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Abstract—In secure summation, K users, each holds an input,
wish to compute the sum of the inputs at a server without
revealing any information about all the inputs even if the
server may collude with an arbitrary subset of users. In this
work, we relax the security and colluding constraints, where
the set of inputs whose information is prohibited from leakage
is from a predetermined collection of sets (e.g., any set of up
to S inputs) and the set of colluding users is from another
predetermined collection of sets (e.g., any set of up to T users).
For arbitrary collection of security input sets and colluding user
sets, we characterize the optimal randomness assumption, i.e.,
the minimum number of key bits that need to be held by the
users, per input bit, for weakly secure summation to be feasible,
which generally involves solving a linear program.

I. INTRODUCTION

The focus of this work is on the information theoretic

secure summation problem [1] (see Fig. 1), where User k ∈
{1, 2, · · · ,K} holds an input variable Wk and an independent

key variable Zk from a finite field, and is connected to a server

through a noiseless orthogonal link. From one message Xk

from each user, the server shall be able to decode the sum

of the inputs W1 + · · · + WK while obtaining no additional

information about all the inputs W1, · · · ,WK .

...

X1 = W1 + S1

XK = WK −∑K−1
k=1 Sk

User 1

User K

W1, Z1

WK , ZK Server

only learn

W1 + · · ·+WK

Fig. 1: The secure summation problem and an optimal protocol

where S1, · · · , SK−1 are uniform and independent.

An optimal secure summation protocol is plotted in Fig. 1,

where the key variables (set as functions of Sk) are (K − 1)-
MDS and zero-sum, i.e., any K−1 variables from Z1, · · · , ZK

are independent and uniform, and Z1 + · · · + ZK is 0. The

optimality of the protocol is regarding both the communication

cost and the randomness cost, i.e., in order to compute 1 bit of

the summation securely, each user must send a message Xk

of at least 1 bit to the server and the K users need to hold key

variables of at least K−1 bits. Note that the randomness cost

scales linearly with the total number of users K, which could

be huge in practice. This is mainly due to the stringent security

constraint, i.e., we wish to protect all K inputs. One main

motivation of this work is to relax the security constraint to a

weaker one (i.e., the set of inputs that need to be kept secure

are some subsets of all inputs) and understand its impact on the

randomness cost. Moreover, the minimum communication cost

and randomness cost for secure summation remain unchanged

even if user-server collusion is included [1]. In particular, no

matter which set of users (big or small) may collude with the

server so that the server might get some advantage in inferring

information about the remaining users, the optimal protocol

remains the same. The other main motivation of this work is

to see if the dependence on the colluding pattern will be more

explicit in the weakly secure summation problem, i.e., we wish

to study the joint effect of arbitrary security and colluding

patterns on the randomness consumption.
The main result of this work is a complete characterization

of the minimum key size for weakly secure summation with

arbitrary security and colluding patterns, i.e., arbitrary security

input sets and colluding user sets. The ultimate answer gen-

erally involves two parts - one integral part that corresponds

to the number of users that need to be protected under a pair

of security input set and colluding user set and one possibly

fractional part that corresponds to the amount of key required

by remaining users and determined by a linear program.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider one server and K ≥ 2 users, where User k ∈
{1, 2, · · · ,K} � [K] holds an independent input vector Wk

and a key variable Zk. Each Wk contains L elements are

i.i.d. uniform symbols from the finite field Fq . (Wk)k∈[K] is

independent of (Zk)k∈[K].

H
(
(Wk, Zk)k∈[K]

)
=

∑
k∈[K]

H(Wk) +H
(
(Zk)k∈[K]

)
, (1)

H(Wk) = L (in q-ary units), ∀k ∈ [K]. (2)

The key variables can be arbitrarily correlated and are a

function of a source key variable ZΣ, which is comprised of

LZΣ
symbols from Fq .

H
(
(Zk)k∈[K]

∣∣∣ZΣ

)
= 0. (3)

User k sends to the server a message Xk, which is a function

of Wk, Zk and consists of LX symbols from Fq .

H(Xk|Wk, Zk) = 0, ∀k ∈ [K]. (4)

From all messages, the server must be able to recover the

desired sum
∑

k∈[K] Wk with no error.

