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boundary conditions and mesh anisotropy. While such investigations have been conducted for
attached/flat-plate flow configurations, systematic studies specifically targeting turbulent flows
with separation are notably sparse. To bridge this gap, our study focuses on the flow over a
two-dimensional Gaussian-shaped bump at a moderately high Reynolds number, which involves
smooth-body separation of a turbulent boundary layer under pressure-gradient and surface-
curvature effects. In the simulations, the no-slip condition at the wall is replaced by three different
forms of boundary condition based on the thin boundary layer equations and the mean wall-shear
stress from high-fidelity numerical simulation to avoid the additional complexity of modeling the
wall-shear stress. Various statistics, including the mean separation bubble size, mean velocity
profile, and dissipation from SGS model, are compared and analyzed. The results reveal that
capturing the separation bubble strongly depends on the choice of SGS model. While simulations
approach grid convergence with resolutions nearing those of wall-resolved LES meshes, above this
limit, the LES predictions exhibit intricate sensitivities to mesh resolution. Furthermore, both wall
boundary conditions and the anisotropy of mesh cells exert discernible impacts on the turbulent
flow predictions, yet the magnitudes of these impacts vary based on the specific SGS model chosen
for the simulation.

1. Introduction

In recent years, wall-modeled LES (WMLES) has been treated as an essential technology in the field of computational fluid
dynamics (CFD) [1]. It offers enhanced accuracy over Reynolds-averaged Navier-Stokes (RANS) simulations and facilitates intricate
simulations of high-Reynolds-number turbulent flows without the prohibitive computational costs of demanding near-wall mesh
resolutions. WMLES can be broadly categorized as either hybrid RANS/LES or LES based on a wall-stress model [2,3]. The present
research focuses on the latter, where the LES equations are solved throughout the entire computational domain, and the wall-shear
stress, accounting for the effects of the unresolved inner layer of the boundary layer, is provided by the wall-stress model at the
wall. Many wall-stress models operate on the assumption of equilibrium turbulence near the wall, either explicitly or implicitly
incorporating the law of the wall for attached turbulent flow. To go beyond the equilibrium assumption, the development of wall
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models capable of addressing broader non-equilibrium flows has become a focal point in the wall-modeling community [4-8]. Given
the ongoing advancements in wall-modeling techniques, there is an escalating interest in using WMLES for simulating turbulent
flows with separation in both academia and industry [9-12]. Separated turbulent flows are commonplace in realistic applications
across various engineering fields, including aerospace, automotive, and environmental systems. Their accurate numerical prediction,
however, remains a significant challenge due to the inherent complexity and multi-scale nature of the flow physics. In addition, there
is a noticeable absence of comprehensive guidance for applying WMLES to separated turbulent flows, which highlights the crucial
need to assess and understand the sensitivities of WMLES for such flows.

Recent studies have significantly advanced our understanding of the sensitivities associated with WMLES. For instance, Reza-
eiravesh et al. [13] systematically explored the predictive accuracy of WMLES in turbulent channel flow simulations. This research
investigated how wall models, grid resolution, grid anisotropy, numerical convective schemes, and SGS modeling influence the sim-
ulation outcomes. The findings highlighted that these factors play an interconnected role in shaping the overall simulation accuracy.
Taking a slightly different perspective, Lozano-Durdn and Bae [14] analyzed the LES error scaling for the mean velocity profiles, tur-
bulence intensities, and energy spectra in the outer region of wall-bounded flows. The analysis was carried out via LES of turbulent
channel flows, employing the precise mean wall-stress at the wall to isolate the influence from the near-wall region. Their discov-
eries suggested that LES errors in the mean velocity profile are inversely proportional to the grid resolution while being unaffected
by the Reynolds number. Building on a comparable methodology, Whitmore et al. [15] delves into the sensitivities of near-wall
WMLES solutions, particularly focusing on SGS modeling, boundary condition types, numerical methods, and mesh topologies. Their
observations emphasized that WMLES’s sensitivity to the SGS model is closely tied to the detailed implementation of the wall model.
While these studies primarily focus on attached turbulent flows, research on separated turbulent flows remains sparse. Noteworthy
contributions include the grid convergence study by Park [10] regarding the WMLES of flow over the NASA wall-mounted hump,
and Iyer and Malik [12]’s exploration of WMLES for flows over a Gaussian bump, which examined the impacts of grid resolution
and the SGS model. To bridge this research gap, our current study aims to provide an in-depth parametric analysis, evaluating the
sensitivities of WMLES in simulating separated turbulent flow.

The flow over a Gaussian-shaped bump, proposed by Boeing Research & Technology [16], is a widely investigated separated
turbulent flow. This configuration mimics the smooth junctions between an aircraft wing and fuselage that involves smooth-body
separation of a turbulent boundary layer (TBL) subject to pressure-gradient and surface-curvature effects. As a canonical flow con-
figuration with extensive study, a wealth of experimental data exists [17-21], establishing it as a benchmark for validating CFD
techniques. Diverse computational approaches, including RANS methods [17], direct numerical simulation (DNS) [22,23], wall-
resolved LES (WRLES) [24], hybrid DNS-WRLES [25,26], WMLES [11,12,27-29] and detached-eddy simulation [30] have been
evaluated. These computational studies have consistently highlighted the challenge of precisely predicting the extent and location
of smooth-body separation. In particular, WMLES investigations of Iyer and Malik [12] and Agrawal et al. [27] suggest that the
performance of the equilibrium wall model can be affected by the SGS model, especially in the prediction of the separation bubble.
Additionally, Iyer and Malik [12] also evaluated the effect of variations in wall modeling, including scenarios devoid of any wall
model. Their findings indicate a notable influence of wall models on the prediction of flow separation; however, compared to the
equilibrium wall model, the enhancements derived from employing non-equilibrium wall model [7] were found to be marginal.
Given the intricate physics of smooth-body separation and the availability of high-fidelity reference data, the flow over a Gaussian-
shaped bump emerges as an apt choice for our examination of the sensitivity of WMLES for separated turbulent flow. To avoid
the complexity of spanwise variations, our focus of the current study narrows to the flow over a two-dimensional Gaussian bump
with periodic boundary conditions in the spanwise direction. The flow configuration and simulation setup for this investigation are
based on the hybrid DNS-WRLES study by Uzun and Malik [26]. In order to preclude the complications of wall modeling, the no-slip
condition at the wall is substituted with three unique boundary conditions based on the thin boundary layer equations and the mean
wall-shear stress from the hybrid DNS-WRLES [26]. In our study, we rigorously examine the effects of SGS models, mesh resolutions,
mesh anisotropy, and wall boundary conditions on the simulation results. By delving into these multifaceted sensitivities of WMLES,
we hope to set the stage for advancing the practice and understanding of WMLES in simulating complex turbulent flows of real-world
applications.

The remainder of this paper is organized as follows. In Sec. 2, the numerical methodology and simulation set-up employed to
assess the sensitivities of WMLES are introduced. Section 3 is dedicated to demonstrating the results of the sensitivity analysis,
illustrating the effects of the SGS model, mesh resolution, wall boundary condition, and mesh anisotropy. Finally, we conclude in
Sec. 4, summarizing the key findings and their implications for future work.

