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ObVi-SLAM: Long-Term Object-Visual SLAM

Amanda Adkins

Abstract—Robots responsible for tasks over long time scales
must be able to localize consistently and scalably amid geomet-
ric, viewpoint, and appearance changes. Existing visual SLAM
approaches rely on low-level feature descriptors that are not ro-
bust to such environmental changes and result in large map sizes
that scale poorly over long-term deployments. In contrast, object
detections are robust to environmental variations and lead to more
compact representations, but most object-based SLAM systems
target short-term indoor deployments with close objects. In this
letter, we introduce ObVi-SLAM to overcome these challenges by
leveraging the best of both approaches. ObVi-SLAM uses low-level
visual features for high-quality short-term visual odometry; and
to ensure global, long-term consistency, ObVi-SLAM builds an
uncertainty-aware long-term map of persistent objects and updates
it after every deployment. By evaluating ObVi-SLAM on data from
16 deployment sessions spanning different weather and lighting
conditions, we empirically show that ObVi-SLAM generates accu-
rate localization estimates consistent over long time scales in spite
of varying appearance conditions.

Index Terms—SLAM, localization, semantic scene underst-
anding.
I. INTRODUCTION

OBILE service robots need to be able to operate au-
M tonomously over long time periods. Existing visual
SLAM approaches are susceptible to failures caused by environ-
mental changes that occur over such time scales, including geo-
metric changes from moving and movable objects, appearance
changes from lighting and seasonal variation, and viewpoint
differences. Further, visual SLAM systems generally use maps
composed of visual feature points, which results in large maps
that do not scale well with time.

Unlike classical visual feature extractors, object detectors are
trained to be invariant to appearance and large-scale viewpoint
changes. Object-based SLAM systems [1], [2], [3], [4], [5],
[6], [71, [8], [9], [10] leverage object detections to estimate
landmarks that are similarly robust to such changes and provide
a low-dimensional environment representation. However, most
object-based SLAM systems target short-term, indoor trajec-
tories in which objects are viewed from diverse perspectives,
simplifying estimation.

In this work, we introduce ObVi-SLAM: an
object-visual SLAM approach designed for long-term
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Fig. 1. ObVi-SLAM overview. In the factor graph, factors with solid lines
are present for all optimizations, whereas use of factors with dashed lines is
dependent on if the optimization is local or global.

deployments. ObVi-SLAM, shown in Fig. 1, aims to
generate accurate and consistent trajectory estimates for many
deployment sessions over long time scales. To accomplish this
objective, ObVi-SLAM utilizes a long-term map of the static
objects in the target environment that reflects uncertainty of
the current estimates. The use of object detectors trained to be
invariant to different appearances enables ObVi-SLAM to be
robust to appearance and viewpoint variation, while focusing
on static objects provides resilience to movable entities.
Forming the map with objects and their estimate uncertainty
enables scalability over time and continuous improvement
using new measurements from each deployment. Finally, use of
low-level visual features tracked within individual deployment
sessions enables high short-term accuracy. We summarize our
contributions as follows:

i) a joint object-visual SLAM objective function for in-
tegrating long-term map information, object detections,
and visual feature observations,

ii) a long-term scalable object front-end for initializing ob-
jects and associating incoming bounding boxes to exist-
ing objects, and
a method for extracting a long-term map of the static
objects in an environment with probabilistically-derived
uncertainty estimates.

We empirically show that ObVi-SLAM can accurately and
consistently estimate trajectories over long-term deployments
using data collected outdoors across 16 deployment sessions
over two months.

iif)

II. RELATED WORK

A. Object SLAM

Initial efforts in semantic object SLAM such as SLAM++
[11] used pre-existing models. Many later works either estimate
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detailed geometry for each instance [12], [13] or use coarse,
general models. For computational efficiency, ObVi-SLAM uses
coarse models, thus we focus on the latter type. CubeSLAM [1]
introduces an object-based SLAM algorithm that represents
objects as cuboids and leverages relationships between low-
level visual features, objects, and camera poses for estimation.
Ellipsoids are also an increasingly popular representation for
objects in SLAM. QuadricSLAM [2] is among the first to
use ellipsoids to represent objects, but requires known data
associations. Various extensions have enhanced object SLAM
with ellipsoids, addressing aspects such as fast object initializa-
tion and constraints to help with limited viewpoint diversity in
ROSHAN [3]; trajectory reinitialization using objects in OA-
SLAM [4]; constraints for object arrangement, symmetry, and
scale in SO-SLAM [5]; planar and point-cloud based factors for
object estimation [14]; and providing scale to monocular SLAM
using object prior dimensions [6]. Others focused on object data
association or initialization, with ensemble data association [7];
initialization for straight trajectories [8]; object initialization
and association for outdoor SLAM [9]; and few-frame, limited
viewpoint association and initialization [10]. In contrast to the
proposed approach, consideration of long-term SLAM is limited
in these works: OA-SLAM is the only approach that addresses
any aspects of long-term localization and does so with a fixed
map with no uncertainty estimation.

