3). So

(2) either §(G) < 2u(G)? — 1 or 2pu(G) +1 < 6(G) < 2(p + 2)u(G) — (2p + 3) for some
p > u(G).

We may assume that §(G) > 1, for otherwise, G' contains only one vertex by (1) and hence

d(G) = 2pu(G)—q for p = ¢ = 0, contradicting the hypothesis of Conjecture 1.3. Thus p(G) > 1.
2EY(U)] <
T+ =

To prove the theorem, it suffices to show that for any odd set U of GG, we have
d(G) — u(G) + 1, or equivalently,
(3) 2[EWU)|+2[FU)| = (Ul +1)(6(G) — (G) + 1).

Set k = u(Q) if §(G) < 2u(G)? —1 and set k = p+ 1 if 2pu(G) +1 < 6(G) < 2(p+2)u(G) —
(2p + 3) for some p > p(G). We consider two cases according to the size of U.

Case 1. |U| > 2k + 1.

We divide the present case into two subcases.

Subcase 1.1. Either U C V or U =V and §(G) is odd. In this subcase,

(4) 2/BW)| +2/F(U)] > [UI5(G) + 1.

Indeed, if U C V, then |F(U)| > 1 by (1). If U =V and §(G) is odd, then G contains at least
one vertex of degree at least §(G) + 1, because |V| = |U| is odd and the total number of vertices
with odd degree is even. Hence (4) is true.

(5) [U13(G) +1 = (JU] + 1)(3(G) — p(G) + 1).

Note that (5) amounts to saying that §(G) < (|JU| +1)(u(G) — 1) + 1. If 6(G) < 2u(G)? -1,
then §(G) < 2u(G) +2)(W(G) = 1)+ 1= 2k +2)(u(G) = 1)+ 1 < (JU|+ 1) (u(G) = 1) + 1. If
5(G) < 2p+2)u(G) — (2p+3), then 8(G) < 2(k+ D)u(G) — (2k+1) = (2 +2)(u(G) — 1) +1 <
(U] 4+ 1)(u(G) — 1) + 1. So (5) is established.

The desired statement (3) follows instantly from (4) and (5).



Subcase 1.2. U = V and §(G) is even. In this subcase, we have §(G) < 2u(G)? — 2 if
§(G) <2u(G)? =1 and §(G) < 2(p+ 2)u(G) — (2p +4) if 6(G) < 2(p+2)u(G) — (2p +3). S
0(G) < (2k + 2)(u(G) — 1) by the definition of k£ and hence

(6) 6(G) < (U] + 1)(1(G) — 1).

From (6) we deduce that |U|5(G) > (JU|+1)(6(G) — u(G) +1). Therefore (3) holds, because
2EU)| + 2[F(U)| = [U]6(G).

Case 2. |U| <2k—1. (Sok>2as |U|>3.)

By the Pigeonhole Principle, some vertex v € U is incident with at most | |§]| ) edges in F(U).

Note that v is incident with at most (|JU|—1)u(G) edges in G[U], so d(v) < (|JU|-1)u(G)+ ‘F|§]U|)|.
Hence

(7) 8(G) < (U] = (@) + .

We proceed by considering two subcases.

Subcase 2.1. 2pu(G) +1 < 6(G) < 2(p+ 2)u(G) — (2p + 3), where p > p(G).

From (7) and the hypothesis of the present subcase, we deduce that 2pu(G) + 1 < (|U] —
(@) + EEL Thus [F(U)] > [U](2p + 1 - [UN(G) + [U]. So

(8) [U18(G) + |F(U)] > [U[6(G) + U](2p + 1 — [U)u(G) + |U].

Let us show that

(9) U18(G) + 1012+ 1 — [UDA(G) + U] > (U] + D)(3(G) — u(G) +1).

To justify this, note that (9) is equivalent to

(10) 0(G) <{|U[(2p +2 — |U]) + 1}pu(G) — 1.

By the hypothesis of the present subcase, §(G) < 2(p+2)u(G) — (2p+ 3). To establish (10),
we turn to proving that 2(p+2)u(G)— (2p+3) < {|U|(2p+2—|U|)+1}u(G) — 1, or equivalently

(11) {~ U+ 2(p + D|U| — (2p + 3)}(G) > —(2p +2).

