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Abstract—A storage code over a graph maps K independent
source symbols, each of Lw bits, to N coded symbols, each of
Lv bits, such that each coded symbol is stored in a node of the
graph and each edge of the graph is associated with one source
symbol. From a pair of nodes connected by an edge, the source
symbol that is associated with the edge can be decoded. The ratio
Lw/Lv is called the symbol rate of a storage code and the highest
symbol rate is called the capacity. We show that the three highest
capacity values of storage codes over graphs are 2, 3/2, 4/3. We
characterize all graphs over which the storage code capacity is 2
and 3/2, and for capacity value of 4/3, necessary condition and
sufficient condition (that do not match) on the graphs are given.

I. INTRODUCTION

Motivated by the heterogeneity of modern distributed stor-

age systems, a storage code problem over graphs is introduced

in [1], [2], where a storage code maps K independent source

symbols, W1, · · · ,WK to N coded symbols, V1, · · · , VN , and

the coded symbols are stored in the node set of a graph

{V1, · · · , VN} (so that Vn denotes both the coded symbol and

the node). The heterogeneous data recovery pattern is captured

by the edges of the graph, where each edge {Vi, Vj} is asso-

ciated with one source symbol Wk and from (Vi, Vj), we can

decode Wk. As the structure of the graph can be very diverse,

versatile distributed storage and data access requirements can

be accommodated. An example of the storage code problem

over a graph is given in Fig. 1. The metric of pursuit is the

capacity C of a storage code over a graph, i.e., the highest

possible symbol rate, defined as Lw/Lv , where Lw(Lv) is the

number of bits contained in each source (coded) symbol and

Lw/Lv represents the number of source symbol bits reliably

stored in each coded symbol bit.

V1 V2 V3 V4

V5 V6 V7 V8

V9 V10

can decode W1

can decode W2

can decode W3

Fig. 1: An example graph of a storage code problem with K = 3
source symbols and N = 10 coded symbols.

The graph based storage code problem is not new in

the sense that it can be equivalently transformed to a net-

work coding problem [1]–[4] and adding further security

constraints (i.e., beyond desired data decodability, leakage

about other source symbols is prevented), it is intimately

related to conditional disclosure of secrets [5]–[8] and secret

sharing [9], [10]. What is new is the view brought by [1] -

finding extremal networks/graphs. Instead of first fixing the

network/graph and then finding its highest rate, we focus

on the extremal (highest) capacity values and aim to find

the networks/graphs whose capacity is equal to the extremal

values (see Fig. 2). This complementary view is useful in

identifying critical combinatorial graph structures that limit

the rate and in separating more tractable graph classes in

terms of capacity characterization. Considering that networks

are becoming more and more heterogeneous and solving each

network instance becomes infeasible and impossible (as hard

instances that require non-linear codes for achievability or non-

Shannon information inequalities for converse are well known

[11]–[13]), this extremal rate (network) approach might be a

fruitful direction to produce new results and insights.
In this work, we start from the highest possible capacity

values and for the two highest rates - 2 and 3/2, all extremal

graphs with corresponding extremal capacity values are easily

characterized. For extremal rate of 2, absolute no interference

is allowed as Lw = 2Lv , i.e., a pair of nodes can just store the

desired source symbols. As long as there exists interference,

the maximal capacity value drops to 3/2, the next extremal

rate, and all storage code instances with capacity 3/2 only

require intra-source symbol coding, i.e., mixing of symbols

from the same source symbol. When rate of 3/2 cannot be

achieved, the next highest capacity value is shown to be

4/3, which is our main focus and the corresponding graphs

turn out to be highly technical. We identify necessary condi-

tion (converse required) and sufficient condition (achievability

provided) for graphs with storage code capacity 4/3 (see

Fig. 2). The converse is based on delicate arguments on the

intimate relation between the maximum amount of interference

(undesired source symbols) allowed and the minimum amount

of desired source symbols needed. The achievable scheme uses

vector linear codes that carefully control the alignment of

interfering source symbols and the independence of desired

source symbols. The conditions are stated in terms of the

presence (absence) of critical nodes (edges) of the graph,

whose combinatorial structure constrains the code rate.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider K independent uniform source symbols

W1, · · · ,WK of size Lw bits each.

