
On Gupta’s Co-density Conjecture

Yan Caoa Guantao Chenb Guoli Dingc Guangming Jingd∗ Wenan Zange²

a School of Mathematical Sciences, Dalian University of Technology

Dalian, Liaoning 116024, China

b Department of Mathematics and Statistics, Georgia State University

Atlanta, GA 30303, USA

c Mathematics Department, Louisiana State University

Baton Rouge, LA 70803, USA

d School of Mathematical and Data Sciences, West Virginia University

Morgantown, WV 26506, USA

e Department of Mathematics, The University of Hong Kong

Hong Kong, China

Abstract

Let G = (V,E) be a multigraph. The cover index ξ(G) of G is the greatest integer k
for which there is a coloring of E with k colors such that each vertex of G is incident with
at least one edge of each color. Let δ(G) be the minimum degree of G and let Φ(G) be the
co-density of G, defined by

Φ(G) = min

ß

2|E+(U)|

|U |+ 1
: U ⊆ V, |U | ≥ 3 and odd

™

,

where E+(U) is the set of all edges of G with at least one end in U . It is easy to see that
ξ(G) ≤ min{δ(G), ⌊Φ(G)⌋}. In 1978 Gupta proposed the following co-density conjecture:
Every multigraph G satisfies ξ(G) ≥ min{δ(G)−1, ⌊Φ(G)⌋}, which is the dual version of the
Goldberg-Seymour conjecture on edge-colorings of multigraphs. In this note we prove that
ξ(G) ≥ min{δ(G)−1, ⌊Φ(G)⌋} if Φ(G) is not integral and ξ(G) ≥ min{δ(G)−2, ⌊Φ(G)⌋−1}
otherwise. We also show that this co-density conjecture implies another conjecture concern-
ing cover index made by Gupta in 1967.
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1 Introduction

In this note we consider multigraphs, which may have parallel edges but contain no loops. Let

G = (V,E) be a multigraph. The chromatic index χ′(G) of G is the least integer k for which

there is a coloring of E with k colors such that each vertex of G is incident with at most one

edge of each color. Let ∆(G) be the maximum degree of G and let Γ(G) be the density of G,

defined by

Γ(G) = max

ß

2|E(U)|

|U | − 1
: U ⊆ V, |U | ≥ 3 and odd

™

,

where E(U) is the set of all edges of G with both ends in U . Clearly, χ′(G) ≥ max{∆(G), Γ(G)};

this lower bound, as shown by Seymour [13] using Edmonds’ matching polytope theorem [5],

is precisely the fractional chromatic index of G, which is the optimal value of the fractional

edge-coloring problem:

Minimize 1Tx

subject to Ax = 1

x ≥ 0,

where A is the edge-matching incidence matrix of G. In the early 1970s Goldberg [6] and

Seymour [13] independently made the following conjecture.

Conjecture 1.1. Every multigraph G satisfies χ′(G) ≤ max{∆(G) + 1, ⌈Γ(G)⌉}.

Over the past five decades this conjecture has been a subject of extensive research, and has

stimulated an important body of work, with contributions from many researchers; see McDonald

[10] for a survey on this conjecture and Stiebitz et al. [14] for a comprehensive account of edge-

colorings. In [4] three of the authors, Chen, Jing, and Zang, have announced a complete proof

of Conjecture 1.1.

The present note is devoted to the study of the dual version of the classical edge-coloring

problem (ECP), which asks for a coloring of the edges of G using the maximum number of colors

in such a way that at each vertex all colors occur. It is easy to see that each color class induces

an edge cover of G. (Recall that an edge cover is a subset F of E such that each vertex of G is

incident to at least one edge in F .) So this problem is actually the edge cover packing problem

(ECPP). Let ξ(G) denote the optimal value of ECPP, which we call the cover index of G. As

it is NP -hard [9] in general to determine the chromatic index χ′(G) of a simple cubic graph G,

determining the cover index ξ(G) is also NP -hard.