Let f(z) = —2% +2(p+ 1)z — (2p + 3). Then f(x) is a concave function on R. So on
any interval [a,b], f(z) achieves the minimum at a or b. By the hypothesis of the present case,
Ul <2k—1=2p+1,s03<|U| <2p+1. By direct computation, we obtain f(3) = 4p—6 > —2
and f(2p+ 1) = —2. Thus f(|U]) > =2 for 3 < |U| < 2p + 1, which implies that the LHS of
(11) > —2u(G) > —(2p+2) = RHS of (11), because p > u(G). This proves (11) and hence (10)
and (9).

Since 2|E(U)|+2|F(U)| > |U|6(G)+|F(U)|, the desired statement (3) follows instantly from
(8) and (9).

Subcase 2.2. §(G) < 2u(G)? — 1.

We may assume that

(12) 6(G) > (|U| + 1)(u(G) — 1) + 1, for otherwise, |U|d(G) > (|U]| + 1)(6(G) — u(G) + 1).
So (3) holds, because 2|E(U)| + 2|F(U)| > |U|6(G).

By (12) and the hypothesis of the present subcase, either 2t(u(G) — 1) +1 < 6(G) <
2(t+1)(u(G) —1) for some ¢ with |U|T+1 <t < u(G)ordé(G)=2t(u(G)—1)+1fort = u(G)+1.




By (7), we have 2t(u(G) ~1)+1 < ([U]-1)u(G)+ k. So HE > (2t~ |U |+ 1) (G) —2t+1,

and hence

(13) |UIS(G) + |F(U)| > [UHS(G) + (2t — [U] + Du(G) — 2t + 1},

We propose to show that

(14) [UKS(G) + (2t = U]+ Du(G) = 2t + 1} = (JU[ + 1)(0(G) — p(G) +1).

To justify this, note that (14) is equivalent to

(15) 6(G) < {|U|(2t +2 —|U|) + 1}u(G) — |U|2t — 1.

Suppose 6(G) = 2u(G)?—1. Then t = u(G)+1. So (15) says that 2u(G)2—1 < {|U|(2u(G) +
4 —|U|) + 1}u(G) — [U|(2u(G) + 2) — 1, or equivalently, {|U|2u(G) + 4 — |U|) + 1}u(G) —
IUI(2u(G)+2) > 2u(G)?. Let g(x) = {z(2u(G)+4— )+ 1}u(G) — 2(2u(G) +2). Then g(z) is a
concave function on R. So on any interval [a, b], g(z) achieves the minimum at a or b. By direct
computation, we obtain g(3) = 6u(G)? — 2u(G) — 6 and g(2u(G) — 1) = 6u(G)? — 6u(G) +2. Tt
is easy to see that min{g(3), g(2u(G) — 1)} > 2u(G)?, because u(G) = k > 2 (see the hypothesis
of Case 2). Hence g(|U|) > 2u(G)? for 3 < |U| < 2u(G) — 1 = 2k — 1. This proves (15) and
hence (14) and (13).

So we assume that 6(G) < 2(t + 1)(u(G) — 1) for some t with ‘UlTH <t < u(G). We prove
(15) by showing that 2(t+1)(u(G) —1) < {|U|(2t+2—|U|)+1}u(G) —|U|2t — 1, or equivalently,
{lU|(2t+2—|U|)—2t—1}u(G)—|U|2t > —2t—1. Let h(z) = {z(2t+2—x)—2t—1}u(G)—2tz. Then
h(z) is a concave function on R. So on any interval [a, b], h(z) achieves the minimum at a or b. By
direct computation, we obtain h(3) = 4(t—1)u(G) —6t and h(2t —1) = 4(t —1)u(G) —2t(2t —1).
It is easy to see that min{h(3),h(2t — 1)} > —2t — 1, because u(G) >t > |U|T+1 > 2. Hence
h(|U]) > =2t — 1 for 3 < |U| < 2t — 1. This proves (15) and hence (14) and (13).

Since 2|E(U)|4+2|F(U)| > |U|0(G)+ |F(U)|, the desired statement (3) follows instantly from
(13) and (14), completing the proof of Theorem 1.2. 1
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