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Abstract—A collection of K random variables are called
(K,n)-MDS if any n of the K variables are independent
and determine all remaining variables. In the MDS variable
generation problem, K users wish to generate variables that are
(K,n)-MDS using a randomness variable owned by each user.
We show that to generate 1 bit of (K, n)-MDS variables for each
n € {1,2,---, K}, the minimum size of the randomness variable
at each user is 1 + 1/2 4+ --- + 1/K bits.

I. INTRODUCTION

Maximum distance separable (MDS) codes are one of the
most fascinating classes of codes in coding theory (see Chapter
11 of [1]), with a wide array of applications ranging from
storage systems [2]-[4], private information retrieval [5]-[9],
coded computation [10]-[12] to secret sharing [13], [14] and
secure multiparty computation [15]-[17]. In this work, we take
a Shannon theoretic view to study how to efficiently generate
random variables that have the MDS property.

A collection of K random variables Z7',--- , Zj are said
to be (K,n)-MDS if any n of them are independent and
uniquely determine the remaining variables (see Table 1 for an
example). Consider K users, where User k € {1,2,--- , K}
holds a random variable Z;. From Zj, each user wishes to
generate random variables Z ,i, N4 ,f such that Z7',--- , Z%
are (K,n)-MDS. The question we explore is - to generate |
bit of Z}! for each n € {1,2,--- , K}, how many bits of the
source Zj are required?

From Figure 1, we see that K bits are sufficient for Zj,
when Z;' are independent for each n. Interestingly, we show
that if the correlation among Z;' is optimally exploited, the
size of Zj (normalized by the size of Z}') can be reduced
tol+1/2+---+1/K, i.e., the harmonic number, which is
roughly In K. Furthermore, information theoretic converse is
provided to prove that this is absolutely minimum.

II. PROBLEM STATEMENT AND MAIN RESULT

Consider K users, where User k € {1,2,--- K} £ [K]
holds a random variable Z}, of size L bits. From Z;, User k €
[K] wishes to generate K random variables, (Z}, -, ZK) =
(Z)nex) = ZkSK, where each Z]' has entropy L bits.

H(Z},--,ZK\7Z,) =0, H(Z!) = L,Yn, k€ [K]. (1)

Further, the variables Z1, Z3',--- , Z} are required to sat-
isfy the following (K, n)-MDS property.

H((ZP)yey) = min(U|,n) x L, YU C [K]. )

In words, among Z{, Z3,--- , Z}, any n variables are inde-
pendent and determine the remaining K — n variables.
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The generation efficiency is measured by the rate Rz,
defined as Ry £ Ly /L, which characterizes the number
of bits each user holds for each bit of the MDS variables
generated. A rate value Rz is said to be achievable if there
exists an MDS variable generation scheme (i.e., a design
of variables (Zg)nyke[m), for which constraints (1), (2) are
satisfied, and the rate 1s no greater than . The infimum of
achievable Rz values is called the optimal rate R7,.

Theorem 1 states the main result.

Theorem 1. For K-user MDS variable generation, the opti-
mal rate is Ry, =1+1/2+---+1/K.

III. PROOF OF THEOREM 1: CONVERSE

Before proceeding to the general proof, we first consider
the setting where K = 3 to illustrate the key ideas.

A. Example: K =3 and Rz > 1+ % +%

The converse proof has a recursive nature, where we con-
sider the generation of Z A EQ, and Zkg?’ successively and
later steps rely on results obtained in previous steps.

Step I: Consider Z;. From the definition of MDS variables
(2), we have

H(Z}) = L,Vk € {1,2,3}. 3)
Step 2: Consider Z;=°.
H(Z72) + H(257) “
= #(72752) +1(75%757)
> H(Z3,7Z3) +1(21; Z3) (6)
QD H(z2.23) + H(Z}) ™
) op 4L = 3L ®)

where (7) follows from the definition of (K, 1)-MDS variables,
i.e., Z3 is determined by Z{, and in (8), the first term is due
to definition of (K,2)-MDS variables and the second term
follows from (3), i.e., the result from Step I and we have
reduced the problem from considering Z 52 to Zj}.

