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Abstract—A storage code over a graph maps K independent
source symbols, each of L, bits, to N coded symbols, each of
L, bits, such that each coded symbol is stored in a node of the
graph and each edge of the graph is associated with one source
symbol. From a pair of nodes connected by an edge, the source
symbol that is associated with the edge can be decoded. The ratio
Ly /L, is called the symbol rate of a storage code and the highest
symbol rate is called the capacity. We show that the three highest
capacity values of storage codes over graphs are 2,3/2,4/3. We
characterize all graphs over which the storage code capacity is 2
and 3/2, and for capacity value of 4/3, necessary condition and
sufficient condition (that do not match) on the graphs are given.

I. INTRODUCTION

Motivated by the heterogeneity of modern distributed stor-
age systems, a storage code problem over graphs is introduced
in [1], [2], where a storage code maps K independent source
symbols, Wy, --- Wk to N coded symbols, Vi, .-, Vy, and
the coded symbols are stored in the node set of a graph
{V1,---,Vn} (so that V,, denotes both the coded symbol and
the node). The heterogeneous data recovery pattern is captured
by the edges of the graph, where each edge {V;,V;} is asso-
ciated with one source symbol W}, and from (V;, V;), we can
decode Wp,. As the structure of the graph can be very diverse,
versatile distributed storage and data access requirements can
be accommodated. An example of the storage code problem
over a graph is given in Fig. 1. The metric of pursuit is the
capacity C' of a storage code over a graph, i.e., the highest
possible symbol rate, defined as L., /L,, where L,,(L,) is the
number of bits contained in each source (coded) symbol and
L., /L, represents the number of source symbol bits reliably
stored in each coded symbol bit.

can decode Wy

- can decode Wy

~uan can decode Ws

Fig. 1: An example graph of a storage code problem with K = 3
source symbols and N = 10 coded symbols.

The graph based storage code problem is not new in
the sense that it can be equivalently transformed to a net-
work coding problem [1]-[4] and adding further security

constraints (i.e., beyond desired data decodability, leakage
about other source symbols is prevented), it is intimately
related to conditional disclosure of secrets [5]-[8] and secret
sharing [9], [10]. What is new is the view brought by [1] -
finding extremal networks/graphs. Instead of first fixing the
network/graph and then finding its highest rate, we focus
on the extremal (highest) capacity values and aim to find
the networks/graphs whose capacity is equal to the extremal
values (see Fig. 2). This complementary view is useful in
identifying critical combinatorial graph structures that limit
the rate and in separating more tractable graph classes in
terms of capacity characterization. Considering that networks
are becoming more and more heterogeneous and solving each
network instance becomes infeasible and impossible (as hard
instances that require non-linear codes for achievability or non-
Shannon information inequalities for converse are well known
[11]-[13]), this extremal rate (network) approach might be a
fruitful direction to produce new results and insights.

In this work, we start from the highest possible capacity
values and for the two highest rates - 2 and 3/2, all extremal
graphs with corresponding extremal capacity values are easily
characterized. For extremal rate of 2, absolute no interference
is allowed as L,, = 2L,, i.e., a pair of nodes can just store the
desired source symbols. As long as there exists interference,
the maximal capacity value drops to 3/2, the next extremal
rate, and all storage code instances with capacity 3/2 only
require intra-source symbol coding, i.e., mixing of symbols
from the same source symbol. When rate of 3/2 cannot be
achieved, the next highest capacity value is shown to be
4/3, which is our main focus and the corresponding graphs
turn out to be highly technical. We identify necessary condi-
tion (converse required) and sufficient condition (achievability
provided) for graphs with storage code capacity 4/3 (see
Fig. 2). The converse is based on delicate arguments on the
intimate relation between the maximum amount of interference
(undesired source symbols) allowed and the minimum amount
of desired source symbols needed. The achievable scheme uses
vector linear codes that carefully control the alignment of
interfering source symbols and the independence of desired
source symbols. The conditions are stated in terms of the
presence (absence) of critical nodes (edges) of the graph,
whose combinatorial structure constrains the code rate.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider K independent uniform
Wiy, , Wk of size L,, bits each.