Let δ(G) be the minimum degree of G, let E+(U) be the set of all edges of G with at least

one end in U for each U ⊆ V , and let Φ(G) be the co-density of G, defined by

Φ(G) = min

ß

2|E+(U)|

|U |+ 1
: U ⊆ V, |U | ≥ 3 and odd

™

.

Obviously, ξ(G) ≤ δ(G). Since each edge cover contains at least (|U | + 1)/2 edges in E+(U)

for any U ⊆ V with |U | ≥ 3 and odd, Φ(G) provides another upper bound for ξ(G). So
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ξ(G) ≤ min{δ(G),Φ(G)}. Based on a polyhedral description of edge covers (see Theorem 27.3

in Schrijver [12]), Zhao, Chen, and Sang [15] observed that the parameter min{δ(G), Φ(G)} is

exactly the fractional cover index of G, the optimal value of the fractional edge cover packing

problem (FECPP):

Maximize 1Tx

subject to Bx = 1

x ≥ 0,

where B is the edge-edge cover incidence matrix of G. They [15] also devised a combinatorial

polynomial-time algorithm for finding the co-density Φ(G) of any multigraph G.

In 1978 Gupta [8] proposed the following co-density conjecture, which is the counterpart of

Conjecture 1.1 on ECPP.

Conjecture 1.2. Every multigraph G satisfies ξ(G) ≥ min{δ(G)− 1, ⌊Φ(G)⌋}.

This conjecture was listed among the Twenty Pretty Edge Coloring Conjectures by Stiebitz

et al. [14]. Its validity would imply that, first, there are only two possible values for the cover

index ξ(G) of a multigraph G: min{δ(G) − 1, ⌊Φ(G)⌋} and min{δ(G), ⌊Φ(G)⌋}; second, any

multigraph has a cover index within one of its fractional cover index, so FECPP also has a

fascinating integer rounding property (see Schrijver [11, 12]); third, even if P ̸= NP , the NP -

hardness of ECPP does not preclude the possibility of designing an efficient algorithm for finding

at least min{δ(G)− 1, ⌊Φ(G)⌋} disjoint edge covers in any multigraph G.

To our knowledge, the bound ξ(G) ≥ min{⌊7δ(G)+1
8 ⌋, ⌊Φ(G)⌋} established by Gupta [8] in

1978 remains to be the best approximate version of Conjecture 1.2.

As is well known, the inequality χ′(G) ≤ ∆(G) + µ(G) holds for any multigraph G, where

µ(G) is the maximum multiplicity of an edge in G. This result has been successfully dualized

by Gupta [7] to packing edge covers: ξ(G) ≥ δ(G) − µ(G). It is worthwhile pointing out that

this dual version follows from Conjecture 1.2 as a corollary, because Φ(G) ≥ δ(G) − µ(G). To

see this, let U be a subset of V with |U | ≥ 3 and odd, let F (U) be the set of all edges of G with

precisely one end in U , and let G[U ] be the subgraph of G induced by U . Since each vertex in U is

adjacent to at most (|U |−1)µ(G) edges in G[U ] and at most |F (U)| edges outside G[U ], we have

δ(G) ≤ (|U |−1)µ(G)+|F (U)|, which implies that δ(G)|U |+|F (U)| ≥ (δ(G)−µ(G))(|U |+1). As

2|E+(U)| = 2|E(U)|+2|F (U)| ≥ δ(G)|U |+|F (U)|, we obtain 2|E+(U)| ≥ (δ(G)−µ(G))(|U |+1)

and hence Φ(G) ≥ δ(G)−µ(G), as desired. Various attempts have been made to strengthen and

generalize this dual result; see, for instance, Andersen [1]. When restricted to a simple graph,

it can be found in both Bondy and Murty [2] (see Exercise 6.2.8) and Bondy and Murty [3] (see

Exercise 17.2.14).

