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Abstract—A collection of K random variables are called
(K,n)-MDS if any n of the K variables are independent
and determine all remaining variables. In the MDS variable
generation problem, K users wish to generate variables that are
(K,n)-MDS using a randomness variable owned by each user.
We show that to generate 1 bit of (K,n)-MDS variables for each
n ∈ {1, 2, · · · ,K}, the minimum size of the randomness variable
at each user is 1 + 1/2 + · · ·+ 1/K bits.

I. INTRODUCTION

Maximum distance separable (MDS) codes are one of the

most fascinating classes of codes in coding theory (see Chapter

11 of [1]), with a wide array of applications ranging from

storage systems [2]–[4], private information retrieval [5]–[9],

coded computation [10]–[12] to secret sharing [13], [14] and

secure multiparty computation [15]–[17]. In this work, we take

a Shannon theoretic view to study how to efficiently generate

random variables that have the MDS property.

A collection of K random variables Zn
1 , · · · , Zn

K are said

to be (K,n)-MDS if any n of them are independent and

uniquely determine the remaining variables (see Table 1 for an

example). Consider K users, where User k ∈ {1, 2, · · · ,K}
holds a random variable Zk. From Zk, each user wishes to

generate random variables Z1
k , · · · , ZK

k such that Zn
1 , · · · , Zn

K

are (K,n)-MDS. The question we explore is - to generate 1

bit of Zn
k for each n ∈ {1, 2, · · · ,K}, how many bits of the

source Zk are required?

From Figure 1, we see that K bits are sufficient for Zk,

when Zn
k are independent for each n. Interestingly, we show

that if the correlation among Zn
k is optimally exploited, the

size of Zk (normalized by the size of Zn
k ) can be reduced

to 1 + 1/2 + · · ·+ 1/K, i.e., the harmonic number, which is

roughly lnK. Furthermore, information theoretic converse is

provided to prove that this is absolutely minimum.

II. PROBLEM STATEMENT AND MAIN RESULT

Consider K users, where User k ∈ {1, 2, · · · ,K} � [K]
holds a random variable Zk of size LZ bits. From Zk, User k ∈
[K] wishes to generate K random variables, (Z1

k , · · · , ZK
k ) =

(Zn
k )n∈[K] � Z≤K

k , where each Zn
k has entropy L bits.

H(Z1
k , · · · , ZK

k |Zk) = 0, H(Zn
k ) = L, ∀n, k ∈ [K]. (1)

Further, the variables Zn
1 , Z

n
2 , · · · , Zn

K are required to sat-

isfy the following (K,n)-MDS property.

H
(
(Zn

k )k∈U
)
= min(|U|, n)× L, ∀U ⊂ [K]. (2)

In words, among Zn
1 , Z

n
2 , · · · , Zn

K , any n variables are inde-

pendent and determine the remaining K − n variables.

The generation efficiency is measured by the rate RZ ,

defined as RZ � LZ/L, which characterizes the number

of bits each user holds for each bit of the MDS variables

generated. A rate value RZ is said to be achievable if there

exists an MDS variable generation scheme (i.e., a design

of variables (Zn
k )n,k∈[K]), for which constraints (1), (2) are

satisfied, and the rate is no greater than RZ . The infimum of

achievable RZ values is called the optimal rate R∗
Z .

Theorem 1 states the main result.

Theorem 1. For K-user MDS variable generation, the opti-
mal rate is R∗

Z = 1 + 1/2 + · · ·+ 1/K.

III. PROOF OF THEOREM 1: CONVERSE

Before proceeding to the general proof, we first consider

the setting where K = 3 to illustrate the key ideas.

A. Example: K = 3 and RZ ≥ 1 + 1
2 + 1

3

The converse proof has a recursive nature, where we con-

sider the generation of Z1
k , Z≤2

k , and Z≤3
k successively and

later steps rely on results obtained in previous steps.

Step 1: Consider Z1
k . From the definition of MDS variables

(2), we have

H(Z1
k) = L, ∀k ∈ {1, 2, 3}. (3)

Step 2: Consider Z≤2
k .

