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Abstract—In secure summation, K users, each holds an input,
wish to compute the sum of the inputs at a server without
revealing any information about all the inputs even if the
server may collude with an arbitrary subset of users. In this
work, we relax the security and colluding constraints, where
the set of inputs whose information is prohibited from leakage
is from a predetermined collection of sets (e.g., any set of up
to S inputs) and the set of colluding users is from another
predetermined collection of sets (e.g., any set of up to 7" users).
For arbitrary collection of security input sets and colluding user
sets, we characterize the optimal randomness assumption, i.e.,
the minimum number of key bits that need to be held by the
users, per input bit, for weakly secure summation to be feasible,
which generally involves solving a linear program.

I. INTRODUCTION

The focus of this work is on the information theoretic
secure summation problem [1] (see Fig. 1), where User k €
{1,2,---, K} holds an input variable W}, and an independent
key variable Zj; from a finite field, and is connected to a server
through a noiseless orthogonal link. From one message X}
from each user, the server shall be able to decode the sum
of the inputs W, 4 --- + Wx while obtaining no additional

information about all the inputs Wy, --- , Wg.
Xi=Wi+ 5 only learn
User 1 Wi.Z, Y1+-..+WK

Xk =Wk — kK:_ll Sk/’ —

User K Wk, Zk

Server

Fig. 1: The secure summation problem and an optimal protocol
where Sp, -+, Sk_1 are uniform and independent.

An optimal secure summation protocol is plotted in Fig. I,
where the key variables (set as functions of Sy) are (K —1)-
MDS and zero-sum, i.e., any K —1 variables from Z;,--- , Zx
are independent and uniform, and 77 + --- + Zk is 0. The
optimality of the protocol is regarding both the communication
cost and the randomness cost, i.e., in order to compute 1 bit of
the summation securely, each user must send a message Xy
of at least 1 bit to the server and the K users need to hold key
variables of at least ' — 1 bits. Note that the randomness cost
scales linearly with the total number of users K, which could
be huge in practice. This is mainly due to the stringent security
constraint, i.e., we wish to protect all K inputs. One main
motivation of this work is to relax the security constraint to a
weaker one (i.e., the set of inputs that need to be kept secure

are some subsets of all inputs) and understand its impact on the
randomness cost. Moreover, the minimum communication cost
and randomness cost for secure summation remain unchanged
even if user-server collusion is included [1]. In particular, no
matter which set of users (big or small) may collude with the
server so that the server might get some advantage in inferring
information about the remaining users, the optimal protocol
remains the same. The other main motivation of this work is
to see if the dependence on the colluding pattern will be more
explicit in the weakly secure summation problem, i.e., we wish
to study the joint effect of arbitrary security and colluding
patterns on the randomness consumption.

The main result of this work is a complete characterization
of the minimum key size for weakly secure summation with
arbitrary security and colluding patterns, i.e., arbitrary security
input sets and colluding user sets. The ultimate answer gen-
erally involves two parts - one integral part that corresponds
to the number of users that need to be protected under a pair
of security input set and colluding user set and one possibly
fractional part that corresponds to the amount of key required
by remaining users and determined by a linear program.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider one server and K > 2 users, where User k €
{1,2,--- K} £ [K] holds an independent input vector W
and a key variable Zj;. Each W} contains L elements are
i.i.d. uniform symbols from the finite field Fq. (W),c () i
independent of (Zk)j¢(x-

H((Wk»Zk)ke[K]) = > H(W) +H((Zk)ke[l(])a (D
kE[K]

H(W},) = L (in g-ary units), Vk € [K]. (2)

The key variables can be arbitrarily correlated and are a
function of a source key variable Zs;, which is comprised of
L z,, symbols from F,.

H((20) ey 72) = 0. 3)

User k sends to the server a message X, which is a function
of Wy, Zj, and consists of Lx symbols from [F,.

H(Xp|Wh, Zx) = 0,Vk € [K]. 4)

From all messages, the server must be able to recover the
desired sum ;) Wi with no error.