Gupta [7] demonstrated that the lower bound δ(G)−µ(G) for ξ(G) is sharp when µ(G) ≥ 1

and δ(G) = 2pµ(G) − q, where p and q are two integers satisfying q ≥ 0 and p > µ(G) +

⌊(q − 1)/2⌋. This led Gupta [7] to suggest the following conjecture, which aims to give a
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complete characterization of all values of δ(G) and µ(G) for which no multigraph G with ξ(G) =

δ(G)− µ(G) exists.

Conjecture 1.3. Let G be a multigraph such that δ(G) cannot be expressed in the form 2pµ(G)−

q, for any two integers p and q satisfying q ≥ 0 and p > µ(G) + ⌊(q − 1)/2⌋. Then ξ(G) ≥

δ(G)− µ(G) + 1.

As edge covers are more difficult to manipulate than matchings, it is no surprise that a direct

proof of conjecture 1.2 would be more complicated and sophisticated than that of Conjecture

1.1 (see [4], which is under review). One purpose of this note is to establish a slightly weaker

version of conjecture 1.2 by using Conjecture 1.1.

Theorem 1.1. (Assuming Conjecture 1.1) Let G be a multigraph. Then ξ(G) ≥ min{δ(G) −

1, ⌊Φ(G)⌋} if Φ(G) is not integral and ξ(G) ≥ min{δ(G)− 2, ⌊Φ(G)⌋ − 1} otherwise.

Remark. Suppose Φ(G) < δ(G). By this theorem, we obtain ξ(G) = ⌊Φ(G)⌋ if Φ(G) is not

integral and Φ(G)− 1 ≤ ξ(G) ≤ Φ(G) otherwise, because ξ(G) ≤ min{δ(G), ⌊Φ(G)⌋}.

In this note we also show that Conjecture 1.3 is contained in Conjecture 1.2 as a special case.

Theorem 1.2. Conjecture 1.2 implies Conjecture 1.3.

Throughout this note we shall repeatedly use the following terminology and notation. Let

G = (V,E) be a multigraph. A subset U of V is called an odd set if |U | is odd and |U | ≥ 3.

For each v ∈ V , let dG(v) be the degree of v in G. For each U ⊆ V , let EG(U) be the set of all

edges of G with both ends in U , let E+
G(U) be the set of all edges of G with at least one end in

U , and let FG(U) be the set of all edges of G with exactly one end in U . For any two subsets

X and Y of V , let EG(X,Y ) be the set of all edges of G with one end in X and the other end

in Y . We write EG(x, y) for EG(X,Y ) if X = {x} and Y = {y}. We shall drop the subscript G

if there is no danger of confusion.

2 Approximate Version

We present a proof of Theorem 1.1 in this section. Let G = (V,E) be a multigraph and let

Z ⊆ V . A set C ⊆ E is called a Z-cover if every vertex of Z is incident with at least one edge

of C. Note that if Z = V , then Z-covers are precisely edge covers of G. Let e ∈ E(x, y) and let

G′ be obtained from G by adding a new vertex x′ and making e incident with x′ instead of x

(yet still incident with y); we say that G′ arises from G by splitting off e from x. To prove the

theorem, we shall actually establish the following variant.

Theorem 2.1. Let G = (V,E) be a multigraph, let Z ⊆ V , let k be a positive integer, and let ϵ

be 0 or 1. If d(z) ≥ k + 1 for all z ∈ Z and |E+(U)| ≥ |U |+1
2 k + ϵ for all odd sets U ⊆ Z, then

G contains k − 1 + ϵ disjoint Z-covers.
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To see that Theorem 1.1 follows from Theorem 2.1, set Z = V , k = min{δ(G)− 1, ⌊Φ(G)⌋},

ϵ = 1 if Φ(G) is not an integer, and ϵ = 0 otherwise.

