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Abstract—Distributed Linearly Separable Computation prob-
lem under the cyclic assignment is studied in this paper. It is
a problem widely existing in cooperated distributed gradient
coding, real-time rendering, linear transformers, etc. In a dis-
tributed computing system, a master asks N distributed workers
to compute a linearly separable function from K datasets. The
task function can be expressed as Kc linear combinations of K
messages, where each message is the output of one individual
function of one dataset. Straggler effect is also considered,
such that from the answers of each Nr worker, the master
should recover the task. The computation cost is defined as
the number of datasets assigned to each worker, while the
communication cost is defined as the number of (coded) messages
which should be received. The objective is to characterize the
optimal tradeoff between the computation and communication
costs. Various distributed computing scheme were proposed in
the literature with a well-known cyclic data assignment, but the
(order) optimality of this problem remains open, even under the
cyclic assignment. This paper proposes a new computing scheme
with the cyclic assignment based on interference alignment, which
is near optimal under the cyclic assignment.

Index Terms—Coded distributed computing, linearly separable
function, cyclic assignment, interference alignment

I. INTRODUCTION

With the development of deep learning and communication

technologies, computation on large-scale data is an emergent

challenge to be solved [1]. To economize the resource of

computers and speed up the computing process, clients always

adopt distributed computing technology in the cloud platform

to carry out large and complex tasks [2]. The cloud com-

puting platforms such as Amazon Web Services (AWS) [3],

Microsoft Azure [4] and Google Cloud Platform [5] are

widely used in real systems. Some distributed computing

framework like Apache Spark [6], MapReduce [7] attract a lot

of cutting-edge research [8]–[10]. However, the performance

of a distributed system is strongly affected by the straggling
workers (or simply, stragglers) and the limited communication

bandwidth [11]. Coding techniques (such as error-correction

codes and linear network codes) were originally introduced to

efficiently solve the above two challenges in the distributed

matrix multiplication problem [11] and in the MapReduce

distributed computing problem [12].

This paper considers a specific distributed computing frame-

work, distributed linearly separable computation, originally

proposed in [13], [14]. A master wants to compute a func-

tion of K datasets with equal length expressed as Kc linear

combinations of K messages, where each message is an indi-

vidual function of one distinct dataset. This computation task

structure covers many practical applications as special cases,

such as distributed gradient descent [15], distributed linear

transform [16], real-time rendering [17], etc. In the system

considered in this paper, the master asks N workers to compute

a linearly separable function on K datasets (D1, . . . ,DK):
1

f(D1, . . . ,DK) = g(f1(D1), . . . , fK(DK)) = g(W1, . . . ,WK),

where Wk = fk(Dk), k ∈ [K]. is the result of the com-

putation when the dataset Dk applying to function fk(·)
and Wk ∈ F

L
q. g(W1, . . . ,WK) contains Kc linear combi-

nations of the messages W1, . . . ,WK, where each message

contains L symbols uniformly i.i.d. in Fq. In a matrix form,

g(W1, . . . ,WK) = F[W1; . . . ;WK], where F is a demand

matrix with dimension Kc ×K whose elements are uniformly

i.i.d. in Fq. The distributed computing framework contains

three phases:

• Assignment phase. The master assigns the datasets to the

workers in an uncoded way. Each worker receives M =
K
N (N− Nr +m) datasets, where m ∈ {1, . . . ,Nr}.

• Computing phase. Each worker n where n ∈ {1, . . . ,N}
computes the messages from the assigned dataset, and

then sends back coded messages to the master.

• Decoding phase. After receiving the answers of any

Nr workers, the master should be able to recover the

computing task; i.e., we should tolerate up to N − Nr

stragglers.

The objective is to minimize the communication cost R, which

is defined as the (normalized) number of symbols which

should be received by the master in order to recover the

computing task.