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK),

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 | 

97
8-

1-
66

54
-7

55
4-

9/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IS

IT
54

71
3.

20
23

.1
02

06
61

9

Authorized licensed use limited to: University of North Texas. Downloaded on August 31,2023 at 19:55:01 UTC from IEEE Xplore.  Restrictions apply. 



Network

(Graph)

Rate

Network

(Graph)

Rate

This work Prior approach

Highest

2

Second-highest

3/2

Third-highest

4/3 · · ·

C = 2 C = 3/2

C = 4/3 C < 4/3

· · ·

Fully
characterized Sufficient Necessary

Fig. 2: The extremal rate and network approach of this work and results obtained.

Lw = H(W1) = · · · = H(WK). (1)

Consider N coded symbols V1, · · · , VN , each of Lv bits.

Our interest lies in the relative size of Lw, Lv (see (3)) and

coding over arbitrary finite fields is allowed, so Lw, Lv can

take arbitrarily large values (that are not necessarily integers).

The source symbol recoverability constraint on the coded

symbols is specified by a graph G = (V, E , t), where the

node1 set V = {V1, · · · , VN}, the edge set E is a set of un-

ordered pairs from V , and the function t associates each edge

{Vi, Vj} ∈ E with a source symbol Wk, k ∈ {1, 2, · · · ,K} �
[K], i.e., t({Vi, Vj}) = Wk. For each edge {Vi, Vj} ∈ E such

that t({Vi, Vj}) = Wk, we can decode Wk with no error, i.e.,

H(Wk|Vi, Vj) = 0 if t({Vi, Vj}) = Wk. (2)

Isolated nodes are trivial as they are not connected to any edges

and thus involve no constraints. Without loss of generality, we

assume in this work that any graph contains no isolated nodes.

A mapping from the source symbols W1, · · · ,WK to the

coded symbols V1, · · · , VN that satisfies the decoding con-

straint (2) specified by a graph G = (V, E , t) is called a storage

code. The (achievable) symbol rate is defined as

R � Lw

Lv
(3)

whose supremum is called the capacity, C � supLw
Lw/Lv =

limLw→∞ Lw/Lv , as block codes are allowed.

Next we introduce some graph definitions to facilitate the

presentation of our results.

A. Graph Definitions

Definition 1 (Wk-Edge, Wk-Path, and Wk-Component): An

edge that is associated with Wk is called a Wk-edge. A

sequence of distinct connecting Wk-edges is called a Wk-path.

A Wk-component is a maximal subgraph wherein every edge

is a Wk-edge and every two nodes are connected by a Wk-path

(an isolated node is defined as a trivial component).

For example, in Fig. 1, {V1, V2} (also all solid black edges)

is a W1-edge; the sequence of W1-edges ({V2, V1}, {V1, V5},

{V5, V6}) is a W1-path and also a W1-component.

1Note that we abuse the notation by using Vn to denote both a coded
symbol and a node of the graph, which will not cause confusion.

Definition 2 (Internal Edge and Residing Path): A Wk-edge

that connects two nodes (say Vi, Vj) in a Wk′ -path, k′ �= k is

said to be internal and the Wk′ -path with end nodes Vi, Vj is

called the residing path of the internal Wk-edge {Vi, Vj}.

For example, in Fig. 1, the W2-edge {V2, V6} is an in-

ternal edge as it connects two nodes V2, V6 in the W1-path

({V2, V1}, {V1, V5}, {V5, V6}), which is then its residing path.

Definition 3 (M -Color Node): A node whose connected

edges are associated with M different source symbols is called

an M -color node.

For example, in Fig. 1, V1, V9 are 1-color nodes and V5, V6

are 2-color nodes.