H(ZWk

ke[K]

(Xk?)ke[K]> =0. )
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The security input sets are described by a monotone' set sys-
tem {S1, - ,Sn} and the colluding user sets are described
by another monotone set® system {77, , Tx }. The security
constraint states that if the server colludes with users from any
T, set, nothing additional is revealed about the inputs from any
S, set (note that S, N 7, may not be empty),

I((Wk)kesm; (Xk)k:e[K] Z Wi, (W, Zk)keﬂ) =0,
ke[K]

VYm € [M],n € [N]. (6)

The key rate Rz, characterizes how many symbols the
source key variable contains per input symbol, and is defined
as Ry, = Ly, /L. The rate Ry, is said to be achievable if
there exists a secure summation scheme, for which (5) and
(6) are satisfied, and the key rate is no greater than Rz . The
infimum of the achievable rates Rz, is called the optimal key
rate, denoted as R*ZE.

A. Auxiliary Definitions

Definition 1 (Implicit Security Input Set Sy): The implicit
security input set is defined as

St 2 {[K]\{Sn UTo} £ 1Sn UTa| = K — 1,
- Vm € [M],Vn € [N]} \{UiennSi}. ()

We will use the following example to explain the definitions.

Example 1: Consider K = 5, the security input sets are
(Sy,-++,8q) = (0, {1}, {2}, {3}), and the colluding user sets
are (71’ o 7714) = (®> {l}v {2}7 {3}7 {4}a {5}’ {17 3}7 {la 4}a
{2,3},{2,5},{3,4}, {3,5}, {1,3,4},{2,3,5}).

Searching for all security input set S,, and colluding user
set 7, whose union has cardinality X' — 1 = 4, we have |Sy U
Tial = H1}U{2,3,5}] = 4 and |S5UTis| = [{2}U{1,3,4}] =
4, s0 §; = {4,5} for Example 1.

Definition 2 (Total Security Input Set S): The union of
explicit and implicit security input sets is defined as the total
security input set, § £ Uyye(ar)Sm U Sr.

For Example 1, we have S = {1,2,3,4,5}.

Definition 3 (Intersection of Sy, U T,, and S, A ): For
each pair of security input set S,,, and colluding user set 7,
its overlap with the total security input set S is denoted as

Amp = (SnUT)NS ®)
and its maximum cardinality is denoted as
a* £ | Al €))

max
me[M],ne[N]

For Example 1, A3 14 = ({1} U{2,3,5}) N {1,2,3,4,5} =
{1,2,3,5}, and A3 13 = ({2} U{1,3,4}) n{1,2,3,4,5} =
{1,2,3,4). Further, a* = 4.

A set system is called monotone if a set belongs to the system, then its
subset also belongs to the system.

2Without loss of generality, assume U,,, Sy, # @ (the security constraints
are not empty) and |7, | < K — 2 as otherwise there is nothing to hide.

Definition 4 (Union of Maximum A,,,): Find all A,,,
sets with maximum cardinality and denote the union of the
corresponding S,,,, 7, sets as Q.

Q £ Um,n:\Ar,,L,,L\:a*Sm ) 7~n (10)

For Example 1, As 14, A3 13 are all A,, ,, sets with the maxi-
mum cardinality, so Q = SoU T4, US3U T3 = {1,2,3,4,5}.
III. RESULT

Theorem 1: For secure summation with X > 2 users, secu-
rity input sets (S,,)me[ar)> and colluding user sets (75, )ne[n]»
the optimal key rate Ry is

a* + b* if a* < K —1,
b = at=18),|Q/=K (D
min(a*, K — 1) otherwise

where b* is the optimal value of the following linear program?,
D b

kET\S

by > 1,Ym,n s.t. | Ay, »| = a”,

min max

mvn:‘A'm,n ‘:a*

>

kE[K]\(SnLUTn)
by > 0,Vk € [K]\ S.

subject to

12)

IV. CONVERSE PROOF OF THEOREM 1

We start from the ‘otherwise’ case and show that Rz, >
min(a*, K — 1). Let’s use Example 1 to illustrate the idea.

A. Proof of Example 1

The converse proof is based on showing that for any A, ,,
we have H ((Zk)pen,, n) > | Amn|L.

For Example 1, let’s take Asq13 = {1,2,3,4} as an
example, where {4} comes from the implicit security input
set Sy and {1, 2,3} comes from the explicit security input set
UpnSm- When expanding H((Zk)keAm,n)’ we first consider
the term from the implicit set and then consider the term
from the explicit set (conditioned on the implicit set), i.e.,
H(Zl, Zao, 43, Z4) = H(Z4) + H(Zl, Zs, Zg|Z4) Next, we
show that H(Z,) > L and H(Zy, Zs, Z3|Z4) > 3L.