In the literature, various works have been proposed to

consider different regimes of system parameters for the above

1As in [13], [14], we assume that K divides N in this paper. The proposed
computing scheme can be extended to the case where K does not divide N,
by adding virtual datasets as the step in [13], [14, Section V-A].
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distributed linearly separable computation problem:2

• m = 1, Kc = 1. Computing schemes with the optimal

communication cost were proposed in [15].

• m > 1, Kc = 1. Under the constraint of linear coding,

computing schemes with the optimal communication cost

were proposed in [18], [19].

• m = 1, Kc > 1. Under the constraint of the cyclic

assignment, a computing scheme with the optimal com-

munication cost was proposed in [13].

• m > 1, Kc > 1. Under the constraint of the cyclic

assignment and N ≥ m+u−1
u +u (Nr −m− u+ 1) where

u :=
⌈
KcN
K

⌉
, a computing scheme was proposed in [14],

which is optimal if N = K and order optimal within a

factor of 2 otherwise.

As a summary on the existing works on the distributed

linearly separable computation problem, the (order) optimal

communication cost remains open, even under the constraint

of the cyclic assignment.

Contributions: For the distributed linearly separable com-

putation problem with m > 1 and Kc > 1, we proposed a new

computing scheme with the cyclic assignment and a computing

phase based on interference alignment. Under the constraint

of the cyclic assignment, the required communication cost of

the proposed computing scheme is optimal if N = K and order

optimal within a factor of 2 otherwise.

Notations: Calligraphic symbols denote sets, bold sym-

bols denote vectors and matrices, and sans-serif symbols de-

note system parameters. We use | · | to represent the cardinality

of a set or the length of a vector; [a : b] := {a, a+ 1, . . . , b}
and [n] := [1 : n]; the sum of a set S and a scalar a represents

the resulting set of adding each element of S by a; MT

and M−1 represent the transpose and the inverse of matrix

M, respectively; Fq represents a finite field with order q; in

this paper, the basis of logarithm in the entropy terms is q;

Mod(b, a) represents the modulo operation on b with integer

divisor a and in this paper we let Mod(b, a) ∈ {1, . . . , a} (i.e.,

we let Mod(b, a) = a if a divides b).

II. SYSTEM MODEL

We consider the (K,N,Nr,Kc,m) distributed linearly sepa-

rable computation problem over the canonical master-worker

distributed system, originally proposed in [13]. A master wants

to compute a function of K datasets D1, . . . ,DK, by the help

of N workers.

With the assumption that the function is linearly separable

from the datasets, the computation task can be written as Kc ≤
K linear combinations of K messages

f(D1,D2, . . . ,DK) = g(f1(D1), . . . , fK(DK))

= g(W1, . . . ,WK) = F[W1; . . . ;WK] = [F1; . . . ;FKc
], (1)

2The following mentioned existing schemes are all with a well-known
cyclic assignment. The cyclic assignment was used in most existing works on
the distributed linearly separable computation problem and also in practical
systems. The main advantages of the cyclic assignment are: (i) it can be widely
used unlimited by system parameters, (ii) its independence of the computing
task such that the data assignment could be done offline, (iii) its simplicity.

where the ith message is Wi = fi(Di), representing the

outcome of the component function fi(·) applied to dataset

Di. As in [13], we assume that each message Wi contains L
uniformly i.i.d. symbols in Fq, where q is large enough.3 F
represents the demand matrix with dimension Kc × K, where

each of its elements is uniformly i.i.d. over Fq.

A distributed computing framework contains three phases.

Data assignment phase: We assign M := K
N (N−Nr+m)

datasets to each worker. The set of indices of datasets assigned

to worker n is denoted by Zn, where Zn ⊆ [K] and |Zn| = M.

Computing phase: Each worker n ∈ [N] first computes

the messages Wk = fk(Dk) for each k ∈ Zn. Then it com-

putes Xn, which a function of the M messages {Wk : k ∈ Zn},

and sends Xn back to the master. The number of symbols in

Xn is denoted by Tn.

Since the computation complexity on the separable func-

tions is usually is usually much higher than computing the

desired linear combinations of the messages, the computation

cost of each worker is defined as M.