Proof of Theorem 2.1. Splitting off edges from vertices outside Z if necessary, we may

assume that all vertices outside Z have degree one. Suppose for a contradiction that Theorem

2.1 is false. We reserve the triple (G,Z, k) for a counterexample with the minimum
∑

z∈Z d(z).

For convenience, we call an odd set U ⊆ Z optimal if |E+(U)| = |U |+1
2 k + ϵ.

By hypothesis, d(z) ≥ k + 1 for all z ∈ Z, which can be strengthened as follows.

Claim. d(z) = k + 1 for all z ∈ Z.

Otherwise, d(z) ≥ k + 2 for some z ∈ Z. If z is contained in no optimal odd set U ⊆ Z,

letting H be obtained from G by splitting off an edge from z, then (H,Z, k) would be a smaller

counterexample than (G,Z, k), a contradiction. Hence

(1) there exists an optimal odd set U1 ⊆ Z containing z; subject to this, we assume that |U1|

is minimum.

Since (|U1|+ 1)k + 2ϵ = 2|E+(U1)| = 2|E(U1)|+ 2|F (U1)| ≥ (k + 1)|U1|+ |F (U1)|, we have

|F (U1)| ≤ k − |U1| + 2ϵ ≤ k < d(z). So z is adjacent to some vertex y ∈ U1. Let H be arising

from G by splitting off one edge e ∈ E(y, z) from z. We propose to show that

(2) (H,Z, k) is a smaller counterexample than (G,Z, k).

Assume the contrary. Then |E+
H(U2)| <

|U2|+1
2 k+ϵ for some odd set U2 ⊆ Z by the hypothesis

of this theorem. Thus

(3) z ∈ U2, y /∈ U2, and |E+(U2)| =
|U2|+1

2 k + ϵ.

Let T1 = U1\U2 and T2 = U2\U1. By (3), we have y ∈ U1\U2, so T1 ̸= ∅. By the minimality

assumption on |U1| (see (1)), U2 is not a proper subset of U1, which implies T2 ̸= ∅. Since

z ∈ U1 ∩ U2, we obtain |U1 ∩ U2| ≥ 1. Let us consider two cases, according to the parity of

|U1 ∩ U2|.

Case 1. |U1 ∩ U2| is odd.

It is a routine matter to check that

(4) |E+(U1 ∪ U2)|+ |E+(U1 ∩ U2)| = |E+(U1)|+ |E+(U2)| − 2|E(T1, T2)|.

In this case, U1 ∪ U2 is an odd set. So |E+(U1 ∪ U2)| ≥
|U1∪U2|+1

2 k + ϵ by the hypothesis of

this theorem.

(5) |E+(U1 ∩ U2)| ≥
|U1∩U2|+1

2 k + ϵ+ 1.

To justify this, note that if |U1 ∩ U2| = 1, then |E+(U1 ∩ U2)| = d(z) ≥ k + 2. So (5) holds.

If |U1 ∩ U2| ≥ 3, then U1 ∩ U2 is not an optimal odd set by the minimality assumption on |U1|

(see (1)). Thus (5) is also true.

From (4) and (5) we deduce that |U1∪U2|+1
2 k + ϵ ≤ |E+(U1 ∪ U2)| ≤ |E+(U1)| + |E+(U2)| −

|E+(U1∩U2)| ≤
|U1|+1

2 k+ϵ+ |U2|+1
2 k+ϵ− |U1∩U2|+1

2 k−ϵ−1 = |U1∪U2|+1
2 k+ϵ−1, a contradiction.

Case 2. |U1 ∩ U2| is even.