Remark 1. In the above derivation, one naively looking step
(6) deserves highlighting. To obtain the first entropy term,
we drop Zi,Z3 from Z1§2,ZQS2 and this turns out to be
tight because when we generate (K,2)-MDS variables Z3,
all entropy in (K,1)-MDS variables Z} is fully used (thus
information wholly absorbed, see the achievable scheme in
Section IV-A). To obtain the second mutual information term,
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User 1 User2 User3 User 4 User 5
(K,1)-MDS 4, Ay Ay Ay Ay
(.Kv7 2)-MDS A2 B2 A2 + B2 AQ + 232 A2 + 3BQ /Z§
(K7 3)-MDS As B3 Cs Az + B3+ Cs || As +2B3 + 3C3 o
([(7 4)—MDS A4 B4 04 D4 A4 + B4 + 04 + D4
: Zs
(K,K)-MDS Ak Bg Ck Dy Fy

Fig. 1. An example of MDS variables. A;, B, - -

we drop 73,73 because the two (K,2)-MDS variables are
independent, leaving us with only (K,1)-MDS variables so
that we may use results from Step 1.

Symmetrically, we can prove that (8) holds for any 2 users,

H(252) + H(27) 28L Vi j e {1.2,3Li#). O

Step 3: Finally, consider Zkgs. Denote the set of all
permutations of {1,2,3} as S5 £ {m;}, .5, where m; =
(m; (1), m(2),m(3)) is a permutation of {1,2,3}.

3! x 3LZ
@ <3 <3 <3
> 3 [m(z) v u(2) v H(23)] ao
TES3
_ <3 ;<3 <3 <3 . <3
= [H( (1) rr<2>’Zw<3>)*I(Zﬂu)’zw(z))
TES3
<3 . <3 <3
n I(Zﬁ(g), 755, Zﬂ(2))} (11)
3 3 3 1 .71
> > [H(Zwu)va@)’Zw(s)) +I(Zw<1>7Zw(2>)
TES3
<2 <2 <2
+ 1(232: 2500255 (12)
©) 3 73 73 1 <2
2oy (z8 23, 28) + > H(Zh )+ > H(Z5h)

TES3 TES3

g 3L 43X L+ 1 (252) + 1 (257)]
+[H(Z§2) + H(Z?,Q)} + [H(Z?Q) + H(Z?)SQ)}

(13)

(14)

©
> 3!'x3L+3!'xL+3x3L
= Rz=Lz/L>1+1/2+1/3

where in (11), the identity H(X) + H(Y) = H(X,Y) +
I(X;Y) is used twice.

Remark 2. Similar to Remark 1, the key step is (12). For
the first term, all entropy in ZEB is preserved in Z3; for the
remaining two mutual information terms, we may drop the
uncorrelated terms, after which they become the entropy terms
in (13) due to the MDS property so that we may use results
from Step 1 (i.e., Z,i) and Step 2 (i.e., Zk§2).

B. General Proof: Rz >1+1/2+---+1/K

Let us start with two useful identities. The first identity,
stated in the following lemma, transforms the sum of individ-
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are uniform and from a prime field, e.g., Fs.

ual entropy terms to the sum of a joint entropy term and a
number of mutual information terms.

Lemma 1. For any random variables Z1,--- , Zx, we have
H(Z1)+ H(Zs) + -+ H(Zk)

H(Zy, Za, - Zk) + 1(Z1; Zo) + 1(Z3; Z1, Zo)
+o A+ I ZK; 21, 2oy, ZR1)- (15)
Proof:

(H(Zy) + H(Zs)| + H(Z3) + -+ + H(Zg)
H(Zy\,Z2) + 1(Z1; Z2) + H(Z3) + -+ + H(ZK ) (16)
(H(Z1, Zo) + H(Z3)] + 1(Z1; Z) + H(Z4)

+---+ H(Zg) 17)
H(Zy,Zo,Z3) + 1(Z3; Z1, Zo) + 1(Z1; Z2) + H(Zy)
+---+ H(Zk) (18)
H(Z1, 2>, Zk) + 1(Z1: Z2) + 1(Z3; Z1, Z>)
+o A+ I(Zk; 21, 2y, ZRc—1).

19)

[ |

The second identity, stated in the following lemma, trans-

forms mutual information terms to joint entropy terms, for
MDS variables.

Lemma 2. For MDS variables (Z}!), ke|k), We have

I(Z,f"; ( )ueu) - H(Z,f”), VU C [KI\{k), U] = n.
(20)

Zsn

u

Proof: The proof is immediate, by applying the definition
of (K,n)-MDS variables in (2).