2. Numerical approach
2.1. Flow solver

Flow simulations in this study were executed using an unstructured-mesh, finite-volume, LES code tailored for incompressible
flow [31]. This cell-centered numerical scheme is energy-conserving and low-dissipative, providing an accurate capture of a broad
spectrum of turbulence scales. It maintains second-order accuracy temporally and spatially. For momentum equations, a fully implicit,
fractional-step method is utilized for time advancement. Meanwhile, pressure computations are facilitated using a Poisson solver
based on the bi-conjugate gradient stabilized method [32]. The effect of SGS motions is modeled using an SGS model. This study
evaluates four SGS models: the Vreman model [33], the dynamic Smagorinsky model (DSM) [34,35], the anisotropic minimum
dissipation (AMD) model [36], and the mixed-similarity model (MSM) [37,38]. The first three models are based on the eddy-viscosity
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Fig. 1. Flow configuration and simulation set-up.

closure assumption, whereas the last one is a nonlinear model capable of accounting for the anisotropy of SGS stress [39]. For the
Vreman model, two model constant values, ¢ = 0.025 and ¢ = 0.07, are considered. The value of ¢ = 0.07 is derived theoretically
for homogeneous isotropic turbulence, while ¢ = 0.025 is recommended for more complicated cases. For the AMD model, the model
constant, which is determined solely by the choice of numerical method, is equal to 0.3. The MSM combines the classical Smagorinsky
model [40] with a scale-similarity term computed using explicit filtering [39], and it is given by

) )

where the first term on the right-hand side corresponds to the Smagorinsky model, and the second term introduces the scale-similarity
term. In the equation, 7;; signifies the SGS stress, u; denotes the components of instantaneous velocity, .S;; represents the strain-rate

Ko

7, = —2C,ARISIS,; + (u/u\] .

tensor, and |S| = (25',- jS',- j)l/ 2. The operator (T) signifies grid-filtered quantities, while (T) denotes a secondary filtering operation,
chosen here as Gaussian filtering. Furthermore, in the Smagorinsky model, the eddy viscosity (v,) is represented by v, = (C,A)?|S]|,
where A denotes the grid filter width, assumed to be the geometric mean of the local grid size. The Smagorinsky coefficient, Cj,
is typically selected to lie between 0.1 and 0.2. For the MSM, we have set C, to a fixed value of 0.13, without undergoing any
optimization. In the following discussion, the tilde symbol, which denotes the grid filtering operation, will be omitted for the sake of
simplicity. The reliability of this LES code in accurately simulating turbulent flows has been demonstrated in various configurations,
such as rough-wall TBLs [41], flow over an axisymmetric body of revolution [42], and rotor interactions with thick axisymmetric
TBL [43]. A maximum Courant-Friedrichs-Lewy (CFL) number of 1.0 is adopted for time advancement in all simulations. To mitigate
potential numerical artifacts, each simulation is initially conducted for two flow-through times (FTTs). Subsequently, simulation data
is collected over an additional three FTTs to ensure statistically converged results.

2.2. Simulation set-up

This study focuses on the configuration of flow over a two-dimensional Gaussian-shaped bump, adopting the physical conditions
identical to the hybrid DNS-WRLES conducted by Uzun and Malik [26] using a compressible flow solver. For brevity, the hybrid
DNS-WRLES will henceforth be denoted as DNS.

2.2.1. Flow configuration

The flow configuration is shown schematically in Fig. 1. The origin of the x-y-z coordinate system in the domain is located at
the base of the bump peak. In this absolute coordinate system, x, y, and z denote the horizontal, vertical, and spanwise directions,
respectively. For convenience, a localized coordinate system x;-x,-x5 is also introduced at the bottom wall, where x;, x,, and x3
represent the local streamwise, wall-normal, and spanwise directions, respectively. It should be noted that the streamwise direction
is pointing towards the positive x-direction and the wall-normal direction is oriented towards the interior of the flow field. In the
following sections, the components of instantaneous velocity associated with these two coordinate systems are denoted as (u,, u,,u,)
and (u;,u,,u3), respectively.

The geometry of the bump is given by the analytic function y = fj,(x) = hexp[— (x/xo)z], where f, is the surface representing
the geometry of the wall-mounted bump. The length scale L, referred to as the bump width, is used to express the other scales of
the bump, where 2 =0.085L is the maximum height of the bump and x, = 0.195L. Additionally, the length scale L is used to define
the Reynolds number Re; = U L/v, where U, denotes the free-stream velocity and v is the kinematic viscosity. In this work, Re;
is fixed to be 2 x 10°, aligning with the value in the referenced DNS [26]. The simulations are conducted in a cuboidal domain with
a length of 2L, height of L, and span of 0.08 L. The dimensions in the vertical and spanwise directions are chosen to be the same
values as those in the DNS of Uzun and Malik [26]. The domain inlet and the exit are 0.85L upstream and 1.15L downstream from
the bump peak, respectively.
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2.2.2. Boundary conditions

The boundary conditions consist of a TBL inflow at the inlet, periodic conditions on the spanwise boundaries, convective outflow
condition at the exit, and free-stream condition on the top boundary. In WMLES, the inadequately resolved near-wall region on coarse
meshes is addressed using modified wall boundary conditions based on wall-stress models. Past investigations [10,15,44] indicate
that both the wall-stress models and their implementation into the boundary conditions significantly influence the predictions of
near-wall turbulence. Hence, for the current study on the sensitivity of WMLES, it is necessary to evaluate the impact of boundary
conditions. In order to sidestep the intricacies of modeling wall-shear stress while pinpointing the effects of various factors, the
physical no-slip condition at the bottom wall is replaced by three different forms of boundary condition based on the mean wall-
shear stress from DNS. The first adopts the Neumann boundary condition given by the form

DNS
du
( ouy > _ w,1 , 2
93 /|, I
where TBI\{S is the mean wall-shear stress known a priori from the DNS [26], u is the dynamic viscosity, and the subscript w denotes the

quantitiéé evaluated at the wall. The boundary condition is time-independent and does not account for wall-shear stress fluctuations;
therefore, it can be treated as an idealized wall model supplying the exact mean wall-shear stress. Concurrently, a no-penetration
condition is enforced for the wall-normal velocity u,.