H
(
Z≤2
1

)
+H

(
Z≤2
2

)
(4)

= H
(
Z≤2
1 , Z≤2

2

)
+ I

(
Z≤2
1 ;Z≤2

2

)
(5)

≥ H
(
Z2
1 , Z

2
2

)
+ I

(
Z1
1 ;Z

1
2

)
(6)

(2)
= H

(
Z2
1 , Z

2
2

)
+H

(
Z1
1

)
(7)

(2)(3)
= 2L+ L = 3L (8)

where (7) follows from the definition of (K, 1)-MDS variables,

i.e., Z1
2 is determined by Z1

1 , and in (8), the first term is due

to definition of (K, 2)-MDS variables and the second term

follows from (3), i.e., the result from Step 1 and we have

reduced the problem from considering Z≤2
k to Z1

k .

Remark 1. In the above derivation, one naively looking step
(6) deserves highlighting. To obtain the first entropy term,
we drop Z1

1 , Z
1
2 from Z≤2

1 , Z≤2
2 and this turns out to be

tight because when we generate (K, 2)-MDS variables Z2
k ,

all entropy in (K, 1)-MDS variables Z1
k is fully used (thus

information wholly absorbed, see the achievable scheme in
Section IV-A). To obtain the second mutual information term,

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 | 

97
8-

1-
66

54
-7

55
4-

9/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IS

IT
54

71
3.

20
23

.1
02

06
91

4

Authorized licensed use limited to: University of North Texas. Downloaded on August 31,2023 at 19:55:14 UTC from IEEE Xplore.  Restrictions apply. 



Z5

Z3
5

User 1 User 2 User 3 User 4 User 5 · · ·
(K, 1)-MDS A1 A1 A1 A1 A1

(K, 2)-MDS A2 B2 A2 +B2 A2 + 2B2 A2 + 3B2

(K, 3)-MDS A3 B3 C3 A3 +B3 + C3 A3 + 2B3 + 3C3

(K, 4)-MDS A4 B4 C4 D4 A4 +B4 + C4 +D4

...

(K,K)-MDS AK BK CK DK EK · · ·
Fig. 1. An example of MDS variables. Ai, Bj , · · · are uniform and from a prime field, e.g., F5.

we drop Z2
1 , Z

2
2 because the two (K, 2)-MDS variables are

independent, leaving us with only (K, 1)-MDS variables so
that we may use results from Step 1.

Symmetrically, we can prove that (8) holds for any 2 users,

H
(
Z≤2
i

)
+H

(
Z≤2
j

)
≥ 3L, ∀i, j ∈ {1, 2, 3}, i �= j. (9)

Step 3: Finally, consider Z≤3
k . Denote the set of all

permutations of {1, 2, 3} as S3 � {πi}i∈3!, where πi =
(πi(1), πi(2), πi(3)) is a permutation of {1, 2, 3}.

3!× 3LZ

(1)

≥
∑
π∈S3

[
H
(
Z≤3
π(1)

)
+H

(
Z≤3
π(2)

)
+H

(
Z≤3
π(3)

)]
(10)

=
∑
π∈S3

[
H
(
Z≤3
π(1), Z

≤3
π(2), Z

≤3
π(3)

)
+ I

(
Z≤3
π(1);Z

≤3
π(2)

)

+ I
(
Z≤3
π(3);Z

≤3
π(1), Z

≤3
π(2)

)]
(11)

≥
∑
π∈S3

[
H
(
Z3
π(1), Z

3
π(2), Z

3
π(3)

)
+ I

(
Z1
π(1);Z

1
π(2)

)

+ I
(
Z≤2
π(3);Z

≤2
π(1), Z

≤2
π(2)

)]
(12)

(2)
= 3!H

(
Z3
1 , Z

3
2 , Z

3
3

)
+

∑
π∈S3

H
(
Z1
π(1)

)
+

∑
π∈S3

H
(
Z≤2
π(3)

)

(2)(3)

≥ 3!× 3L+ 3!× L+
[
H
(
Z≤2
1

)
+H

(
Z≤2
2

)]

+
[
H
(
Z≤2
1

)
+H

(
Z≤2
3

)]
+
[
H
(
Z≤2
2

)
+H

(
Z≤2
3

)]
(9)

≥ 3!× 3L+ 3!× L+ 3× 3L (13)

⇒ RZ = LZ/L ≥ 1 + 1/2 + 1/3 (14)

where in (11), the identity H(X) + H(Y ) = H(X,Y ) +
I(X;Y ) is used twice.