It is easy to see that

(6) |E+(U1)|+ |E+(U2)| ≥ |E+(T1)|+ |E+(T2)|+ 2|E(U1 ∩ U2)|+ |F (U1 ∩ U2)|.
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(More precisely, |E+(U1)|+ |E+(U2)| = |E+(T1)|+ |E+(T2)|+ 2|E(U1 ∩U2)|+ |E(U1 ∩U2, T1 ∪

T2)|+2|E(U1∩U2, U1 ∪ U2)|, where U1 ∪ U2 = V −(U1∪U2). But we do not need this statement

in our proof.) In this case, |Ti| is odd, so |E+(Ti)| ≥
|Ti|+1

2 k+ ϵ for i = 1, 2 by the hypothesis of

this theorem on odd sets (resp. degrees) if |Ti| ≥ 3 (resp. if |Ti| = 1). It follows from (3) and

(6) that |U1|+1
2 k + ϵ + |U2|+1

2 k + ϵ ≥ |T1|+1
2 k + ϵ + |T2|+1

2 k + ϵ + 2|E(U1 ∩ U2)| + |F (U1 ∩ U2)| ≥
|T1|+1

2 k+ ϵ+ |T2|+1
2 k+ ϵ+ |U1∩U2|(k+1) = |U1|+1

2 k+ ϵ+ |U2|+1
2 k+ ϵ+ |U1∩U2|, a contradiction.

Combining the above two cases, we obtain (2). This contradiction justifies the claim.

For each odd set U ⊆ Z, by the above claim, we obtain |U |(k + 1) = 2|E(U)| + |F (U)| =

|E(U)|+|E+(U)| ≥ |E(U)|+ |U |+1
2 k+ϵ. Thus |E(U)| ≤ |U |−1

2 (k+2)+1−ϵ. Hence 2|E(U)|
|U |−1 ≤ k+3

if ϵ = 0 and 2|E(U)|
|U |−1 ≤ k + 2 if ϵ = 1. By Conjecture 1.1, the chromatic index of G[Z] is at most

k + 3− ϵ. Since all vertices outside Z have degree one, we further obtain χ′(G) ≤ k + 3− ϵ. So

E can be partitioned into k + 3− ϵ matchings M1,M2, . . . ,Mk+3−ϵ.

Let us first consider the case when ϵ = 0. By the above claim,

(7) each vertex z ∈ Z is disjoint from precisely two of M1,M2, . . . ,Mk+3 (as d(z) = k + 1).

Let H be the subgraph of G induced by edges in Mk∪Mk+1∪Mk+2∪Mk+3, and let N be an

orientation of H such that |d+N (v) − d−N (v)| ≤ 1 for each vertex v. (It is well known that every

multigraph admits such an orientation.) From (7) and this orientation we see that

(8) if a vertex z ∈ Z is disjoint from precisely one of M1,M2, . . . ,Mk−1, then dH(z) = 3

and d−N (z) ≥ 1; if z is disjoint from precisely two of M1,M2, . . . ,Mk−1, then dH(z) = 4 and

d−N (z) = 2.

For each i = 1, 2, ..., k − 1, let Ci be obtained from Mi as follows: for each z ∈ Z, if z

is not covered by Mi, add an edge from N that is directed to z and has not yet been used in

C1∪C2∪. . .∪Ci−1, where C0 = ∅. From this construction and (8) we deduce that C1, C2, ..., Ck−1

are pairwise disjoint and each of them is a Z-cover in G.

It remains to consider the case when ϵ = 1. Now

(9) each vertex z ∈ Z is disjoint from precisely one of M1,M2, . . . ,Mk+2.

Let H be the subgraph of G induced by edges in Mk+1 ∪Mk+2, and let N be an orientation

of H such that |d+N (v)− d−N (v)| ≤ 1 for each vertex v. From (9) and this orientation we see that

(10) if a vertex z ∈ Z is disjoint from precisely one of M1,M2, . . . ,Mk, then dH(z) = 2 and

d−N (z) = 1.

For each i = 1, 2, ..., k, let Ci be obtained from Mi as follows: for each z ∈ Z, if z is not

covered by Mi, add an edge from N that is directed to z. From this construction and (10) we

deduce that C1, C2, ..., Ck are pairwise disjoint and each of them is a Z-cover in G.