First, consider H(Z4) > L. The intuition is that {4} =
[K]\ (S2 U Th4) 5]\ ({1} U {2,3,5}) belongs to the
implicit security input set, i.e., when the server colludes with
users in 714, the sum ke[K] Wi, can be decoded and nothing
is revealed about (W), cs,. Complementarily, nothing shall
be revealed about (W) ek (s,u7i,) = Wa- Expressing this
idea in entropy terms, we have

H(Zy) > H(Zy|Zo, Z3, Z5) > I(Z4; Z1|Zo, Z3, Zs5)

—~
[
—

= (Zy,Wy; Z1,Wi|Zo, Z3, Zs, Wa, W3, W5) (13)

4)

> (X4, Wy Xq,Wh|Za, Zs, Z5, Wo, W3, W5) (14)

= HW1|Zs, Z3, Zs, Wa, W3, W5, X1)
_H(WI‘227Z37Z53W2,W37W53X17X47W4) (15)

3Note that for the ‘if’ case, |[Sm U Tn| < K — 1 (because otherwise

a* = K)and S C (S UTy) (s0 by, k € [K]\ S are all the variables.)
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(4)(5)
> H(W1’ZQ7Z3aZ57W27W3aW57 (Xk)kE[S]a Z Wk)
kel[5]

— H(W1|Z, Zs, Z5, Wa, Wy, Ws, Xa, X, X,

X1 X Wi, Y W) (16)
ke[5]
(©)
> H(W1’ZQ7Z3,,Z57W2,W3,W5, > Wk-)
kel[5]
—aww) YL o=1 17)

where in (17), the first term follows from (6) with Sy =
{1} and T14 = {2,3,5}; the second term follows from only
keeping W, (obtained from ), W}, and Wy, W3, W5, Wy).

Second, consider H(Zy, Zs, Z3|Z4) > 3L. Note that S5 U
Tis ={2} U{1,3,4} = {1,2,3,4} so that Z, may appear in
the conditioning term and (S3 U 713) N Upe(a)Sm = {1, 2,3}
so that we want to show that 7, Z5, Z3 must each contribute
L independent amount of information.

H(Zy,Zy, Z3| Zy)

> H(Zy,Z, Z3|Zy, W1, Wa, W3, Wy) (18)
> I(Z1, 29, Z3; X1, Xo, X3|Za, Wi, Wa, W3, W4)(19)
4
' H (X0, Xo, X3 Za, Wi, Wa, W3, W) (20)
= H(X1, Xo, X3|Wy, Z4)

— I( X1, Xo, X3 Wy, W, W3|Wy, Zy) (21)
> 3L — I(Xy, Xo, X5; Wi |Wy, Zy)

— I(X1, Xo, X3; W3|Wy, Zy, Wh)

— I(Xy, Xo, Xg3 Wa| Wi, Zs, W, W) (22)
> 8L~ (X1, Xa, Xa, Y Wis W1 |Wa, Z4)

ke[5]
— I(X1. X2, Xa, Y Wi, 20 Wa| Wa, Zs, W)
ke(5]
(X0, Xe, X, > Wi, 20, Zs Wa -+
ke[5]

W, 20, Wi, W) 23)

©BL— (X0, Xo, Xy Wi 0 Wi, Wi, Z2)
ke[5]
— I(X1, X, Xa; Wa| 3 Wi, Wa, 20, W1, 21)
ke[5]
— I(X, Xz, X3 Wa |-
D Wi Wi, Za, Wi, 2, Wa, Zs) B0 24)

ke[5]

where in (22), H (X1, X2, X3|Wy, Z4) > 3L will be proved
in Lemma | and the remaining terms follow from applying
security constraints for various security input set and colluding
user set. In (24), the second term is zero due to (6) with Sy =
{1} and 75 = {4}, the third term is zero due to (6) with Sy =
{3} and Ts = {1, 4} and the fourth term is zero due to (6) with

Authorized licensed use limited to: University of North Texas. Downloaded

S3 = {2} and T13 = {1, 3,4}. Note that the order of chain-rule
expansion is carefully chosen, where W5 is considered last as
it belongs to S3 while the other terms Wy, W35 are considered
first as they belong to 773 and the set systems are monotone
(remember that the term of consideration H(Zy, Zs, Z3, Zy)
comes from A3 ;3).