HWnh,-- ,Wk)=H(Wi) + -+ HWk),

source symbols
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Fig. 2: The extremal rate and network approach of this work and results obtained.
Ly,=H(W,)=---=H(Wkg). (1) Definition 2 (Internal Edge and Residing Path): A Wj,-edge

Consider N coded symbols Vi, .-, Vy, each of L, bits.
Our interest lies in the relative size of L,,, L, (see (3)) and
coding over arbitrary finite fields is allowed, so L,,, L, can
take arbitrarily large values (that are not necessarily integers).

The source symbol recoverability constraint on the coded
symbols is specified by a graph G = (V,&,t), where the
node! set V = {Vq,---,Vy}, the edge set £ is a set of un-
ordered pairs from V), and the function ¢ associates each edge
{V;,V;} € € with a source symbol Wy, k € {1,2,--- , K} £
(K], ie., t({Vi,V;}) = Wi. For each edge {V;,V;} € € such
that ¢({V;,V;}) = Wi, we can decode W}, with no error, i.c.,

2

Isolated nodes are trivial as they are not connected to any edges
and thus involve no constraints. Without loss of generality, we
assume in this work that any graph contains no isolated nodes.

A mapping from the source symbols Wy, - - Wy to the
coded symbols Vi,---,Vy that satisfies the decoding con-
straint (2) specified by a graph G = (V, £, t) is called a storage
code. The (achievable) symbol rate is defined as

L

L,

H(Wk“/hvj) =0if t({Viﬂ VJ}) = Wi.

R= 3)
whose supremum is called the capacity, C' £ sup L, Lw/Ly =
limy,, o0 Luw /Ly, as block codes are allowed.

Next we introduce some graph definitions to facilitate the
presentation of our results.

A. Graph Definitions

Definition 1 (Wy-Edge, Wy.-Path, and W,-Component): An
edge that is associated with W} is called a Wj-edge. A
sequence of distinct connecting Wp,-edges is called a W},-path.
A Wy-component is a maximal subgraph wherein every edge
is a Wj-edge and every two nodes are connected by a Wj.-path
(an isolated node is defined as a trivial component).

For example, in Fig. 1, {V}, 52} (also all solid black edges)
is a Wi-edge; the sequence of Wi-edges ({V2, Vi}, {V1, V51,
{Vs,Vs}) is a W;-path and also a WW;-component.

"Note that we abuse the notation by using Vj, to denote both a coded
symbol and a node of the graph, which will not cause confusion.

that connects two nodes (say V;, V;) in a W/ -path, k' #kis
said to be internal and the W;/-path with end nodes V;, V; is
called the residing path of the internal Wy-edge {V;, V;}.

For example, in Fig. 1, the Wh-edge {V5,Vs} is an in-
ternal edge as it connects two nodes V5, V5 in the Wj-path
{ V2, Vi},{V1, Vs },{V5, Vs}), which is then its residing path.

Definition 3 (M-Color Node): A node whose connected
edges are associated with M different source symbols is called
an M -color node.

For example, in Fig. 1, V4, Vg are 1-color nodes and Vs, Vj
are 2-color nodes.

We need to further distinguish two types of 2-color nodes,
defined as follows.

Definition 4 (Normal 2-Color Node and W.-Special 2-Color
Node): For a 2-color node V that is connected to Wj-edges
and Wy -edges, k # k', if the nodes connected to V' through
Wy.-edges are all 1-color, then V is called a Wj-special 2-
color node (or just a special 2-color node when W}, does not
need to be highlighted). A 2-color node that is not special is
said to be normal.

For example, in Fig. 1, the 2-color node V5 is Wj-special
as Vy is the only node that is connected to V5 through Ws-
edges and Vj is 1-color; the 2-color node Vi is normal as it
is connected to a 2-color node V5 through a Ws-edge and is
connected to a 2-color node V5 through a Wi-edge.

Definition 5 (Graph Class Go—gr+,Gc>Rr+,9c<r+): The
set of graphs whose storage code capacity is equal
to\no smaller than\strictly smaller than R* is denoted by
Go=r-\Go>r \Go< R+

III. RESULTS

Our results are presented in this section, along with illus-
trative examples and observations.

A. Extremal Graphs with Storage Code Capacity 2,3/2:
Go=2, Go=3/2

The three highest extremal capacity values and the full
extremal graph characterization for the two highest extremal
capacity values are established in the following theorem.