Remark 2. Similar to Remark 1, the key step is (12). For
the first term, all entropy in Z≤3

k is preserved in Z3
k; for the

remaining two mutual information terms, we may drop the
uncorrelated terms, after which they become the entropy terms
in (13) due to the MDS property so that we may use results
from Step 1 (i.e., Z1

k) and Step 2 (i.e., Z≤2
k ).

B. General Proof: RZ ≥ 1 + 1/2 + · · ·+ 1/K

Let us start with two useful identities. The first identity,

stated in the following lemma, transforms the sum of individ-

ual entropy terms to the sum of a joint entropy term and a

number of mutual information terms.

Lemma 1. For any random variables Z1, · · · , ZK , we have

H(Z1) +H(Z2) + · · ·+H(ZK)

= H(Z1, Z2, · · · , Zk) + I(Z1;Z2) + I(Z3;Z1, Z2)

+ · · ·+ I(ZK ;Z1, Z2, · · · , ZK−1). (15)

Proof:[
H(Z1) +H(Z2)

]
+H(Z3) + · · ·+H(ZK)

= H(Z1, Z2) + I(Z1;Z2) +H(Z3) + · · ·+H(ZK) (16)

=
[
H(Z1, Z2) +H(Z3)

]
+ I(Z1;Z2) +H(Z4)

+ · · ·+H(ZK) (17)

= H(Z1, Z2, Z3) + I(Z3;Z1, Z2) + I(Z1;Z2) +H(Z4)

+ · · ·+H(ZK) = · · · (18)

= H(Z1, Z2, · · · , ZK) + I(Z1;Z2) + I(Z3;Z1, Z2)

+ · · ·+ I(ZK ;Z1, Z2, · · · , ZK−1). (19)

The second identity, stated in the following lemma, trans-

forms mutual information terms to joint entropy terms, for

MDS variables.

Lemma 2. For MDS variables (Zn
k )n,k∈[K], we have

I
(
Z≤n
k ;

(
Z≤n
u

)
u∈U

)
= H

(
Z≤n
k

)
, ∀U ⊂ [K]\{k}, |U| = n.

(20)

Proof: The proof is immediate, by applying the definition

of (K,n)-MDS variables in (2).

I
(
Z≤n
k ;

(
Z≤n
u

)
u∈U

)
(21)

=H
(
Z≤n
k

)
+H

((
Z≤n
u

)
u∈U

)
−H

((
Z≤n
u

)
u∈U∪{k}

)
(22)

(2)
=H

(
Z≤n
k

)
. (23)

We are now ready to recursively bound the entropy of any

n out of the K MDS variables Z≤n
k . This result is stated in

the following lemma.

Lemma 3. For MDS variables (Zn
k )n,k∈[K], we have ∀n ∈

[K], and ∀U ⊂ [K], |U| = n,

1

n

∑
k∈U

H
(
Z≤n
k

)
≥

(
1 +

1

2
+ · · ·+ 1

n

)
L. (31)
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(M + 1)!

M + 1

∑
k∈U

H
(
Z≤M+1
k

)

=
1

(M + 1)

∑
π∈SM+1

[
H
(
Z≤M+1
kπ(1)

)
+H

(
Z≤M+1
kπ(2)

)
+ · · ·+H

(
Z≤M+1
kπ(M+1)

)]
(24)

(15)
=

1

(M + 1)

∑
π∈SM+1

[
H
(
Z≤M+1
kπ(1)

, Z≤M+1
kπ(2)

, · · · , Z≤M+1
kπ(M+1)

)
+ I

(
Z≤M+1
kπ(1)

;Z≤M+1
kπ(2)

)

+ I
(
Z≤M+1
kπ(3)

;Z≤M+1
kπ(1)

, Z≤M+1
kπ(2)

)
+ · · ·+ I

(
Z≤M+1
kπ(M+1)