H

( ∑
k∈[K]

Wk

∣∣∣∣(Xk)k∈[K]

)
= 0. (5)
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The security input sets are described by a monotone1 set sys-

tem {S1, · · · ,SM} and the colluding user sets are described

by another monotone set2 system {T1, · · · , TN}. The security

constraint states that if the server colludes with users from any

Tn set, nothing additional is revealed about the inputs from any

Sm set (note that Sm ∩ Tn may not be empty),

I

(
(Wk)k∈Sm

; (Xk)k∈[K]

∣∣∣∣ ∑
k∈[K]

Wk, (Wk, Zk)k∈Tn

)
= 0,

∀m ∈ [M ], n ∈ [N ]. (6)

The key rate RZΣ
, characterizes how many symbols the

source key variable contains per input symbol, and is defined

as RZΣ
� LZΣ

/L. The rate RZΣ
is said to be achievable if

there exists a secure summation scheme, for which (5) and

(6) are satisfied, and the key rate is no greater than RZΣ . The

infimum of the achievable rates RZΣ is called the optimal key

rate, denoted as R∗
ZΣ

.

A. Auxiliary Definitions

Definition 1 (Implicit Security Input Set SI ): The implicit

security input set is defined as

SI �
{
[K] \ {Sm ∪ Tn} : |Sm ∪ Tn| = K − 1, · · ·

· · · ∀m ∈ [M ], ∀n ∈ [N ]
}
\ {∪i∈[M ]Si}. (7)

We will use the following example to explain the definitions.

Example 1: Consider K = 5, the security input sets are

(S1, · · · ,S4) = (∅, {1}, {2}, {3}), and the colluding user sets

are (T1, · · · , T14) = (∅, {1}, {2}, {3}, {4}, {5}, {1, 3}, {1, 4},
{2, 3}, {2, 5}, {3, 4}, {3, 5}, {1, 3, 4}, {2, 3, 5}).

Searching for all security input set Sm and colluding user

set Tn whose union has cardinality K− 1 = 4, we have |S2 ∪
T14| = |{1}∪{2, 3, 5}| = 4 and |S3∪T13| = |{2}∪{1, 3, 4}| =
4, so SI = {4, 5} for Example 1.

Definition 2 (Total Security Input Set S): The union of

explicit and implicit security input sets is defined as the total

security input set, S � ∪m∈[M ]Sm ∪ SI .

For Example 1, we have S = {1, 2, 3, 4, 5}.

Definition 3 (Intersection of Sm ∪ Tn and S, Am,n): For

each pair of security input set Sm and colluding user set Tn,

its overlap with the total security input set S is denoted as

Am,n � (Sm ∪ Tn) ∩ S (8)

and its maximum cardinality is denoted as

a∗ � max
m∈[M ],n∈[N ]

|Am,n|. (9)

For Example 1, A2,14 = ({1} ∪ {2, 3, 5}) ∩ {1, 2, 3, 4, 5} =
{1, 2, 3, 5}, and A3,13 = ({2} ∪ {1, 3, 4}) ∩ {1, 2, 3, 4, 5} =
{1, 2, 3, 4}. Further, a∗ = 4.

1A set system is called monotone if a set belongs to the system, then its
subset also belongs to the system.

2Without loss of generality, assume ∪mSm �= ∅ (the security constraints
are not empty) and |Tn| ≤ K − 2 as otherwise there is nothing to hide.

Definition 4 (Union of Maximum Am,n): Find all Am,n

sets with maximum cardinality and denote the union of the

corresponding Sm, Tn sets as Q.

Q � ∪m,n:|Am,n|=a∗Sm ∪ Tn. (10)

For Example 1, A2,14,A3,13 are all Am,n sets with the maxi-

mum cardinality, so Q = S2 ∪T14 ∪S3 ∪T13 = {1, 2, 3, 4, 5}.

III. RESULT

Theorem 1: For secure summation with K ≥ 2 users, secu-

rity input sets (Sm)m∈[M ], and colluding user sets (Tn)n∈[N ],

the optimal key rate R∗
ZΣ

is

R∗
ZΣ

=

⎧⎨
⎩

a∗ + b∗ if a∗ ≤ K − 1,
a∗ =

∣∣S∣∣, |Q| = K
min(a∗,K − 1) otherwise

(11)

where b∗ is the optimal value of the following linear program3,

min max
m,n:|Am,n|=a∗

∑
k∈Tn\S

bk

subject to
∑

k∈[K]\(Sm∪Tn)

bk ≥ 1, ∀m,n s.t. |Am,n| = a∗,

bk ≥ 0, ∀k ∈ [K] \ S. (12)

IV. CONVERSE PROOF OF THEOREM 1

We start from the ‘otherwise’ case and show that RZΣ ≥
min(a∗,K − 1). Let’s use Example 1 to illustrate the idea.

