

On Extremal Rates of Storage over Graphs

Zhou Li and Hua Sun
EE Department, University of North Texas
Email: zhouli@my.unt.edu, hua.sun@unt.edu

Abstract—A storage code over a graph maps K independent source symbols, each of L_w bits, to N coded symbols, each of L_v bits, such that each coded symbol is stored in a node of the graph and each edge of the graph is associated with one source symbol. From a pair of nodes connected by an edge, the source symbol that is associated with the edge can be decoded. The ratio L_w/L_v is called the symbol rate of a storage code and the highest symbol rate is called the capacity. We show that the three highest capacity values of storage codes over graphs are $2, 3/2, 4/3$. We characterize all graphs over which the storage code capacity is 2 and $3/2$, and for capacity value of $4/3$, necessary condition and sufficient condition (that do not match) on the graphs are given.

I. INTRODUCTION

Motivated by the heterogeneity of modern distributed storage systems, a storage code problem over graphs is introduced in [1], [2], where a storage code maps K independent source symbols, W_1, \dots, W_K to N coded symbols, V_1, \dots, V_N , and the coded symbols are stored in the node set of a graph $\{V_1, \dots, V_N\}$ (so that V_n denotes both the coded symbol and the node). The heterogeneous data recovery pattern is captured by the edges of the graph, where each edge $\{V_i, V_j\}$ is associated with one source symbol W_k and from (V_i, V_j) , we can decode W_k . As the structure of the graph can be very diverse, versatile distributed storage and data access requirements can be accommodated. An example of the storage code problem over a graph is given in Fig. 1. The metric of pursuit is the capacity C of a storage code over a graph, i.e., the highest possible symbol rate, defined as L_w/L_v , where $L_w(L_v)$ is the number of bits contained in each source (coded) symbol and L_w/L_v represents the number of source symbol bits reliably stored in each coded symbol bit.

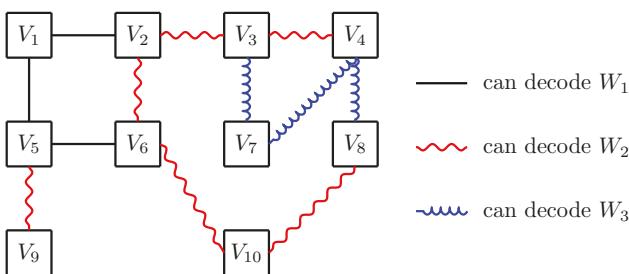


Fig. 1: An example graph of a storage code problem with $K = 3$ source symbols and $N = 10$ coded symbols.

The graph based storage code problem is not new in the sense that it can be equivalently transformed to a network coding problem [1]–[4] and adding further security

constraints (i.e., beyond desired data decodability, leakage about other source symbols is prevented), it is intimately related to conditional disclosure of secrets [5]–[8] and secret sharing [9], [10]. What is new is the view brought by [1] - finding extremal networks/graphs. Instead of first fixing the network/graph and then finding its highest rate, we focus on the extremal (highest) capacity values and aim to find the networks/graphs whose capacity is equal to the extremal values (see Fig. 2). This complementary view is useful in identifying critical combinatorial graph structures that limit the rate and in separating more tractable graph classes in terms of capacity characterization. Considering that networks are becoming more and more heterogeneous and solving each network instance becomes infeasible and impossible (as hard instances that require non-linear codes for achievability or non-Shannon information inequalities for converse are well known [11]–[13]), this extremal rate (network) approach might be a fruitful direction to produce new results and insights.

In this work, we start from the highest possible capacity values and for the two highest rates - 2 and $3/2$, all extremal graphs with corresponding extremal capacity values are easily characterized. For extremal rate of 2 , absolute no interference is allowed as $L_w = 2L_v$, i.e., a pair of nodes can just store the desired source symbols. As long as there exists interference, the maximal capacity value drops to $3/2$, the next extremal rate, and all storage code instances with capacity $3/2$ only require intra-source symbol coding, i.e., mixing of symbols from the same source symbol. When rate of $3/2$ cannot be achieved, the next highest capacity value is shown to be $4/3$, which is our main focus and the corresponding graphs turn out to be highly technical. We identify necessary condition (converse required) and sufficient condition (achievability provided) for graphs with storage code capacity $4/3$ (see Fig. 2). The converse is based on delicate arguments on the intimate relation between the maximum amount of interference (undesired source symbols) allowed and the minimum amount of desired source symbols needed. The achievable scheme uses vector linear codes that carefully control the alignment of interfering source symbols and the independence of desired source symbols. The conditions are stated in terms of the presence (absence) of critical nodes (edges) of the graph, whose combinatorial structure constrains the code rate.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider K independent uniform source symbols W_1, \dots, W_K of size L_w bits each.