Decoding phase: The master only waits for the answers

of the first Nr workers. Since the master and workers cannot

foresee which Nr workers arrive first, the computing scheme

should be designed to tolerate any N−Nr stragglers. For each

subset of workers A ⊆ [N] where |A| = Nr, by defining

XA := {Xn : n ∈ A}, there should exist a decoding function

such that ĝA = φA
(
XA,F

)
, where φA : F

|Zn|L
q × [Γq]

Kc×K →
[Γq]

Kc×L.

The worst-case error probability is defined as

ε := max
A⊆[N]:|A|=Nr

Pr{ĝA �= g(W1, . . . ,WK)}. (2)

A computing scheme is called achievable if the worst-case

error probability vanishes when q → ∞.

We define

R := max
A⊆[N]:|A|=Nr

∑
n∈A Tn

L
(3)

as the communication cost, which presents the worst-case

(normalized) number of symbols received by the master from

any Nr responding workers to recover the computation task.

Objective: The objective of the (K,N,Nr,Kc,m) dis-

tributed linearly separable computation problem is to charac-

terize the optimal (minimum) communication cost R� among

all achievable computing schemes. Notice that, in order to

tolerate N− Nr stragglers, we should have m ∈ [N− Nr].

Cyclic assignment: Under the cyclic assignment, each

dataset Di, where i ∈ [K], is assigned to workers

Mod(i,N),Mod(i − 1,N), . . . ,Mod(i − M + 1,N). Thus for

each worker n ∈ [N], we have

Zn = ∪
p∈[0: KN−1]

{
Mod(n,N) + pN,Mod(n+ 1,N) + pN, . . . ,

Mod(n+ N− Nr +m,N) + pN
}

(4)

3In this paper, we assume that K/N is an integer and L is large enough
such that any sub-message division is possible.
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with cardinality K
N (N−Nr +m). The optimal communication

cost under the cyclic assignment is defined as R�
cyc.

A converse bound on R�
cyc was propsed in [14], which is

reviewed as follows.

Theorem 1 ( [14]). For the (K,N,Nr,Kc,m) distributed
linearly separable computation problem,

• when Kc ∈ [
K
N (Nr −m+ 1)

]
, by defining u :=

⌈
KcN
K

⌉
,

we have

R�
cyc ≥

NrKc

m+ u− 1
. (5a)

• when Kc ∈
[
K
N (Nr −m+ 1) : K

]
, we have

R�
cyc ≥ R� ≥ Kc. (5b)

As explained in the Introduction, the order optimality under

the constraint of the cyclic assignment still remains open.

III. MAIN RESULTS

In this section, we provide a new achievable computing

scheme, whose required communication cost is stated in the

following theorem.

Theorem 2. For the (K,N,Nr,Kc,m) distributed linearly
separable computation problem where N ≤ 60, the following
communication cost is achievable, where

• when Kc ∈
[
K
N

]
,

R1 =
KcNr

m
; (6)

• when Kc ∈
[
K
N : K

N (Nr −m+ 1)
]
,

R1 =
NrKu

N(m+ u− 1)
; (7)

• when Kc ∈
[
K
N (Nr −m+ 1) : K

]
,

R1 = Kc. (8)

Note that when Kc ∈ [
K
N

]
, to achieve R1 = KcNr

m , we

directly repeat the optimal computing schemes for Kc = 1 and

m > 1 in [18], [19] Kc times. In addition, as explained in [13],

if the proposed scheme works for the case Kc =
K
N (Nr−m+1)

with communication cost Kc, then it also works for the case

Kc ∈ [
K
N (Nr −m+ 1) : K

]
with communication cost Kc.