;Z≤M+1
kπ(1)

, Z≤M+1
kπ(2)

, · · · , Z≤M+1
kπ(M)

)]
(25)

≥ 1

(M + 1)

∑
π∈SM+1

[
H
(
ZM+1
kπ(1)

, ZM+1
kπ(2)

, · · · , ZM+1
kπ(M+1)

)
+ I

(
Z1
kπ(1)

;Z1
kπ(2)

)

+ I
(
Z≤2
kπ(3)

;Z≤2
kπ(1)

, Z≤2
kπ(2)

)
+ · · ·+ I

(
Z≤M
kπ(M+1)

;Z≤M
kπ(1)

, Z≤M
kπ(2)

, · · · , Z≤M
kπ(M)

)]
(26)

(2)(20)
=

1

(M + 1)

∑
π∈SM+1

[
(M + 1)L+H

(
Z1
kπ(1)

)
+H

(
Z≤2
kπ(3)

)
+ · · ·+H

(
Z≤M
kπ(M+1)

)]
(27)

=
1

(M + 1)

⎡
⎣ ∑
π∈SM+1

(M + 1)L+
∑

π∈SM+1

H
(
Z1
kπ(1)

)
+

1

2

∑
π∈SM+1

[
H
(
Z≤2
kπ(1)

)
+H

(
Z≤2
kπ(2)

)]

+ · · ·+ 1

M

∑
π∈SM+1

[
H
(
Z≤M
kπ(1)

)
+H

(
Z≤M
kπ(2)

)
+ · · ·+H

(
Z≤M
kπ(M)

)]⎤⎦ (28)

≥ (M + 1)!

(M + 1)

[
(M + 1)L+ L+

(
1 +

1

2

)
L+ · · ·+

(
1 +

1

2
+ · · ·+ 1

M

)
L

]
(Induction) (29)

= (M + 1)!

(
1 +

1

2
+

1

3
+ · · ·+ 1

M
+

1

M + 1

)
L (30)

Proof: The proof is based on mathematical induction on n.
Base case: When n = 1, (31) becomes H

(
Z1
k

) ≥ L, which

follows directly from (2).
Induction step: Suppose (31) holds for n ∈ [M ], 1 ≤ M ≤

K − 1, then we show that (31) also holds for n = M + 1.

Consider (31) when n = M+1 and suppose U = {k1, k2, · · · ,

kM+1} ⊂ [K]. Denote the set of all permutations of [M + 1]
as SM+1 = (πi)i∈[(M+1)!]. The derivation is shown at the top

of this page, where in (24), we include all permutations of

users with indicies in U and (25) uses Lemma 1. In (26),

we follow the insights in Remark 1 to drop terms, which

cannot increase entropy or mutual information. In (27), we use

Lemma 2 and the definition of MDS variables (2). In (28), we

replace each term by averages, i.e.,
∑

π∈SM+1
H
(
Z≤n
kπ(i)

)
=∑

π∈SM+1
H
(
Z≤n
kπ(j)

)
, ∀i, j ∈ [M + 1]. In (29), we use the

induction assumption that (31) holds for n ∈ [M ].
Equipped with Lemma 3, the final converse proof of RZ

follows immediately. Set n = K in (31), i.e., U = [K], then

LZ

(1)

≥ 1

K

∑
k∈[K]

H
(
Z≤K
k

)
(32)

(31)

≥
(
1 +

1

2
+ · · ·+ 1

K

)
L (33)

⇒ RZ =
LZ

L
≥ 1 +

1

2
+ · · ·+ 1

K
. (34)

IV. PROOF OF THEOREM 1: ACHIEVABILITY

The achievability proof is fairly straightforward. After

setting up the dimensions following the insights from the

converse proof, we only need random linear codes and trans-

formations. Let us start with an example of K = 3 and then

proceed to the general proof.

A. Example: K = 3 and RZ = 1 + 1/2 + 1/3

We show that when K = 3, rate RZ = LZ/L = 1+ 1/2+
1/3 = 11/6 is achievable. To this end, suppose L = 6 log2 q,

i.e., each MDS variable Zn
k consists of 6 symbols from Fq and

LZ = 11 log2 q, i.e., each source variable Zk consists of 11
symbols from Fq . Suppose the prime power field size q > 72.