Theorem 1: [Go=2,Gc—3/2] The three highest storage code
capacity values are 2,3/2,4/3. The storage code capacity of
a graph is equal to 2 (G € Go=2) if and only if every node
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is 1-color. The storage code capacity of a graph is equal to
3/2 (G € Ge—3)o) if and only if (a) there exists a 2-color
node and all nodes are 1-color or 2-color and (b) there are no
connected 2-color nodes.

t
B, B
( 1 2) Wl
A~ Wy
(A4,B6) Vl ‘/2
(A1, Az) V3 Vi

(b)

Fig. 3: (a) An example graph G € Ge—z/o. W1 = (a1, a2,
az), Wa = (b1, bz, bs), and each A;\Bj is a generic linear combina-
tion of (a1, a2, a3)\(b1, bz, b3). (b) An example graph G' € Go sz
where two 2-color nodes Vi, Vo are connected.

The proof of Theorem 1 is fairly straightforward and is
deferred to the full version of this work [14]. An example of
the achievable scheme (code construction) for G' € Go—3/2 is
shown in Fig. 3.(a). An example graph that does not belong to
Go=2UGc—3/2 is shown in Fig. 3.(b). An intuitive explanation
on why the rate is upper bounded by 4/3 is as follows. V3 can
at most contribute L, bits of information about Ws. {V3, V3}
is a Ws-edge so that V7 has to provide at least the remaining
L., — L, bits of information about W5, leaving at most L, —
(Lw — L,) = 2L, — L,, bits of room for ;. The same
reasoning applies to V5. Finally, {V;, V5 } is a Wi-edge so that
the size of the remaining room must accommodate the L,, bits
of Wh, ie., 2(2L, — L) > Ly, so that R = L,, /L, < 4/3.

B. Extremal Graphs with Capacity 4/3: Go—y /3 with K = 2
Source Symbols

Next we focus on the storage code capacity value of 4/3,
whose extremal graph characterization turns out to be highly
non-trivial. In this work, we exclusively consider the cases
where there are K = 2 source symbols to illustrate the results
in a simpler setting while noting that generalizations to more
than 2 source symbols are possible and deferred to the full
version of this work [14].

The obtained necessary and sufficient conditions are rather
involved. To make the results more clear we give a summa-
rizing chart in Fig. 4.

1) Sufficient Condition: Internal Edge and 1-Color Node:
A crucial graphic structure for the achievability of rate 4/3 is
the absence of internal edges (or when they exist, the presence
of 1-color nodes in their residing paths).

Theorem 2: [Sufficient Condition of Go—4/3] With K = 2
source symbols, a graph G € Go>4/3 if G contains no internal
edge or for any internal edge, its residing path contains a 1-
color node.

The proof of Theorem 2 is presented in [14]. To illustrate the
idea, two examples are shown in Fig. 5, where Example (a)

Is there any internal edge?
No Yes

|Rate 4/3 is achievable.l Does each residing path
(Theorem 2) contain a 1-color node?
\No
Is there any residing path

that contains at most
one special 2-color node?

N\IO
Rate 4/3 may or may
not be achievable.

Yes

|Rate 4/3 is achievable.l

(Theorem 2)
Yes

Rate 4/3 cannot
be achieved. (Theorem 3)

Fig. 4: A summary of sufficient and necessary conditions of Go—4/3
with K = 2.

contains no internal edge; Example (b) contains two internal
edges {V2,V3} and {V5,V5}. Internal Wa-edge {V5,V3} re-
sides in Wy-path ({Va, V1 }, {V4, V3}), which contains 1-color
node V; and internal Wi-edge {V3,V5} resides in Ws-path
({V3,Va},{Va,Va}, {V4,V5}), which contains 1-color node
V4. So the condition of Theorem 2 is satisfied and rate 4/3 is
achievable. We next explain how to construct the code.

(A4 + 45,
(Ay, A, As) By + Bs, , y
By +2By) (A1, Az, A3)
(Ag +5A5, (Ag + 345, .
B3 + Ba, Bs + Bs, (Ag + 45, (24113?14)
Ay + 645+ Ay +445+  Bi+ Bs, 5 N A .
By +2B4) Bs+2Bs) B+ 2Bs) Bet28)
(Ag + Ar, (Ag + 347,
Bs + 3By, Bs + 3Bs, (Ag + Az,
Ag+ 247+ Ag +4A7 + (By, Ba, Bs) Ag +2A7,
Bs +4By) Bs + 4Bg) Bg + 3B7)

(a) (b)

Fig. 5: Two example graphs G € Ge>a/3 and code constructions

for rate 4/3. W1 = (a1, a2, as,as), Wa = (b1, bz, bs, bs) and each
A;\Bj is a generic linear combination of (a1, -+ ,as)\(b1,- -+ ,bs).