(755 (757 10t @n
() + (12, 00) - 1((5) ) @
(:)H<Z,§”). 23)

u

We are now ready to recursively bound the entropy of any
n out of the K MDS variables Z,;". This result is stated in
the following lemma.

Lemma 3. For MDS variables (Z}})n ke[k), we have ¥n &
(K], and YU C [K],|U| =n,

Lya(zE) = (

kel

1
I+ 4+ =

1
5 n)L. 31)
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(M +1)! Z<M+1
1(z:)
s
cu
_ 1 <M+1 <M+1 <M+1
M+ 2 [H(ka) ) i H(kam ) o H(Z w<M+1>>] @4
TESM 41
(15) 1 <M+l <M+1 | <M+l SM+1, ,<M+1
a (M + 1) GSZ [H(ka(n ’ka@) ’ ’ kvr(JW+1)) + I(ka(l) ' Zhr(2) )
™ M+1
<M+1, ,<M+1 ,<M+1 <M+1 | ,<M+1 ,<M+1 <M+1
+ I(ka(S) K (1) ke (2) ) o +I<Z’“w<M+1)’ (1) kn2y 0 Thean )} (25
1 M1 M+ M1 1l
- (M+1) ; [H(Z k() ? Tk 7 k,,(M+1)) + I(Z’WU’Z’“"(?))
TESM+1
<2 <2 <2 <M <M <M <M
+ I(Zk ) “hr1y’ k‘ﬂz)) Tt I(Zk 1)’ Dy Pl kw(M)ﬂ (26)
(2)(20) 1 1 <2 <M
B0 s 5 s nn(a )+ ) (72,
TESM+1
1 ) 1
T (M) 2. MADL+ 3 H(Zkﬂ<1>)+§ > [H(Z’“ <1>)+H(Z’f <2>)}
TESM 41 TESM 41 TESM 41
1 <M <M
+'”+M SZ {H(ka<1))+H(Zk <))+ ”+H(ka<M)>} (28)
TESM+1
M +1)! 1 1 1 .
> ((M+1)) {(M+1)L+L+ <1+2)L+~~+ (1+2+~~~+M>L} (Induction) (29)
1 1 1 1
_ (M+1)!(1+2+3+~~+M+M+1)L (30)

Proof: The proof is based on mathematical induction on n.

Base case: When n = 1, (31) becomes H (Z};) > L, which
follows directly from (2).

Induction step: Suppose (31) holds for n € [M], 1 < M <
K — 1, then we show that (31) also holds for n = M + 1.
Consider (31) when n = M +1 and suppose U = {ky, ko, - - -,
kar+1} C [K]. Denote the set of all permutations of [M + 1]
as Sar1 = (i) ;e((ar41)y- The derivation is shown at the top
of this page, where in (24), we include all permutations of
users with indicies in I/ and (25) uses Lemma 1. In (26),
we follow the insights in Remark 1 to drop terms, which
cannot increase entropy or mutual information. In (27), we use
Lemma 2 and the definition of MDS variables (2). In (28), we

. <n
replace each term by averages, ie., ) . Saria )=
S resun H(ZE ()) Wi,j € [M + 1. Tn (29), we use the

induction assumption that (31) holds for n € [M]. [ |
Equipped with Lemma 3, the final converse proof of Rz

follows immediately. Set n = K in (31), i.e., U = [K], then
1
L, ¥ % 3 H(ZEK) (32)
ke[K]
(31) 1 1
> <1+2+---+K>L (33)
1 1
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IV. PROOF OF THEOREM 1: ACHIEVABILITY

The achievability proof is fairly straightforward. After
setting up the dimensions following the insights from the
converse proof, we only need random linear codes and trans-
formations. Let us start with an example of &' = 3 and then
proceed to the general proof.

K=3and Ry =1+1/2+1/3

We show that when K = 3, rate Ry = Lz/L=1+1/2+
1/3 = 11/6 is achievable. To this end, suppose L = 6log, g,
i.e., each MDS variable Z;’ consists of 6 symbols from F, and
Ly = 11log, q, i.e., each source variable Zj, consists of 11
symbols from IF,. Suppose the prime power field size ¢ > 72.

Step I: We describe the design of Z;. We need 3 i.i.d.
uniform 6 x 1 vectors over [F;, denoted as S LS 2, S3 then we
set

A. Example:

3}

where Hj € F3*6 H} € F2*¢ H} € F2*% need to satisfy
some generic (full rank) properties (see Lemma 4 for details).
For now, it suffices to think of them as random matrices over
a large field, which will work with high probability. Note that
Zi has 6 + 3 4+ 2 = 11 symbols, as desired.