B. Long-Term Map Management

SLAM approaches used for long-term robot deployments
need to scale over time. Many approaches do not support mul-
tiple mapping sessions. Others [15], [16] support multi-session
mapping, but do not address scaling; another category fixes the
map after initial data collection, addressing scaling but leav-
ing localization susceptible to initial errors and environmental
changes. Some approaches, such as POCD [17], maintain a fixed
map but use change detection to determine when to update map
regions. Other approaches prune or summarize the oldest data,
retaining only the most informative or recent data. Nashed and
Biswas [18] generate an uncertainty-aware vector-based map
of long-term features using lidar data from multiple deploy-
ments. A common technique for reducing map size used by
ObVi-SLAM and numerous prior works is marginalization and
sparsification. Vallvé et al. [19] proposed a method called factor
descent for general SLAM marginalization and sparsification.
Hsiung et al. [20] and Wilbers et al. [21] both addressed the
problem of online marginalization and sparsification for sliding
window optimization; the former uses an information-theoretic
approach applied to visual-inertial odometry, whereas the latter
generates a single global prior for optimal sparsity. Zhao et
al. [22] focused on long-term lidar localization, using marginal-
ization and sparsification to remove old submaps from a pose-
graph. Unlike these approaches, ObVi-SLAM specifically uses
marginalization for object-based SLAM.

C. Long-Term Robust SLAM

For robustness over long time scales, SLAM must tolerate ge-
ometric, appearance, and viewpoint changes. Most approaches
that aim to be robust to geometric changes arising from mov-
able and moving entities aim to identify observations that may
correspond to such objects, either using observed motion or
semantic class. Some of these approaches, such as DOT [23],
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discard observations from these features, whereas others like
CubeSLAM [1] and DynaSLAM II [24] use these objects for
local corrections, tracking moving objects.

Engineered feature representations, such as ORB features,
can tolerate minor viewpoint and appearance changes. Recently,
deep-learning has been applied to improve robustness to such
changes. Gridseth et al. [25] developed a network to select sparse
keypoints, with a differentiable pose estimation framework.
Chen and Barfoot [26] similarly aimed to generate lighting-
invariant keypoints in a self-supervised manner. Deja-Vu [27]
generates dense feature maps robust to seasonal changes us-
ing pairs of images captured in the same location in different
conditions. Learning-based methods like these, however, are
highly dependent on having training data, often requiring labels
or ground-truth, that matches the characteristics of the target
environment. ObVi-SLAM is distinct from these approaches
in that it uses objects to obtain global position information for
long-term SLAM.

III. SYSTEM OVERVIEW AND PRELIMINARIES

A. Approach Overview

There are 2 phases in ObVi-SLAM: SLAM and long-term map
extraction. SLAM runs online during deployment, estimating
the robot’s trajectory and the map of visual features and objects.
Between deployments, estimates are refined and long-term map
extraction uses the SLAM results to update the long-term map
for use in subsequent sessions. The long-term map is fixed for
each deployment and updated between sessions. Fig. 1 shows
the full ObVi-SLAM system.

B. Representation, Notation, and Assumptions

We first define notation and representations for variables and

note key assumptions. The following notation is used:

e ;€ [1, L] - deployment session index.

* 1! € SE(3) - pose at time ¢ in session i; t € [1,T"].

e 1V € SE(3) - estimate for x! after the most recent opti-
mization; ¢ € [1,77].

e v! € R3 - kth visual feature in session i; k € [1, V]

e s¢ € R?%-mthvisual feature observation in session i: pixel
at which feature was observed; m € [1, M.

e B! € R* - nth object observation in session i represented
as a bounding box parameterized by the minimum and
maximum x and y pixels; n € [1, N%].

e LTM?" - Long-term map summarizing information gath-
ered through session 1.