A. Proof of Example 1

The converse proof is based on showing that for any Am,n,

we have H
(
(Zk)k∈Am,n

)
≥ |Am,n|L.

For Example 1, let’s take A3,13 = {1, 2, 3, 4} as an

example, where {4} comes from the implicit security input

set SI and {1, 2, 3} comes from the explicit security input set

∪mSm. When expanding H
(
(Zk)k∈Am,n

)
, we first consider

the term from the implicit set and then consider the term

from the explicit set (conditioned on the implicit set), i.e.,

H(Z1, Z2, Z3, Z4) = H(Z4) + H(Z1, Z2, Z3|Z4). Next, we

show that H(Z4) ≥ L and H(Z1, Z2, Z3|Z4) ≥ 3L.

First, consider H(Z4) ≥ L. The intuition is that {4} =
[K] \ (S2 ∪ T14) = [5] \ ({1} ∪ {2, 3, 5}) belongs to the

implicit security input set, i.e., when the server colludes with

users in T14, the sum
∑

k∈[K] Wk can be decoded and nothing

is revealed about (Wk)k∈S2
. Complementarily, nothing shall

be revealed about (Wk)k∈[K]\(S2∪T14)
= W4. Expressing this

idea in entropy terms, we have

H(Z4) ≥ H(Z4|Z2, Z3, Z5) ≥ I(Z4;Z1|Z2, Z3, Z5)

(1)
= I(Z4,W4;Z1,W1|Z2, Z3, Z5,W2,W3,W5) (13)

(4)

≥ I(X4,W4;X1,W1|Z2, Z3, Z5,W2,W3,W5) (14)

= H(W1|Z2, Z3, Z5,W2,W3,W5, X1)

−H(W1|Z2, Z3, Z5,W2,W3,W5, X1, X4,W4) (15)

3Note that for the ‘if’ case, |Sm ∪ Tn| ≤ K − 1 (because otherwise
a∗ = K) and S ⊂ (Sm ∪ Tn) (so bk, k ∈ [K] \ S are all the variables.)
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(4)(5)

≥ H
(
W1

∣∣∣Z2, Z3, Z5,W2,W3,W5, (Xk)k∈[5],
∑
k∈[5]

Wk

)

−H
(
W1

∣∣∣Z2, Z3, Z5,W2,W3,W5, X2, X3, X5, · · ·

· · ·X1, X4,W4,
∑
k∈[5]

Wk

)
(16)

(6)

≥ H
(
W1

∣∣∣Z2, Z3, Z5,W2,W3,W5,
∑
k∈[5]

Wk

)

−H(W1|W1)
(1)(2)
= L− 0 = L (17)

where in (17), the first term follows from (6) with S2 =
{1} and T14 = {2, 3, 5}; the second term follows from only

keeping W1 (obtained from
∑

k Wk and W2,W3,W5,W4).

Second, consider H(Z1, Z2, Z3|Z4) ≥ 3L. Note that S3 ∪
T13 = {2} ∪ {1, 3, 4} = {1, 2, 3, 4} so that Z4 may appear in

the conditioning term and (S3 ∪ T13) ∩ ∪m∈[4]Sm = {1, 2, 3}
so that we want to show that Z1, Z2, Z3 must each contribute

L independent amount of information.

H(Z1, Z2, Z3|Z4)

≥ H(Z1, Z2, Z3|Z4,W1,W2,W3,W4) (18)

≥ I(Z1, Z2, Z3;X1, X2, X3|Z4,W1,W2,W3,W4)(19)
(4)
= H(X1, X2, X3|Z4,W1,W2,W3,W4) (20)

= H(X1, X2, X3|W4, Z4)

− I(X1, X2, X3;W1,W2,W3|W4, Z4) (21)

≥ 3L− I(X1, X2, X3;W1|W4, Z4)

− I(X1, X2, X3;W3|W4, Z4,W1)

− I(X1, X2, X3;W2|W4, Z4,W1,W3) (22)

≥ 3L− I
(
X1, X2, X3,

∑
k∈[5]

Wk;W1

∣∣∣W4, Z4

)