$$H(W_1, \dots, W_K) = H(W_1) + \dots + H(W_K),$$

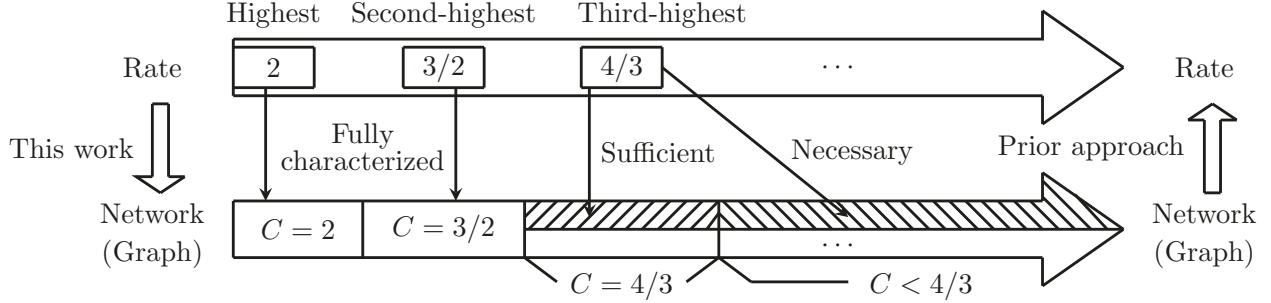


Fig. 2: The extremal rate and network approach of this work and results obtained.

$$L_w = H(W_1) = \dots = H(W_K). \quad (1)$$

Consider N coded symbols V_1, \dots, V_N , each of L_v bits. Our interest lies in the relative size of L_w, L_v (see (3)) and coding over arbitrary finite fields is allowed, so L_w, L_v can take arbitrarily large values (that are not necessarily integers).

The source symbol recoverability constraint on the coded symbols is specified by a graph $G = (\mathcal{V}, \mathcal{E}, t)$, where the node¹ set $\mathcal{V} = \{V_1, \dots, V_N\}$, the edge set \mathcal{E} is a set of unordered pairs from \mathcal{V} , and the function t associates each edge $\{V_i, V_j\} \in \mathcal{E}$ with a source symbol $W_k, k \in \{1, 2, \dots, K\} \triangleq [K]$, i.e., $t(\{V_i, V_j\}) = W_k$. For each edge $\{V_i, V_j\} \in \mathcal{E}$ such that $t(\{V_i, V_j\}) = W_k$, we can decode W_k with no error, i.e.,

$$H(W_k | V_i, V_j) = 0 \text{ if } t(\{V_i, V_j\}) = W_k. \quad (2)$$

Isolated nodes are trivial as they are not connected to any edges and thus involve no constraints. Without loss of generality, we assume in this work that any graph contains no isolated nodes.

A mapping from the source symbols W_1, \dots, W_K to the coded symbols V_1, \dots, V_N that satisfies the decoding constraint (2) specified by a graph $G = (\mathcal{V}, \mathcal{E}, t)$ is called a storage code. The (achievable) symbol rate is defined as

$$R \triangleq \frac{L_w}{L_v} \quad (3)$$

whose supremum is called the capacity, $C \triangleq \sup_{L_w} L_w / L_v = \lim_{L_w \rightarrow \infty} L_w / L_v$, as block codes are allowed.

Next we introduce some graph definitions to facilitate the presentation of our results.

A. Graph Definitions

Definition 1 (W_k-Edge, W_k-Path, and W_k-Component): An edge that is associated with W_k is called a W_k -edge. A sequence of distinct connecting W_k -edges is called a W_k -path. A W_k -component is a maximal subgraph wherein every edge is a W_k -edge and every two nodes are connected by a W_k -path (an isolated node is defined as a trivial component).

For example, in Fig. 1, $\{V_1, V_2\}$ (also all solid black edges) is a W_1 -edge; the sequence of W_1 -edges ($\{V_2, V_1\}$, $\{V_1, V_5\}$, $\{V_5, V_6\}$) is a W_1 -path and also a W_1 -component.