* Q' - Object j in session 4, as an ellipsoid; j € [1,.J.

e (i - Semantic class of object Q;*

Unless otherwise noted, variables correspond to deployment

session ¢. Object notation follows conventions in [3] and [2].
There are two supported parameterizations of the ellipsoid:
upright and full-DOF. In both cases, there are three position
parameters and three dimension parameters. The upright pa-
rameterization represents orientation with a single parameter
for yaw; the full-DOF parameterization uses three parameters
for an SO(3) orientation. Parameterization choice depends on
possible object configurations in the target environment. We
use the dual quadric form for each ellipsoid, which defines the
ellipsoid using the relationship to its tangent planes. In the dual
form, an ellipsoid Q7 is represented by a 4x4 matrix. For details
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on this representation and how the parameters are encoded in
Q;, refer to [2] and [3].

The only sensor data required for ObVi-SLAM are camera
images; ObVi-SLAM supports arbitrary camera configurations,
including monocular and stereo, assuming known relative cam-
era poses. In our formulation, we assume that the robot’s pose
is combined with the appropriate relative camera pose when
assessing an observation likelihood. We also assume that the
robot’s pose at the beginning of each deployment session is
known. Finally, the system should be configured to use object
detections of the static classes for the target environment and
approximate mean and variation for the dimensions of each
semantic class should be given.

ObVi-SLAM’s tolerance to long-term changes relies on ob-
servable static objects; without such detections, it is effectively
classical visual SLAM. ObVi-SLAM is robust to objects that
move between sessions, as their corresponding visual features
satisfy the static world assumption for the duration of their
observability and are not kept in the map. However, like classical
visual SLAM, accuracy may degrade when there is a high density
of actively moving objects.

IV. ONLINE SLAM FORMULATION
A. SLAM Factor Graph

During SLAM operation for deployment session ¢, we aim to
find the optimal estimates for the visual features, v1.y; objects,
Q7. ;; and robot poses, z1.7. Optimization inputs are the visual
feature observations, s1.,7; object detections, B1.; prior mean
and covariances for the dimensions of classes of interest; and, if
it exists, the long-term map from a previous session, LT M.
We use two different optimization modes: local adjustment and
global adjustment. Local adjustment optimizes the most recent
poses and observations to generate high-quality visual odometry
estimates. For local adjustment, we use the following model for
belief:

Bel(xl:Ta V1:v, QT:J) X p(sl:M|$1:T7 Ul:V)

Reprojection Error

p(Bin|Q1. s ) p(Qislers) p(Qry|LTM™).

Bounding Box Error

Semantic Shape Prior Long-term Map Prior

(D

Global adjustment aims to shift the estimates generated by the
local optimization for improved global accuracy by using data
from the entire trajectory. For computational efficiency, we use
a simplified form of the belief, given by

Bel(-rlzTy/UI:VvQ){:J) X p(xliT)
——
Visual Odometry Error

p(Bin|QY. g w1r) p(Qislery) p(Qr |LTM™).

Bounding Box Error

Semantic Shape Prior Long-term Map Prior

(@)

A factor graph reflecting these models is shown in Fig. 1.
Given the appropriate form of the belief, ObVi-SLAM then uses
a nonlinear least squares optimizer to find the estimates that
satisfy the following optimization objective:
Bel(z1.r,v1.v,Q1.;) (3)

* * *
Ty, iy, @1y = argmax

z1.7,v1:v,Q7,
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= argmin
z1.7,v1:v,Q%, 5

[7 IOgBel(.ﬁl;T,vl:VvQT:J)]' (4)

The factors in (1) and (2) are detailed in the next subsections.

1) Reprojection Factor: The reprojection factor uses low-
level visual features to generate a smooth trajectory estimate
across local frames. Consistent with previous indirect visual
SLAM approaches, ObVi-SLAM estimates the 3D locations
of features detected in images by matching detections across
frames. It adjusts the robot’s trajectory and current visual feature
position estimates to minimize the distance between the detected
features and reprojections of features onto the images. The
reprojection factor term in our optimization objective is the sum
of terms for each feature detection:

M
- 10gp(51;1\4|$1;T, Ul:V) = - logp(smlzsmﬂjs?n) (5)

m=1

= (6)

Sm

N =

M
Z 1Ly (s,,, vs,,) — Sm||22 )
m=1

where x5 and v, are the robot’s pose and feature for the
detection, IL,(-,-) is the projection function giving the pixel
location of a 3D point, and X, is the detection covariance.