We need to further distinguish two types of 2-color nodes,

defined as follows.

Definition 4 (Normal 2-Color Node and Wk-Special 2-Color
Node): For a 2-color node V that is connected to Wk-edges

and Wk′ -edges, k �= k′, if the nodes connected to V through

Wk-edges are all 1-color, then V is called a Wk-special 2-

color node (or just a special 2-color node when Wk does not

need to be highlighted). A 2-color node that is not special is

said to be normal.

For example, in Fig. 1, the 2-color node V5 is W2-special

as V9 is the only node that is connected to V5 through W2-

edges and V9 is 1-color; the 2-color node V6 is normal as it

is connected to a 2-color node V2 through a W2-edge and is

connected to a 2-color node V5 through a W1-edge.

Definition 5 (Graph Class GC=R∗ ,GC≥R∗ ,GC<R∗ ): The

set of graphs whose storage code capacity is equal

to\no smaller than\strictly smaller than R∗ is denoted by

GC=R∗\GC≥R∗\GC<R∗ .

III. RESULTS

Our results are presented in this section, along with illus-

trative examples and observations.

A. Extremal Graphs with Storage Code Capacity 2, 3/2:
GC=2, GC=3/2

The three highest extremal capacity values and the full

extremal graph characterization for the two highest extremal

capacity values are established in the following theorem.

Theorem 1: [GC=2,GC=3/2] The three highest storage code

capacity values are 2, 3/2, 4/3. The storage code capacity of

a graph is equal to 2 (G ∈ GC=2) if and only if every node
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is 1-color. The storage code capacity of a graph is equal to

3/2 (G ∈ GC=3/2) if and only if (a) there exists a 2-color

node and all nodes are 1-color or 2-color and (b) there are no

connected 2-color nodes.

V1 V2

V3 V4

V5 V6

(B1, B2) (A3, B5)

(A4, B6) (B3, B4)

(A1, A2) (A5, B7)

(a)

V1 V2

V3 V4

t

W1

W2

(b)

Fig. 3: (a) An example graph G ∈ GC=3/2. W1 = (a1, a2,
a3),W2 = (b1, b2, b3), and each Ai\Bj is a generic linear combina-
tion of (a1, a2, a3)\(b1, b2, b3). (b) An example graph G ∈ GC<3/2

where two 2-color nodes V1, V2 are connected.

The proof of Theorem 1 is fairly straightforward and is

deferred to the full version of this work [14]. An example of

the achievable scheme (code construction) for G ∈ GC=3/2 is

shown in Fig. 3.(a). An example graph that does not belong to

GC=2∪GC=3/2 is shown in Fig. 3.(b). An intuitive explanation

on why the rate is upper bounded by 4/3 is as follows. V3 can

at most contribute Lv bits of information about W2. {V1, V3}
is a W2-edge so that V1 has to provide at least the remaining

Lw −Lv bits of information about W2, leaving at most Lv −
(Lw − Lv) = 2Lv − Lw bits of room for W1. The same

reasoning applies to V2. Finally, {V1, V2} is a W1-edge so that

the size of the remaining room must accommodate the Lw bits

of W1, i.e., 2(2Lv − Lw) ≥ Lw so that R = Lw/Lv ≤ 4/3.

B. Extremal Graphs with Capacity 4/3: GC=4/3 with K = 2
Source Symbols

Next we focus on the storage code capacity value of 4/3,

whose extremal graph characterization turns out to be highly

non-trivial. In this work, we exclusively consider the cases

where there are K = 2 source symbols to illustrate the results

in a simpler setting while noting that generalizations to more

than 2 source symbols are possible and deferred to the full

version of this work [14].

The obtained necessary and sufficient conditions are rather

involved. To make the results more clear we give a summa-

rizing chart in Fig. 4.

1) Sufficient Condition: Internal Edge and 1-Color Node:
A crucial graphic structure for the achievability of rate 4/3 is

the absence of internal edges (or when they exist, the presence

of 1-color nodes in their residing paths).