Step 1: We describe the design of Zk. We need 3 i.i.d.

uniform 6×1 vectors over Fq , denoted as S1, S2, S3, then we

set

Zk =
(
H1

kS
1,H2

kS
2,H3

kS
3
)
, ∀k ∈ {1, 2, 3} (35)

where H1
k ∈ F

6×6
q ,H2

k ∈ F
3×6
q ,H3

k ∈ F
2×6
q need to satisfy

some generic (full rank) properties (see Lemma 4 for details).

For now, it suffices to think of them as random matrices over

a large field, which will work with high probability. Note that

Zk has 6 + 3 + 2 = 11 symbols, as desired.
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Step 2: We describe the generation of MDS variables Zn
k .

For (K, 1)-MDS variables Z1
k , we set

Z1
k = H1

kS
1 (36)

which has 6 symbols.

For (K, 2)-MDS variables Z2
k , we set

Z2
k =

(
V2←1

k H1
kS

1,H2
kS

2
)

(37)

where V2←1
k ∈ F

3×6
q transforms (K, 1)-MDS variables to

(K, 2)-MDS variables (with maximum efficiency, see Remark

1 in the converse proof). Again, V2←1
k need to satisfy some

generic properties (stated later in Lemma 4), which hold with

high probability over large fields. Note that Z2
k has 6 symbols.

For (K, 3)-MDS variables Z3
k , we set

Z3
k =

(
V3←1

k H1
kS

1,V3←2
k H2

kS
2,H3

kS
3
)

(38)

where V3←1
k ∈ F

2×6
q and V3←2

k ∈ F
2×3
q transform (K, 1)-

MDS and (K, 2)-MDS variables to (K, 3)-MDS variables,

respectively. The required generic conditions on V3←1
k ,V3←2

k

will be stated in Lemma 4. Note that Z3
k has 6 symbols.

Step 3: We specify the conditions on the matrices used in

the code construction, Hn
k ,V

n2←n1

k such that MDS property

(2) holds. For our proposed linear codes, it is straightforward

to verify that we only need to guarantee (2) when1 |U| = n.

For (K, 1)-MDS variables Z1
k , we require

H1
k ∈ F

6×6
q has full rank (39)

so that

H(Z1
k)

(36)
= rank(H1

k) log2 q
(39)
= 6 log2 q = L (40)

which follows from the uniformity of S1 so that entropy

of its linear transformation is specified by the rank of the

transformation matrix H1
k.

For (K, 2)-MDS variables Z2
k , we require for any U =

{k1, k2} ⊂ [K][
V2←1

k1
H1

k1

V2←1
k2

H1
k2

]
6×6

and

[
H2

k1

H2
k2

]
6×6

have full rank (41)

so that

H(Z2
k2
, Z2

k3
)

(37)
= H

(
V2←1

k1
H1

k1
S1,V2←1

k2
H1

k2
S1,H2

k1
S2,H2

k2
S2

)
(42)

= H

([
V2←1

k1
H1

k1

V2←1
k2

H1
k2

]
S1

)
+H

([
H2

k1

H2
k2

]
S2

)
(43)

=

(
rank

([
V2←1

k1
H1

k1

V2←1
k2

H1
k2

])
+ rank

([
H2

k1

H2
k2

]))
log2 q (44)

(41)
= 12 log2 q = 2L (45)

1Our construction is based on linear transformations on uniform variables
so that entropy terms boil down to rank terms. When |U| = n, we will show
that (2) is equivalent to requesting that certain square matrices H have full
rank and (Zn

k )k∈U is invertible to S≤n (refer to (39) to (49)). As a result,
when |U| < n, (2) holds as it is associated with sub-matrices of H, which
must also have full rank; when |U| > n, the additional Zn

k terms are a

function of S≤n thus contributing no more entropy.

where (43) follows from the independence of S1 and S2.