3 Implication

The purpose of this section is to show that Conjecture 1.3 can be deduced from Conjecture 1.2.

Proof of Theorem 1.2. We may assume that
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(1) G is connected.

To see this, let G1, G2, . . . , Gk be all the components of G. For each i = 1, 2, . . . , k, we aim to

establish the inequality ξ(Gi) > δ(G)− µ(G). If δ(Gi)− µ(Gi) > δ(G)− µ(G), then the desired

inequality holds, because ξ(Gi) ≥ δ(Gi)−µ(Gi). So we assume that δ(Gi)−µ(Gi) ≤ δ(G)−µ(G).

Since δ(Gi) ≥ δ(G) and µ(Gi) ≤ µ(G), from this assumption we deduce that δ(Gi) = δ(G) and

µ(Gi) = µ(G). Thus Gi satisfies the hypothesis of Conjecture 1.3. Hence we may assume that

G is connected, otherwise we consider its components separately.

By hypothesis, δ(G) cannot be expressed in the form 2pµ(G) − q, for any two integers p

and q satisfying q ≥ 0 and p > µ(G) + ⌊(q − 1)/2⌋; these two inequalities are equivalent to

0 ≤ q ≤ 2p − 2µ(G). Setting q = 0, 1, . . . , 2p − 2µ(G) respectively, we see that δ(G) does not

belong to the set

Ωp = {2(p+ 1)µ(G)− 2p, 2(p+ 1)µ(G)− 2p+ 1, . . . , 2pµ(G)},

where p ≥ µ(G). Note that 2µ(G)2 is the only member of Ωµ(G) and that the gap between

the largest member of Ωp and the smallest member of Ωp+1 consists of all integers i with

2pµ(G) + 1 ≤ i ≤ 2(p+ 2)µ(G)− (2p+ 3). So

(2) either δ(G) ≤ 2µ(G)2 − 1 or 2pµ(G) + 1 ≤ δ(G) ≤ 2(p + 2)µ(G) − (2p + 3) for some

p ≥ µ(G).

We may assume that δ(G) ≥ 1, for otherwise, G contains only one vertex by (1) and hence

δ(G) = 2pµ(G)−q for p = q = 0, contradicting the hypothesis of Conjecture 1.3. Thus µ(G) ≥ 1.

To prove the theorem, it suffices to show that for any odd set U of G, we have 2|E+(U)|
|U |+1 ≥

δ(G)− µ(G) + 1, or equivalently,

(3) 2|E(U)|+ 2|F (U)| ≥ (|U |+ 1)(δ(G)− µ(G) + 1).

Set k = µ(G) if δ(G) ≤ 2µ(G)2− 1 and set k = p+1 if 2pµ(G)+ 1 ≤ δ(G) ≤ 2(p+2)µ(G)−

(2p+ 3) for some p ≥ µ(G). We consider two cases according to the size of U .

Case 1. |U | ≥ 2k + 1.

We divide the present case into two subcases.

Subcase 1.1. Either U ⊊ V or U = V and δ(G) is odd. In this subcase,

(4) 2|E(U)|+ 2|F (U)| ≥ |U |δ(G) + 1.

Indeed, if U ⊊ V , then |F (U)| ≥ 1 by (1). If U = V and δ(G) is odd, then G contains at least

one vertex of degree at least δ(G)+1, because |V | = |U | is odd and the total number of vertices

with odd degree is even. Hence (4) is true.

(5) |U |δ(G) + 1 ≥ (|U |+ 1)(δ(G)− µ(G) + 1).