Theorem 2: [Sufficient Condition of GC=4/3] With K = 2
source symbols, a graph G ∈ GC≥4/3 if G contains no internal

edge or for any internal edge, its residing path contains a 1-

color node.

The proof of Theorem 2 is presented in [14]. To illustrate the

idea, two examples are shown in Fig. 5, where Example (a)

Is there any internal edge?
No Yes

Rate 4/3 is achievable.

(Theorem 2)

Does each residing path
contain a 1-color node?

Yes
No

Rate 4/3 is achievable.

(Theorem 2)

Is there any residing path
that contains at most
one special 2-color node?

Yes
No

Rate 4/3 cannot
be achieved.

(Theorem 3)
Rate 4/3 may or may
not be achievable.

Fig. 4: A summary of sufficient and necessary conditions of GC=4/3

with K = 2.

contains no internal edge; Example (b) contains two internal

edges {V2, V3} and {V3, V5}. Internal W2-edge {V2, V3} re-

sides in W1-path ({V2, V1}, {V1, V3}), which contains 1-color

node V1 and internal W1-edge {V3, V5} resides in W2-path

({V3, V2}, {V2, V4}, {V4, V5}), which contains 1-color node

V4. So the condition of Theorem 2 is satisfied and rate 4/3 is

achievable. We next explain how to construct the code.

V1 V2

V3 V4

V5 V6

(A1, A2, A3)

(A4 + 5A5,
B3 +B4,
A4 + 6A5 +
B3 + 2B4)

(A6 +A7,
B3 + 3B4,
A6 + 2A7 +
B3 + 4B4)

(A4 +A5,
B1 +B2,
B1 + 2B2)

(A4 + 3A5,
B5 +B6,
A4 + 4A5 +
B5 + 2B6)

(A6 + 3A7,

B5 + 3B6,
A6 + 4A7 +
B5 + 4B6)

t

t

W2

tt
W1

(a)

V1

V2 V3

V4 V5

(A1, A2, A3)

(B1, B2, B3)

(A4 +A5,
B4 +B5,
B4 + 2B5)

(A4 + 3A5,
B6 +B7,
A4 + 4A5 +
B6 + 2B7)

(A6 +A7,
A6 + 2A7,
B6 + 3B7)

t

t

W2

t

W1

(b)

Fig. 5: Two example graphs G ∈ GC≥4/3 and code constructions
for rate 4/3. W1 = (a1, a2, a3, a4),W2 = (b1, b2, b3, b4) and each
Ai\Bj is a generic linear combination of (a1, · · · , a4)\(b1, · · · , b4).

We are targeting at rate Lw/Lv = 4/3 so that any pair

of nodes connected by an edge contain 2Lv = 3Lw/2 bits.

Except from Lw bits from the desired source, at most we can

tolerate 2Lv − Lw = Lw/2 undesired bits (i.e., interference).

Then the key is to guarantee for any Wk-edge, k ∈ {1, 2}, the

interference from W3−k has at most half source size. That is,

W3−k symbols shall be assigned according to Wk-edges (Wk-

components). When there is no internal edge (or residing path

contains 1-color nodes), such interference based assignment

automatically ensures the independence (thus decodability) of

desired source symbols. We now come back to the examples

in Fig. 5 to see how to implement the above code design idea.

Consider Example (a) first and Example (b) will follow

similarly. We set Lw/ log2 p = 4 so that W1 = (a1, a2, a3, a4)
and W2 = (b1, b2, b3, b4), where each symbol is from a suffi-

ciently large finite field Fp (the exact field size can be found in

the general proof in [14]). To achieve rate R = Lw/Lv = 4/3,

we set Lv = 3 log2 p, i.e., each Vn contains three symbols
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from the same field. We generate a number of generic linear

combinations of (a1, · · · , a4)\(b1, · · · , b4) and denote them

as (A1, A2, · · · )\(B1, B2, · · · ). For now, it suffices to view

each Ai\Bj as a random linear combination of symbols

from W1\W2 and if we can collect four linearly independent

combinations of Ai\Bj , then we can recover W1\W2. The

detailed randomized construction is again deferred to the

general proof. Each one of the three symbols in Vn will be

a linear combination of some Ai and Bj symbols. We first

assign the Ai and Bj symbols in each Vn and then linearly

combine them to produce the final three symbols in Vn.