¹Note that we abuse the notation by using V_n to denote both a coded symbol and a node of the graph, which will not cause confusion.

Definition 2 (Internal Edge and Residing Path): A W_k -edge that connects two nodes (say V_i, V_j) in a $W_{k'}$ -path, $k' \neq k$ is said to be internal and the $W_{k'}$ -path with end nodes V_i, V_j is called the residing path of the internal W_k -edge $\{V_i, V_j\}$.

For example, in Fig. 1, the W_2 -edge $\{V_2, V_6\}$ is an internal edge as it connects two nodes V_2, V_6 in the W_1 -path ($\{V_2, V_1\}, \{V_1, V_5\}, \{V_5, V_6\}$), which is then its residing path.

Definition 3 (M-Color Node): A node whose connected edges are associated with M different source symbols is called an M -color node.

For example, in Fig. 1, V_1, V_9 are 1-color nodes and V_5, V_6 are 2-color nodes.

We need to further distinguish two types of 2-color nodes, defined as follows.

Definition 4 (Normal 2-Color Node and W_k-Special 2-Color Node): For a 2-color node V that is connected to W_k -edges and $W_{k'}$ -edges, $k \neq k'$, if the nodes connected to V through W_k -edges are all 1-color, then V is called a W_k -special 2-color node (or just a special 2-color node when W_k does not need to be highlighted). A 2-color node that is not special is said to be normal.

For example, in Fig. 1, the 2-color node V_5 is W_2 -special as V_9 is the only node that is connected to V_5 through W_2 -edges and V_9 is 1-color; the 2-color node V_6 is normal as it is connected to a 2-color node V_2 through a W_2 -edge and is connected to a 2-color node V_5 through a W_1 -edge.

Definition 5 (Graph Class $\mathcal{G}_{C=R^*}, \mathcal{G}_{C \geq R^*}, \mathcal{G}_{C < R^*}$): The set of graphs whose storage code capacity is equal to no smaller than strictly smaller than R^* is denoted by $\mathcal{G}_{C=R^*} \setminus \mathcal{G}_{C \geq R^*} \setminus \mathcal{G}_{C < R^*}$.

III. RESULTS

Our results are presented in this section, along with illustrative examples and observations.

A. Extremal Graphs with Storage Code Capacity 2, 3/2: $\mathcal{G}_{C=2}, \mathcal{G}_{C=3/2}$

The three highest extremal capacity values and the full extremal graph characterization for the two highest extremal capacity values are established in the following theorem.

Theorem 1: $[\mathcal{G}_{C=2}, \mathcal{G}_{C=3/2}]$ The three highest storage code capacity values are 2, 3/2, 4/3. The storage code capacity of a graph is equal to 2 ($G \in \mathcal{G}_{C=2}$) if and only if every node

is 1-color. The storage code capacity of a graph is equal to $3/2$ ($G \in \mathcal{G}_{C=3/2}$) if and only if (a) there exists a 2-color node and all nodes are 1-color or 2-color and (b) there are no connected 2-color nodes.

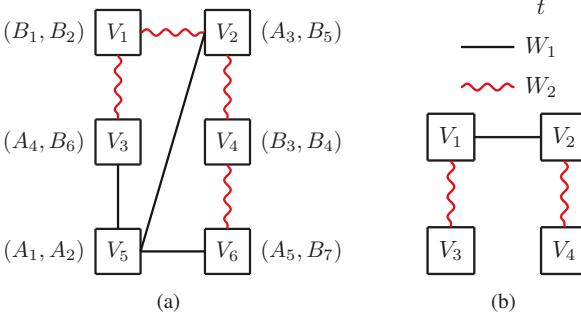


Fig. 3: (a) An example graph $G \in \mathcal{G}_{C=3/2}$. $W_1 = (a_1, a_2, a_3)$, $W_2 = (b_1, b_2, b_3)$, and each $A_i \setminus B_j$ is a generic linear combination of $(a_1, a_2, a_3) \setminus (b_1, b_2, b_3)$. (b) An example graph $G \in \mathcal{G}_{C<3/2}$ where two 2-color nodes V_1, V_2 are connected.