We are targeting at rate L,,/L, = 4/3 so that any pair
of nodes connected by an edge contain 2L, = 3L,,/2 bits.
Except from L,, bits from the desired source, at most we can
tolerate 2L, — L., = L,,/2 undesired bits (i.e., interference).
Then the key is to guarantee for any Wj-edge, k € {1, 2}, the
interference from W5_j has at most half source size. That is,
Ws_j, symbols shall be assigned according to Wj-edges (Wy-
components). When there is no internal edge (or residing path
contains 1-color nodes), such interference based assignment
automatically ensures the independence (thus decodability) of
desired source symbols. We now come back to the examples
in Fig. 5 to see how to implement the above code design idea.

Consider Example (a) first and Example (b) will follow
similarly. We set L.,/ log, p = 4 so that W, = (a1, as, as, ay)
and Wy = (b1, ba, b3, by), where each symbol is from a suffi-
ciently large finite field I, (the exact field size can be found in
the general proof in [14]). To achieve rate R = L., /L, = 4/3,
we set L, = 3log,p, i.e., each V,, contains three symbols
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from the same field. We generate a number of generic linear
combinations of (aq,---,a4)\(b1, -+ ,bs) and denote them
s (A1, As, - )\(B1, Ba,--+). For now, it suffices to view
each A;\B; as a random linear combination of symbols
from W7 \W5 and if we can collect four linearly independent
combinations of A;\Bj, then we can recover Wi \Ws. The
detailed randomized construction is again deferred to the
general proof. Each one of the three symbols in V,, will be
a linear combination of some A; and B; symbols. We first
assign the A; and B; symbols in each V), and then linearly
combine them to produce the final three symbols in V,.

By + B,
(A1, 42, 45) (As+ 49) s
(Ag +54s, (A4 +3A45, (Bs+ B, (Bs + B,
Ay +645) [ 4] Ay+445) Bz +2By) 4| Bs+2Bs)
(Ag + A7, (Ag +3A7, (Bs+ 3By, (Bs + 3B,
Ag +247) Ag +4A7) By +4By) S| Bs+4Bg)

(a) ()

Fig. 6: (a) Wa-component decomposition of WW;-connected nodes
in Fig. 5.(a), according to which A; symbols are assigned. (b)
W1-component decomposition of Wa-connected nodes in Fig. 5.(a),
according to which B; symbols are assigned.

Consider nodes that are connected to Wi-edges so that some
A; symbols need to be assigned, i.e., all nodes Vp,---, V.
The 1-color nodes are trivial (i.e., V7), and we just assign
three distinct A; symbols. Next, consider the remaining 2-
color nodes V5, - - - , Vi for which the A; symbols are assigned
according to Ws-components (see Fig. 6.(a)). V5, - -+, Vg form
two Ws-components - one consists of Vs, Vs, Vy and the other
consists of V5, Vg. For each Ws-component, we assign generic
linear combinations of the same 2 = %Lw /logy p A; symbols
(say A;,,A;,) so that the interference dimension is limited
to two. Further, a normal 2-color node and a Wj-special
2-color node will get two generic linear combinations of
(A;,, A;,) and a Wy -special 2-color node will get one generic
linear combination of (A;,, A;,). For example, consider W-
component with nodes V5, V3, V,, where the A; symbols
appeared are limited to Ay, As; Vo, as a Wi-special 2-color
node, gets one combination A4+ A5 and V3, Vy, as normal 2-
color nodes, each gets two generic combinations (e.g., V3 gets
Ay + 5A5, Ay + 6A5). The other Ws-component with nodes
V5, Vi is assigned similarly - the A; symbols are limited to
Ag, Az.

The assignment for nodes connected to Ws-edges is exactly
the same (see Fig. 6.(b)). Nodes V5, --- , Vg are connected to
Ws-edges and they are all 2-color. The B; symbols are as-
signed according to W;-components, i.e., V5 (as a single-node
component) gets generic linear combinations of By, Bo; V3, V3
form a Wj-component and get generic linear combinations of
B3, By; Vi, Vi form a Wi-component and the B; symbols are
limited to Bs, Bg.