V1 V2

V3 V4

V5 V6

(A1, A2, A3) (A4 +A5)

(A4 + 3A5,
A4 + 4A5)

(A4 + 5A5,
A4 + 6A5)

(A6 + 3A7,
A6 + 4A7)

(A6 +A7,
A6 + 2A7)

(a)

V2

V3 V4

V5 V6

(B1 +B2,
B1 + 2B2)

(B5 +B6,
B5 + 2B6)

(B3 +B4,
B3 + 2B4)

(B5 + 3B6,
B5 + 4B6)

(B3 + 3B4,
B3 + 4B4)

(b)

Fig. 6: (a) W2-component decomposition of W1-connected nodes
in Fig. 5.(a), according to which Ai symbols are assigned. (b)
W1-component decomposition of W2-connected nodes in Fig. 5.(a),
according to which Bj symbols are assigned.

Consider nodes that are connected to W1-edges so that some

Ai symbols need to be assigned, i.e., all nodes V1, · · · , V6.

The 1-color nodes are trivial (i.e., V1), and we just assign

three distinct Ai symbols. Next, consider the remaining 2-

color nodes V2, · · · , V6 for which the Ai symbols are assigned

according to W2-components (see Fig. 6.(a)). V2, · · · , V6 form

two W2-components - one consists of V2, V3, V4 and the other

consists of V5, V6. For each W2-component, we assign generic

linear combinations of the same 2 = 1
2Lw/ log2 p Ai symbols

(say Ai1 , Ai2 ) so that the interference dimension is limited

to two. Further, a normal 2-color node and a W2-special

2-color node will get two generic linear combinations of

(Ai1 , Ai2) and a W1-special 2-color node will get one generic

linear combination of (Ai1 , Ai2). For example, consider W2-

component with nodes V2, V3, V4, where the Ai symbols

appeared are limited to A4, A5; V2, as a W1-special 2-color

node, gets one combination A4+A5 and V3, V4, as normal 2-

color nodes, each gets two generic combinations (e.g., V3 gets

A4 + 5A5, A4 + 6A5). The other W2-component with nodes

V5, V6 is assigned similarly - the Ai symbols are limited to

A6, A7.

The assignment for nodes connected to W2-edges is exactly

the same (see Fig. 6.(b)). Nodes V2, · · · , V6 are connected to

W2-edges and they are all 2-color. The Bj symbols are as-

signed according to W1-components, i.e., V2 (as a single-node

component) gets generic linear combinations of B1, B2; V3, V5

form a W1-component and get generic linear combinations of

B3, B4; V4, V6 form a W1-component and the Bj symbols are

limited to B5, B6.

The last step is to combine the Ai, Bj symbols so that each

Vn has only three symbols. This step is simple, if a node gets

at most three Ai, Bj symbols, then just set them as Vn (e.g.,

V1, V2); otherwise the node must be normal 2-color, which gets

two generic combinations of Ai and two generic combinations

of Bj and we just add one arbitrary combination (say the last)

of Ai and Bj together to reduce the total number of symbols

to three (e.g., V3, V4, V5, V6).