The subsequent two boundary conditions are time-dependent and their basic idea is to augment the eddy viscosity at the wall
while applying a Dirichlet boundary condition for the velocity components [44,45]. A previous study [45] suggested that using this
boundary condition formulation based on the effective wall-eddy viscosity v, ,, could alleviate the underprediction of separation
bubble caused by the directional inconsistency of streamwise velocity at the wall-adjacent control volume and the local wall-shear
stress, potentially leading to a more accurate prediction of the velocity field for separated-flow LES. In the current study, v, , is
derived from the thin boundary layer equations [3,4] given by

ou, ouu; 9 ou:
P R AU Y VA Y} EF S S ©)
ot 0x; pox; 0x, dxy

where p is the fluid density, 7 is the time, and p is pressure. The equations are required to satisfy no-slip conditions on the wall
and match the velocity at the first off-wall mesh cell center: u; =u; . at x, = h,. The three terms on the left-hand side of Eq. (3) are
related to the effect of unsteadiness, convection, and pressure gradient, respectively. By neglecting these three terms and integrating
the equation from the first off-wall cell center down to the wall, the wall-shear stress components can be approximated by

ui,c

h,’

c

Tw,,-zp(v+v,,w) i=13. ©)]
Here, we assume the effective wall-eddy viscosity v, ,, and the velocity u; . are uncorrelated. Then for the streamwise component, by
conducting a running average and incorporating the existing mean wall-shear stress from DNS [26], the effective wall-eddy viscosity
of the second boundary condition can be given by the form

— Upe
Viw R [rzﬁs/ <ph—L>:| -v, )]
c

where (-) denotes the running-averaged quantity. The running average adopts the approach used by Lund et al. [46], which applies
a weighted average that diminishes exponentially over time. Illustrating with the velocity u; . as an example, the running average
takes the subsequent form

— A AP\ ————
Ul (tn+l) = ?tul,c (zn+l) + (1 - %)”l,c (tn) ’ (6)

where n denotes the time step index, At represents the computational time step, and 7T is the characteristic time scale of the
averaging interval. In the initial stages of the simulations, to eliminate transients, the averaging interval is set to a smaller value
of 0.3L/U,,. Once the flow reaches a fully developed state, this interval is increased to 6L /U, to stabilize the statistics. From the
calculated effective wall-eddy viscosity at each time step, the corresponding local instantaneous wall-shear stress is determined with
the formula

ou;

, i=1,3. 7
ax |, " @)

w

—
T =pv(l + %)

For non-equilibrium wall-bounded turbulent flows, the pressure gradient plays an important role in the flow dynamics. Therefore,
in the third boundary condition, the influence of the pressure gradient is included, and the effective wall-eddy viscosity is then
expressed by

_ h. dp U,
Viw R [(T‘Bl\i8+7€d_)cl>/<ph_c>] —-v. ®
c

The local instantaneous wall-shear stress is determined by
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Fig. 2. Cross section of the baseline mesh in an x-y plane.
Table 1
Parameters of the structured-mesh block in the computational meshes. A, denotes the characteristic size of the mesh
cell.
Mesh label Isotropic mesh Anisotropic mesh
A./L Cell number A./L Cell number

Coarsest mesh 1.90 x 1073 1050 X 44 X 42 ~ 1.94 million 1.90 x 1073 525 x 88 X 42 ~ 1.94 million
Coarse mesh 9.52x107* 2100 x 88 x 84 ~ 15.5 million 9.52x107* 1050 % 176 X 84 = 15.5 million
Baseline mesh ~ 4.76x 10™* 4200 176 X 168 ~ 124 million ~ 4.76 x 10~* 2100 X 352 X 168 =~ 124 million

Fine mesh 2.38x107* 8400 x 352 % 336 ~ 993 million
v, du; h, o
Twizpv(1+ﬂ)—‘ ——C—p, i=13. 9
’ v Coxy|, 2 dx

It should be noted that the effective wall-eddy viscosity in the current study is constrained to be greater than or equal to zero. This
constraint primarily aims to prevent the generation of abnormally large wall-shear stresses around the separation and reattachment
points. Given the definitions of these two boundary conditions, they can be regarded as idealized equilibrium and non-equilibrium
wall models tailored to the present flow configuration, respectively. For brevity in subsequent discussions, the boundary condition for
the bottom wall defined by Eq. (2) will be termed the velocity Neumann boundary condition, that by Egs. (5) and (7) the equilibrium
v, boundary condition, and by Egs. (8) and (9) the non-equilibrium v, ,, boundary condition.

2.2.3. Computational meshes

In the simulations, hybrid meshes are utilized, with a schematic presented in Fig. 2. A structured-mesh block is positioned around
the near-wall region to cover the entire TBL within the domain, while the remaining regions are occupied by an unstructured-mesh
block. To examine the effect of mesh resolution and anisotropy on the simulation results, we utilized both isotropic and anisotropic
computational meshes with increasing resolutions within the structured-mesh block. The specifics of these computational meshes
are detailed in Table 1. Here, the characteristic size of the mesh cell is denoted as A, = W where V, represents the cell volume.
Referring to the TBL thickness at x/L = —0.65 from the DNS [26], the TBL is resolved by approximately 5 cells in the coarsest mesh,
9 cells in the coarse mesh, 18 in the baseline, and 36 in the fine mesh. Specifically, the resolution of the fine mesh, determined based
on the characteristic size and the mean skin friction from the reference DNS [26], ranges from 10 to 30 wall units within regions of
attached flow. While this resolution is comparable to that of the standard WRLES mesh in the streamwise and spanwise directions,
it is order of magnitude coarser in the wall-normal direction within the near-wall region. For the DNS computational mesh, the
characteristic cell size is approximately equal to 1.10 x 107 L. This estimation is derived from the mesh resolution at the location
of the thickest separation bubble. Moreover, it should be noted that the cells in the anisotropic meshes are uniform. These cells
maintain the same spanwise resolution and characteristic length as their isotropic counterparts at equivalent resolutions. The aspect
ratio of all anisotropic mesh cells is equal to A; : A, : A;=4:1:2, where A, A,, and A; denote the mesh-cell size in streamwise,
wall-normal and spanwise directions, respectively. For the outer unstructured-mesh blocks, their mesh cell size is smaller than 0.1L,
and the control volumes are refined gradually towards the bottom wall.

2.3. Inflow generation

The TBL inflow data for the simulations of flow over Gaussian bump are provided by a separate LES of flat-plate TBL using the
rescale-and-recycle method of Lund et al. [46]. The size of the computational domain is 0.09L x 0.15L X 0.08L in the streamwise,
wall-normal, and spanwise directions, respectively. A structured mesh is employed, wherein the portion covering the TBL is isotropic,
featuring a resolution of Ay/L = 2.19 x 10~*. The outer mesh is gradually coarsened away from the wall. The equilibrium stress-
balance wall model [3,4] is applied on the wall and the periodic boundary condition is used in the spanwise direction. The Dirichlet
boundary condition (u,, uy,uz)=Uq, 0,0) is applied at the top of the domain. At the exit, a convective outflow boundary condition
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Fig. 3. Inner-scaled mean streamwise velocity profile of the collected TBL inflow. Dotted line represents the classical log law of the wall (u:'> =(1/0.41)log(y*)+5.2.

Table 2
Parameters of the simulations to evaluate the sensitivities of WMLES with respect to SGS models as well as mesh
resolution (Group 1), boundary condition (B.C.) at the wall (Group 2), and mesh anisotropy (Group 3).