The last step is to combine the A;, B; symbols so that each
V., has only three symbols. This step is simple, if a node gets

at most three A;, B; symbols, then just set them as V,, (e.g.,
V1, V4); otherwise the node must be normal 2-color, which gets
two generic combinations of A; and two generic combinations
of B; and we just add one arbitrary combination (say the last)
of A; and B; together to reduce the total number of symbols
to three (e.g., V3, V4, V5, Vi).

Finally, let us verify why the decoding constraints (2) are
satisfied. An edge that contains 1-color node is straightfor-
ward, e.g., from Wi-edge {V1, Va}, we have Ay, Ay, Az, Ag+
As, so as long as the A; combinations are generic we can
recover Wi = (a1, ,a4). For edges that connect two 2-
color nodes (e.g., Wa-edge {V3, V4}), we have 1) the interfer-
ence dimension is limited to two as our assignment is based
on components of interfering sources (e.g., we may decode
Ay, As and remove them, leaving us with only B; symbols);
2) the four symbols from the desired source have full rank
(e.g., B3, By, Bs, Bg are generic combinations) so that we can
recover the desired source symbol. Note that because there
is no internal edge, for any Wj-edge, the two nodes obtain
distinct desired W), symbols, e.g., for Wh-edge {V3,Vi},
Vs is assigned Bs, B4 symbols and Vj is assigned Bs, Bg
symbols as V3, Vy belong to distinct W;-components (refer to
Fig. 6.(b)). If V3, V4 belong to the same WW;-component, then
the Wh-edge {V3, V4} will be internal).

The code construction for Example (b) in Fig. 5 follows
from the same procedure as that of Example (a). That is,
first consider 1-color nodes and assign generic combinations
(e.g., V1, Vy); for remaining 2-color nodes, assign Wj, symbols
according to Ws_,-components (e.g., the W space of the Ws-
edge {V2, V3} is spanned by Ay, A5, and the W5 space of the
Wh-edge {V3, Vs} is spanned by Bg, Br); finally combine the
four symbols to three for normal 2-color nodes (e.g., V3). The
decoding constraints (2) are easily verified as the interference
dimension is strictly controlled and desired source symbols
are sufficiently generic because after removing 1-color nodes,
there no longer exist internal edges.

2) Necessary Condition: Residing Path and Special 2-Color
Node: The sufficient condition of the achievability of rate 4/3
in Theorem 2 requires the absence of internal edges or the
presence of 1-color node in residing paths. Considering the
complementary cases, we identify a crucial graphic structure
for the unachievability of rate 4/3 - the presence of at most
one special 2-color node in a residing path.

Theorem 3: [Necessary Condition of Go—y/3] With K = 2
source symbols, a graph G € Goy/3 if G has a residing
path which contains no 1-color node and at most one special
2-color node.

The proof of Theorem 3 is presented in [14]. To il-
lustrate the idea, an example is shown in Fig. 7, where
the internal Ws-edge {Vi,V2} resides in the Wj-path
({V1,Va},{V5,Vi}, {V4, Vo}) and this residing path contains
only one special 2-color node V3 and no 1-color node. So the
condition of Theorem 3 is satisfied and rate 4/3 cannot be
achieved. To see why, we next give an intuitive explanation.

Suppose rate 4/3 is achievable, i.e., L, /L, = 4/3. Then
we can show that for any 2-color node (e.g., V3), it must
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V1 V3 V5 t
—w
Va Vi Ve Vz e Wo

Fig. 7: An example graph G € Gea/3 where the internal edge
{Vi1,V2} is highlighted and the only special 2-color node V3 in its
residing path is highlighted.

contain at least L,,/4 bits of information about each of W,
and W5 (captured through conditional entropy. See Lemma 1
of [14]). This is because the connecting node can provide at
most L,, = 3L,, /4 bits of information about the desired source
symbol (e.g., V5 can contribute L, = 3L,,/4 bits on Wy at
most and the remaining L,, — L, = L, /4 bits must come
from V3). Further, if the 2-color node is normal (e.g., Vy), it
must contain exactly L,,/2 bits of information about each of
W1 and W5 (see Lemma 2 of [14]). The reason is that for two
connecting 2-color nodes, the amount of interference allowed
is at most 2L,, — L,, = L,,/2 bits and a pair of nodes must
contribute L, bits of information about the desired source
symbol (thus L,,/2 from each node). For example, consider
Wh-edge {Va, V,}, where from an interference view, V5 can
contain at most L,,/2 bits on W; from the desired source
view, V5 must also contribute at least L,, /2 bits on W5 because
of the Ws-edge {V1, V5}.