The proof of Theorem 1 is fairly straightforward and is deferred to the full version of this work [14]. An example of the achievable scheme (code construction) for $G \in \mathcal{G}_{C=3/2}$ is shown in Fig. 3.(a). An example graph that does not belong to $\mathcal{G}_{C=2} \cup \mathcal{G}_{C=3/2}$ is shown in Fig. 3.(b). An intuitive explanation on why the rate is upper bounded by $4/3$ is as follows. V_3 can at most contribute L_v bits of information about W_2 . $\{V_1, V_3\}$ is a W_2 -edge so that V_1 has to provide at least the remaining $L_w - L_v$ bits of information about W_2 , leaving at most $L_v - (L_w - L_v) = 2L_v - L_w$ bits of room for W_1 . The same reasoning applies to V_2 . Finally, $\{V_1, V_2\}$ is a W_1 -edge so that the size of the remaining room must accommodate the L_w bits of W_1 , i.e., $2(2L_v - L_w) \geq L_w$ so that $R = L_w/L_v \leq 4/3$.

B. Extremal Graphs with Capacity 4/3: $\mathcal{G}_{C=4/3}$ with $K = 2$ Source Symbols

Next we focus on the storage code capacity value of $4/3$, whose extremal graph characterization turns out to be highly non-trivial. In this work, we exclusively consider the cases where there are $K = 2$ source symbols to illustrate the results in a simpler setting while noting that generalizations to more than 2 source symbols are possible and deferred to the full version of this work [14].

The obtained necessary and sufficient conditions are rather involved. To make the results more clear we give a summarizing chart in Fig. 4.

1) *Sufficient Condition: Internal Edge and 1-Color Node:* A crucial graphic structure for the achievability of rate $4/3$ is the absence of internal edges (or when they exist, the presence of 1-color nodes in their residing paths).

Theorem 2: [Sufficient Condition of $\mathcal{G}_{C=4/3}$] With $K = 2$ source symbols, a graph $G \in \mathcal{G}_{C \geq 4/3}$ if G contains no internal edge or for any internal edge, its residing path contains a 1-color node.

The proof of Theorem 2 is presented in [14]. To illustrate the idea, two examples are shown in Fig. 5, where Example (a)

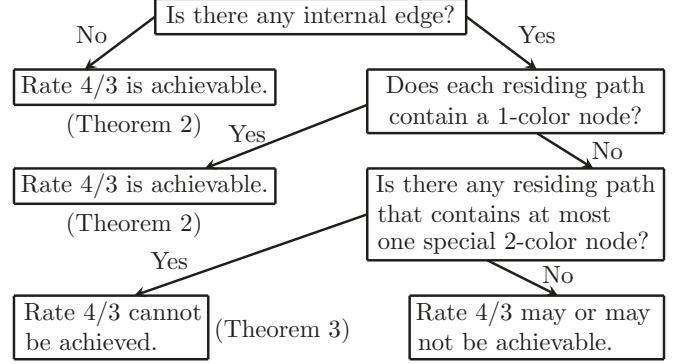


Fig. 4: A summary of sufficient and necessary conditions of $\mathcal{G}_{C=4/3}$ with $K = 2$.

contains no internal edge; Example (b) contains two internal edges $\{V_2, V_3\}$ and $\{V_3, V_5\}$. Internal W_2 -edge $\{V_2, V_3\}$ resides in W_1 -path ($\{V_2, V_1\}, \{V_1, V_3\}$), which contains 1-color node V_1 and internal W_1 -edge $\{V_3, V_5\}$ resides in W_2 -path ($\{V_3, V_2\}, \{V_2, V_4\}, \{V_4, V_5\}$), which contains 1-color node V_4 . So the condition of Theorem 2 is satisfied and rate $4/3$ is achievable. We next explain how to construct the code.

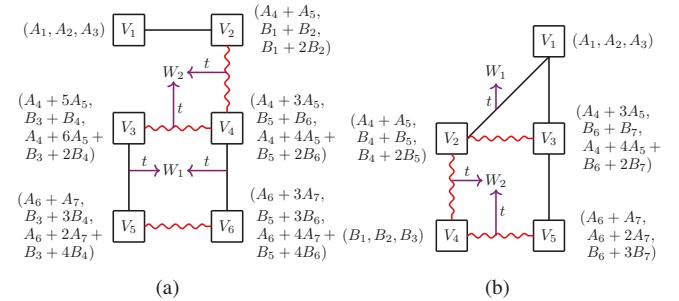


Fig. 5: Two example graphs $G \in \mathcal{G}_{C \geq 4/3}$ and code constructions for rate $4/3$. $W_1 = (a_1, a_2, a_3, a_4)$, $W_2 = (b_1, b_2, b_3, b_4)$ and each $A_i \setminus B_j$ is a generic linear combination of $(a_1, \dots, a_4) \setminus (b_1, \dots, b_4)$.