Case group ~ Mesh SGS model wall B.C.
None
Coarsest mesh (isotropic) DSM
Coarse mesh (isotropic) AMD . .
1 locity Ni bound dit
Group Baseline mesh (isotropic) Vreman (¢ = 0.025) Velocity Neumann boundary condition
Fine mesh (isotropic) Vreman (¢ =0.07)
MSM
None
DSM
Ci t h (isot i
oarsest mesh (isotropic) AMD Equilibrium v, ,, boundary condition

Group 2 Coarse mesh (isotropic)

Baseline mesh (isotropic) Vreman (c =0.025)  Non-equilibrium v, , boundary condition

Vreman (c =0.07)
MSM

None

DSM

AMD

Vreman (¢ = 0.025)
Vreman (c =0.07)
MSM

Coarsest mesh (anisotropic)
Group 3 Coarse mesh (anisotropic)
Baseline mesh (anisotropic)

Velocity Neumann boundary condition

is adopted. In the simulation, the DSM [34,35] is used, and a maximum CFL number of 1.0 is employed. The simulation is run for
100 FTTs (9L/U) at first to pass the transient process. After that, the simulation is run for another 150 FTTs to collect the TBL
inflow data.

The inflow data is collected at 0.025L upstream of the domain’s exit. The friction Reynolds number Re, at this location is
approximately equal to 620 and the TBL thickness is 6;,/L = 0.0061, which is approximately 10% larger than that in the DNS of
Uzun and Malik [26]. The momentum thickness Reynolds number of our inflow is Rey ~ 1074, compared to their slightly smaller
value of approximately 1035. It should be noted that the inflow-generation method used in the study of Uzun and Malik [26] is
different from the current method. Fig. 3 shows the profile of inner-scaled mean streamwise velocity (u;) of the collected TBL,
with + denoting the quantity in wall unit and (-) representing the mean quantity derived from both time- and spanwise-averaging.
The velocity profile aligns closely with the classical log law of the wall, underscoring the reliability of the captured inflow data.
Furthermore, it should be noted that to be compatible with the inlet in the main simulation, inflow data beyond y/L = 0.15 is
adjusted to match the free-stream conditions, characterized by (uyuy,uz)=(Ug,0,0).

3. Results and discussion

To evaluate the impact of various factors independently, the simulations are divided into three distinct groups, the parameters of
which are detailed in Table 2. Specifically, Group 1 concentrates on the effects of the SGS model and mesh resolution, while Group
2 examines the influence of wall boundary conditions, and Group 3 delves into the effect of mesh anisotropy. For brevity, and aside
from comparisons among the results from simulations conducted at different mesh resolutions, the subsequent discussions will focus
on the baseline-mesh simulation results. Additional demonstrations will be included as needed to clarify specific points. Moreover,
the discussion of the velocity field will concentrate on the mean velocity, representing the first-order statistics and standing as the
most vital quantity that WMLES needs to predict.



D. Zhou and H.J. Bae Journal of Computational Physics 506 (2024) 112948

(us) /Uso
0.2 R
t;\ | - I g.g
(a> 0 R 1 I B _0:2
04 -0.2 0 0.2 0.4 0.6
.
§ s I 06
I 02
b 0 R 1 L1 02
b) Dz 02 0 0.2 0.4 0.6
0.2 - 14
i ==
~
S 0.6
[ 0.2
0.2
© %% 0.2 0 0.2 0.4 0.6
0.2 1.4
T
\>\‘ = I 0.6
I 02
(d) 0 — P I 02
0.4 -0.2 0 0.2 0.4 0.6
A
§ L I 0.6
A 02
(e) 0 % M EEETI B, 202
04 -0.2 0 0.2 0.4 0.6
0.2 1.4
- 1
S ‘ i 0.6
s _
A 0.2
(f) 0 ol IR IR B 0.2
04 -0.2 0 0.2 0.4 0.6
0.2
i R
~
= [ 0.6
-~ ] - ) @ '02
0.2
@ %2 02 0 0.2 0.4 0.6

Fig. 4. Contours of mean velocity in the x direction, (u,) /U, in an x-y plane from the baseline-mesh simulations using (a) no SGS model, (b) the DSM, (c) the AMD
model, (d) the Vreman model with ¢ = 0.025, (e) the Vreman model with ¢ = 0.07, and (f) the MSM that listed in the Group 1 of Table 2 and from (g) the DNS [26].
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.1. Effects of SGS model and mesh resolution

First of all, we investigate the effects of SGS model and mesh resolution, focusing on the results of Group 1 simulations. Fig. 4
displays contours of the mean velocity in the x direction, (u,) /U, in an x-y plane. The results obtained from the baseline-mesh
simulations using various SGS models are compared with the referenced DNS results [26]. The flow behavior can be characterized by
gradual acceleration on the windward side of the bump, reaching its maximum velocity near the bump peak. Downstream from this
point, the flow decelerates over the leeward side of the bump, leading to a rapid thickening of the boundary layer. It is noteworthy
that when using the baseline mesh, flow separation on the leeward side of the bump occurs solely in simulations employing the
AMD model, the Vreman model (¢ = 0.025), and the MSM. In particular, the simulation utilizing the Vreman model with ¢ = 0.025
predicts a substantial separation bubble, similar to the DNS results [26]. Meanwhile, the simulation that employs the MSM shows
a separation bubble significantly larger than that observed in the DNS. Contrarily, other simulations predict attached flow over the
entire bump surface, underscoring the pronounced influence of SGS models on the prediction of separated turbulent flow.

Fig. 5 presents contours of the mean eddy viscosity, represented by (v,) /v, from the SGS model in an x-y plane. For the MSM,
the eddy viscosity is incorporated solely through the term of the Smagorinsky model, as given in Eq. (1). The magnitude of the eddy
viscosity within the TBL is found to be comparable to the fluid viscosity, signifying the importance of SGS stresses in the current
simulations. As the flow evolves on the leeward side of the bump, the eddy viscosity within the TBL increases. Moreover, there are
noticeable differences in the eddy viscosity magnitudes among the different SGS models. Specifically, the AMD model produces the
highest eddy viscosity within the TBL, while the simulation using the Vreman model with ¢ = 0.025 results in the smallest eddy
viscosity within the TBL. In addition, the MSM demonstrates increased eddy viscosity in the shear layer region downstream of the
bump peak.
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model, (c) the Vreman model with ¢ =0.025, (d) the Vreman model with ¢ =0.07, and (e) the MSM.
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Fig. 6. Comparison of the mean pressure coefficient C, on the bottom wall from the Group 1 baseline-mesh simulations using different SGS models with the DNS
results. Lines indicate —, WMLES without an SGS model; - - -, WMLES with the DSM; -.-., WMLES with the AMD model; — —, WMLES with the Vreman model
(c =0.025); , WMLES with the Vreman model (¢ = 0.07); ..-.. , WMLES with the MSM; — —, DNS [26].