− I
(
X1, X2, X3,

∑
k∈[5]

Wk, Z1;W3

∣∣∣W4, Z4,W1

)

− I
(
X1, X2, X3,

∑
k∈[5]

Wk, Z1, Z3;W2

∣∣∣ · · ·
· · ·W4, Z4,W1,W3

)
(23)

(1)
= 3L− I

(
X1, X2, X3;W1

∣∣∣ ∑
k∈[5]

Wk,W4, Z4

)

− I
(
X1, X2, X3;W3

∣∣∣ ∑
k∈[5]

Wk,W4, Z4,W1, Z1

)

− I
(
X1, X2, X3;W2

∣∣∣ · · ·
· · ·

∑
k∈[5]

Wk,W4, Z4,W1, Z1,W3, Z3

)
(6)
= 3L (24)

where in (22), H(X1, X2, X3|W4, Z4) ≥ 3L will be proved

in Lemma 1 and the remaining terms follow from applying

security constraints for various security input set and colluding

user set. In (24), the second term is zero due to (6) with S2 =
{1} and T5 = {4}, the third term is zero due to (6) with S4 =
{3} and T8 = {1, 4} and the fourth term is zero due to (6) with

S3 = {2} and T13 = {1, 3, 4}. Note that the order of chain-rule

expansion is carefully chosen, where W2 is considered last as

it belongs to S3 while the other terms W1,W3 are considered

first as they belong to T13 and the set systems are monotone

(remember that the term of consideration H(Z1, Z2, Z3, Z4)
comes from A3,13).

B. Proof of RZΣ
≥ min(a∗,K − 1)

We are now ready to generalize the above proof to all

parameter settings. The ideas are captured by four lemmas,

whose proofs are deferred to [2]. First, each Xk must contain

L symbols even if all other inputs are known.

Lemma 1: For any u ∈ [K], we have

H
(
Xu

∣∣(Wk, Zk)k∈[K]\{u}
)
≥ L. (25)

Next, the keys used by users outside Sm ∪ Tn should not be

less than L symbols, conditioned on the colluding information.

Lemma 2: For any Sm, Tn,m ∈ [M ], n ∈ [N ] such that

Sm ∩ Tn = ∅ and |Sm ∪ Tn| ≤ K − 1, we have

H
(
(Zk)k∈[K]\(Sm∪Tn)

∣∣(Zk)k∈Tn

)
≥ L. (26)

Consider |Sm ∪ Tn| = K − 1 for Lemma 2.

Corollary 1: For any Sm, Tn, such that Sm ∩ Tn = ∅ and

|Sm ∪Tn| = K− 1, denote u = [K] \ (Sm ∪Tn) and we have

H
(
Zu

∣∣(Zk)k∈Tn

)
≥ L. (27)

Now for any Sm, Tn, the keys used by users in (Sm∪Tn)∩
(∪i∈[M ]Si) must be at least its cardinality times L.

Lemma 3: For any Sm, Tn,m ∈ [M ], n ∈ [N ] such that

Sm ∩ Tn = ∅ and |Sm ∪ Tn| ≤ K − 1, we have

H
(
(Zk)k∈(Sm∪Tn)∩(∪i∈[M]Si)

∣∣(Zk)k∈Tn\(∪i∈[M]Si)

)
≥ |(Sm ∪ Tn) ∩ (∪i∈[M ]Si)|L. (28)

Generalize the above lemma to also include SI .

Lemma 4: For any Sm, Tn,m ∈ [M ], n ∈ [N ] such that

Sm ∩ Tn = ∅ and |Sm ∪ Tn| ≤ K − 1, we have

H
(
(Zk)k∈(Sm∪Tn)∩S

∣∣(Zk)k∈Tn\S
)

≥
∣∣(Sm ∪ Tn) ∩ S

∣∣L. (29)

The proof of RZΣ
≥ min(a∗,K − 1) follows immediately

from Lemma 4 as a∗ is defined as the maximum cardinality

of set on the RHS of (29) (refer to (8), (9)). Note that when

a∗ = K, there exist Sm, Tn so that |Sm ∪ Tn| = K − 1 and

then we can apply Lemma 4.

C. Proof of Example 2

Next we consider the ‘if’ case of Theorem 1, where we

need one more step to further tighten the bound RZΣ
≥ a∗

to include an additional term b∗. To appreciate the idea in a

simpler setting, let’s again start with an example.