B. Proof of Rz, > min(a*, K — 1)

We are now ready to generalize the above proof to all
parameter settings. The ideas are captured by four lemmas,
whose proofs are deferred to [2]. First, each X}, must contain
L symbols even if all other inputs are known.

Lemma 1: For any u € [K], we have

H (Xu|(Wh, Zi) e\ fuy) = L- (25)
Next, the keys used by users outside S,,, U T, should not be
less than L symbols, conditioned on the colluding information.

Lemma 2: For any S,,,7T,,m € [M],n € [N] such that
SnNTy=0and [S,, UT,| <K —1, we have

H((Zk) ket snuT) | (Zk)keT,) > L.

Consider |S,, UT,| = K — 1 for Lemma 2.
Corollary I1: For any S,,, T, such that S,, N 7,, = 0 and
|Sim UTn| = K —1, denote u = [K]\ (S, UT,,) and we have

H(Zu|(Zk)keT,) > L. 27

Now for any S,,,, T, the keys used by users in (S, UT,)N
(Uie[anSi) must be at least its cardinality times L.

Lemma 3: For any Sy, Tn,m € [M],n € [N] such that
SnNTp=0and [S,, UT,| <K —1, we have

(26)

(Zk)keﬂl\(uie[zw]sqi))
(28)

H((Zk?)ke(SWLUTn)m(UiG[JW]Si)

> (Sm UTn) N (Uiern)Si)| L

Generalize the above lemma to also include S;.
Lemma 4: For any Sy, Tn,m € [M],n € [N] such that
SnNTy=0and |[S,, UT,| <K —1, we have

H((Zk)ke(SmUTn)ﬂ§|(Zk)keTn\E)

> [(SmUTw)NS|L. (29)

The proof of Rz, > min(a*, K — 1) follows immediately
from Lemma 4 as a* is defined as the maximum cardinality
of set on the RHS of (29) (refer to (8), (9)). Note that when
a* = K, there exist S,,, 7, so that |S,, UT,| = K — 1 and
then we can apply Lemma 4.

C. Proof of Example 2

Next we consider the ‘if’ case of Theorem 1, where we
need one more step to further tighten the bound Rz, > a*
to include an additional term b*. To appreciate the idea in a
simpler setting, let’s again start with an example.

Example 2: Consider K = 5, (S1, S, S3) = (0, {1}, {2}
and (71, 75) = (0. {1}, -, {5}, {1,3}. 2,4}, {2,5}

For Example 2, A273 = .A372 = A278 = Asg = ./4377 =
S={12},and a* = |S| =2 < K—1=4. Then Q =
Unnoni| A n|=a*Sm U T = {1,2,3,4,5} and [Q] = 5 = K.
So we are in the ‘if’ case.

)s
).
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Consider all A,,,, sets so that |A,, ,| = a*. For Example
2, we have 5 such sets As 3, As2, Azs, Az, As 7. Note
that S, U T, = Am U (T, \ S), and we consider the key
variables Zj, in the set S,, U7, and split them to A, ,, (treated
by Lemma 4 and corresponds to a*) and 7,, \ S (the new part
treated by a linear program and corresponds to b*).

H(Zx) =z max (H((Zk')keszuTg)’H((Z’f)ke&uﬁ)’
H((Zk)k682u7’g)’H((Zk)k682u7’9)7H(<Z’€)k€83u7’7))
= max (H(Z4) + H(Z1,Z5|Z4), H(Z5) + H(Z1, Z2|Z5),
H(Z3) + H(Z1, 75| Z3)) (30)

(229) max (H(Z4), H(Z5), H(Z3)) + a*L (31)

where in (30), we split the Zj term in set S, U 7, to that
in 7, \3 and A,, ,; in (31), we use Lemma 4 to bound the
A, term conditioned on 7, \3. Next, we bound the term
max(H(Z,), H(Z5), H(Z3)), where it turns out that the only
constraints required are from Lemma 2. From (26), we have

So, T H(Zs, Zs|Zo, Z4) > L,
852, Ty H(Z3,Z4|Z>, Z5) > L,
83,77 : H(Z4,Z5|Zy, Z3) > L. (32)