We are targeting at rate $L_w/L_v = 4/3$ so that any pair of nodes connected by an edge contain $2L_v = 3L_w/2$ bits. Except from L_w bits from the desired source, at most we can tolerate $2L_v - L_w = L_w/2$ undesired bits (i.e., interference). Then the key is to guarantee for any W_k -edge, $k \in \{1, 2\}$, the interference from W_{3-k} has at most half source size. That is, W_{3-k} symbols shall be assigned according to W_k -edges (W_k -components). When there is no internal edge (or residing path contains 1-color nodes), such interference based assignment automatically ensures the independence (thus decodability) of desired source symbols. We now come back to the examples in Fig. 5 to see how to implement the above code design idea.

Consider Example (a) first and Example (b) will follow similarly. We set $L_w/\log_2 p = 4$ so that $W_1 = (a_1, a_2, a_3, a_4)$ and $W_2 = (b_1, b_2, b_3, b_4)$, where each symbol is from a sufficiently large finite field \mathbb{F}_p (the exact field size can be found in the general proof in [14]). To achieve rate $R = L_w/L_v = 4/3$, we set $L_v = 3\log_2 p$, i.e., each V_n contains three symbols

from the same field. We generate a number of generic linear combinations of $(a_1, \dots, a_4) \setminus (b_1, \dots, b_4)$ and denote them as $(A_1, A_2, \dots) \setminus (B_1, B_2, \dots)$. For now, it suffices to view each $A_i \setminus B_j$ as a random linear combination of symbols from $W_1 \setminus W_2$ and if we can collect four linearly independent combinations of $A_i \setminus B_j$, then we can recover $W_1 \setminus W_2$. The detailed randomized construction is again deferred to the general proof. Each one of the three symbols in V_n will be a linear combination of some A_i and B_j symbols. We first assign the A_i and B_j symbols in each V_n and then linearly combine them to produce the final three symbols in V_n .

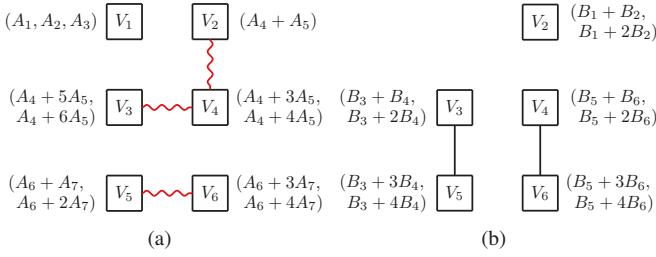


Fig. 6: (a) W_2 -component decomposition of W_1 -connected nodes in Fig. 5.(a), according to which A_i symbols are assigned. (b) W_1 -component decomposition of W_2 -connected nodes in Fig. 5.(a), according to which B_j symbols are assigned.

Consider nodes that are connected to W_1 -edges so that some A_i symbols need to be assigned, i.e., all nodes V_1, \dots, V_6 . The 1-color nodes are trivial (i.e., V_1), and we just assign three distinct A_i symbols. Next, consider the remaining 2-color nodes V_2, \dots, V_6 for which the A_i symbols are assigned according to W_2 -components (see Fig. 6.(a)). V_2, \dots, V_6 form two W_2 -components - one consists of V_2, V_3, V_4 and the other consists of V_5, V_6 . For each W_2 -component, we assign generic linear combinations of the same $2 = \frac{1}{2}L_w/\log_2 p A_i$ symbols (say A_{i_1}, A_{i_2}) so that the interference dimension is limited to two. Further, a normal 2-color node and a W_2 -special 2-color node will get two generic linear combinations of (A_{i_1}, A_{i_2}) and a W_1 -special 2-color node will get one generic linear combination of (A_{i_1}, A_{i_2}) . For example, consider W_2 -component with nodes V_2, V_3, V_4 , where the A_i symbols appeared are limited to A_4, A_5 ; V_2 , as a W_1 -special 2-color node, gets one combination $A_4 + A_5$ and V_3, V_4 , as normal 2-color nodes, each gets two generic combinations (e.g., V_3 gets $A_4 + 5A_5, A_4 + 6A_5$). The other W_2 -component with nodes V_5, V_6 is assigned similarly - the A_i symbols are limited to A_6, A_7 .