For (K, 3)-MDS variables Z3
k , we require⎡

⎣ V3←1
1 H1

1

V3←1
2 H1

2

V3←1
3 H1

3

⎤
⎦
6×6

,

⎡
⎣ V3←2

1 H2
1

V3←2
2 H2

2

V3←2
3 H2

3

⎤
⎦
6×6

,

and

⎡
⎣ H3

1

H3
2

H3
3

⎤
⎦
6×6

have full rank (46)

so that

H(Z3
1 , Z

3
2 , Z

3
3 )

(38)
= H

(
V3←1

1 H1
1S

1,V3←1
2 H1

2S
1,V3←1

3 H1
3S

1
)

+H
(
V3←2

1 H2
1S

2,V3←2
2 H2

2S
2,V3←2

3 H2
3S

2
)

+H
(
H3

1S
3,H3

2S
3,H3

3S
3
)

(47)

=

⎛
⎝rank

⎛
⎝
⎡
⎣ V3←1

1 H1
1

V3←1
2 H1

2

V3←1
3 H1

3

⎤
⎦
⎞
⎠+ rank

⎛
⎝
⎡
⎣ V3←2

1 H2
1

V3←2
2 H2

2

V3←2
3 H2

3

⎤
⎦
⎞
⎠

+ rank

⎛
⎝
⎡
⎣ H3

1

H3
2

H3
3

⎤
⎦
⎞
⎠
⎞
⎠ log2 q (48)

(46)
= 18 log2 q = 3L. (49)

Step 4: Finally, we show that there exist matrices

Hn
k ,V

n2←n1

k that satisfy the required full rank conditions.

This result is stated in the following lemma.

Lemma 4. If q > 72, we have (Vn2←n1

k )
k,n1,n2∈{1,2,3},n2>n1

,
(Hn

k )k,n∈{1,2,3} such that (39), (41), (46) are satisfied.

Proof: The existence proof is based on probabilistic ar-

guments. Draw each element of the matrices Hn
k ,V

n2←n1

k

independently and uniformly from Fq . Denote the vector that

contains all such elements as �v. View the determinant of each

matrix in (39), (41), (46) as a polynomial in �v and consider

the product of all such polynomials, denoted by f(�v). f(�v)
is product of

(
3
1

)
+ 2

(
3
2

)
+ 3

(
3
3

)
= 12 polynomials, each of

which has degree at most 6, so the degree of f(�v) is at most

12× 6 = 72.

f(�v) is not the zero polynomial (proved later), so we can

apply the Schwartz–Zippel lemma to obtain

Pr(f(�v) = 0) ≤ 72/q < 1. (50)

Therefore, there exists at least one assignment of Hn
k ,V

n2←n1

k

so that all matrices in (39), (41), (46) have full rank and thus

the generated variables are indeed MDS.

Lastly, we are left to prove that f(�v) is not identically zero.

To this end, it suffices to consider each matrix in (39), (41),

(46) and show that for each such matrix, there exists one

realization of Hn
k ,V

n2←n1

k so that the matrix has full rank

(and its determinant polynomial is not identically zero). This

is proved next. A matrix that only involves Hn
k is trivial as

we may set it as the identity matrix; a matrix that involves

both Hn
k and Vn2←n1

k can be set as the identity matrix as

well because we can find a realization shown at the top of
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(41) :

[
V2←1

k1
H1

k1

V2←1
k2

H1
k2

]
= I6 ⇐ V2←1

k1
= V2←1

k2
=

[
I3 03

]
, H1

k1
=

[
I3 03

03 03

]
, H1

k2
=

[
03 I3
03 03

]
(51)

(46) :

⎡
⎣ V3←1

1 H1
1

V3←1
2 H1

2

V3←1
3 H1

3

⎤
⎦ = I6 ⇐ V3←1

1 = V3←1
2 = V3←1

3 =
[
I2 02×4

]
,

H1
1 =

[
I2 02×4

04×2 04×4

]
, H1

2 =

[
02 I2 02

04×2 04×2 04×2

]
, H1

3 =

[
02×4 I2
04×4 04×2

]
; (52)

⎡
⎣ V3←2

1 H2
1

V3←2
2 H2

2

V3←2
3 H2

3

⎤
⎦ = I6 ⇐ V3←2

1 = V3←2
2 = V3←2

3 =
[
I2 02×1

]
,

H2
1 =

[
I2 02×4

01×2 01×4

]
, H2

2 =

[
02 I2 02

02 02 02

]
, H2

3 =

[
02×4 I2
01×4 01×2

]
(53)

this page, where Ii is the i × i identity matrix and 0i (0i×j)
is an i× i (i× j) matrix wherein each element is zero.