Example 2: Consider K = 5, (S1, S2, S3) = (∅, {1}, {2}),
and (T1, · · · , T9) = (∅, {1}, · · · , {5}, {1, 3}, {2, 4}, {2, 5}).

For Example 2, A2,3 = A3,2 = A2,8 = A2,9 = A3,7 =
S = {1, 2}, and a∗ =

∣∣S∣∣ = 2 ≤ K − 1 = 4. Then Q =
∪m,n:|Am,n|=a∗Sm ∪ Tn = {1, 2, 3, 4, 5} and |Q| = 5 = K.

So we are in the ‘if’ case.
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Consider all Am,n sets so that |Am,n| = a∗. For Example

2, we have 5 such sets A2,3, A3,2, A2,8, A2,9, A3,7. Note

that Sm ∪ Tn = Am,n ∪ (Tn \ S), and we consider the key

variables Zk in the set Sm∪Tn and split them to Am,n (treated

by Lemma 4 and corresponds to a∗) and Tn \S (the new part

treated by a linear program and corresponds to b∗).

H(ZΣ) ≥ max
(
H
(
(Zk)k∈S2∪T3

)
, H

(
(Zk)k∈S3∪T2

)
,

H
(
(Zk)k∈S2∪T8

)
, H

(
(Zk)k∈S2∪T9

)
, H

(
(Zk)k∈S3∪T7

))
= max

(
H(Z4) +H(Z1, Z2|Z4), H(Z5) +H(Z1, Z2|Z5),

H(Z3) +H(Z1, Z2|Z3)
)

(30)

(29)

≥ max
(
H(Z4), H(Z5), H(Z3)

)
+ a∗L (31)

where in (30), we split the Zk term in set Sm ∪ Tn to that

in Tn \ S and Am,n; in (31), we use Lemma 4 to bound the

Am,n term conditioned on Tn \ S. Next, we bound the term

max(H(Z4), H(Z5), H(Z3)), where it turns out that the only

constraints required are from Lemma 2. From (26), we have

S2, T8 : H(Z3, Z5|Z2, Z4) ≥ L,

S2, T9 : H(Z3, Z4|Z2, Z5) ≥ L,

S3, T7 : H(Z4, Z5|Z1, Z3) ≥ L. (32)

To bound (31) with constraints in (32), we resort to a linear

program, with conditional entropy terms as the variables that

are consistent with chain-rule expansion. In particular, set

H(Z3) = b3L,H(Z4|Z3) = b4L,H(Z5|Z3, Z4) = b5L, then

RZΣ
≥ a∗ +minmax(b3, b4, b5) (33)

where min is over the following linear constraints,

b3 + b5 ≥
(
H(Z3|Z2, Z4) +H(Z5|Z2, Z3, Z4)

)
/L ≥ 1,

b3 + b4 ≥
(
H(Z3|Z2, Z5) +H(Z4|Z2, Z3, Z5)

)
/L ≥ 1,

b4 + b5 ≥
(
H(Z4|Z1, Z3) +H(Z5|Z1, Z3, Z4)

)
/L ≥ 1,

b3, b4, b5 ≥ 0. (34)

Intuitively, the correlation/conflict between H(Z3), H(Z4),
H(Z5) is captured through (32) and we wish to find the

tightest bound subject to (32) (interestingly and somewhat

surprisingly, this bound turns out to be tight). Therefore

we have transformed the RZΣ
converse to a linear program

on non-negative variables b3, b4, b5, where each Am,n set

with maximum cardinality contributes one linear constraint

(some redundant ones are removed in (34)). Now defining

b∗ = minmax(b3, b4, b5) as the optimal value of the linear

program subject to constraints (34), we have obtained the

desired converse RZΣ
≥ a∗ + b∗.

D. Proof of RZΣ
≥ a∗ + b∗

Building upon the insights from Example 2, we present the

general proof of RZΣ
≥ a∗+b∗ when the ‘if’ condition holds,

i.e., a∗ ≤ K − 1, a∗ =
∣∣S∣∣, and |Q| = K.