The assignment for nodes connected to W_2 -edges is exactly the same (see Fig. 6.(b)). Nodes V_2, \dots, V_6 are connected to W_2 -edges and they are all 2-color. The B_j symbols are assigned according to W_1 -components, i.e., V_2 (as a single-node component) gets generic linear combinations of B_1, B_2 ; V_3, V_5 form a W_1 -component and get generic linear combinations of B_3, B_4 ; V_4, V_6 form a W_1 -component and the B_j symbols are limited to B_5, B_6 .

The last step is to combine the A_i, B_j symbols so that each V_n has only three symbols. This step is simple, if a node gets

at most three A_i, B_j symbols, then just set them as V_n (e.g., V_1, V_2); otherwise the node must be normal 2-color, which gets two generic combinations of A_i and two generic combinations of B_j and we just add one arbitrary combination (say the last) of A_i and B_j together to reduce the total number of symbols to three (e.g., V_3, V_4, V_5, V_6).

Finally, let us verify why the decoding constraints (2) are satisfied. An edge that contains 1-color node is straightforward, e.g., from W_1 -edge $\{V_1, V_2\}$, we have $A_1, A_2, A_3, A_4 + A_5$, so as long as the A_i combinations are generic we can recover $W_1 = (a_1, \dots, a_4)$. For edges that connect two 2-color nodes (e.g., W_2 -edge $\{V_3, V_4\}$), we have 1) the interference dimension is limited to two as our assignment is based on components of interfering sources (e.g., we may decode A_4, A_5 and remove them, leaving us with only B_j symbols); 2) the four symbols from the desired source have full rank (e.g., B_3, B_4, B_5, B_6 are generic combinations) so that we can recover the desired source symbol. Note that because there is no internal edge, for any W_k -edge, the two nodes obtain distinct desired W_k symbols, e.g., for W_2 -edge $\{V_3, V_4\}$, V_3 is assigned B_3, B_4 symbols and V_4 is assigned B_5, B_6 symbols as V_3, V_4 belong to distinct W_1 -components (refer to Fig. 6.(b)). If V_3, V_4 belong to the same W_1 -component, then the W_2 -edge $\{V_3, V_4\}$ will be internal).

The code construction for Example (b) in Fig. 5 follows from the same procedure as that of Example (a). That is, first consider 1-color nodes and assign generic combinations (e.g., V_1, V_4); for remaining 2-color nodes, assign W_k symbols according to W_{3-k} -components (e.g., the W_1 space of the W_2 -edge $\{V_2, V_3\}$ is spanned by A_4, A_5 , and the W_2 space of the W_1 -edge $\{V_3, V_5\}$ is spanned by B_6, B_7); finally combine the four symbols to three for normal 2-color nodes (e.g., V_3). The decoding constraints (2) are easily verified as the interference dimension is strictly controlled and desired source symbols are sufficiently generic because after removing 1-color nodes, there no longer exist internal edges.

2) Necessary Condition: Residing Path and Special 2-Color Node: The sufficient condition of the achievability of rate $4/3$ in Theorem 2 requires the absence of internal edges or the presence of 1-color node in residing paths. Considering the complementary cases, we identify a crucial graphic structure for the unachievability of rate $4/3$ - the presence of at most one special 2-color node in a residing path.

Theorem 3: [Necessary Condition of $\mathcal{G}_{C=4/3}$] With $K = 2$ source symbols, a graph $G \in \mathcal{G}_{C < 4/3}$ if G has a residing path which contains no 1-color node and at most one special 2-color node.

The proof of Theorem 3 is presented in [14]. To illustrate the idea, an example is shown in Fig. 7, where the internal W_2 -edge $\{V_1, V_2\}$ resides in the W_1 -path $(\{V_1, V_3\}, \{V_3, V_4\}, \{V_4, V_2\})$ and this residing path contains only one special 2-color node V_3 and no 1-color node. So the condition of Theorem 3 is satisfied and rate $4/3$ cannot be achieved. To see why, we next give an intuitive explanation.