Note that (5) amounts to saying that δ(G) ≤ (|U |+1)(µ(G)− 1) + 1. If δ(G) ≤ 2µ(G)2 − 1,

then δ(G) ≤ (2µ(G) + 2)(µ(G)− 1) + 1 = (2k + 2)(µ(G)− 1) + 1 ≤ (|U |+ 1)(µ(G)− 1) + 1. If

δ(G) ≤ 2(p+2)µ(G)− (2p+3), then δ(G) ≤ 2(k+1)µ(G)− (2k+1) = (2k+2)(µ(G)− 1)+1 ≤

(|U |+ 1)(µ(G)− 1) + 1. So (5) is established.

The desired statement (3) follows instantly from (4) and (5).
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Subcase 1.2. U = V and δ(G) is even. In this subcase, we have δ(G) ≤ 2µ(G)2 − 2 if

δ(G) ≤ 2µ(G)2 − 1 and δ(G) ≤ 2(p + 2)µ(G) − (2p + 4) if δ(G) ≤ 2(p + 2)µ(G) − (2p + 3). So

δ(G) ≤ (2k + 2)(µ(G)− 1) by the definition of k and hence

(6) δ(G) ≤ (|U |+ 1)(µ(G)− 1).

From (6) we deduce that |U |δ(G) ≥ (|U |+1)(δ(G)−µ(G)+1). Therefore (3) holds, because

2|E(U)|+ 2|F (U)| ≥ |U |δ(G).

Case 2. |U | ≤ 2k − 1. (So k ≥ 2 as |U | ≥ 3.)

By the Pigeonhole Principle, some vertex v ∈ U is incident with at most |F (U)|
|U | edges in F (U).

Note that v is incident with at most (|U |−1)µ(G) edges in G[U ], so d(v) ≤ (|U |−1)µ(G)+ |F (U)|
|U | .

Hence

(7) δ(G) ≤ (|U | − 1)µ(G) + |F (U)|
|U | .

We proceed by considering two subcases.

Subcase 2.1. 2pµ(G) + 1 ≤ δ(G) ≤ 2(p+ 2)µ(G)− (2p+ 3), where p ≥ µ(G).

From (7) and the hypothesis of the present subcase, we deduce that 2pµ(G) + 1 ≤ (|U | −

1)µ(G) + |F (U)|
|U | . Thus |F (U)| ≥ |U |(2p+ 1− |U |)µ(G) + |U |. So

(8) |U |δ(G) + |F (U)| ≥ |U |δ(G) + |U |(2p+ 1− |U |)µ(G) + |U |.

Let us show that

(9) |U |δ(G) + |U |(2p+ 1− |U |)µ(G) + |U | ≥ (|U |+ 1)(δ(G)− µ(G) + 1).

To justify this, note that (9) is equivalent to

(10) δ(G) ≤ {|U |(2p+ 2− |U |) + 1}µ(G)− 1.

By the hypothesis of the present subcase, δ(G) ≤ 2(p+2)µ(G)− (2p+3). To establish (10),

we turn to proving that 2(p+2)µ(G)−(2p+3) ≤ {|U |(2p+2−|U |)+1}µ(G)−1, or equivalently

(11) {−|U |2 + 2(p+ 1)|U | − (2p+ 3)}µ(G) ≥ −(2p+ 2).

Let f(x) = −x2 + 2(p + 1)x − (2p + 3). Then f(x) is a concave function on R. So on

any interval [a, b], f(x) achieves the minimum at a or b. By the hypothesis of the present case,

|U | ≤ 2k−1 = 2p+1, so 3 ≤ |U | ≤ 2p+1. By direct computation, we obtain f(3) = 4p−6 ≥ −2

and f(2p + 1) = −2. Thus f(|U |) ≥ −2 for 3 ≤ |U | ≤ 2p + 1, which implies that the LHS of

(11) ≥ −2µ(G) ≥ −(2p+2) = RHS of (11), because p ≥ µ(G). This proves (11) and hence (10)

and (9).

Since 2|E(U)|+2|F (U)| ≥ |U |δ(G)+ |F (U)|, the desired statement (3) follows instantly from

(8) and (9).