Fig. 6 compares the distributions of the mean pressure coefficients C, = (P — Poo) /(O.SpU;) on the bottom wall. Here, p,,
represents the local static pressure on the wall, and the reference pressure p,, is taken at the inlet near the top boundary. The C,
distribution exhibits a strong favorable pressure gradient (FPG) in front of the bump peak. Past the peak, the flow encounters a strong
adverse pressure gradient (APG), followed by a gentler FPG over the downstream flat wall. Furthermore, the results from different
simulations are closely aligned upstream of the bump peak and within the region of the downstream flat wall. However, distinctions
become marked around the peak and on the leeward side of the bump. Particularly, the simulation using the Vreman model with
¢ =0.025 exhibits a better agreement with the DNS results [26].

Since every simulation employs a velocity Neumann boundary condition at the bottom wall, which consistently applies a wall-
shear stress matching the local mean wall-shear stress from the reference DNS [26], the conventional method that relies on skin
friction measurements to determine the size of separation bubble cannot be utilized. To circumvent this limitation, we estimate the
length of the predicted separation bubble using the mean streamwise velocity at the first off-wall cell center, as depicted in Fig. 7. A
close examination of the distributions of the mean streamwise velocity reveals significant differences in the near-wall velocity among
these baseline-mesh simulations. It can be found that the separation bubble is tiny in the simulation with the AMD model, and the
flow nearly separates in the simulation with the Vreman model (¢ = 0.07). Nevertheless, these differences are not confined to the
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Fig. 7. The profiles of mean streamwise velocity at x,/L =2.38 x 10~ (the wall-normal location of the first off-wall cell center) from the baseline-mesh simulations

of Group 1, alongside a reference profile from the DNS [26] at the same wall-normal location. Lines indicate ——, WMLES without an SGS model; , WMLES with
the DSM; - -., WMLES with the AMD model; — —, WMLES with the Vreman model (¢ = 0.025); , WMLES with the Vreman model (¢ = 0.07); -.--. , WMLES with
the MSM; — —, DNS [26]; —..—, (u,) /U, =0.
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Fig. 8. The horizontal length of separation bubble (L, /L) as a function of mesh-cell characteristic length (A, /L) from the simulations of Group 1. Lines indicate ——
with [J, WMLES without an SGS model; with /, WMLES using the DSM; -.-. with ¥, WMLES using the AMD model; — — with ¢, WMLES using the Vreman
model (¢ =0.025); with O, WMLES using the Vreman model (¢ = 0.07); -.... with X, WMLES using the MSM. The symbol ® represents the DNS results where

A./Lx10°=0.11 and L,/L=0.32.

leeward side of the bump but span the entire domain length. Compared to other simulations, the one employing the DSM aligns
more closely with the DNS [26] in the region with small pressure-gradient effects. In contrast, the simulation utilizing the MSM
exhibits a lower magnitude of streamwise velocity, suggesting that significant dissipation occurs in the near-wall region. Moreover,
it is essential to recognize that the near-wall field of the TBL is crucial to WMLES, as the wall model relies on the data within this
region to make predictions of wall quantities. The current findings imply that the performance of wall models can be sensitive to the
choice of the SGS model.

Fig. 8 illustrates the horizontal length (L,/L) of the predicted separation bubble as a function of the characteristic mesh reso-
lution (A,/L). In the DNS conducted by Uzun and Malik [26], the separation bubble’s horizontal length measures 0.32L, and the
approximate characteristic mesh resolution is 1.10 x 10~*. The DNS results are included in the figure for reference. The results indi-
cate that the fine-mesh simulations approach grid convergence, especially in the cases using the AMD model and the Vreman model.
Nevertheless, the variations in separation bubble length with respect to mesh resolution present a complex pattern. In the simula-
tions employing the Vreman model with ¢ = 0.025, convergence toward the DNS results appears to be monotonic. Conversely, for
the simulations involving the AMD model and the Vreman model with ¢ = 0.07, convergence is non-monotonic, leading to a spurious
diminishment or shrinking of the separation bubble upon mesh refinement. This non-monotonic convergence of WMLES toward DNS
or experimental results aligns with observations from previous studies [11,27] and reinforces the idea that the non-monotonic behav-
ior of WMLES solutions is connected to the particular behavior of the SGS model. Although the simulation using the MSM predicts
a larger separation bubble compared to others, its results remain consistent across varying mesh resolutions. This consistency is a
promising feature, suggesting that the inclusion of SGS stress anisotropy could have a positive influence [47]. Given that the current
MSM has not undergone any optimization and employs a fixed Smagorinsky coefficient, it is reasonable to anticipate that the MSM’s
performance could be further enhanced through either a dynamically calculated model coefficient or other optimization techniques.
In addition, the performance of WMLES without an SGS model notably improves with the use of the fine mesh. This improvement can
be anticipated since the contribution from the SGS model decreases as the mesh is refined. The resolution of the current fine mesh
approaches that of WRLES, especially in the region of the separation bubble. In this area, the boundary layer thickness is covered by
over 150 cells, further underscoring the reduced dependence on the SGS model.

To further evaluate the simulation results, we compare boundary layer profiles with the DNS results of Uzun and Malik [26] at six
stations along the x direction. Fig. 9 illustrates the profiles of mean streamwise velocity (u;) /U, along the wall-normal direction. At
the stations positioned in front of the bump peak, where x/L < 0, the discrepancies among the velocity profiles can be noticed, and
the profiles from simulations using the AMD model and the two Vreman models align more closely with the DNS results. Conversely,
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Fig. 9. Comparison of the mean streamwise velocity profiles from the Group 1 baseline-mesh simulations using different SGS models with the DNS results at (a)
x/L=-0.709, (b) x/L =-0.2, (c) x/L=-0.025, (d) x/L =0.1, (¢) x/L =0.2 and (f) x/L = 0.4. Lines indicate ——, WMLES without an SGS model; - - -, WMLES
with the DSM; - . -., WMLES with the AMD model; — —, WMLES with the Vreman model (¢ = 0.025); , WMLES with the Vreman model (¢ = 0.07); -.-.. , WMLES
with the MSM; — —, DNS [26].

on the leeward side of the bump, where the flow is subject to a strong APG, the mean velocity results demonstrate marked differences.
The simulation employing the MSM significantly overpredicts the thickness of the TBL, whereas the TBL thickness predicted by other
simulations is undersized compared to the DNS results. Of these simulations, the one using the Vreman model (¢ = 0.025) provides
the most accurate prediction of velocity.

