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On Extremal Rates of Storage Over Graphs

Zhou Li

Abstract— A storage code over a graph maps K independent
source symbols, each of L., bits, to IN coded symbols, each of
L., bits, such that each coded symbol is stored in a node of the
graph and each edge of the graph is associated with one source
symbol. From a pair of nodes connected by an edge, the source
symbol that is associated with the edge can be decoded. The ratio
L., /L, is called the symbol rate of a storage code and the highest
symbol rate is called the capacity. We show that the three highest
capacity values of storage codes over graphs are 2,3/2,4/3.
We characterize all graphs over which the storage code capacity
is 2 and 3/2, and for capacity value of 4/3, necessary condition
and sufficient condition (that do not match) on the graphs are
given.

Index Terms— Capacity, extremal rates, storage codes.

I. INTRODUCTION

OTIVATED by the heterogeneity of modern distributed
storage systems, a storage code problem over graphs

is introduced in [1] and [2], where a storage code maps
K independent source symbols, Wy, -- Wk to N coded
symbols, Vi,---,Vy, and the coded symbols are stored in
the node set of a graph {Vi,---,Vx} (so that V,, denotes
both the coded symbol and the node). The heterogeneous data
recovery pattern is captured by the edges of the graph, where
each edge {V;,V;} is associated with one source symbol W
and from (V;,V}), we can decode Wj,. As the structure of the
graph can be very diverse, versatile distributed storage and
data access requirements can be accommodated. An example
of the storage code problem over a graph is given in Fig. I.
The metric of pursuit is the capacity C' of a storage code
over a graph, i.e., the highest possible symbol rate, defined as
L /L,, where L,,(L,) is the number of bits contained in each
source (coded) symbol and L., /L, represents the number of
source symbol bits reliably stored in each coded symbol bit.
The graph based storage code problem is not new in the
sense that it can be equivalently transformed to a network
coding problem [1], [2], [3], [4] and adding further security
constraints (i.e., beyond desired data decodability, leakage
about other source symbols is prevented), it is intimately
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Fig. 1. An example graph of a storage code problem with K = 3 source
symbols and N = 10 coded symbols, whose capacity turns out to be 4/3
(refer to Theorem 7. See Fig. 11 for a code construction).

related to conditional disclosure of secrets [5], [6], [7], [8] and
secret sharing [9], [10]. What is new is the view brought by
[1] - finding extremal networks/graphs. Instead of first fixing
the network/graph and then finding its highest rate, we focus
on the extremal (highest) capacity values and aim to find
the networks/graphs whose capacity is equal to the extremal
values (see Fig. 2). This complementary view is useful in
identifying critical combinatorial graph structures that limit
the rate and in separating more tractable graph classes in
terms of capacity characterization. Considering that networks
are becoming more and more heterogeneous and solving each
network instance becomes infeasible and impossible (as hard
instances that require non-linear codes for achievability or non-
Shannon information inequalities for converse are well known
[11], [12], [13]), this extremal rate and extremal network
approach might be a fruitful direction to produce new results
and insights.

In this work, we start from the highest possible capacity
values and for the two highest rates - 2 and 3/2, all extremal
graphs with corresponding extremal capacity values are easily
characterized. For extremal rate of 2, absolute no interference
is allowed as L,, = 2L,, i.e., a pair of nodes can just store the
desired source symbols. As long as there exists interference,
the maximal capacity value drops to 3/2, the next extremal
rate, and all storage code instances with capacity 3/2 only
require intra-source symbol coding, i.e., mixing of symbols
from the same source symbol. When rate of 3/2 cannot be
achieved, the next highest capacity value is shown to be 4/3,
which is our main focus and the corresponding graphs turn
out to be highly technical. We identify necessary condition
(converse required) and sufficient condition (achievability
provided) for graphs with storage code capacity 4/3 (see
Fig. 2). The converse is based on delicate arguments on the
intimate relation between the maximum amount of interference
(undesired source symbols) allowed and the minimum amount
of desired source symbols needed. The achievable scheme uses
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Fig. 2. The extremal rate and network approach of this work and results obtained.

vector linear codes that carefully control the alignment of
interfering source symbols and the independence of desired
source symbols. The conditions are stated in terms of the
presence or absence of critical nodes and edges of the graph,
whose combinatorial structure places constraints on the code
rate.

A. Related Work and More Background

Before proceeding to the problem statement section, we give
a more detailed account of related work using our terminology
so that our paper is also put in perspective. In classical
work on algebraic storage codes for distributed storage (e.g.,
RAID architectures [14], [15]), the studied regime is when the
symbol rate is 1, i.e., L,, = L, (each source symbol has the
same size as each coded symbol) and the recovery constraint
is placed uniformly on all source symbols, e.g., minimum
distance constraint (number of erasures that can be tolerated
for no loss in recovering all sources). In contrast, we allow to
vary the symbol rate (which is our main figure of merit) and
our recovery constraint is stated with respect to each source
symbol (instead of all) so that each source symbol may have
different access patterns, in line with requirements of modern
heterogeneous storage systems.