To bound (31) with constraints in (32), we resort to a linear
program, with conditional entropy terms as the variables that
are consistent with chain-rule expansion. In particular, set
H(Z3) = b3L7H(Z4‘Z3) = b4L7 I‘I(Z5|Z37 Z4) = b5L, then

Rz, > a* + minmax(bs,by,bs) (33)

where min is over the following linear constraints,

bs + by > (H(Z3|Z2, Z4) + H(Z5|Z2, Z3, Z4)) /L > 1,
by + by > (H(Z3|Z2, Zs) + H(Z4a|Z, Z3, Z5)) /L > 1,
by +bs > (H(Z4|Z1, Z3) + H(Zs| 21, Z3, Za)) /L > 1,
bs, by, bs > 0. (34)

Intuitively, the correlation/conflict between H(Z3), H(Z4),
H(Zs) is captured through (32) and we wish to find the
tightest bound subject to (32) (interestingly and somewhat
surprisingly, this bound turns out to be tight). Therefore
we have transformed the Rz, converse to a linear program
on non-negative variables bs,by,bs, where each A,,, set
with maximum cardinality contributes one linear constraint
(some redundant ones are removed in (34)). Now defining
b* = minmax(bs,by,bs) as the optimal value of the linear
program subject to constraints (34), we have obtained the
desired converse Rz, > a* + b*.

D. Proof of Rz, > a* + b*

Building upon the insights from Example 2, we present the
general proof of Rz, > a*+0* when the ‘if” condition holds,
ie,a*"<K-—1,a" = |§, and |Q] = K.

Note that a* = |§| so that each A,,, ,, such that | A,, ,| = a*
must satisfy A, , = S. Consider all such A n sets (without
loss of generality, we assume for each such A,, ,,, $;,NT, =0
and |S,, UT,| < K — 1 as the set systems are monotone and
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this will not change the linear program (12), i.e., the dropped
ones are redundant). Following a similar decomposition as that
of Example 2, we have

3)

H(zg) = e H((Zk)kes,.nT.) 35)
> (H(Bers)
+ H((Zk)ke(smu’l'n)m§|(Zk)ke%\g))(36)
(29)
> max H((Zk>k€7’n\§) +a"L (37)

m,n:|Am n|=a*
subject to the following constraints by Lemma 2,

Vm,n where |A,, | = a* :

(26)
(Zi)ker,) = L. (38)

Next, following the steps of the proof of Example 2, we
translate the inequality (37) and the constraints (38) to a linear
program in by variables, defined as follows.

Vk € [K]\S, b2 H(Zk\(zl)lem\gkk) /L.

Then normalizing (37) by L on both hand sides and expanding
the entropy term in (37) and (38) by chain-rule with lexico-
graphic order, we have

H((Zk)ke[K]\(smuﬁz)

(39)

Ry >a* i b 40
Zs > a +mlnm,n:|€?ji|:a* < Z, k) (40)
kET\S
subject to Z b > 1,Vm,n st [Apn| = a”,
kE[KI\(SmUT:)
by >0,k € [K]\S. (41)

Note that A, ,, = S C (S,,UT,), so the chain-rule expansion
above can be bounded by b terms. According to the linear
program (12) whose optimal value is defined as b*, we have
obtained the desired converse bound Rz, > a* + b*.

V. ACHIEVABILITY PROOF OF THEOREM 1

We similarly start from the simpler ‘otherwise’ case. Hence-
forth, we assume a* < K — 1 because otherwise a* = K we
may apply the scheme in Fig. 1 which achieves Ry, = K —1
and has been proved to be correct and secure for S, = [K]
(so for any other S,;,) and any 7, in Theorem 1 of [1]. The
achievable scheme of Rz, = a* for the remaining settings of
the ‘otherwise’ case is fairly straightforward, which contains
two cases and is deferred to Section 5 of [2]. We are left with
the ‘if” case.