In Fig. 10, the inner-scaled mean SGS dissipation profiles at three stations along the x direction are presented. SGS dissipation
is defined as ¢, = —7;;.5;;, with the local friction velocity u, calculated based on the mean skin friction data from the reference DNS
[26]. At the first two stations, where the flow remains attached, the variation in SGS dissipation relative to streamwise location is
small. However, on the leeward side of the bump, where a separation bubble is expected, there is a significant increase in dissipation.
Across all stations, the MSM vyields higher dissipation compared to other models. In front of the bump peak, strong dissipation in the
near-wall region results in the smaller mean streamwise velocity observed in Figs. 9a and 9b. Downstream of the bump peak, the
MSM generates substantial dissipation in the outer region of the TBL, where shear is pronounced. For other eddy-viscosity models,
a noticeable difference in SGS dissipation can also be observed, particularly at the station on the leeward side of the bump. The
AMD model produces relatively higher dissipation, consistent with the results of eddy viscosity presented in the previous Fig. 5.
Additionally, to highlight the relative importance of the SGS model in each simulation, the profiles of the SGS activity parameter
[14,48] are depicted in Fig. 11. This parameter is defined as s, = (¢,) / ((e,) + (ev)), where €, = 2v.S;;S;; denotes the viscous
dissipation. By design, the parameter s, is constrained to values between 0 and 1, with higher values indicating a more important
role of SGS dissipation. The results illustrate that as the location moves downstream, the relative importance of the SGS model within
the TBL changes. Furthermore, significant differences among the simulations are evident. In the simulations employing the MSM and
the AMD model, SGS dissipation is predominant throughout the boundary layer thickness, whereas the SGS dissipation generated by
the Vreman model (¢ = 0.025) is comparable to the local viscous dissipation. In addition, it is noteworthy that the SGS activity of
the DSM decreases to lower values in the near-wall cells, a trend that is also reflected in the eddy viscosity results shown in Fig. 5.
This reduction leads to diminished SGS dissipation within this specific region, as depicted in Fig. 10. Consequently, it results in the
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Fig. 11. The profiles of the SGS activity parameter s, from the Group 1 baseline-mesh simulations using different SGS models at (a) x/L = -0.709, (b) x/L =-0.2,
(c) x/L =0.2. Lines indicate , WMLES with the DSM; -.-., WMLES with the AMD model; — —, WMLES with the Vreman model (¢ = 0.025); , WMLES with
the Vreman model (¢ = 0.07); -..-. , WMLES with the MSM.

amplified mean streamwise velocity at the first off-wall cell, as shown in Fig. 7, and aligns with findings from previous WMLES
studies [15,49]. A promising feature of DSM in WRLES is its proper asymptotic behavior close to the wall, realized without requiring
damping functions [34]. However, the extension of this property to WMLES of inhomogeneous wall-bounded turbulence, which
employs a more coarse mesh, remains an open question. Both the current study and prior research indicate the need for further
investigation to clarify its validity in such scenarios. In addition, the results presented in Fig. 8 reveal that the simulations using the
DSM did not predict any separation bubble. However, it is crucial to recognize that this conclusion is confined to the specific flow
solver and simulation set-up employed in this study. While earlier WMLES by Iyer and Malik [12,50] for the same two-dimensional
bump flow configuration also did not capture flow separation with the DSM, the WMLES studies [11,27] have demonstrated the
potential of the DSM to identify separation on the leeward side of the bump. The discrepancies in the DSM’s ability to predict
separation might arise from variations in ad hoc clipping, the use of filtering, the topology of computational mesh, and other intricate
numerical aspects.

Based on the discussions presented earlier, it can be inferred that the SGS model plays a pivotal role in the simulations. However,
to reinforce this conclusion, further exploration must isolate the history effect coming from the upstream flow. Let us direct our
attention to the results obtained from the fine-mesh simulations. Fig. 12 illustrates the profiles of the mean streamwise velocity at
three distinct stations along the x direction. It is evident that at the stations located far upstream of the bump peak (x/L = —0.709)
and near the peak (x/L = —0.025), the results from different simulations align more closely with each other and with the DNS
results. This improved alignment suggests that the simulations are approaching grid convergence within the attached-flow region.
Although very similar upstream flow conditions are observed, the velocity predictions at the station on the leeward side of the bump
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Fig. 12. The profiles of mean streamwise velocity from the fine-mesh simulations of Group 1 at (a) x/L = —0.709, (b) x/L = —0.025 and (c) x/L =0.2. Lines indicate
—, WMLES without an SGS model; , WMLES with the DSM; -.-., WMLES with the AMD model; — —, WMLES with the Vreman model (¢ = 0.025); , WMLES
with the Vreman model (¢ =0.07); ---.- , WMLES with the MSM; — —, DNS [26].

Fig. 13. Comparison of the mean skin friction coefficient C, on the bottom wall from the Group 2 baseline-mesh simulations using (a) the equilibrium v, , boundary

condition and (b) the non-equilibrium v, ,, boundary condition with the DNS results. Lines indicate ——, WMLES without an SGS model; , WMLES with the DSM;
-.-., WMLES with the AMD model; — —, WMLES with the Vreman model (¢ = 0.025); , WMLES with the Vreman model (¢ = 0.07); ----- , WMLES with the MSM;
— —,DNS [26]; ==+, C; =0

(x/L = 0.2) exhibit significant differences. These results, even after isolating the history effect of upstream flow, underscore the
important role that the SGS model plays in predicting flow separation. Besides, to confirm that the behaviors of the SGS models are
independent of the TBL inflow condition, we conducted the simulations with a different TBL inflow. The results demonstrate that the
inflow condition only has a negligible effect on the velocity field. More details can be referred to Appendix A.

3.2. Effect of wall boundary condition

In order to examine the effect of different wall boundary conditions, a series of simulations in Group 2 of Table 2 were conducted
using both the aforementioned equilibrium and non-equilibrium v, ,, boundary conditions. Fig. 13 shows the distributions of the mean
skin friction coefficient C; on the bottom wall from the baseline-mesh simulations with these two boundary conditions. The skin
friction coefficient is defined as C, = <Tw, 1 ) / (O.Sonzo), and for comparison, the mean skin friction coefficient from the DNS [26]
is also included. Noticeable differences among the profiles from the simulations using different SGS models can be observed in the
region of x/L € (0,0.7), which is where the separation bubble is expected to appear. In other locations, the agreement among the
profiles, as well as with the DNS results, is satisfactory. Part of the reason for the discrepancy observed on the leeward side of the
bump is related to the clipping of effective wall-eddy viscosity, which occurs only within this region. The occurrence of this clipping
varies over time and spatial location, with an average occurrence rate below 13% in each case. Based on the results of C, the size
of the separation bubble can be quantified. Figs. 14(a) and 14(b) illustrate the measured separation bubble’s horizontal length as a
function of the characteristic mesh resolution. From this, it is evident that both the SGS model and the mesh resolution still largely
influence the prediction of the separation bubble. Additionally, the previously mentioned non-monotonic convergence is observed in
simulations employing eddy viscosity models, such as the AMD model and the Vreman model with ¢ = 0.07. In contrast, simulations
using the MSM still demonstrate improved consistency in the size of the separation bubble across different mesh resolutions. These
observations suggest that the application of both equilibrium and non-equilibrium v, ,, boundary conditions has a negligible impact

12



D. Zhou and H.J. Bae

Journal of Computational Physics 506 (2024) 112948

(a) (b)
0.6p — T 0.6 ———
0.4fF - 0.4fF
S 19 te
= I Q 1 = I
Q - N+ @« -
=~ 0.2F N - 1 =02
| :l\(.v-"/ R -0 | |
of O A S o of,
0 0.5 1 15 5) 0
A./L x 103
() (d)
0.6 | LA B A BN R AL LN R 0.6 ———T——— 77—
i o | i - :
04f - 04F -
Sl 19 |e 1
~ I 1 S I Q T
= | X ol T | Y -
= 0.2f g s 1 = 02f N e .
5 N ’<v-"’ - e © | 5 NPT B |
| _.-< I ] Y S =N R ]
Of, , , = ——w=——— o op,, , B o
0 0.5 1 15 ) 0 0.5 1 15 2
AgliL, % 10° At L% 0P

