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Abstract—Distributed Linearly Separable Computation prob-
lem under the cyclic assignment is studied in this paper. It is
a problem widely existing in cooperated distributed gradient
coding, real-time rendering, linear transformers, etc. In a dis-
tributed computing system, a master asks N distributed workers
to compute a linearly separable function from K datasets. The
task function can be expressed as K. linear combinations of K
messages, where each message is the output of one individual
function of one dataset. Straggler effect is also considered,
such that from the answers of each N, worker, the master
should recover the task. The computation cost is defined as
the number of datasets assigned to each worker, while the
communication cost is defined as the number of (coded) messages
which should be received. The objective is to characterize the
optimal tradeoff between the computation and communication
costs. Various distributed computing scheme were proposed in
the literature with a well-known cyclic data assignment, but the
(order) optimality of this problem remains open, even under the
cyclic assignment. This paper proposes a new computing scheme
with the cyclic assignment based on interference alignment, which
is near optimal under the cyclic assignment.

Index Terms—Coded distributed computing, linearly separable
function, cyclic assignment, interference alignment

I. INTRODUCTION

With the development of deep learning and communication
technologies, computation on large-scale data is an emergent
challenge to be solved [1]. To economize the resource of
computers and speed up the computing process, clients always
adopt distributed computing technology in the cloud platform
to carry out large and complex tasks [2]. The cloud com-
puting platforms such as Amazon Web Services (AWS) [3],
Microsoft Azure [4] and Google Cloud Platform [5] are
widely used in real systems. Some distributed computing
framework like Apache Spark [6], MapReduce [7] attract a lot
of cutting-edge research [8]-[10]. However, the performance
of a distributed system is strongly affected by the straggling
workers (or simply, stragglers) and the limited communication
bandwidth [11]. Coding techniques (such as error-correction
codes and linear network codes) were originally introduced to
efficiently solve the above two challenges in the distributed
matrix multiplication problem [11] and in the MapReduce
distributed computing problem [12].

This paper considers a specific distributed computing frame-
work, distributed linearly separable computation, originally
proposed in [13], [14]. A master wants to compute a func-
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tion of K datasets with equal length expressed as K. linear
combinations of K messages, where each message is an indi-
vidual function of one distinct dataset. This computation task
structure covers many practical applications as special cases,
such as distributed gradient descent [15], distributed linear
transform [16], real-time rendering [17], etc. In the system
considered in this paper, the master asks N workers to compute
a linearly separable function on K datasets (D1, ..., Dg):'

f(Dlﬂ"'7DK) :g(fl(Dl)v"'afK(DK)) :g(Wh'"ﬂWK)?

where Wi, = fi(Dy),k € [K]. is the result of the com-
putation when the dataset Dj applying to function fi(-)
and W, € IF:. g(Wy,...,Wk) contains K. linear combi-
nations of the messages Wi,..., Wk, where each message
contains L symbols uniformly i.i.d. in Fq. In a matrix form,
gWh,...,Wk) = F[Wiy;...;Wk], where F is a demand
matrix with dimension K. x K whose elements are uniformly
iid. in Fy. The distributed computing framework contains
three phases:

o Assignment phase. The master assigns the datasets to the
workers in an uncoded way. Each worker receives M =
E(N — N, 4+ m) datasets, where m € {1,...,N,}.

o Computing phase. Each worker n where n € {1,...,N}
computes the messages from the assigned dataset, and
then sends back coded messages to the master.

o Decoding phase. After receiving the answers of any
N, workers, the master should be able to recover the
computing task; i.e., we should tolerate up to N — N;
stragglers.

The objective is to minimize the communication cost R, which
is defined as the (normalized) number of symbols which
should be received by the master in order to recover the
computing task.

In the literature, various works have been proposed to
consider different regimes of system parameters for the above

'As in [13], [14], we assume that K divides N in this paper. The proposed
computing scheme can be extended to the case where K does not divide N,
by adding virtual datasets as the step in [13], [14, Section V-A].
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distributed linearly separable computation problem:?

e m = 1, K. = 1. Computing schemes with the optimal
communication cost were proposed in [15].

e m > 1, K. = 1. Under the constraint of linear coding,
computing schemes with the optimal communication cost
were proposed in [18], [19].

e m = 1, K. > 1. Under the constraint of the cyclic
assignment, a computing scheme with the optimal com-
munication cost was proposed in [13].

e m > 1, K. > 1. Under the constraint of the cyclic
assignment and N > ™H=1 4 y (N, — m — u + 1) where
u:= [KN], a computing scheme was proposed in [14],
which is optimal if N = K and order optimal within a
factor of 2 otherwise.