= (H S HiS? H}S?),Vk € {1,2 35)
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Step 2: We describe the generation of MDS variables Z;.
For (K,1)-MDS variables Z}, we set

Zp =H,S* (36)
which has 6 symbols.
For (K,2)-MDS variables Z7, we set
Zp = (Vi¥'HLS' H;.57) (37)

where V<! € F3X6 transforms (K,1)-MDS variables to

(K, 2)-MDS variables (with maximum efficiency, see Remark

1 in the converse proof). Again, V3! need to satisfy some

generic properties (stated later in Lemma 4), which hold with

high probability over large fields. Note that Z7 has 6 symbols.
For (K, 3)-MDS variables Z3, we set

Zip = (Vi 'HL S, ViTPHS% H;S°)

where V3! € F2*6 and Vi©? € F2*3 transform (K, 1)-
MDS and (K,2)-MDS variables to (K, 3)-MDS variables,
respectively. The required generic conditions on V31 V32
will be stated in Lemma 4. Note that Z} has 6 symbols.
Step 3: We specify the conditions on the matrices used in
the code construction, H}, V72" such that MDS property
(2) holds. For our proposed linear codes, it is straightforward
to verify that we only need to guarantee (2) when! /| = n.
For (K, 1)-MDS variables Z}, we require

(38)

H; ¢ nga has full rank (39)

so that

(36) 3

HZH'Y rank(H) logy ¢ 2 6log,q =L  (40)

which follows from the uniformity of S! so that entropy
of its linear transformation is specified by the rank of the
transformation matrix H,{z
For (K,2)-MDS variables Z7, we require for any U =
{k1, ko) C [K]
|: V2<—1H1

have full rank (41)
Vig_lHllcz :| 6X6

2
} and [ g’;l
6x6 ka
so that
H(Z]%Q’ leg)

H(VQ‘_lHkISl ViiH, ST HE S HES?) (42)
ViETH, ] H | o2
H([v,%iflﬂ,;s A a2

v ]) (k)

= [ rank + rank k1 lo 44)

N

1910, q = 2L (45)

7

g

(43)

'Our construction is based on linear transformations on uniform variables
so that entropy terms boil down to rank terms. When [U| = n, we will show
that (2) is equivalent to requesting that certain square matrices H have full
rank and (Z}")cy is invertible to S=" (refer to (39) to (49)). As a result,
when |[U| < n, (2) holds as it is associated with sub-matrices of H, which
must also have full rank; when [U/| > n, the additional Z}! terms are a
function of S="™ thus contributing no more entropy.
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where (43) follows from the independence of S* and S2.
For (K, 3)-MDS variables Z}, we require

vicm )T Vi
— —
V5T H; 66 V3T H3 6x6
H?}
and Hg have full rank (46)
H3
3 Jexe6
so that
H(Z},73,73)
(38) H(V%_lH}Sl, Vg"_lHésl, Vg“_lH:l;Sl)
+ H(V{T?HS? V3 ?H3 8%, Vi ?H3S?)
+ H(H}S® H}5° H3S?) (47)
= |rank| | V3TIiH] +rank | | V372H3
Vi) Vi
Hy
+ rank H3 log, q (48)
H3
9 1810g, ¢ = 3L. (49)

Step 4: Finally, we show that there exist matrices
HJ', V2™ that satisfy the required full rank conditions.
This result is stated in the following lemma.

Lemma 4. If g > 72, we have (VZIQ(_M)k,nl,n2e{1,2,3},na>n1’
(Hy), ne{1,2,3} such that (39), (41), (46) are satisfied.

Proof: The existence proof is based on probabilistic ar-
guments. Draw each element of the matrices HJ, V2™
independently and uniformly from [F,. Denote the vector that
contains all such elements as U. View the determinant of each
matrix in (39), (41), (46) as a polynomial in ¢ and consider
the product of all such polynomials, denoted by f(¢). f(?)
is product of (%) +2(3) + 3(3) = 12 polynomials, each of
which has degree at most 6, so the degree of f(¥) is at most
12 x 6 =T72.

f(0) is not the zero polynomial (proved later), so we can
apply the Schwartz—Zippel lemma to obtain

Pr(f(7) =0) < 72/q < 1. (50)

Therefore, there exists at least one assignment of H}, V22"
so that all matrices in (39), (41), (46) have full rank and thus
the generated variables are indeed MDS.