B. General Proof: Any K

The general achievability proof of RZ = 1 + 1/2 + · · · +
1/K is an immediate generalization of that of above example.

Suppose L = K! log2 q and the prime power field size2 q >
K!

∑
n∈[K] n

(
K
n

)
.

Step 1: Design Zk. Set

Zk =
(
(Hn

kS
n)n∈[K]

)
, ∀k ∈ [K] (54)

where Sn, n ∈ [K] are K i.i.d. uniform K! × 1 vectors over

Fq and Hn
k ∈ F

K!
n ×K!
q . Note that Zk contains LZ/ log2 q =∑

n∈[K] K!/n symbols, so RZ = LZ/L =
∑

n∈[K] 1/n, as

desired.

Step 2: Design Zn
k . Set

Zn
k =

(
(Vn←m

k Hm
k Sm)m∈[n−1],H

n
kS

n
)
, ∀m ∈ [K] (55)

where Vn←m
k ∈ F

K!
n ×K!

m
q .

Step 3: Conditions on Hn
k ,V

n2←n1

k such that MDS property

(2) holds. For (K,n)-MDS variables Zn
k , we require for any

U = {k1, k2, · · · , kn} ⊂ [K]⎡
⎢⎢⎢⎣

Vn←m
k1

Hm
k1

Vn←m
k2

Hm
k2

...

Vn←m
kn

Hm
kn

⎤
⎥⎥⎥⎦
K!×K!

� Fm
U , ∀m ∈ [n− 1],

and

⎡
⎢⎢⎢⎣

Hn
k1

Hn
k2

...

Hn
kn

⎤
⎥⎥⎥⎦
K!×K!

� Hn
U have full rank (56)

so that

H
(
(Zn

k )k∈U
)

2Similar to Shannon’s original random coding proof to the achievability
of channel capacity, our proof is existence based and no effort is devoted to
minimizing the field size required.

(55)
= H

(
(Hn

kS
n)k∈U

)
+

∑
m∈[n−1]

H
(
(Vn←m

k Hm
k Sm)k∈U

)

(57)

=

⎛
⎝rank(Hn

U ) +
∑

m∈[n−1]

rank(Fm
U )

⎞
⎠ log2 q (58)

(56)
= nK! log2 q = nL. (59)

Thus (2) is guaranteed when |U| = n. The cases where U �= n
follow in a straightforward manner (see the explanation in

Footnote 1).

Step 4: Finally, we are left to show that there exist matrices

(Hn
k )k,n∈[K], (Vn2←n1

k )
k,n1,n2∈[K],n2>n1

that satisfy (56).

Draw each element of the matrices Hn
k ,V

n2←n1

k indepen-

dently and uniformly from Fq . Denote the vector that contains

all such elements as �v. View the determinant of each matrix

in (56) as a polynomial in �v and consider the product of

all such polynomials, denoted by f(�v). f(�v) is product of∑
n∈[K] n

(
K
n

)
polynomials, each of which has degree at most

K!, so the degree of f(�v) is at most K!
∑

n∈[K] n
(
K
n

)
.

f(�v) is not the zero polynomial (whose proof is straightfor-

ward as we may find realizations of Hn
k ,V

n2←n1

k such that

each matrix in (56) is the identity matrix following the proof

of Lemma 4), so we can apply the Schwartz–Zippel lemma to

obtain Pr(f(�v) = 0) < 1. Therefore, there exists at least one

assignment of Hn
k ,V

n2←n1

k so that all matrices in (56) have

full rank and thus the generated variables are indeed MDS.

V. CONCLUSION

In this work, we characterize the optimal rate of MDS vari-

able generation somewhat surprisingly and interestingly, as the

harmonic number. The application of MDS variable generation

to an intimately related problem - secure summation with user

selection and related discussion can be found in the full version

of this work [18].
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