2) Visual Odometry Factor: In the global trajectory opti-
mization, to improve computation time and reduce the impact
of local minima, we use visual odometry factors instead of
reprojection error factors. This term penalizes deviations from
the visual odometry estimates between pairs of subsequent poses
obtained from the result of local optimization using reprojection
factors. This has the form

T
—logp(zir) = ) —logp(a|wi—1, 2}, x_,) @)
t=2
]
=Y sll{@men)e @ ey)) sk,
t=2

®)

where )} is the estimate for x; from the previous optimization,
the © operator gives the difference between two poses as in [2],
and X, is the covariance for the pose deviation. 3, is scaled with
the magnitude of 2} © z}_;.

3) Bounding Box Factor: The bounding box factor aims to
update object estimates such that edges of the detected bounding
boxes for an object are tangent to the ellipse generated by pro-
jecting the ellipsoid onto the camera plane. This factor enables
ObVi-SLAM to relate the current trajectory to the long-term map
and update object estimates with new information. The bounding
box factor contains a term for each bounding box detection as
follows:

N
—log p(B1.n|Q1. s 21:7) = Z —logp(B,|Q%B,:*B,)
n=1
1 *
=3 2 Ils(en,. Q) = Ball3,, - ©)
Br€so

where Q, and zp, are the object and robot’s pose for the de-
tection, lp(zp,,, @, ) is the projection operator that generates
the bounding box for a given ellipsoid observed from a given
pose, and X gives the uncertainty of the object detection. For
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full details on ellipsoid projection, refer to our website or [6]. To
handle occlusions resulting from the image boundary, we inflate
the entries of X, corresponding to the occluded edge when a
detected bounding box lies near the image boundary.

It should be noted that when either the x or y axes of the
camera intersect an ellipsoid, the generated conic is not a proper
ellipse,' resulting in imaginary bounding box values. In these
cases, we set the error to a fixed value.

4) Semantic Shape Prior Factor: The semantic shape prior
is important for constraining an object’s dimensions in cases
of limited viewpoint diversity where the object’s depth and
dimension along the camera ray are under-constrained. This
factor penalizes deviations from the mean dimension of an
object’s semantic class. The semantic shape prior is a sum of
terms, each penalizing a single object, with the form

J

—log p(Qi.sle1s) = D Imnape(c;) — (@))%, (10)

j=1

where mshape(~) is a function giving the mean dimension for an
object of the given semantic class,” d(-) gives the dimensions of
an object, and ECJ reflects the variance of the dimensions of an
object of class ¢;. Ok et al. introduced this term in their paper [3],
where further details can be found.

5) Long-Term Map Prior Factor: The long-term map prior
factor incorporates information from previous sessions in our
object estimation. This serves as a prior for objects that have
been previously observed, so that their latest estimates appro-
priately balance previous knowledge and uncertainty with new
observations. The ObVi-SLAM framework is generic to any
factorization relating objects to each other and to the map frame.
The generic form for this factor is

Qi LTM Y = T N(fs (Qiylias,s Ss.), (1)
S,eLTMi-1

where Sy, is a component factor of the long-term map, fs, (-)
is a function operating on a subset of the previously observed
objects, and pg, and g, are the mean and covariance for
Sk. The current ObVi-SLAM formulation uses an independent
normal assumption for each previous object, so the long-term
map factor described generally in (11) has the form

J’i*l
* i— 1 *
—logp(Qy[LTM'™) = 2 IV@Q)) — ms, |13, (12)

Jj=1

where v(-) is a function that generates a vector of the parameters
for object )7, and pg; and Xg; are the object estimate mean and
uncertainty based on previous sessions.

B. Front-End

To use this optimization, a front-end is needed to provide
initial estimates and associations relating observations over time.
Visual feature associations and initial estimates are obtained
using the tracking component of ORB-SLAM2 [28], which
generates feature tracks based on ORB descriptors.

'If both the x and y axes intersect the ellipsoid, the camera lies within the
ellipsoid and the resulting conic is an imaginary ellipse; otherwise, the projection
is a hyperbola, with one branch coming from behind the camera. Future work
could improve handling of hyperbolic projections.

zmshape (+) is drawn from known object distributions, which could come from
human knowledge or existing object datasets.
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Our object front-end maintains a set of pending objects,
adding them to the map after accumulating sufficient observa-
tions exceeding a minimum confidence. This guards against false
positive object detections and prevents poorly-informed object
estimates from influencing the trajectory estimates. Object ini-
tialization uses identity for orientation and the mean dimensions
for the semantic class. The object’s initial position is along
the ray through the bounding box center and the depth is the
distance at which the mean height yields the detected bounding
box height.