We now consider the propagation of interference through the
residing Wi-path ({Va, Va}, {Vi, Va}, {V5,V1}). Start from
the normal 2-color node V2, which contains L,,/2 bits on W5
and as a Wi-edge can tolerate at most L,, /2 bits on W5, then
the normal 2-color node V; must contain the same L, /2 bits
on W5 (see Lemma 3 of [14]). We are now at V; and continue
the Wi -path through edge {V3, V4 }, where V3 is special so that
V3 contains at least L,,/4 bits on W5 and this L., /4 bits are
contained in the total L,,/2 interference bits in V. Continue
further the W;-path through edge {V5,V;}, where the L, /4
bits on W5 in V3 must be contained in the L,,/2 bits on Wy
in V;. This in turn means that the L, /2 bits on Wy in V4
must overlap with the L,,/2 bits on W5 in V5 (in the L,,/4
bits on W5 in V3), thus the internal Ws-edge {V1,V2} cannot
contribute L., /2+L,,/2 = L., independent bits for the desired
W5 source and we have arrived at a contradiction.

From the above reasoning, we can now illuminate the role
of special and normal 2-color nodes in a residing path. For
an internal Wj-edge, its residing Ws_j-path made up of 2-
color nodes must have two normal 2-color end nodes, each of
which contains L,,/2 independent bits of information about
the desired source Wy, (e.g., V1, Vo about W5). In the residing
Ws5_-path, a normal 2-color node will keep the interference
on Wj, to the same L., /2 dimensions (e.g., V2,V have the
same L, /2 dimensions about W5 and V7, V3 have the same
L, /2 dimensions about W5) while a special 2-color node
will inherit at least L, /4 interference dimensions on W
(e.g., V3 gets at least L,,/4 dimensions of Wy from V3).

Conversely, a special 2-color node in a residing Ws_j-path
can change at most L,,/4 dimensions of the interference on
W, (which is the desired source for the internal W -edge),
so to ensure the independence of the desired source at the
internal edge we need at least two special 2-color nodes in
the residing path. Along this line, we can also see the role of
1-color node in a residing path, i.e., it completely stops the
propagation of interference (see Vj in the residing Ws-path
({3, Va}, {Va, Vi }, {V4, V5 }) of Fig. 6.(b), where V3, V5 can
hold independent W bits although {V3,V5} is internal).

IV. DISCUSSION

An extremal rate perspective is taken to study the storage
code problem over graphs. For the highest capacity values,
we have identified a number of combinatorial structures that
have significant impact on the code rate - A -color code
(i.e., the number of sources associated with a node), internal
edge (which captures a direct conflict between alignment
of undesired source symbols and independence of desired
source symbols), normal 2-color node\special 2-color node
(for rate 4/3, which keeps the same interference\which could
change interference up to the extent of 1/4 source size).
Both the achievability and converse results are guided by a
linear dimension counting view. The sufficient and necessary
conditions presented are not the largest that our proof tech-
nique can lead to, i.e., we can solve more graph instances,
but a systematic description is still out of current reach. It
is not clear which rates will turn out to have hard capacity
instances. Specifically, all extremal graphs with storage code
capacity 4/3 appear to go beyond the techniques of this
work. Regarding generalizations, we note that our model is
the most elementary, where we have focused on the highest
capacity values, i.e., best rate scenarios instead of lowest
capacity values, i.e., worst rate scenarios, or other physically
meaningful rates; decoding constraints are placed on a pair
of nodes in this work instead of an arbitrary set of nodes,
i.e., we may have a hypergraph rather than a graph [2]; each
edge is associated with only one source symbols instead of
multiple source symbols where the decoding structure can be
more diverse [1]; each source (coded) symbol is assumed
to have equal size instead of arbitrarily different sizes so
that in this asymmetric (fully heterogeneous) setting, we may
generalize extremal rate to extremal rate tuple (region). Finally,
from an extremal rate and network perspective, we may view
combinatorial objects using the metric of capacity and study
further extremal (largest, densest, most (linearly) independent)
graphs, set families, vector spaces etc. along the line of
extremal combinatorics [15].
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