Suppose rate $4/3$ is achievable, i.e., $L_w/L_v = 4/3$. Then we can show that for any 2-color node (e.g., V_3), it must

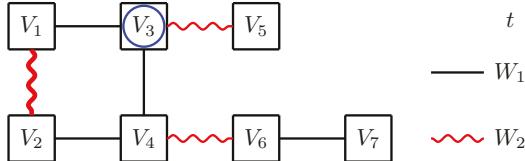


Fig. 7: An example graph $G \in \mathcal{G}_{C < 4/3}$ where the internal edge $\{V_1, V_2\}$ is highlighted and the only special 2-color node V_3 in its residing path is highlighted.

contain at least $L_w/4$ bits of information about each of W_1 and W_2 (captured through conditional entropy. See Lemma 1 of [14]). This is because the connecting node can provide at most $L_v = 3L_w/4$ bits of information about the desired source symbol (e.g., V_5 can contribute $L_v = 3L_w/4$ bits on W_2 at most and the remaining $L_w - L_v = L_w/4$ bits must come from V_3). Further, if the 2-color node is normal (e.g., V_4), it must contain exactly $L_w/2$ bits of information about each of W_1 and W_2 (see Lemma 2 of [14]). The reason is that for two connecting 2-color nodes, the amount of interference allowed is at most $2L_v - L_w = L_w/2$ bits and a pair of nodes must contribute L_w bits of information about the desired source symbol (thus $L_w/2$ from each node). For example, consider W_1 -edge $\{V_2, V_4\}$, where from an interference view, V_2 can contain at most $L_w/2$ bits on W_2 ; from the desired source view, V_2 must also contribute at least $L_w/2$ bits on W_2 because of the W_2 -edge $\{V_1, V_2\}$.

We now consider the propagation of interference through the residing W_1 -path ($\{V_2, V_4\}$, $\{V_4, V_3\}$, $\{V_3, V_1\}$). Start from the normal 2-color node V_2 , which contains $L_w/2$ bits on W_2 and as a W_1 -edge can tolerate at most $L_w/2$ bits on W_2 , then the normal 2-color node V_4 must contain the same $L_w/2$ bits on W_2 (see Lemma 3 of [14]). We are now at V_4 and continue the W_1 -path through edge $\{V_3, V_4\}$, where V_3 is special so that V_3 contains at least $L_w/4$ bits on W_2 and this $L_w/4$ bits are contained in the total $L_w/2$ interference bits in V_4 . Continue further the W_1 -path through edge $\{V_3, V_1\}$, where the $L_w/4$ bits on W_2 in V_3 must be contained in the $L_w/2$ bits on W_2 in V_1 . This in turn means that the $L_w/2$ bits on W_2 in V_1 must overlap with the $L_w/2$ bits on W_2 in V_2 (in the $L_w/4$ bits on W_2 in V_3), thus the internal W_2 -edge $\{V_1, V_2\}$ cannot contribute $L_w/2 + L_w/2 = L_w$ independent bits for the desired W_2 source and we have arrived at a contradiction.

From the above reasoning, we can now illuminate the role of special and normal 2-color nodes in a residing path. For an internal W_k -edge, its residing W_{3-k} -path made up of 2-color nodes must have two normal 2-color end nodes, each of which contains $L_w/2$ independent bits of information about the desired source W_k (e.g., V_1, V_2 about W_2). In the residing W_{3-k} -path, a normal 2-color node will keep the interference on W_k to the same $L_w/2$ dimensions (e.g., V_2, V_4 have the same $L_w/2$ dimensions about W_2 and V_1, V_3 have the same $L_w/2$ dimensions about W_2) while a special 2-color node will inherit at least $L_w/4$ interference dimensions on W_k (e.g., V_3 gets at least $L_w/4$ dimensions of W_2 from V_3).

Conversely, a special 2-color node in a residing W_{3-k} -path can change at most $L_w/4$ dimensions of the interference on W_k (which is the desired source for the internal W_k -edge), so to ensure the independence of the desired source at the internal edge we need at least two special 2-color nodes in the residing path. Along this line, we can also see the role of 1-color node in a residing path, i.e., it completely stops the propagation of interference (see V_4 in the residing W_2 -path ($\{V_3, V_2\}, \{V_2, V_4\}, \{V_4, V_5\}$) of Fig. 6.(b), where V_3, V_5 can hold independent W_1 bits although $\{V_3, V_5\}$ is internal).