The main contribution of our proposed computing scheme

is for the case Kc ∈ [
K
N + 1 : K

N (Nr −m+ 1)
]
. We use the

Schwartz-Zippel lemma [20]–[22] to prove the decodability of

the proposed computing scheme in Theorem 2. For the non-

zero polynomial condition for the Schwartz-Zippel lemma, for

the following two cases (i) Kc ∈ [
K
N (Nr −m+ 1) : K

]
and

(ii) N = Nr, m = 2 and Kc + 1 divides N, we provide formal

proofs to show the non-zero polynomial condition, and thus

prove our scheme is decodable. We also numerically verify

all cases that N ≤ 60, and thus conjecture in the rest of the

paper, the proposed computing scheme is decodable for
any system parameters with the communication cost given

in Theorem 2.

The proposed computing scheme fully covers the computing

scheme in [14], which only works for the case N ≥ m+u−1
u +

u(Nr −m− u+ 1).
By comparing the proposed scheme in Theorem 2 with the

converse bound in Theorem 1, we obtain the following (order)

optimality results.

Theorem 3. For the (K,N,Nr,Kc,m) distributed linearly
separable computation problem,

1) when K = N, we have

R�
cyc = R1 =

{
NrKc

m+u−1 , if Kc ∈ [Nr −m+ 1];

Kc, if Kc ∈ [Nr −m+ 1 : K];

(9)

2) when Kc ∈
[
K
N

]
, we have

R�
cyc = R1 =

NrKc

m
; (10)

3) when Kc ∈
[
K
N + 1 : K

N (Nr −m+ 1)− 1
]
, we have

R�
cyc ≥

Kc

K
Nu

R1 ≥ R1

2
; (11)

4) when Kc ∈
[
K
N (Nr −m+ 1) : K

]
, we have4

R� = R�
cyc = R1 = Kc. (12)

To summarize Theorem 3, under the constraint of the cyclic

assignment, the proposed computing scheme is order optimal

within a factor of 2, for all system parameters.

In the following, we will describe the proposed com-

puting scheme in Theorem 2 for the case Kc ∈[
K
N + 1 : K

N (Nr −m+ 1)
]
, to prove (7). By a similar

proof as in [14, Appendix A], if the proposed scheme

works for the
(
N,N,Nr, u,m

)
problem with high proba-

bility and achieves (7), then it can also be extended to

the
(
K,N,Nr,

K
Nu,m

)
problem with high probability and

achieves (7). Hence, in the proof of Theorem 2, for the ease

of description, we only consider the case where K = N. The

proposed scheme differs in three regimes, Kc = Nr −m+ 1,

Kc = Nr−m, and Kc ∈ [2 : Nr−m−1]. Due to the limitation

of pages, we use one example to illustrate the main ideas of the

proposed scheme for Kc ∈ [2 : Nr−m−1], which is the most

non-trivial scheme and is based on interference alignment.

Example 1 ((K,N,Nr, u,m) = (6, 6, 6, 2, 2)). We consider
the example where N = K = 6, Nr = 6, Kc = u = 2, and
M = m = 2. The converse bound under the cyclic assignment
in Theorem 1 for this example is R�

cyc ≥ NrKc

m+u−1 = 4. Without
loss general, we assume the demand matrix F is

F =

[
1 1 1 1 1 1
1 2 3 4 5 6

]
. (13)

For the sake of simplicity, in this example, we assume that the
field is a large enough prime field; in general the proposed

4For the considered problem, it is natural to see that the optimal com-
munication cost R� is lower bounded by Kc, since the Kc demanded linear
combinations of messages are linearly independent with high probability.
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scheme does not need this assumption (recall we only need the
field size is large enough). Note that the computing scheme
in [14] cannot work for this example.

Data assignment phase: We consider the cyclic assign-
ment, which is illustrated in Table I.