As a summary on the existing works on the distributed
linearly separable computation problem, the (order) optimal
communication cost remains open, even under the constraint
of the cyclic assignment.

Contributions: For the distributed linearly separable com-
putation problem with m > 1 and K. > 1, we proposed a new
computing scheme with the cyclic assignment and a computing
phase based on interference alignment. Under the constraint
of the cyclic assignment, the required communication cost of
the proposed computing scheme is optimal if N = K and order
optimal within a factor of 2 otherwise.

Notations: Calligraphic symbols denote sets, bold sym-
bols denote vectors and matrices, and sans-serif symbols de-
note system parameters. We use |- | to represent the cardinality
of a set or the length of a vector; [a : b] := {a,a+1,...,b}
and [n] := [1 : n]; the sum of a set S and a scalar a represents
the resulting set of adding each element of S by a; MT
and M~! represent the transpose and the inverse of matrix
M, respectively; F, represents a finite field with order q; in
this paper, the basis of logarithm in the entropy terms is q;
Mod(b, a) represents the modulo operation on b with integer
divisor a and in this paper we let Mod(b, a) € {1,...,a} (i.e.,
we let Mod(b, a) = a if a divides b).

II. SYSTEM MODEL

We consider the (K, N, N, K., m) distributed linearly sepa-
rable computation problem over the canonical master-worker
distributed system, originally proposed in [13]. A master wants
to compute a function of K datasets D1, ..., Dk, by the help
of N workers.

With the assumption that the function is linearly separable
from the datasets, the computation task can be written as K, <
K linear combinations of K messages

f(l)l,l)g7 e 7DK) = g(fl(Dl)a .. -7fK(DK))
=g(Wy,...,Wk) =F[Wy;...; W] = [F1;...; F.], (1)

>The following mentioned existing schemes are all with a well-known
cyclic assignment. The cyclic assignment was used in most existing works on
the distributed linearly separable computation problem and also in practical
systems. The main advantages of the cyclic assignment are: (i) it can be widely
used unlimited by system parameters, (ii) its independence of the computing
task such that the data assignment could be done offline, (iii) its simplicity.

where the i" message is W; = f;(D;), representing the

outcome of the component function f;(-) applied to dataset
D;. As in [13], we assume that each message W, contains L
uniformly i.i.d. symbols in Fy, where q is large enough.’ F
represents the demand matrix with dimension K. x K, where
each of its elements is uniformly i.i.d. over Fg.

A distributed computing framework contains three phases.

Data assignment phase: We assign M := &(N—N,+m)
datasets to each worker. The set of indices of datasets assigned
to worker n is denoted by Z,,, where Z,, C [K] and | Z,,| = M.

Computing phase: Each worker n € [N] first computes
the messages Wy = fi(Dy) for each k € Z,,. Then it com-
putes X,,, which a function of the M messages {W}, : k € Z,,},
and sends X,, back to the master. The number of symbols in
X, is denoted by T,,.

Since the computation complexity on the separable func-
tions is usually is usually much higher than computing the
desired linear combinations of the messages, the computation
cost of each worker is defined as M.

Decoding phase: The master only waits for the answers
of the first N, workers. Since the master and workers cannot
foresee which N, workers arrive first, the computing scheme
should be designed to tolerate any N — N, stragglers. For each
subset of workers A C [N] where |A| = N,, by defining
X4 :={X, :n € A}, there should exist a decoding function
such that g = ¢4 (X4, F), where ¢ 4 : Ty 15 5 [ ]KexK
[Fq} KexL .