IV. DISCUSSION

An extremal rate perspective is taken to study the storage code problem over graphs. For the highest capacity values, we have identified a number of combinatorial structures that have significant impact on the code rate - M -color code (i.e., the number of sources associated with a node), internal edge (which captures a direct conflict between alignment of undesired source symbols and independence of desired source symbols), normal 2-color node\special 2-color node (for rate $4/3$, which keeps the same interference\which could change interference up to the extent of $1/4$ source size). Both the achievability and converse results are guided by a linear dimension counting view. The sufficient and necessary conditions presented are not the largest that our proof technique can lead to, i.e., we can solve more graph instances, but a systematic description is still out of current reach. It is not clear which rates will turn out to have hard capacity instances. Specifically, all extremal graphs with storage code capacity $4/3$ appear to go beyond the techniques of this work. Regarding generalizations, we note that our model is the most elementary, where we have focused on the highest capacity values, i.e., best rate scenarios instead of lowest capacity values, i.e., worst rate scenarios, or other physically meaningful rates; decoding constraints are placed on a pair of nodes in this work instead of an arbitrary set of nodes, i.e., we may have a hypergraph rather than a graph [2]; each edge is associated with only one source symbols instead of multiple source symbols where the decoding structure can be more diverse [1]; each source (coded) symbol is assumed to have equal size instead of arbitrarily different sizes so that in this asymmetric (fully heterogeneous) setting, we may generalize extremal rate to extremal rate tuple (region). Finally, from an extremal rate and network perspective, we may view combinatorial objects using the metric of capacity and study further extremal (largest, densest, most (linearly) independent) graphs, set families, vector spaces etc. along the line of extremal combinatorics [15].

ACKNOWLEDGEMENT

This work is supported in part by NSF under Grant CCF-2007108 and Grant CCF-2045656.

REFERENCES

[1] Z. Li and H. Sun, "On Extremal Rates of Secure Storage over Graphs," *arXiv preprint arXiv:2204.06511*, 2022.

- [2] S. Sahraei and M. Gastpar, "GDSP: A graphical perspective on the distributed storage systems," in *2017 IEEE International Symposium on Information Theory (ISIT)*. IEEE, 2017, pp. 2218–2222.
- [3] R. W. Yeung, *Information Theory and Network Coding*. Springer, 2008.
- [4] C. K. Ngai and R. W. Yeung, "Network coding gain of combination networks," in *Information Theory Workshop*. IEEE, 2004, pp. 283–287.
- [5] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, "Protecting data privacy in private information retrieval schemes," in *Proceedings of the thirtieth annual ACM symposium on Theory of computing*. ACM, 1998, pp. 151–160.
- [6] Z. Li and H. Sun, "Conditional disclosure of secrets: A noise and signal alignment approach," *IEEE Transactions on Communications*, vol. 70, no. 6, pp. 4052–4062, 2022.
- [7] ——, "On the linear capacity of conditional disclosure of secrets," in *2021 IEEE International Symposium on Information Theory (ISIT)*, 2021, pp. 3202–3207.
- [8] Z. Wang and S. Ulukus, "Communication cost of two-database symmetric private information retrieval: A conditional disclosure of multiple secrets perspective," in *2022 IEEE International Symposium on Information Theory (ISIT)*, 2022, pp. 402–407.
- [9] E. F. Brickell and D. M. Davenport, "On the classification of ideal secret sharing schemes," *Journal of Cryptology*, vol. 4, no. 2, pp. 123–134, 1991.
- [10] H.-M. Sun and S.-P. Shieh, "Secret sharing in graph-based prohibited structures," in *Proceedings of INFOCOM'97*, vol. 2. IEEE, 1997, pp. 718–724.
- [11] R. Dougherty, C. Freiling, and K. Zeger, "Network coding and matroid theory," *Proc. IEEE*, vol. 99, no. 3, pp. 388 – 405, Mar. 2011.
- [12] S. Kamath, V. Anantharam, D. Tse, and C.-C. Wang, "The two-unicast problem," *IEEE Transactions on Information Theory*, vol. 64, no. 5, pp. 3865–3882, 2016.
- [13] H. Sun and S. A. Jafar, "Index Coding Capacity: How far can one go with only Shannon Inequalities?" *IEEE Trans. on Inf. Theory*, vol. 61, no. 6, pp. 3041–3055, 2015.
- [14] Z. Li and H. Sun, "On Extremal Rates of Storage over Graphs," *arXiv preprint arXiv:2210.06363*, 2022.
- [15] S. Jukna, *Extremal combinatorics: with applications in computer science*. Springer, 2011, vol. 571.