TABLE I: Data assignment

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

D1 D2 D3 D4 D5 D6

D2 D3 D4 D5 D6 D1

Computing phase: To achieve the converse bound R�
cyc ≥

NrKc

m+u−1 = 4, we divide each message Wk where k ∈ [K]
into d := m + u − 1 = 3 non-overlapping and equal-length
sub-messages, Wk = {Wk,j : j ∈ [d]}, where each sub-
message contains L

d = L
3 symbols in Fq. We will let each

worker transmit KcL
d = 2L

3 symbols in the computing scheme,
which coincides with the converse bound. After the message
division, the computation task becomes Kc × d = 6 linear
combinations of sub-messages. Since each worker transmits
2 linear combinations of sub-messages, the master totally re-
ceives 12 linear combinations of sub-messages, whose spanned
linear space contains the computation task. In other words,
the total received linear combinations contains 6 virtually
demanded linear combinations of sub-messages. The effective

demand could be expressed as F′

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1,1

...
W6,1

W1,2

...
W6,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= F′W, where

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1,1

...
W6,1

W1,2

...
W6,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and the dimension of F

′
is NrKc × K(m +

u− 1) = 12× 18, with the form

F′ =

⎡
⎢⎢⎣

(F)2×6 02×6 02×6

02×6 (F)2×6 02×6

02×6 02×6 (F)2×6

(V1)6×6 (V2)6×6 (V3)6×6

⎤
⎥⎥⎦ , (14)

where (Vi)6×6, i ∈ [3] are denoted as the virtual demands.
Our coding strategy is to let each worker n ∈ [6] send two

linear combinations

sn,1F′W and sn,2F′W, (15)

where sn,1 and sn,2 are vectors with length 12. By the
cyclic assignment, worker n does not have {Dk : k ∈ Zn}
where Zn = [6] \ {n,Mod(n+ 1, 6)}. Consequently it cannot
compute the sub-messages {Wk,j : k ∈ Zn, j ∈ [3]},
and thus in the transmitted linear combinations (15) the

coefficients of the sub-message which it cannot compute are
0; i.e., the ith columns of sn,1F′ and of sn,2F′ are 0, where
i ∈ Zn ∪ (Zn + 6) ∪ (Zn + 12). Hence, the column-
wise sub-matrix of F′ including the columns with indices in
Zn ∪ (Zn+6)∪ (Zn+12), denoted by F′(n), should contain
at least 2 linearly independent left null vectors. However, if we
choose the last 6 rows in F′(n) uniformly i.i.d. in Fq, F′(n)
whose dimension is 12 × 12 is full rank, and thus does not
contain any non-zero left null vector.

So the main challenge is to design the last 6 rows in F′

such that the following two constraints are satisfied:
• (c1) for each n ∈ [N], the rank of F′(n) is 10, such that

F′(n) contains 2 linearly independent left null vectors;
let sn,1 and sn,2 be these two vectors;

• (c2) for any set of workers A ⊆ [K] where |A| = Nr = 6,
by defining A(i) as the ith smallest element of A,

SA =

⎡
⎢⎢⎢⎢⎢⎣

sA(1),1

sA(1),2

sA(2),1

...
sA(6),2

⎤
⎥⎥⎥⎥⎥⎦ (16)

with dimension 12× 12 is full rank.
Note that Condition (c2) guarantees the successful decoding,
because if it holds, the master can recover F′W from the
answers of any Nr workers.

By Constraint (c1), the rank of F′(n) is 10, while the
dimension of F′(n) is 12× 12. Hence, two columns of F′(n)
should be linear combinations of the other columns; in other
words, we should proceed a rank reduction step on F′(n). It
will be explained later in Remark 1 that, if we proceed the
rank reduction step individually for each worker, Constraint
(c2) cannot be satisfied. Instead, a smart cooperative rank
reduction approach is taken across the workers.