Finally, let us verify why the decoding constraints (2) are

satisfied. An edge that contains 1-color node is straightfor-

ward, e.g., from W1-edge {V1, V2}, we have A1, A2, A3, A4+
A5, so as long as the Ai combinations are generic we can

recover W1 = (a1, · · · , a4). For edges that connect two 2-

color nodes (e.g., W2-edge {V3, V4}), we have 1) the interfer-

ence dimension is limited to two as our assignment is based

on components of interfering sources (e.g., we may decode

A4, A5 and remove them, leaving us with only Bj symbols);

2) the four symbols from the desired source have full rank

(e.g., B3, B4, B5, B6 are generic combinations) so that we can

recover the desired source symbol. Note that because there

is no internal edge, for any Wk-edge, the two nodes obtain

distinct desired Wk symbols, e.g., for W2-edge {V3, V4},

V3 is assigned B3, B4 symbols and V4 is assigned B5, B6

symbols as V3, V4 belong to distinct W1-components (refer to

Fig. 6.(b)). If V3, V4 belong to the same W1-component, then

the W2-edge {V3, V4} will be internal).

The code construction for Example (b) in Fig. 5 follows

from the same procedure as that of Example (a). That is,

first consider 1-color nodes and assign generic combinations

(e.g., V1, V4); for remaining 2-color nodes, assign Wk symbols

according to W3−k-components (e.g., the W1 space of the W2-

edge {V2, V3} is spanned by A4, A5, and the W2 space of the

W1-edge {V3, V5} is spanned by B6, B7); finally combine the

four symbols to three for normal 2-color nodes (e.g., V3). The

decoding constraints (2) are easily verified as the interference

dimension is strictly controlled and desired source symbols

are sufficiently generic because after removing 1-color nodes,

there no longer exist internal edges.

2) Necessary Condition: Residing Path and Special 2-Color
Node: The sufficient condition of the achievability of rate 4/3
in Theorem 2 requires the absence of internal edges or the

presence of 1-color node in residing paths. Considering the

complementary cases, we identify a crucial graphic structure

for the unachievability of rate 4/3 - the presence of at most

one special 2-color node in a residing path.

Theorem 3: [Necessary Condition of GC=4/3] With K = 2
source symbols, a graph G ∈ GC<4/3 if G has a residing

path which contains no 1-color node and at most one special

2-color node.

The proof of Theorem 3 is presented in [14]. To il-

lustrate the idea, an example is shown in Fig. 7, where

the internal W2-edge {V1, V2} resides in the W1-path

({V1, V3}, {V3, V4}, {V4, V2}) and this residing path contains

only one special 2-color node V3 and no 1-color node. So the

condition of Theorem 3 is satisfied and rate 4/3 cannot be

achieved. To see why, we next give an intuitive explanation.

Suppose rate 4/3 is achievable, i.e., Lw/Lv = 4/3. Then

we can show that for any 2-color node (e.g., V3), it must
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V1 V3 V5

V2 V4 V6 V7

t

W1

W2

Fig. 7: An example graph G ∈ GC<4/3 where the internal edge
{V1, V2} is highlighted and the only special 2-color node V3 in its
residing path is highlighted.

contain at least Lw/4 bits of information about each of W1

and W2 (captured through conditional entropy. See Lemma 1

of [14]). This is because the connecting node can provide at

most Lv = 3Lw/4 bits of information about the desired source

symbol (e.g., V5 can contribute Lv = 3Lw/4 bits on W2 at

most and the remaining Lw − Lv = Lw/4 bits must come

from V3). Further, if the 2-color node is normal (e.g., V4), it

must contain exactly Lw/2 bits of information about each of

W1 and W2 (see Lemma 2 of [14]). The reason is that for two

connecting 2-color nodes, the amount of interference allowed

is at most 2Lv − Lw = Lw/2 bits and a pair of nodes must

contribute Lw bits of information about the desired source

symbol (thus Lw/2 from each node). For example, consider

W1-edge {V2, V4}, where from an interference view, V2 can

contain at most Lw/2 bits on W2; from the desired source

view, V2 must also contribute at least Lw/2 bits on W2 because

of the W2-edge {V1, V2}.