Note that a∗ =
∣∣S∣∣ so that each Am,n such that |Am,n| = a∗

must satisfy Am,n = S . Consider all such Am,n sets (without

loss of generality, we assume for each such Am,n, Sm∩Tn = ∅
and |Sm ∪ Tn| ≤ K − 1 as the set systems are monotone and

this will not change the linear program (12), i.e., the dropped

ones are redundant). Following a similar decomposition as that

of Example 2, we have

H(ZΣ)
(3)

≥ max
m,n:|Am,n|=a∗

H
(
(Zk)k∈Sm∩Tn

)
(35)

≥ max
m,n:|Am,n|=a∗

(
H
(
(Zk)k∈Tn\S

)
+ H

(
(Zk)k∈(Sm∪Tn)∩S

∣∣(Zk)k∈Tn\S
))

(36)

(29)

≥ max
m,n:|Am,n|=a∗

H
(
(Zk)k∈Tn\S

)
+ a∗L (37)

subject to the following constraints by Lemma 2,

∀m,n where |Am,n| = a∗ :

H
(
(Zk)k∈[K]\(Sm∪Tn)

∣∣(Zk)k∈Tn

) (26)

≥ L. (38)

Next, following the steps of the proof of Example 2, we

translate the inequality (37) and the constraints (38) to a linear

program in bk variables, defined as follows.

∀k ∈ [K] \ S, bk � H
(
Zk

∣∣(Zl)l∈[K]\S,l<k

)
/L. (39)

Then normalizing (37) by L on both hand sides and expanding

the entropy term in (37) and (38) by chain-rule with lexico-

graphic order, we have

RZΣ ≥ a∗ +min max
m,n:|Am,n|=a∗

( ∑
k∈Tn\S

bk

)
(40)

subject to
∑

k∈[K]\(Sm∪Tn)

bk ≥ 1, ∀m,n s.t. |Am,n| = a∗,

bk ≥ 0, k ∈ [K] \ S. (41)

Note that Am,n = S ⊂ (Sm∪Tn), so the chain-rule expansion

above can be bounded by bk terms. According to the linear

program (12) whose optimal value is defined as b∗, we have

obtained the desired converse bound RZΣ
≥ a∗ + b∗.

V. ACHIEVABILITY PROOF OF THEOREM 1

We similarly start from the simpler ‘otherwise’ case. Hence-

forth, we assume a∗ ≤ K − 1 because otherwise a∗ = K we

may apply the scheme in Fig. 1 which achieves RZΣ
= K−1

and has been proved to be correct and secure for Sm = [K]
(so for any other Sm) and any Tn in Theorem 1 of [1]. The

achievable scheme of RZΣ
= a∗ for the remaining settings of

the ‘otherwise’ case is fairly straightforward, which contains

two cases and is deferred to Section 5 of [2]. We are left with

the ‘if’ case.

A. Achievable Scheme of RZΣ
= a∗ + b∗ for ‘If’ Case

Consider the ‘if’ case, where every user will be assigned

some key variables, the amount of which is according to the

optimal solution of the linear program (12). Denote the bk, k ∈
[K] \ S values that attain the optimal value b∗ of (12) are

bk = b∗k =
pk
q
, ∀k ∈ [K] \ S (42)
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where the linear program has rational coefficients so that the

optimal solution is also rational, i.e., pk, q are integers (and

non-negative). As a result,∑
k∈[K]\S

b∗k =

∑
k∈[K]\S pk

q
� p

q
. (43)

Pick B so that qB > (a∗ + b∗)q
(

Kq
(a∗+b∗)q

)
and operate over

FqB . Consider p+(a∗−1)q i.i.d. uniform variables, s = (S1;

· · · ; Sp+(a∗−1)q) ∈ F
(p+(a∗−1)q)×1

qB
and set the key variables

as (suppose S = {k1, · · · , k|S|})

Zk = Fk ×Gk × s, ∀k ∈ [K] \ S
Zk = Hk × s, ∀k ∈ S (44)

where each element of Fi ∈ F
q×pk

qB
, Gi ∈ F

pk×(p+(a∗−1)q)

qB
,

i ∈ [K] \ S, Hj ∈ F
q×(p+(a∗−1)q)

qB
, j ∈ {k1, · · · , k|S|−1} are

drawn uniformly and i.i.d. from FqB and

Hk|S| = −
( ∑

i∈[K]\S

Fi ×Gi +
∑

j∈S\{k|S|}

Hj

)
(45)

⇒
∑

k∈[K]

Zk
(44)(45)

= 0. (46)

Finally, set L = Bq, i.e., Wk = (Wk,1; · · · ;Wk,q) ∈ F
q×1
qB

and the sent messages as

Xk = Wk + Zk, ∀k ∈ [K]. (47)

Correctness is guaranteed by taking
∑

k∈[K] Xk and (46). Note

that the key rate achieved is RZΣ = LZΣ/L = (p + (a∗ −
1)q)/q

(43)
= a∗ +

∑
k∈[K]\S b∗k − 1

(48)
= a∗ + b∗, where the last

step is based on a crucial property of the linear program (12),

stated below and proved in Lemma 5 of [2].