Lastly, we are left to prove that f () is not identically zero.
To this end, it suffices to consider each matrix in (39), (41),
(46) and show that for each such matrix, there exists one
realization of H}, V>~ so that the matrix has full rank
(and its determinant polynomial is not identically zero). This
is proved next. A matrix that only involves H} is trivial as
we may set it as the identity matrix; a matrix that involves
both H} and V>™ can be set as the identity matrix as
well because we can find a realization shown at the top of
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R 21yl o 1 I; 03 1 03 I
ka“lH% ]
(46) VITH, | =1 < ViT' =V5T = Vit =L 024 |,
Vi-iHL
I 0 0 I 0 0 1
H! — 2 2x4 H! — 2 2 2 H! — 2x4 2 . 5
! { Os4x2 Osxq |7 72 0452 Osxz2 Osxz |7 773 O4x4 O4x2 |’ (52)
viom: s
V3C2HE | =1 « ViT2=ViT2=ViTi= [ I 021 |,
V3<2H3
I 0 0, I, O 0 I
H2 — 2 2x4 H2 — 2 1y 0O H2 — 2x4 2 53
! { O1x2 Opxy |7 72 0y 0y 0 |7 3 O1x4 O1x2 (>3)
this page, where I; is the ¢ x ¢ identity matrix and 0; (0, ;) (55) ((H"S" keu + Z H VZ“mHzlSm)keu)
is an @ X 4 (4 X j) matrix wherein each element is zero. W me[n—1]
B. General Proof: Any K (57
The general achievability proof of Ry = 1+ 1/2+ -+ + _
1/K is an immediate generalization of that of above example = | rank(Hz) + Z ) rank(Fy/) | 1082 g (58)
Suppose L = K!log, q and the prime power field size? ¢ > s men—1l
K'Y ey n(5)- ©nK!log, q = nL. (59)

Step 1: Design Zj,. Set

Zp = ((H’,;S")nE[K]),Vk: € [K]

where S™,n € [K] are K i.i.d. uniform K! x 1 vectors over
K
F, and H} € [ “X! Note that 7y, contains Ly /logyq =
> onepr) K!/n symbols, so Rz = Lz /L = - 1/n, as
desired.
Step 2: Design Z;'. Set

(54)

ne[K)

Zn = ((vgemﬂgsm) stn),vm e [K] (55

men—1]

K!
m

K
where V<™ e Fp» Xm

Step 3: Conditions on H}', V2" such that MDS property
(2) holds. For (K,n)-MDS variables Z}!, we require for any

U ={ky, ko, -k} C[K]
Vi HY
VZ’;mHZ; AN m
£ Fj,Vm e [n—1],
Vi "HE L ke
H;,
H;, R
and . = H;; have full rank (56)
Hzn K!xK!
so that
H((Z})eu)

2Similar to Shannon’s original random coding proof to the achievability
of channel capacity, our proof is existence based and no effort is devoted to
minimizing the field size required.
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Thus (2) is guaranteed when |[U/| = n. The cases where U # n
follow in a straightforward manner (see the explanation in
Footnote 1).

Step 4: Finally, we are left to show that there exist matrices
(H”)kne[K] (Vi@ 1 na€lK]na>ny that satisfy (56).
Draw each element of the matrices H};,V"z(_"1 indepen-
dently and uniformly from F,. Denote the vector that contains
all such elements as v. View the determinant of each matrix
in (56) as a polynomial in ¢ and consider the product of
all such polynomlals denoted by f(¥). f(¥) is product of
Zne[ K] n( ) polynomials, each of which has degree at most

K!, so the degree of f(7) is at most K35, iz n n(%).

f(0) is not the zero polynomial (whose proof is straightfor-
ward as we may find realizations of HJ}, V2™ such that
each matrix in (56) is the identity matrix following the proof
of Lemma 4), so we can apply the Schwartz—Zippel lemma to
obtain Pr(f(¢) = 0) < 1. Therefore, there exists at least one
assignment of HJ}', V™" so that all matrices in (56) have
full rank and thus the generated variables are indeed MDS.