We now consider the propagation of interference through the

residing W1-path ({V2, V4}, {V4, V3}, {V3, V1}). Start from

the normal 2-color node V2, which contains Lw/2 bits on W2

and as a W1-edge can tolerate at most Lw/2 bits on W2, then

the normal 2-color node V4 must contain the same Lw/2 bits

on W2 (see Lemma 3 of [14]). We are now at V4 and continue

the W1-path through edge {V3, V4}, where V3 is special so that

V3 contains at least Lw/4 bits on W2 and this Lw/4 bits are

contained in the total Lw/2 interference bits in V4. Continue

further the W1-path through edge {V3, V1}, where the Lw/4
bits on W2 in V3 must be contained in the Lw/2 bits on W2

in V1. This in turn means that the Lw/2 bits on W2 in V1

must overlap with the Lw/2 bits on W2 in V2 (in the Lw/4
bits on W2 in V3), thus the internal W2-edge {V1, V2} cannot

contribute Lw/2+Lw/2 = Lw independent bits for the desired

W2 source and we have arrived at a contradiction.

From the above reasoning, we can now illuminate the role

of special and normal 2-color nodes in a residing path. For

an internal Wk-edge, its residing W3−k-path made up of 2-

color nodes must have two normal 2-color end nodes, each of

which contains Lw/2 independent bits of information about

the desired source Wk (e.g., V1, V2 about W2). In the residing

W3−k-path, a normal 2-color node will keep the interference

on Wk to the same Lw/2 dimensions (e.g., V2, V4 have the

same Lw/2 dimensions about W2 and V1, V3 have the same

Lw/2 dimensions about W2) while a special 2-color node

will inherit at least Lw/4 interference dimensions on Wk

(e.g., V3 gets at least Lw/4 dimensions of W2 from V3).

Conversely, a special 2-color node in a residing W3−k-path

can change at most Lw/4 dimensions of the interference on

Wk (which is the desired source for the internal Wk-edge),

so to ensure the independence of the desired source at the

internal edge we need at least two special 2-color nodes in

the residing path. Along this line, we can also see the role of

1-color node in a residing path, i.e., it completely stops the

propagation of interference (see V4 in the residing W2-path

({V3, V2}, {V2, V4}, {V4, V5}) of Fig. 6.(b), where V3, V5 can

hold independent W1 bits although {V3, V5} is internal).

IV. DISCUSSION

An extremal rate perspective is taken to study the storage

code problem over graphs. For the highest capacity values,

we have identified a number of combinatorial structures that

have significant impact on the code rate - M -color code

(i.e., the number of sources associated with a node), internal

edge (which captures a direct conflict between alignment

of undesired source symbols and independence of desired

source symbols), normal 2-color node\special 2-color node

(for rate 4/3, which keeps the same interference\which could

change interference up to the extent of 1/4 source size).

Both the achievability and converse results are guided by a

linear dimension counting view. The sufficient and necessary

conditions presented are not the largest that our proof tech-

nique can lead to, i.e., we can solve more graph instances,

but a systematic description is still out of current reach. It

is not clear which rates will turn out to have hard capacity

instances. Specifically, all extremal graphs with storage code

capacity 4/3 appear to go beyond the techniques of this

work. Regarding generalizations, we note that our model is

the most elementary, where we have focused on the highest

capacity values, i.e., best rate scenarios instead of lowest

capacity values, i.e., worst rate scenarios, or other physically

meaningful rates; decoding constraints are placed on a pair

of nodes in this work instead of an arbitrary set of nodes,

i.e., we may have a hypergraph rather than a graph [2]; each

edge is associated with only one source symbols instead of

multiple source symbols where the decoding structure can be

more diverse [1]; each source (coded) symbol is assumed

to have equal size instead of arbitrarily different sizes so

that in this asymmetric (fully heterogeneous) setting, we may

generalize extremal rate to extremal rate tuple (region). Finally,

from an extremal rate and network perspective, we may view

combinatorial objects using the metric of capacity and study

further extremal (largest, densest, most (linearly) independent)

graphs, set families, vector spaces etc. along the line of

extremal combinatorics [15].
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