The worst-case error probability is defined as

Pr{ga # g(Wi,...,Wk)}. 2

€= max
AC[NJ:[ A[=N,
A computing scheme is called achievable if the worst-case
error probability vanishes when q — oo.
We define
R:=  max LineaTn (3)
ACINJ:|A|=N, L
as the communication cost, which presents the worst-case
(normalized) number of symbols received by the master from
any N, responding workers to recover the computation task.
Objective: The objective of the (K,N,N,, K., m) dis-
tributed linearly separable computation problem is to charac-
terize the optimal (minimum) communication cost R* among
all achievable computing schemes. Notice that, in order to
tolerate N — N, stragglers, we should have m € [N — N,].
Cyclic assignment: Under the cyclic assignment, each
dataset D;, where ¢ € [K], is assigned to workers
Mod(i,N),Mod(i — 1,N),...,Mod(i — M + 1,N). Thus for
each worker n € [N], we have

Z, = U {Mod(n,N) 4+ pN,Mod(n + 1,N) + pN, ...,
pef0:K—1]
Mod(n + N — N, + m,N) + pN} 4)

3In this paper, we assume that K/N is an integer and L is large enough
such that any sub-message division is possible.
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with cardinality &(N — N, + m). The optimal communication
cost under the cyclic assignment is defined as RY.

A converse bound on R, was propsed in [14], which is
reviewed as follows.

Theorem 1 ( [14]). For the (K,N,N,,K., m) distributed
linearly separable computation problem,
o when K. € [%(Nr — m+1)], by defining u := [KQNW,

we have
N, K
Ri,>——"—.
YT m4u-—1 (52)
o when K € [K(N, —m+1) : K], we have
R:. > R* > K.. (5b)

cyc
As explained in the Introduction, the order optimality under
the constraint of the cyclic assignment still remains open.
ITI. MAIN RESULTS

In this section, we provide a new achievable computing
scheme, whose required communication cost is stated in the
following theorem.

Theorem 2. For the (K,N,N,, K., m) distributed linearly
separable computation problem where N < 60, the following
communication cost is achievable, where

o when K, € [%]

KNy
Ri = ; (6)
m
o when K. € [% : %(Nr —m+ 1)}
N.Ku
- 7
T Nm+u—1) @
o when K. € [%(Nr —m+1): K},
Ri = Ke. (8)
Note that when K, € [K], to achieve R; = K<l we

directly repeat the optimal computing schemes for K, = 1 and
m > 1in [18], [19] K, times. In addition, as explained in [13],
if the proposed scheme works for the case K, = K (N, —m+1)
with communication cost K., then it also works for the case
Ko € [K(N;—m—+1):K] with communication cost K.
The main contribution of our proposed computing scheme
is for the case Ko € [K+1: K(N, —m+1)]. We use the
Schwartz-Zippel lemma [20]-[22] to prove the decodability of
the proposed computing scheme in Theorem 2. For the non-
zero polynomial condition for the Schwartz-Zippel lemma, for
the following two cases (i) Ko € [K(N; —m+1):K] and
(i) N = N;, m = 2 and K. + 1 divides N, we provide formal
proofs to show the non-zero polynomial condition, and thus
prove our scheme is decodable. We also numerically verify
all cases that N < 60, and thus conjecture in the rest of the
paper, the proposed computing scheme is decodable for
any system parameters with the communication cost given
in Theorem 2.

The proposed computing scheme fully covers the computing
scheme in [14], which only works for the case N > MU=l 4
u(N, = m —u+1).

By comparing the proposed scheme in Theorem 2 with the
converse bound in Theorem 1, we obtain the following (order)
optimality results.

Theorem 3. For the (K,N,N,,K.,m) distributed linearly
separable computation problem,

1) when K =N, we have

N, K¢
R* ::R1:: m+u—17’

e Ke, ifKe €[N —m+1:KJ;
)
2) when K. € [m, we have
N, K.
Ry =Ri = ; (10)
m
3) when K. € [% +1: %(Nr —m+1)— 1], we have
* Kc Rl
Rbye = $R1 > 5 (11)
4) when K. € [K(N, —m +1) : K], we have*
R* =R =R; =K.. (12)

cyc

To summarize Theorem 3, under the constraint of the cyclic
assignment, the proposed computing scheme is order optimal
within a factor of 2, for all system parameters.

In the following, we will describe the proposed com-
puting scheme in Theorem 2 for the case K. €
[K+1:K(N,—m+1)], to prove (7). By a similar
proof as in [14, Appendix A], if the proposed scheme
works for the (N,N,N,,u,m) problem with high proba-
bility and achieves (7), then it can also be extended to
the (K7 N, N, %u, m) problem with high probability and
achieves (7). Hence, in the proof of Theorem 2, for the ease
of description, we only consider the case where K = N. The
proposed scheme differs in three regimes, Ko = N, — m + 1,
Ke =Ny, —m, and K. € [2: N, —m—1]. Due to the limitation
of pages, we use one example to illustrate the main ideas of the
proposed scheme for K. € [2 : N, —m — 1], which is the most
non-trivial scheme and is based on interference alignment.