A. Achievable Scheme of Rz, = a* + b" for ‘If’ Case

Consider the ‘if” case, where every user will be assigned
some key variables, the amount of which is according to the
optimal solution of the linear program (12). Denote the by, k €
[K]\ S values that attain the optimal value b* of (12) are

bk:bZ:%,Vke[K}\g (42)
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where the linear program has rational coefficients so that the
optimal solution is also rational, i.e., py,q are integers (and
non-negative). As a result,

S b st 3)

q

=S

kE[K\S

Pick B so that ¢® > (a* + b*)q((a*fg*)a) and operate over
[F,5. Consider p+ (a* — 1) i.i.d. uniform variables, s = (S;
+(a*—1)g) x1

*5 Spt(ar—1)g) € Ffﬁa (a7

as (suppose S = {ki,--- k5]

Fj. x Gy x s,k € [K]\ S
H; XS,V]CEE

and set the key variables

Zy.
Zy,

(44)

where each element of F; € FIZP* G, € Fg,’;x(m(” _1)@,

i€ [K)\S H; e FAPH0D e ko kg ) are
drawn uniformly and i.i.d. from F 5 and

Hy = _< dOFixGi+ Y Hj> (45)
i€[K\S jeS\{k;5}
= Y 7, MU, (46)

Finally, set L = B, i.e., Wi = (Wi1;--- ;Wi g) € FL5!
and the sent messages as

Correctness is guaranteed by taking €[K] X}, and (46). Note
that the key rate achieved is Ry, = Lz, /L = (p + (a* —

1)9)/q ) o kensbr— 1 ) e b*, where the last
step is based on a crucial property of the linear program (12),
stated below and proved in Lemma 5 of [2].

Lemma 5: For the linear program (12), its optimal value b*

and optimal solution b;; satisfy

b= > bp-1

ke[K\S

(48)

B. Proof of Security

Consider any set S, T,,,m € [M],n € [N] so that* |S,, U
Tn| < K — 1. We show that the security constraint (6) is
satisfied for the achievable schemes under all cases.

I((Wk)ke‘gm; (Xk)ke[x]‘ Z Wi, (W, Zk)keTn)
kE[K]

H((Wk + Zk)ke[K]‘ Z Wi, (W, Zk)k:eTn)
ke[K]

- H((W,c +Zk)k€[K]""

3 Wk,(Wk,zk)ke,m(wk)kesm) 49)
ke[K]
= H(Wit Zogep| 3 Wi (Wi Zi)yr, )

ke[K]

4Recall that a* < K — 1, then |Sy, U Tr,| cannot be [K].

Authorized licensed use limited to: University of North Texas. Downloaded

— H((Wi+ Zepnr| -+

D W W Z)yer,s Wikies, ) 50)
ke[K]
= (Wt Zoyee| o Wi (W Zi)yer, )
ke[K]

- H((Wk + Zk)kes,\T,

T Z Wi, (Wk)ke(SmUTn)7 (Zk)keTn)
ke[K]

— H((Wk + Zk) ke [K\(SmUT2)

T W Wies,om (Ze)keqs,omy) 6D
ke[K]

H((Wk‘FZk)ke[K]‘ Z Wk’(Wk’Zk)ken)
ke[K]

- H((Zk)kesm\'rn (Zk)keTn)

— H((W;C + Zk)ke[K]\(SmuTn)

—
—

3D Wi W Zi)es,om ) (52)
ke[K]
< IS\ TalL = [Su \ TalL =0 (53)

where in (52), the difference of the first term and the third
term is no greater than |S,, \ 7,|L, and the second term is
also |Sy, \ Tn|L, both proved in [2] (refer to Section 5.4).

VI. DISCUSSION

In this work, we have characterized the fundamental limits
of weakly secure summation with arbitrary security constraints
(where the weak security notion is similar to and a generaliza-
tion of that considered in the network coding context [3]-[5]),
and arbitrary colluding constraints (similar to those in private
information retrieval [6], [7]). As the security and colluding
constraints can be arbitrarily heterogeneous, it turns out that
interestingly, their interaction can be captured by a linear
program with a number of linear constraints that on the one
hand, impose the security constraint for each security input and
colluding user set and on the other hand, attempt to minimize
the key size (the max objective function in (12) can be
transformed to constraints on the additional key consumption).
The resolving of such tension gives rise to matching converse
claim and achievability argument (connected by the crucial
algebraic property of the linear program in Lemma 5) so that
the exact information theoretic answer is obtained.

Going forward, secure summation is an information theo-
retic primitive whose model can be further enriched to catch
new requirements in federated learning, e.g., user dropout [8]—
[15], user selection [16]-[19], groupwise keys [1], [14] etc.
Considerations of weak security constraints in these settings
are promising directions for novel insights.
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