Fig. 14. The horizontal length of separation bubble (L,/L) estimated based on the results of (a,b) C ' and (c,d) the mean streamwise velocity at the first off-wall cell
center from the Group 2 simulations using (a,c) the equilibrium v, ,, boundary condition and (b,d) the non-equilibrium v, ,, boundary condition. Lines indicate ——
with [J, WMLES without an SGS model; with /., WMLES using the DSM; -.-. with ¥, WMLES using the AMD model; — — with ¢, WMLES using the Vreman
model (¢ =0.025); with O, WMLES using the Vreman model (¢ = 0.07); -.... with X, WMLES using the MSM. The symbol ® represents the DNS results where
A,/Lx10*=0.11and L,/L=0.32.

on the convergence behavior. Comparing results from simulations that employ these two distinct wall boundary conditions reveals
that the non-equilibrium boundary condition notably improves the prediction of the separation bubble in simulations using eddy
viscosity models. However, an assessment of the predicted separation bubble’s length, based on the mean streamwise velocity at
the first off-wall cell center (as depicted in Figs. 14(c) and 14(d)), reveals that the disparity in performance between these two
boundary conditions is relatively small. The predictions from the simulations using the equilibrium boundary condition closely
resemble the results in Fig. 8, which are obtained using the velocity Neumann boundary condition. While the implementation of the
non-equilibrium boundary condition results in some improvements, the magnitude of this enhancement is not substantial.

A detailed quantitative comparison of the velocity field was conducted to investigate the influence of boundary conditions on
velocity-field predictions further. Fig. 15 illustrates the mean streamwise velocity at the first off-wall cell center, derived from
baseline-mesh simulations employing different wall boundary conditions. Specifically, the simulation results using the two previ-
ously introduced Vreman models and the MSM are shown. It is observable that the profiles, although obtained using the same wall
boundary condition, vary when different SGS models are applied, underscoring that the effect of wall boundary conditions is inter-
twined with the choice of the SGS model. For instance, using the Vreman model with ¢ = 0.07, the velocity results obtained under
different wall boundary conditions agree well with each other. Conversely, in the cases of the MSM and the Vreman model with
¢ =0.025, the velocity predictions within the attached-flow region are virtually identical, but there is a noticeable variation in the
velocity prediction within the separation bubble when the equilibrium and non-equilibrium v, ,, boundary conditions are employed.
Specifically, these two boundary conditions yield a further downstream reattachment location and a more extended separation bub-
ble. Moreover, the results from these two Vreman models, each with a different model constant ¢, further demonstrate that the
performance of the Vreman model is sensitive to this constant.

In Fig. 16, the mean streamwise velocity profiles at x/L = 0.2, a location expected to be within the separation bubble, are
exhibited alongside the DNS results for reference. From the comparison of velocity profiles, similar conclusions can be drawn.
Specifically, employing the non-equilibrium v, ,, boundary condition, the simulation using the Vreman model with ¢ = 0.025 yields
an enhanced prediction of the streamwise velocity at this location, aligning more closely with the DNS results. Additionally, similar
behavior can be observed in the results of mean wall pressure, although these are omitted here for conciseness. Overall, these test
simulations suggest that while the wall boundary condition can enhance the prediction of flow separation, it has a less dominant
effect on the simulation compared to the SGS model.

3.3. Effect of mesh anisotropy

The examination of the mesh anisotropy’s influence on flow prediction necessitates a comparison between simulations using
meshes with isotropic and anisotropic cells. It is worth noting that these simulations solely utilize the velocity Neumann boundary
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Fig. 16. The mean streamwise velocity profiles at x/L = 0.2 from the baseline-mesh simulations using (a) the Vreman model (c = 0.025), (b) the Vreman model

(¢ =0.07), and (c) the MSM with different wall boundary conditions. Lines indicate ——, WMLES with the velocity Neumann boundary condition on the bottom wall;
- - -, WMLES with the equilibrium v, ,, boundary condition on the bottom wall; -.-., WMLES with the non-equilibrium v, ,, boundary condition on the bottom wall;
— —, DNS [26].

condition based on the mean wall-shear stress from the DNS [26] at the bottom wall. Fig. 17 illustrates the measured separation
bubble size L,/ L derived from simulations with an anisotropic mesh as shown in Group 3 of Table 2. This size is assessed through the
mean streamwise velocity at the first off-wall cell center. When compared with the results from isotropic-mesh simulations in Fig. 8,
a degradation in the prediction of the separation bubble by using an anisotropic mesh is evident, especially in case employing the
Vreman model (¢ = 0.025). Furthermore, in the cases using the MSM, the size of the separation bubble is enlarged in simulations with
the coarsest and coarse anisotropic meshes. However, the size is significantly reduced in the baseline-mesh simulation, disrupting
the consistency observed in the aforementioned simulations with isotropic meshes. Fig. 18 compares the distributions of C, on the
bottom wall from both isotropic and anisotropic baseline-mesh simulations using the AMD model, the Vreman model (¢ = 0.025),
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Fig. 17. The horizontal length of separation bubble (L,/L) from the simulations of Group 3. Lines indicate —— with [J, WMLES without an SGS model; with
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Fig. 18. The mean pressure coefficient C, on the bottom wall from the baseline-mesh simulations using (a) the AMD model, (b) the Vreman model (c =0.025), and
(c) the MSM with different types of mesh. Lines indicate ——, WMLES with the isotropic mesh; , WMLES with the anisotropic mesh; — —, DNS [26].

and the MSM to the DNS results. A reasonable agreement between these simulations and the DNS is observed on the windward side
of the bump and the flat wall. On the leeward side of the bump, the prediction of C, from simulations using the AMD model is
barely affected by the mesh type. In contrast, the prediction from simulations using the Vreman model (¢ = 0.025) and the MSM is
negatively influenced by the adoption of an anisotropic mesh.

Fig. 19 illustrates the comparison of the mean streamwise velocity at a wall-normal location, x,/L = 2.38 x 107*, corresponding
to the center of the first off-wall cell in the baseline isotropic mesh. The baseline-mesh simulations using the AMD model reveal only
minor variations in response to changes in mesh type. However, for the simulations employing the Vreman model (¢ = 0.025) and
the MSM, the velocity prediction changes dramatically across the entire domain. When an anisotropic mesh is used, the separation
bubble size substantially decreases. Fig. 20 further explores this by displaying the comparison of mean streamwise velocity profiles
at x/L = 0.2, including the DNS results for reference. At this location, pronounced variations in velocity prediction are observed in
simulations utilizing both the Vreman model and the MSM, with the previously separated TBL becoming attached or nearly attached
when the anisotropic mesh is employed. In contrast, the simulations conducted with the AMD model continue to exhibit minimal
changes in the velocity profile, regardless of the mesh type used. Similar patterns are evident in simulations using coarser meshes;
however, for the sake of brevity, those results are not presented here.