More recently, the distributed storage repair problem
attracted much attention which mainly includes two lines of
work - regenerating codes [16], [17] and locally repairable
(recoverable) codes [18], [19], [20]. Both lines focus on how to
efficiently recover lost (erased) coded symbols (server) while
we focus on the recovery of source symbols. Regenerating
codes use the communication cost (repair bandwidth or
more generally the tradeoff between the storage cost and
communication cost) as the performance metric while locally
repairable codes use the number of coded symbols contacted
during repair (called locality) as the performance metric. While
early work considers the symmetric case where the number
of coded symbols contacted is a constant, some recent work
brings graphical topology into the picture [21], [22], [23],
[24] where graphs are used to model the network connectivity
(which links or coded symbols can be used for recovery).
Note that these graphs, which describe coded symbol repair
constraint, are different from ours, which describe source
symbol recovery constraint although a similar term - storage
codes on graphs is used.

Last but not least, locally decodable codes [25], [26], studied
more in computer science literature, tackle how to efficiently

recover source symbols by contacting a few coded symbols.
Similar to classical coding theory work, the focus is mainly
on minimizing the code length while fixing the symbol rate.
Instead we focus on maximizing the symbol rate for fixed code
length. The only locally decodable codes work that studies the
symbol rate, to the best of our knowledge, is [27], where the
recovery constraint is only on the number of coded symbols
contacted and not specified by a graph.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider K independent uniform
Wy, .-+, Wg of size L,, bits each.

source symbols

HWy, -+ Wg)=HWi)+ -+ HWk),
L= H(W1) = --- = H(Wg). (1)

Consider N coded symbols Vi, --- | Vi, each of L, bits.
Our interest lies in the relative size of L,,, L, (see (3)) and
coding over arbitrary finite fields is allowed, so L,,, L, can
take arbitrarily large values (that are not necessarily integers).

The source symbol recoverability constraint on the coded
symbols is specified by a graph G = (V,€&,t), where the
node! set V = {Vi,---,Vy}, the edge set £ is a set
of unordered pairs from ), and the function ¢ associates
each edge {V;,V;} € & with a source symbol Wy, k €
{1,2,--- K} £ [K], ie., t({V;,V;}) = Wj. For each edge
{V;,V;} € € such that ¢({V;, V;}) = W, we can decode W
with no error, i.e.,

HWi |V, V) = 0if t({Vi, Vj}) = Wy 2)

Isolated nodes are trivial as they are not connected to any edges
and thus involve no constraints. Without loss of generality,
we assume in this work that any graph contains no isolated
nodes.

A mapping from the source symbols Wy, - Wk to
the coded symbols Vi,---,Vy that satisfies the decoding
constraint (2) specified by a graph G = (V, &, 1) is called a
storage code. The (achievable) symbol rate of a storage code
is defined as

~

R& Y 3)

L,

'Note that we abuse the notation by using Vj, to denote both a coded
symbol and a node of the graph, which will not cause confusion.
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and the supremum of symbol rate is called the capacity,
o= supy, Ly/Ly, = limp, oo Ly /Ly, as block codes are
allowed.

Next we introduce some graph definitions to facilitate the
presentation of our results.

A. Graph Definitions

Definition 1 (Wy-Edge, Wy-Path, and Wj-Component):
An edge that is associated with W, is called a Wj-edge.
A sequence of distinct connecting Wj-edges is called a
Wi-path. A Wi-component is a maximal subgraph wherein
every edge is a Wjy-edge and every two nodes are connected
by a Wjy-path (an isolated node is defined as a trivial
component).

For example, in Fig. 1, {Vi,Va} (also all solid
black edges) is a Wj-edge; the sequence of Wj-edges
({Va, i}, {1, Vs }, {V5, Vs}) is a Wi-path and also a W;-
component (Va, Vi, Vs, Vi are connected by WW;-edges/paths
and there are no more W;-edges to extend the connectivity).

Definition 2 (Internal Edge and Residing Path): A W-
edge that connects two nodes (say V;,V;) in a Wj,-path,
k' # k is said to be internal and the Wy -path with end nodes
Vi, Vj is called the residing path of the internal W-edge
Vi, Vj}.

For example, in Fig. 1, the Whs-edge {Va,Vs} is an
internal edge as it connects two nodes Vs, Vi in the Wj-path
({Va, Vi },{V1,Vs}, {V5, Vs }), which is then its residing path.

Definition 3 (M-Color Node): A node whose connected
edges are associated with M different source symbols is called
an M -color node.

For example, in Fig. 1, Vi, Vy are 1l-color nodes and
Vs, Vs are 2-color nodes.