Associating incoming bounding boxes to past observations
is a two-step process. We first perform local appearance-based
matching using ORB features in the bounding boxes. If there
are no matches for a bounding box, a new pending object
is created. ObVi-SLAM can thus generate high-quality local
object estimates using (1), but optimizing only pending objects.
After attaining a good local estimate, ObVi-SLAM performs
geometric matching against older objects. If an older object’s
center is close, the pending object’s detections are merged into
the older object and the pending object is removed. If there are
no existing objects that match the pending estimate, a new object
is created. This method allows ObVi-SLAM’s object front-end
to scale with time, as only the features for the most recent
bounding boxes are kept, avoiding long-term aggregation of
object appearance data.

V. LONG-TERM MAP EXTRACTION

After SLAM for a deployment session, ObVi-SLAM refines
results offline before extracting a long-term map for subsequent
sessions. A final optimization runs over the full trajectory, first
using the model in (2), and then further refining with (1).
This refinement is reserved for the post-processing stage due
to computational complexity.

ObVi-SLAM then checks if any of the objects should be
merged into a single object, as imperfect data association can
yield multiple objects for the same physical entity. To address
this, ObVi-SLAM searches for pairs of objects that have the
same semantic class and are in close proximity, then merges the
observations. Global refinement and object merging are repeated
until no pairs of objects can be merged.

Following refinement, ObVi-SLAM summarizes the infor-
mation obtained into a space-efficient long-term object map
containing information only for objects’ poses and dimen-
sions. Inputs to the long-term map extraction are the estimates
{Qi .2} i, vl i} and associations between observations
and estimates. Long-term map extraction has two phases: dense
prior computation and map sparsification.

A. Dense Prior Computation

The dense prior is a marginal distribution over the objects,
with visual features and robot poses marginalized out. As we
model the full optimization problem with a normal distribution,
the dense long-term map thus takes the form

p (QTLV LTM%D) = N(QTJi N’D?ED)
Q1 M1 X1 X1,
=N : N I : - (13)
Qf]z H; E,{Ji Z-L‘Jz‘,
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wp and X p are obtained with an optimization over the factors
to summarize in the long-term map and the Markov blanket
of the states to remove. In our case, we marginalize over the
visual feature estimates, v1.:, and robot pose estimates, z1.7i,
obtained in session ¢. Shape priors are repeated across sessions,
so these factors are omitted. Using properties of marginals for
a normal distribution, up and ¥p are formed from blocks
corresponding to objects from the full mean and covariance.
Thus, pp is given by

pup = argmax p(s1.a|x1r,v1.v)
QRi.s

Reprojection Error

p(BliN|QI:N7 xliT) p(QTJ|LTM171) .

Bounding Box Error

(14)

Long-term Map Prior

For a least squares optimization problem given by y* =
argmin || f(y) — z||?, where z is a measurement and f(y) is a
predicted measurement given the state y, the covariance estimate
¥, is given by ¥, = (JT(y*)J(y*))~!, where J(y*) is the
Jacobian of f evaluated at y*. Thus, ¥p is obtained using the
Jacobian of the optimization expressed in (14), evaluated at 1 p,
taking the blocks of the covariance matrix that correspond to
relationships between static objects.

B. Map Sparsification

The dense prior above would increase the computational com-
plexity of optimization in a subsequent session, as modern opti-
mization libraries rely on sparsity. To address this, we aim to find
a sparsified long-term map that approximates the dense prior but
has fewer correlations between objects in the map. Sparsification
first requires a design step to determine the factor topology.
The generic form for the sparsified long-term map is shown in
(11). Choosing the factor topology can be seen as selecting the
functions fg, that comprise this long-term map representation.
Once the factor topology is determined, the parameters jig, and
Xg, need to be found. To make the sparse long-term map prior
as close as possible to the dense prior, ug, and X, are identified
by finding the values that minimize the KL divergence between
the dense prior N(Q*|up,Xp), and the sparse long-term map
priorin (11). After ug, and X g, areidentified, the values for X g,
may suggest that a component factor of the sparse long-term map
does not carry significant information, in which case minimally
meaningful components fg, can be removed from the topology
and the parameter identification can be repeated, encouraging
further sparsity in LT M*.