V. CONCLUSION

In this work, we characterize the optimal rate of MDS vari-
able generation somewhat surprisingly and interestingly, as the
harmonic number. The application of MDS variable generation
to an intimately related problem - secure summation with user
selection and related discussion can be found in the full version
of this work [18].

ACKNOWLEDGEMENT

This work is supported in part by NSF under Grant CCF-
2007108 and Grant CCF-2045656.

August 31,2023 at 19:55:14 UTC from IEEE Xplore. Restrictions apply.



(1]
(2]

(31

(4]

(5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

2023 IEEE International Symposium on Information Theory (ISIT)

REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Elsevier, 1977, vol. 16.

M. Blaum, J. Bruck, and A. Vardy, “MDS Array Codes with Independent
Parity Symbols,” IEEE Transactions on Information Theory, vol. 42,
no. 2, pp. 529-542, 1996.

A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A Survey on
Network Codes for Distributed Storage,” Proceedings of the IEEE,
vol. 99, pp. 476489, 2011.

V. Ramkumar, M. Vajha, S. B. Balaji, M. N. Krishnan, B. Sasidharan,
and P. V. Kumar, “Codes for Distributed Storage,” in Concise Encyclo-
pedia of Coding Theory. Chapman and Hall/CRC, 2021, pp. 735-762.
K. Banawan and S. Ulukus, “The Capacity of Private Information
Retrieval from Coded Databases,” IEEE Transactions on Information
Theory, vol. 64, no. 3, pp. 1945-1956, 2018.

R. Freij-Hollanti, O. Gnilke, C. Hollanti, and D. Karpuk, “Private
Information Retrieval from Coded Databases with Colluding Servers,”
SIAM Journal on Applied Algebra and Geometry, vol. 1, no. 1, pp.
647-664, 2017.

H. Sun and S. A. Jafar, “Private Information Retrieval from MDS Coded
Data with Colluding Servers: Settling a Conjecture by Freij-Hollanti et
al.” IEEE Transactions on Information Theory, vol. 64, no. 2, pp. 1000—-
1022, 2018.

R. Zhou, C. Tian, H. Sun, and T. Liu, “Capacity-Achieving Private In-
formation Retrieval Codes from MDS-Coded Databases with Minimum
Message Size,” IEEE Transactions on Information Theory, vol. 66, no. 8,
pp. 4904-4916, 2020.

H. Sun and C. Tian, “Breaking the MDS-PIR Capacity Barrier via Joint
Storage Coding,” Information, vol. 10, no. 9, p. 265, 2019.

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding Up Distributed Machine Learning Using Codes,” IEEE
Transactions on Information Theory, vol. 64, no. 3, pp. 1514-1529,
2017.

S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing Large
Linear Transforms Distributedly Using Coded Short Dot Products,”
Advances In Neural Information Processing Systems, vol. 29, 2016.

S. Li and S. Avestimehr, “Coded Computing: Mitigating Fundamental
Bottlenecks in Large-scale Distributed Computing and Machine
Learning,” Foundations and TrendsA® in  Communications and
Information Theory, vol. 17, no. 1, pp. 1-148, 2020. [Online].
Available: http://dx.doi.org/10.1561/0100000103

R. J. McEliece and D. V. Sarwate, “On Sharing Secrets and Reed-
Solomon Codes,” Communications of the ACM, vol. 24, no. 9, pp. 583—
584, 1981.

A. Beimel, “Secret-Sharing Schemes: A Survey,” in International Con-
ference on Coding and Cryptology. Springer, 2011, pp. 11-46.

M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness Theo-
rems for Non-Cryptographic Fault-Tolerant Distributed Computation,”
in Proceedings of the twentieth annual ACM symposium on Theory of
computing. ACM, 1988, pp. 1-10.

D. Chaum, C. Crépeau, and I. Damgard, “Multiparty Unconditionally
Secure Protocols,” in Proceedings of the twentieth annual ACM sympo-
sium on Theory of computing. ACM, 1988, pp. 11-19.

R. Cramer, I. B. Damgard, and J. B. Nielsen, Secure Multiparty
Computation and Secret Sharing. Cambridge University Press, 2015.

Y. Zhao and H. Sun, “MDS Variable Generation and Secure Summation
with User Selection,” arXiv preprint arXiv:2211.01220, 2022.

Authorized licensed use limited to: University of North Texas. Downloaded

on
37

August 31,2023 at 19:55:14 UTC from IEEE Xplore. Restrictions apply.