Example 1 ((K,N,N,,u,m) = (6,6,6,2,2)). We consider

the example where N = K = 6, N, = 6, K. = u = 2, and
M = m = 2. The converse bound under the cyclic assignment

in Theorem 1 for this example is R}, > m'\k'qul = 4. Without
loss general, we assume the demand matrix F is
F 11 1 1 11 (13)

1 2 3 4 5 6|

For the sake of simplicity, in this example, we assume that the
field is a large enough prime field; in general the proposed

4For the considered problem, it is natural to see that the optimal com-
munication cost R* is lower bounded by K¢, since the K. demanded linear
combinations of messages are linearly independent with high probability.
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scheme does not need this assumption (recall we only need the
field size is large enough). Note that the computing scheme
in [14] cannot work for this example.

Data assignment phase: We consider the cyclic assign-
ment, which is illustrated in Table I.

TABLE I: Data assignment

worker 1 | worker 2 | worker 3 | worker 4 | worker 5 | worker 6
Dy D, D3 Dy Ds Dy
Dg D3 D4 D5 DG D 1

Computing phase: To achieve the converse bound Ry, >
m'\kfjl = 4, we divide each message Wy, where k € [K]
into d := m+u— 1 = 3 non-overlapping and equal-length
sub-messages, Wi, = {Wy; : j € [d]}, where each sub-
message contains = = % symbols in Fq. We will let each
worker transmit % = 2—?!‘ symbols in the computing scheme,
which coincides with the converse bound. After the message
division, the computation task becomes K. x d = 6 linear
combinations of sub-messages. Since each worker transmits
2 linear combinations of sub-messages, the master totally re-
ceives 12 linear combinations of sub-messages, whose spanned
linear space contains the computation task. In other words,
the total received linear combinations contains 6 virtually
demanded linear combinations of sub-messages. The effective

1,1
demand could be expressed as F’ S//ﬁ’l = F'W, where
1,2
o [We,3.
Wi
- Wﬁ’l . . ’
W = W , and the dimension of F is N.K. x K(m +
1,2
[ W3]
u—1) =12 x 18, with the form
(Flaxe 1 Oaxo_ 1 Daxs
O2x6 ' (Flaxe ' 0Oaxe
F/' = [- -2 - - L2 - == - - , 14
Oax6 1 Oaxe | (F)axe (14

(V1)exe ' (V2)exe ' (V3)exe

where (Vi)exe, 1 € [3] are denoted as the virtual demands.
Our coding strategy is to let each worker n € [6] send two
linear combinations

s"1F'W and s"?F'W,

n,2

15)

where s™!' and s are vectors with length 12. By the

cyclic assignment, worker n does not have {Dy, : k € Z,}
where Z,, = [6] \ {n,Mod(n + 1,6)}. Consequently it cannot
compute the sub-messages {Wy; : k € Z,,j € [3]},
and thus in the transmitted linear combinations (15) the

coefficients of the sub-message which it cannot compute are
0; ie., the i columns of s™'F’ and of s™*F' are 0, where
i € Z,U (2, 4+ 6)U (2, + 12). Hence, the column-
wise sub-matrix of ¥’ including the columns with indices in
Z,U(Z,+6)U(Z,+ 12), denoted by F'(n), should contain
at least 2 linearly independent left null vectors. However, if we
choose the last 6 rows in ¥'(n) uniformly i.i.d. in Fq, F'(n)
whose dimension is 12 x 12 is full rank, and thus does not
contain any non-zero left null vector.

So the main challenge is to design the last 6 rows in F’
such that the following two constraints are satisfied:

o (cl) for each n € |N], the rank of ¥'(n) is 10, such that
F'(n) contains 2 linearly independent left null vectors;
let s™1 and s™? be these two vectors;

e (c2) for any set of workers A C [K]| where |A] = N, = 6,
by defining A(i) as the i"" smallest element of A,

A1
GA1).2

SA(2),1

SA = (16)

gA(6),2

with dimension 12 x 12 is full rank.

Note that Condition (c2) guarantees the successful decoding,
because if it holds, the master can recover 'W from the
answers of any N, workers.