As noted above, the current version of ObVi-SLAM uses
the sparse prior form with independently, normally-distributed
ellipsoids. The long-term map prior thus takes the form

p(Q.|LTM") = N(Q3, j:|is, Xs) (15)
J'i

= [IV@;lus,.=s,)- (16)
j=1

Using this topology, the KL divergence between the dense long-
term map and sparse long-term map is
Xs]

* P * ) 1
Dica (@3 LT (@, 1) = 5 (1125

2

dt (s — pp)"55 (1 — ) +Tr<zslzD>) . an

2913

Fig. 2. Test environment: appearance change at waypoint A; satellite view
with waypoint labels; waypoint D from different perspectives.

with X g constrained to be a block diagonal matrix with entries
Y5, and d being the dimension of the normal distribution.
Differentiating gives the optimal p1g equal to pp and the optimal
X.s as a block diagonal matrix with the corresponding entries
from in Xp, as is consistent with independently distributed
ellipsoids. More specifically, this gives g, as the maximum
likelihood estimate for the jth ellipsoid for (14) and X, as the
covariance representing the uncertainty after optimization for
the jth ellipsoid estimate.

VI. EXPERIMENTAL RESULTS

We aim to answer the following questions in our evaluation: (i)
How globally accurate are individual trajectory estimates gen-
erated by ObVi-SLAM? (ii) How consistent are ObVi-SLAM
localization estimates with respect to a global frame under
diverse appearances? (iii) How accurate are object estimates
generated by ObVi-SLAM? (iv) How space efficient are ObVi-
SLAM maps? (v) What is the impact of each component of the
formulation for ObVi-SLAM on its performance? Parameters
and code for ObVi-SLAM and our evaluation pipeline can be
found in our github repository.’

A. Experiment Setup and Implementation Details

To evaluate our approach, we collected 16 trajectories over
two months in an outdoor campus environment, shown in Fig. 2,
with different lighting conditions, covering varying paths to cap-
ture different viewpoints. In each trajectory, the robot operator
started and ended the robot at the same location, visiting a subset
of six waypoints located consistently across the trajectories.
ObVi-SLAM is ignorant of these waypoints: they are only used
for evaluation. We used YOLOVS5 [30] with a custom model for
object detections of tree trunks, lampposts, benches, and trash
cans.

For our evaluations, we used the upright parameteriza-
tion of objects for ObVi-SLAM. We compared against ORB-
SLAM3 [15], a visual feature-based multi-session SLAM ap-
proach; OA-SLAM [4], a joint object-visual SLAM approach
that uses objects for relocalization; and DROID-SLAM [31],
a learning-based approach. For all approaches, we used stereo
images from a Zed2i on a Clearpath Jackal. DROID-SLAM
does not support map saving, so each trajectory was evaluated
individually. For ORB-SLAM3, maximum size for a map data
structure was reached after the seventh trajectory, so the first

3Code + website: https://github.com/ut-amrl/ObVi-SLAM; Code uses Ceres
Solver [29].
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TABLEI
ABSOLUTE TRAJECTORY ERROR FOR TRANSLATION AND ORIENTATION FOR
OBVI-SLAM (OB), OA-SLAM (OA), ORB-SLAM3 (ORB), AND
DROID-SLAM (DS)

Translation ATE (m) Orientation ATE (deg)
Traj Ob OA ORB DS Ob OA ORB DS
1 0.69 0.31 0.67 1.39 2.6 1.6 2.0 1.9
2 | 071 3.32 1.2 4.76 2.3 1.7 2.8 2.4
3 1.32 3.99 2.36 4.92 2.6 19.1 12.0 2.2
41 0.26 0.6 1.7 3.96 1.6 1.8 22 13.6
5 0.34 1.11 1.11 3.86 1.8 1.1 1.7 2.5
6 | 0.38 1.31 0.98 4.1 1.8 2.0 1.7 22
7 0.27 1.21 0.83 4.21 1.9 1.3 1.7 22
8 0.42 2.66 1.8 3.59 2.1 4.4 32 2.3
9 1 039 9.14 7.27 4.79 2.0 | 427 46.7 2.2
10 | 0.29 0.96 6.82 3.12 1.7 1.1 6.7 33
11 0.28 0.6 0.5 2.05 2.3 1.6 1.6 11.1
12 | 0.26 0.94 0.67 7.69 1.9 1.4 1.7 2.5
13 0.54 1.0 0.91 4.84 6.4 1.0 1.8 3.1
14 | 0.63 6.44 2.29 6.82 2.6 14.9 4.9 2.7
15 0.98 10.94 1.38 4.55 2.2 55.3 2.0 2.3
16 | 0.13 4.48 1.35 342 1.6 22.6 2.9 2.2
Overall | 0.55 4.21 2.91 4.49 2.7 18.4 12.3 4.9