From the discussions above, it is evident that the impact of the mesh anisotropy on the simulation results is strongly contingent
on the specific SGS model utilized. It should be noted that, as in many LES frameworks, our numerical method implicitly applies
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Fig. 20. The profiles of mean streamwise velocity at x/L = 0.2 from the baseline-mesh simulations using (a) the AMD model, (b) the Vreman model (¢ = 0.025), and
(c) the MSM with different types of mesh. Lines indicate ——, WMLES with the isotropic mesh; - - -, WMLES with the anisotropic mesh; — —, DNS [26].

low-pass spatial filtering to the incompressible Navier-Stokes equations. A conventional approach to estimating the filter width is to
use the geometric mean of the grid size, derived from the volume of the mesh cell. This method is utilized in the SGS models under
investigation, with the exception of the AMD model. This approximation is generally suitable for isotropic mesh cells. However, in
the case of anisotropic mesh cells, this approach to estimating the filter width may introduce errors due to the SGS model’s sensitivity
to filter width variations. As a result, when employing these SGS models, the impact of mesh type becomes more pronounced and
significant. In contrast, the AMD model, which is an optimized minimum-dissipation model specifically designed for anisotropic
meshes, mitigates the potential error from filter width approximation, thus reducing the influence of mesh type. This highlights
the importance of incorporating the effect of mesh-cell properties when designing a comprehensive SGS model that can accurately
capture turbulent flow physics with the use of an anisotropic mesh.
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4. Conclusions

A parametric analysis to assess the sensitivities of WMLES for separated turbulent flow has been conducted. The study focuses on
the flow over a two-dimensional Gaussian-shaped bump and specifically delves into the effects of SGS models, mesh resolution, wall
boundary conditions and mesh anisotropy. The core findings of the investigation are summarized below:

1. The simulations display a clear dependence on SGS model. The influence of SGS model is profound, not just for the near-wall
flow field within the attached-flow region, but crucially on the accurate capture of the separation bubble.

2. The simulations approach grid convergence with a fine mesh that features WRLES-like resolutions in the streamwise and span-
wise directions. Beyond this limit, however, the simulation results demonstrate intricate sensitivities to mesh resolution. The
consistency of results convergence with mesh refinement is significantly influenced by the particular SGS model employed. For
instance, non-monotonic convergence in capturing the separation bubble is discernible with certain SGS models like the AMD
model and the Vreman model (¢ = 0.07), while this behavior is less observable within the attached-flow region. Furthermore,
simulations using the MSM demonstrate more consistent capture of the separation bubble across different mesh resolutions,
suggesting that accounting for the anisotropy of SGS stress may mitigate the non-monotonic convergence issue.

3. The flow simulation’s dependence on the SGS model remains significant, even when different idealized wall boundary conditions
are employed. While these wall boundary conditions can noticeably affect the simulations of separated turbulent flow, the extent
of their influence varies with the employed SGS model and is mainly limited to the skin friction on the wall.

4. Anisotropic mesh cells can adversely affect the prediction of separated turbulent flow. Moreover, the impact of the mesh
anisotropy is contingent on the SGS model employed. Specifically, for the AMD model, which is optimized to mitigate the
effects of mesh anisotropy, its influence on flow predictions is relatively weak.

5. The simulations utilizing isotropic meshes indicate that the Vreman model with ¢ = 0.025 offers a comparatively robust per-
formance. This model not only accurately predicts the attached TBL and the separation bubble when employing a reasonably
resolved mesh, but also demonstrates a monotonic convergence of its simulation predictions toward the DNS results as the mesh
is refined. Nonetheless, users should be cautious with the model due to its pronounced sensitivity to the mesh anisotropy.

However, it is important to note that the simulations in this study utilize boundary conditions designed as idealized wall models,
which aim to ensure that the applied wall-shear stress matches the mean values from DNS. Incorrect wall-shear stress could lead
to additional errors, making it crucial to employ an appropriate wall model that guarantees accurate wall-shear stress in practical
WMLES. Additionally, it is essential to recognize the coupling between the wall model and the SGS model in WMLES, given that the
wall model relies on data from the near-wall flow field to predict wall quantities as boundary conditions for the simulation.

Overall, the analysis has deepened our understanding of the sensitivities associated with separated-flow WMLES. Yet, there remain
many open questions that need to be answered through further exploration. The parametric study conducted here emphasizes the
impacts of a select set of variables. This leaves room for similar studies that might delve into other factors such as mesh topology,
explicit filtering, and Reynolds number. Our current simulations also suggest the importance of a closer examination of the DSM’s
near-wall behavior in WMLES, including its sensitivities to the applied filtering and the implementation at the off-wall cells.

Given the insights drawn from the present results, there is a pressing need to enhance the robustness of the existing SGS models
in WMLES, which encompasses refining the model capability to predict flow separation, quickening and ensuring the monotonicity
of convergence and enhancing prediction accuracy with anisotropic meshes. This progress demands a deep understanding of the SGS
model behavior at mesh resolutions not originally designed for resolving near-wall turbulence. Furthermore, when developing future
SGS models, it is imperative to consider these applications and needs. Recent work in this field, notably the non-Boussinesq SGS
model proposed by Agrawal et al. [27] and the dynamic nonlinear SGS model introduced by Uzun and Malik [51], exhibit robust
capability for separated-flow LES and present promising trajectories for enhanced SGS motion modeling. In addition, to sidestep the
adverse coupling effects between the wall model and the SGS model and enhance the robustness of flow predictions, one avenue
could be the development of a unified model for both SGS and wall modeling, as demonstrated by models such as the building-block
flow model [29,52].
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Fig. A.21. Comparison of the mean streamwise velocity profiles from the Group 1 baseline-mesh simulations using the inflow generated with different SGS models at
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model and the inflow generated by the DSM; — —, WMLES with the DSM and the inflow generated by the AMD model; ==, WMLES with the AMD model and the
inflow generated by the AMD model; — —, DNS [26].
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Appendix A. Influence of TBL inflow condition on the simulations

To check the dependence of the SGS model behavior on the TBL inflow, we collect different TBL inflow data and use it to run the
simulations of flow over the bump. More specifically, the new TBL inflow is generated from the simulation using the AMD model.
The new inflow features a boundary layer thickness of 6,/ L =0.0062, a momentum thickness Reynolds number of Re, ~ 1126, and
a friction Reynolds number of Re, ~ 630, all of which are larger than those associated with the original inflow. Fig. A.21 provides a
comparison of the mean streamwise velocity profiles from the bump-flow simulations with different TBL inflows, extracted at three
stations along the x direction. For conciseness, only the results from the baseline-mesh simulations utilizing the velocity Neumann
boundary condition with the AMD model and the DSM are shown. The consistency between the results from the simulations with
different TBL inflows is strong at all stations. These comparative findings suggest that the influence of the TBL inflow condition on
the performance of the SGS models is negligible.
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