Lemma 5: For the linear program (12), its optimal value b∗

and optimal solution b∗k satisfy

b∗ =
∑

k∈[K]\S

b∗k − 1. (48)

B. Proof of Security

Consider any set Sm, Tn,m ∈ [M ], n ∈ [N ] so that4 |Sm ∪
Tn| ≤ K − 1. We show that the security constraint (6) is

satisfied for the achievable schemes under all cases.

I
(
(Wk)k∈Sm

; (Xk)k∈[K]

∣∣∣ ∑
k∈[K]

Wk, (Wk, Zk)k∈Tn

)

= H
(
(Wk + Zk)k∈[K]

∣∣∣ ∑
k∈[K]

Wk, (Wk, Zk)k∈Tn

)

− H
(
(Wk + Zk)k∈[K]

∣∣∣ · · ·
· · ·

∑
k∈[K]

Wk, (Wk, Zk)k∈Tn
, (Wk)k∈Sm

)
(49)

= H
(
(Wk + Zk)k∈[K]

∣∣∣ ∑
k∈[K]

Wk, (Wk, Zk)k∈Tn

)

4Recall that a∗ ≤ K − 1, then |Sm ∪ Tn| cannot be [K].

−H
(
(Wk + Zk)k∈[K]\Tn

∣∣∣ · · ·
· · ·

∑
k∈[K]

Wk, (Wk, Zk)k∈Tn
, (Wk)k∈Sm

)
(50)

= H
(
(Wk + Zk)k∈[K]

∣∣∣ ∑
k∈[K]

Wk, (Wk, Zk)k∈Tn

)

− H
(
(Wk + Zk)k∈Sm\Tn

∣∣∣ · · ·
· · ·

∑
k∈[K]

Wk, (Wk)k∈(Sm∪Tn)
, (Zk)k∈Tn

)

− H
(
(Wk + Zk)k∈[K]\(Sm∪Tn)

∣∣∣ · · ·
· · ·

∑
k∈[K]

Wk, (Wk)k∈(Sm∪Tn)
, (Zk)k∈(Sm∪Tn)

)
(51)

(1)
= H

(
(Wk + Zk)k∈[K]

∣∣∣ ∑
k∈[K]

Wk, (Wk, Zk)k∈Tn

)

− H
(
(Zk)k∈Sm\Tn

∣∣∣(Zk)k∈Tn

)
− H

(
(Wk + Zk)k∈[K]\(Sm∪Tn)

∣∣∣ · · ·
· · ·

∑
k∈[K]

Wk, (Wk, Zk)k∈(Sm∪Tn)

)
(52)

≤ |Sm \ Tn|L− |Sm \ Tn|L = 0 (53)

where in (52), the difference of the first term and the third

term is no greater than |Sm \ Tn|L, and the second term is

also |Sm \ Tn|L, both proved in [2] (refer to Section 5.4).

VI. DISCUSSION

In this work, we have characterized the fundamental limits

of weakly secure summation with arbitrary security constraints

(where the weak security notion is similar to and a generaliza-

tion of that considered in the network coding context [3]–[5]),

and arbitrary colluding constraints (similar to those in private

information retrieval [6], [7]). As the security and colluding

constraints can be arbitrarily heterogeneous, it turns out that

interestingly, their interaction can be captured by a linear

program with a number of linear constraints that on the one

hand, impose the security constraint for each security input and

colluding user set and on the other hand, attempt to minimize

the key size (the max objective function in (12) can be

transformed to constraints on the additional key consumption).

The resolving of such tension gives rise to matching converse

claim and achievability argument (connected by the crucial

algebraic property of the linear program in Lemma 5) so that

the exact information theoretic answer is obtained.
Going forward, secure summation is an information theo-

retic primitive whose model can be further enriched to catch

new requirements in federated learning, e.g., user dropout [8]–

[15], user selection [16]–[19], groupwise keys [1], [14] etc.

Considerations of weak security constraints in these settings

are promising directions for novel insights.
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