Best are bold and second-best are italic.

seven were run in sequence, with the remaining nine run indi-
vidually starting with the seventh map. OA-SLAM was run with
the same object detections as ObVi-SLAM and maps passed
between sessions were aggregated across the 16 trajectories.
Ground truth was obtained by running LeGO-LOAM [32] with
an Ouster OS1 lidar, aligning individual trajectories using the
waypoints. The average speed of the robot was 0.76 m/s, and
due to motion-based keyframing, this lead to 2.98 keyframes
per second on average. The online component of ObVi-SLAM
processed each frame in an average of 222 ms, enabling real-time
operation. Additional timing data are on our website.

B. Trajectory Accuracy

To understand individual trajectory accuracy, we computed
translational and rotational absolute trajectory error (ATE) for
each approach. We first aligned each trajectory to the respective
reference trajectory to mitigate against early estimation error
skewing results. ATE results are shown in Table I.* ObVi-SLAM
has competitive or lower rotational error compared to the other
approaches. Comparison approaches sometimes have lower
error, but ObVi-SLAM is the only approach with less than
7 degrees of average rotational error for all trajectories. For
translational error, ObVi-SLAM outperforms comparision
approaches on all but one trajectory.

C. Localization Consistency Under Varying Conditions

Long-term SLAM approaches must be able to generate esti-
mates for key locations that are consistent over time. We thus
assess long-term robustness using consistency of estimates for
the six waypoints by measuring the deviation for each estimate
from the average for the respective waypoint.

Fig. 3 shows the cumulative distribution functions (CDFs) for
the position and orientation estimate consistency. For rotation
estimate consistency, ObVi-SLAM and DROID-SLAM [31]
have notably better performance than ORB-SLAM3 [15] and
OA-SLAM [4], with DROID-SLAM slightly outperforming

4As with [33], we measure accuracy using ATE as long-term localization
focuses on global accuracy. Relative pose error data are on our website.
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Fig. 3. Estimate consistency for ObVi-SLAM and comparison approaches.
An optimal algorithm would quickly rise to 1.

ObVi-SLAM. However, ObVi-SLAM notably outperforms all
comparison approaches on position consistency, having no way-
point position estimates more than 4.05 meters from the respec-
tive average waypoint position.

The trajectories and waypoints estimated by LeGO-
LOAM [32] (reference), ObVi-SLAM, ORB-SLAM3 [15], OA-
SLAM [4], and DROID-SLAM [31] are shown in Fig. 4. ORB-
SLAMS3 lost localization in one trajectory and the remaining
trajectories have rotational drift, caused by features not being
recognizable under viewpoint and lighting changes. OA-SLAM
suffered relocalization failures that present as jumps in the
trajectories, resulting from noisy object estimation, and DROID-
SLAM has good orientation consistency, but suffers from scale
inconsistency, despite use of stereo data. ObVi-SLAM, by con-
trast, has trajectories that match the reference well and waypoints
are closely colocated.

D. Object Accuracy

To understand ObVi-SLAM’s object estimation accuracy, we
assess four different metrics using the map result at the end of
each trajectory:

1) position accuracy: measures the distance between estimate

and ground truth object centers;

2) volume intersection over union (IoU): evaluates volumet-
ric accuracy by computing the intersection of estimated
and ground truth objects, divided by their union — an IoU
of 1.0 indicates a perfect estimate;

3) estimated objects per ground truth: ratio of number of es-
timated objects to ground truth objects, providing insight
into the generation of duplicate and spurious objects; and

4) recall: measures how many ground truth objects were
estimated.

72 ground truth objects were manually annotated in a lidar-
SLAM point cloud. We aligned estimates with ground truth
frames and matched objects by finding the closest ground
truth object with the same semantic class, allowing for mul-
tiple matches per ground truth object. Position deviation and
volume IoU together assess geometric accuracy, while the re-
maining metrics examine object instantiation false positives and
negatives.