Subcase 2.2. δ(G) ≤ 2µ(G)2 − 1.

We may assume that

(12) δ(G) ≥ (|U | + 1)(µ(G) − 1) + 1, for otherwise, |U |δ(G) ≥ (|U | + 1)(δ(G) − µ(G) + 1).

So (3) holds, because 2|E(U)|+ 2|F (U)| ≥ |U |δ(G).

By (12) and the hypothesis of the present subcase, either 2t(µ(G) − 1) + 1 ≤ δ(G) ≤

2(t+1)(µ(G)−1) for some t with |U |+1
2 ≤ t ≤ µ(G) or δ(G) = 2t(µ(G)−1)+1 for t = µ(G)+1.
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By (7), we have 2t(µ(G)−1)+1 ≤ (|U |−1)µ(G)+ |F (U)|
|U | . So |F (U)|

|U | ≥ (2t−|U |+1)µ(G)−2t+1,

and hence

(13) |U |δ(G) + |F (U)| ≥ |U |{δ(G) + (2t− |U |+ 1)µ(G)− 2t+ 1}.

We propose to show that

(14) |U |{δ(G) + (2t− |U |+ 1)µ(G)− 2t+ 1} ≥ (|U |+ 1)(δ(G)− µ(G) + 1).

To justify this, note that (14) is equivalent to

(15) δ(G) ≤ {|U |(2t+ 2− |U |) + 1}µ(G)− |U |2t− 1.

Suppose δ(G) = 2µ(G)2−1. Then t = µ(G)+1. So (15) says that 2µ(G)2−1 ≤ {|U |(2µ(G)+

4 − |U |) + 1}µ(G) − |U |(2µ(G) + 2) − 1, or equivalently, {|U |(2µ(G) + 4 − |U |) + 1}µ(G) −

|U |(2µ(G)+2) ≥ 2µ(G)2. Let g(x) = {x(2µ(G)+4−x)+1}µ(G)−x(2µ(G)+2). Then g(x) is a

concave function on R. So on any interval [a, b], g(x) achieves the minimum at a or b. By direct

computation, we obtain g(3) = 6µ(G)2 − 2µ(G)− 6 and g(2µ(G)− 1) = 6µ(G)2 − 6µ(G) + 2. It

is easy to see that min{g(3), g(2µ(G)− 1)} ≥ 2µ(G)2, because µ(G) = k ≥ 2 (see the hypothesis

of Case 2). Hence g(|U |) ≥ 2µ(G)2 for 3 ≤ |U | ≤ 2µ(G) − 1 = 2k − 1. This proves (15) and

hence (14) and (13).

So we assume that δ(G) ≤ 2(t + 1)(µ(G) − 1) for some t with |U |+1
2 ≤ t ≤ µ(G). We prove

(15) by showing that 2(t+1)(µ(G)−1) ≤ {|U |(2t+2−|U |)+1}µ(G)−|U |2t−1, or equivalently,

{|U |(2t+2−|U |)−2t−1}µ(G)−|U |2t ≥ −2t−1. Let h(x) = {x(2t+2−x)−2t−1}µ(G)−2tx. Then

h(x) is a concave function on R. So on any interval [a, b], h(x) achieves the minimum at a or b. By

direct computation, we obtain h(3) = 4(t−1)µ(G)−6t and h(2t−1) = 4(t−1)µ(G)−2t(2t−1).

It is easy to see that min{h(3), h(2t − 1)} ≥ −2t − 1, because µ(G) ≥ t ≥ |U |+1
2 ≥ 2. Hence

h(|U |) ≥ −2t− 1 for 3 ≤ |U | ≤ 2t− 1. This proves (15) and hence (14) and (13).

Since 2|E(U)|+2|F (U)| ≥ |U |δ(G)+ |F (U)|, the desired statement (3) follows instantly from

(13) and (14), completing the proof of Theorem 1.2.
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