By Constraint (cl), the rank of ¥'(n) is 10, while the
dimension of F'(n) is 12 x 12. Hence, two columns of F'(n)
should be linear combinations of the other columns; in other
words, we should proceed a rank reduction step on ¥'(n). It
will be explained later in Remark 1 that, if we proceed the
rank reduction step individually for each worker, Constraint
(c2) cannot be satisfied. Instead, a smart cooperative rank
reduction approach is taken across the workers.

Our approach is based on the following key observa-
tion: under the cyclic assignment, each adjacent/neighbouring
N, — m — K. = 2 workers do not have K, +1 = 3
common datasets. For example, both workers 1 and 2 do not
have Dy, D5, Dg. We generate one linear equation on the
columns of ¥ with indices in {4,5,6,10,11,12,16,17,18}
(see (18)), we can take one reduction on F'(1) and F’(2)
simultaneously. In other words, there exists one vector
er = (0,0,0,e1,4,€15,€16,0,0,0,e110,€1,11,€1,12,0,0,0,
€1,16, €1,175 61718) such that

F/e,{ = 012><1, (18)

where 0O,,xy represents a matrix of all 0 with dimen-
sion m X n. In addition, by the first two rows of ¥, it
can be seen that (e14,e15,e16) should be a multiple of
(1,-2,1), since le é (13 (1, =2, 1T = 0gx1. Similarly,
(61_]10, 61,117 61112) and (61716, 61717, 61718) ShOMld also be mul-
tiples of (1,—2,1). By randomly selecting multiple numbers,
we let (e14,e15,€16) = (2,—-4,2), (e1,10,€1,11,€1,12) =
(0,0,0), and (e1,16, €117, €1,18) = (2, —4,2).
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0 0 0 2 -4 20 0
o1 00 0 0 0 0 2 0
E— |8 =10 0 0 0 2 4 5
=712 -4 2 0 0 0 2 -4
ec 0 0 0 0 0 00 1

0 0 1 -2 1 00 0

Similarly, for each i € [6], the workers in {i, Mod(i+1,6)}
do not have Digpa(i—1,6)s Dmoda(i—2,6)> Dmoa(i—3,6); we gener-
ate a vector e;, where E = [eq;. . .;eg] is given in (17) at the
top of this page. Note that, each worker n € [6] is involved in
two sets of {i,Mod(i + 1,6)} where i € [6]; thus the rank of
F'(n) is reduced by 2, satisfying Constraint (cl).

The next step is to solve the last 6 rows of ¥ satisfying

F'E” = 012x6- (19)

This equation is solvable because ET has dimension 18 x 6
and is full rank; thus the left null space contains 18—6 linearly
independent vectors, which could be exactly the rows of F'.
Finally, as described above, after determining ¥/, we can
then determine s™' and s™? for each worker n € [6]. The
realizations of F' and S are given in [23, Appendix A]
respectively. It can be seen that SI° is full rank, satisfying
Constraint (c2). The general coding scheme will be found in
the extended version of this paper [23]
Decoding phase: Since S!9 is full rank, by receiving
SIIF'W, the master can multiple it by the first 6 rows of
the inverse of S to recover the computation task. (I

Remark 1. By ftreating each sub-message which cannot be
computed by one worker as an ‘interference’, in the above
example we propose to use the interference alignment strategy
to reduce the dimensions of interferences to workers cooper-
atively. More precisely, we generate the matrix E in (17) to
align interferences, such that 19 holds. We need to generate
two equations with the form 18 to align interferences for each
worker. If the alignment on the interferences is not perfectly
cooperative cross the workers as the proposed scheme (each
equation with the form (18) is useful to 2 workers), the number
of rows in E will be strictly larger than 6; then the left null
space of ET will be strictly less than 18 — 6 = 12, i.e., the
number of rows in F'. As a result, S! cannot be full rank. O

At the end of this paper, we provide some numerical
evaluations on the proposed computing scheme. A bench-
mark scheme is also considered which repeats the computing
scheme in [18] K, times. It can be seen from Fig. 1 and 2
that our proposed scheme has a (m + K. — 1) decrease
gain on the communication cost compared to the benchmark
scheme, which means with the parameters increase our coding
scheme’s effect increase. The proposed scheme also coincides
with the converse bound under the cyclic assignment in
Theorem 1 when K divides N and has a constant gap within
2 when K cannot divide N.
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