Fig. 5 shows these metrics for ObVi-SLAM and OA-
SLAM [4], as the other approaches do not estimate objects.
OA-SLAM initially exhibits better median position deviation
compared to ObVi-SLAM. However, as additional trajecto-
ries are considered, OA-SLAM’s positional accuracy degrades.
ObVi-SLAM maintains position estimate accuracy over time
and exhibits notably better IoU for object estimates. This indi-
cates that OA-SLAM’s object estimates are less volumetrically
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TABLE II
FILE SIZE (F), NUMBER OF VISUAL FEATURES (V) AND NUMBER OF OBJECTS
(O) FOR MAPS AFTER SPECIFIED TRAJECTORIES

ObVi-SLAM ORB-SLAM3 OA-SLAM

Traj F 0 F v F v 0
1 3IKB | 47 | 165MB | 37K | 14MB | 26K | 22
7 62KB | 96 I3GB | 20/K | 86 MB | 161K | 07
16 80 KB | 127 - 17 MB | 308K | 233

accurate. It should be noted most estimated objects are tall and
thin, therefore a small amount of position error can lead to no
overlap between estimates and ground truth, explaining the rela-
tively low IoU for both approaches. In addition, ObVi-SLAM has
better rates of object estimation than OA-SLAM, producing less
duplicate estimates and generating estimates for more objects
than OA-SLAM. The higher object recall also explains in part the
initial higher upper quartile position error: ObVi-SLAM is more
aggressive in generating estimates for objects, initially leading
to some less accurate estimates before sufficient data is obtained,
but resulting in fewer missed objects overall.

E. Map Space Efficiency

To assess the space efficiency of the maps, we evaluated the
map files’ size after trajectories 1, 7, and 16, shown in Table II.
While the exact size is reflective of implementation, the order
of magnitude illustrates scalability, which has implications for
memory and compute. DROID-SLAM [31] does not enable map
loading, so it is excluded. In addition, as ORB-SLAM3 [15]
could not run more than seven trajectories sequentially, the map
after trajectory 7 is the last attainable. From these map sizes, it is
clear that ObVi-SLAM’s object-only map affords a much more
compact and scalable representation compared to ORB-SLAM3
and OA-SLAM [4].

A
= ObVi-SLAM

Proportion of data

—— ObVi-SLAM
ObVi-SLAM-S e ‘ ObVi-SLAM-S
— - ObVi-SLAM-VF e — - ObVi-SLAM-VF

== ObVi-SLAM-LTM == ObVi-SLAM-LTM

8 17 26 35 44
Meters from Centroid

9 i1 44 77 110 143
Degrees from Mean Orientation

(a) CDF of position deviation. (b) CDF of orientation deviation.

Fig. 6. Position and orientation consistency for ObVi-SLAM and ablations.
An optimal algorithm would quickly rise to 1.

F. Ablations

In addition to comparing against other approaches, we assess
the performance of ObVi-SLAM when individual factors are
removed to understand their importance. These are abbreviated
as follows: ObVi-SLAM-S has the shape prior removed; ObVi-
SLAM-VF does not include the visual feature factors; and ObVi-
SLAM-LTM removes the long-term map, resulting in a sequence
of individually-evaluated trajectories. We did not assess ObVi-
SLAM without objects, as this is equivalent to a traditional visual
SLAM approach.

The localization consistency results for ObVi-SLAM com-
pared to the ablations is shown in Fig. 6. ObVi-SLAM-VF is
significantly worse than all other variants, indicating the impor-
tance of visual features, with full ObVi-SLAM outperforming
the other variants. We provide ATE and object metrics for the
ablated versions in our github repository.?

VII. CONCLUSION AND FUTURE WORK

This paper introduces ObVi-SLAM, a long-term SLAM ap-
proach that combines the benefits of visual features and object
detections to achieve scalable, long-term consistent localization
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amid lighting and viewpoint changes. We demonstrate that
ObVi-SLAM achieves superior performance in single-trajectory
and multi-trajectory localization compared to existing SLAM
approaches on 16 trajectories collected over two months with
significant lighting variations.

There are several directions that would build upon develop-
ments introduced in ObVi-SLAM. A learned long-term appear-
ance descriptor for objects could improve robustness of inter-
session object association. Further, integrating object-based
change detection could aid in removing stale data from objects
incorrectly marked static. In addition, more complex factor
topologies for the long-term map could be explored. Finally,
ObVi-SLAM could be extended with loop closure or initial
localization based on the long-term object map.
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