Our approach is based on the following key observa-
tion: under the cyclic assignment, each adjacent/neighbouring
Nr − m − Kc = 2 workers do not have Kc + 1 = 3
common datasets. For example, both workers 1 and 2 do not
have D4,D5,D6. We generate one linear equation on the
columns of F′ with indices in {4, 5, 6, 10, 11, 12, 16, 17, 18}
(see (18)), we can take one reduction on F′(1) and F′(2)
simultaneously. In other words, there exists one vector
e1 = (0, 0, 0, e1,4, e1,5, e1,6, 0, 0, 0, e1,10, e1,11, e1,12, 0, 0, 0,
e1,16, e1,17, e1,18) such that

F′eT1 = 012×1, (18)

where 0m×n represents a matrix of all 0 with dimen-
sion m × n. In addition, by the first two rows of F′, it
can be seen that (e1,4, e1,5, e1,6) should be a multiple of

(1,−2, 1), since
[

1 1 1
4 5 6

]
[1,−2, 1]T = 02×1. Similarly,

(e1,10, e1,11, e1,12) and (e1,16, e1,17, e1,18) should also be mul-
tiples of (1,−2, 1). By randomly selecting multiple numbers,
we let (e1,4, e1,5, e1,6) = (2,−4, 2), (e1,10, e1,11, e1,12) =
(0, 0, 0), and (e1,16, e1,17, e1,18) = (2,−4, 2).
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E =

⎡
⎣e1

...
e6

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

0 0 0 2 −4 2 0 0 0 0 0 0 0 0 0 2 −4 2
0 0 0 0 0 0 2 0 0 0 −10 8 1 0 0 0 −5 4
8 −10 0 0 0 2 4 5 0 0 0 1 8 −10 0 0 0 2
2 −4 2 0 0 0 2 −4 2 0 0 0 2 −4 2 0 0 0
0 0 0 0 0 0 0 1 −2 1 0 0 0 2 −4 2 0 0
0 0 1 −2 1 0 0 0 1 −2 1 0 0 2 −4 2 0

⎤
⎥⎥⎥⎥⎦ (17)

Similarly, for each i ∈ [6], the workers in {i,Mod(i+1, 6)}
do not have DMod(i−1,6),DMod(i−2,6),DMod(i−3,6); we gener-
ate a vector ei, where E = [e1; . . . ; e6] is given in (17) at the
top of this page. Note that, each worker n ∈ [6] is involved in
two sets of {i,Mod(i+ 1, 6)} where i ∈ [6]; thus the rank of
F′(n) is reduced by 2, satisfying Constraint (c1).

The next step is to solve the last 6 rows of F′ satisfying

F′ET = 012×6. (19)

This equation is solvable because ET has dimension 18 × 6
and is full rank; thus the left null space contains 18−6 linearly
independent vectors, which could be exactly the rows of F′.

Finally, as described above, after determining F′, we can
then determine sn,1 and sn,2 for each worker n ∈ [6]. The
realizations of F′ and S[6] are given in [23, Appendix A]
respectively. It can be seen that S[6] is full rank, satisfying
Constraint (c2). The general coding scheme will be found in
the extended version of this paper [23]

Decoding phase: Since S[6] is full rank, by receiving
S[6]F′W, the master can multiple it by the first 6 rows of
the inverse of S[6] to recover the computation task. �
Remark 1. By treating each sub-message which cannot be
computed by one worker as an ‘interference’, in the above
example we propose to use the interference alignment strategy
to reduce the dimensions of interferences to workers cooper-
atively. More precisely, we generate the matrix E in (17) to
align interferences, such that 19 holds. We need to generate
two equations with the form 18 to align interferences for each
worker. If the alignment on the interferences is not perfectly
cooperative cross the workers as the proposed scheme (each
equation with the form (18) is useful to 2 workers), the number
of rows in E will be strictly larger than 6; then the left null
space of ET will be strictly less than 18 − 6 = 12, i.e., the
number of rows in F′. As a result, S[6] cannot be full rank. �

At the end of this paper, we provide some numerical

evaluations on the proposed computing scheme. A bench-

mark scheme is also considered which repeats the computing

scheme in [18] Kc times. It can be seen from Fig. 1 and 2

that our proposed scheme has a (m + Kc − 1) decrease

gain on the communication cost compared to the benchmark

scheme, which means with the parameters increase our coding

scheme’s effect increase. The proposed scheme also coincides

with the converse bound under the cyclic assignment in

Theorem 1 when K divides N and has a constant gap within

2 when K cannot divide N.
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