We need to further distinguish two types of 2-color nodes,
defined as follows.

Definition 4 (Normal 2-Color Node and Wjy-Special
2-Color Node): For a 2-color node V that is connected to
Wy-edges and Wy -edges, k # &/, if the nodes connected to
V' through Wj-edges are all 1-color, then V' is called a Wj-
special 2-color node (or just a special 2-color node when W,
does not need to be highlighted). A 2-color node that is not
special is said to be normal.

For example, in Fig. 1, the 2-color node V5 is Ws-special
as Vg is the only node that is connected to V5 through
Ws-edges and Vg is 1-color; the 2-color node Vg is
normal as it is connected to a 2-color node V> through a
Ws-edge and is connected to a 2-color node V; through a
Wi-edge.

Definition 5 (Graph Class Go—p+,Gc>Rr*, Go<r*):

The set of graphs whose storage code capacity is equal
to\no smaller than\strictly smaller than R* is denoted by

Go=r-\Gc>r*\Go< R~

III. RESULTS

Our results are presented in this section, along with
illustrative examples and observations.
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(Al) (42) (B1, Ba)

Fig. 3. (a) An example graph G € Go—2. W1 = (a1,a2), Wa = (b1, b2),
and each A;\Bj is a generic linear combination of (a1,a2)\(b1,b2).
(b) An example graph G € 96:3/2. Wi = (a1, a2,a3), Wa = (b1, b2, b3),
and each A;\Bj is a generic linear combination of (a1, a2, a3)\(b1, b2, b3).
(c) An example graph G € Ggo3/2 Where two 2-color nodes Vi, Vs are
connected.

A. Extremal Graphs With Storage Code Capacity 2,3/2:
Go=2,9c=3/2

The three highest extremal capacity values and the full
extremal graph characterization for the two highest extremal
capacity values are established in the following theorem.

Theorem 1: [Go=2,Gc—3/2] The three highest storage code
capacity values are 2,3/2,4/3. The storage code capacity of
a graph is equal to 2 (G € Go—») if and only if every node is
1-color. The storage code capacity of a graph is equal to 3/2
(G € Go=3/2) if and only if all nodes are 2-color or 1-color
(and 2-color nodes exist) and there are no connected 2-color
nodes.

The proof of Theorem 1 is fairly straightforward and is
deferred to Section IV-A. An example of the achievable
scheme (code construction) is shown in Fig. 3.(a) and
Fig. 3.(b). An example graph that does not belong to Go—o U
Gco—3/2 is shown in Fig. 3.(c). An intuitive explanation on
why the rate is upper bounded by 4/3 is as follows. V5 can at
most contribute L, bits of information about Ws. {V;,V3} is
a Ws-edge so that V; has to provide at least the remaining
L,, — L, bits of information about Ws, leaving at most
L, - (L, — L,)=2L, — L, bits of room for W;. The same
reasoning applies to V5. Finally, {V}, V5 } is a Wi-edge so that
the size of the remaining room must accommodate the L, bits
of Wh,ie., 2(2L, — Ly,) > Ly, so that R = L,,/L, < 4/3.

B. Extremal Graphs With Capacity 4/3: Go—y/3 With K = 2
Source Symbols

Next we focus on the storage code capacity value of 4/3,
whose extremal graph characterization turns out to be highly
non-trivial. In this section, we consider the cases where there
are K = 2 source symbols to illustrate the results in a simpler
setting and defer the generalizations to more than 2 source
symbols to the next section.

The obtained necessary and sufficient conditions are
rather involved. To make the results more clear we give a
summarizing chart in Fig. 4.

1) Sufficient Condition: Internal Edge and 1-Color Node:
A crucial graphic structure for the achievability of rate 4/3 is
the absence of internal edges (or when they exist, the presence
of 1-color nodes in their residing paths). This result is stated
in the following theorem.
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[Is there any internal edge?|

v/ N

[ Rate 4/3 is achievable ] Does each residing path
(Theorem 2)  Yes contain a 1-color node?
No

[ Rate 4/3 is achievable ]
(Theorem 2)

Yes

Is there any residing path
that contains at most
one special 2-color node?

Nee

Rate 4/3 is achievable if there is only
one internal edge. (Theorem 4)

2. One example where rate 4/3 cannot
be achieved. (Theorem 5)

Rate 4/3 cannot 1.
be achieved.

(Theorem 3)

Fig. 4. A summary of sufficient and necessary conditions of Go—4 /3 with
K =2

(As+ 45,
(A1, Ag, A3) By + Bs, y
By +2B,) (Ay, As, A3)
(A + 545, (As + 345, )

Bs + B, Bs + Bg, (Ag + As, <g‘1 i %A'r"
Ay + 645+ Ay +445+  Bi+ Bs, T .
. - R _ 4 5
Bj +2By) Bs+2Bs)  By+2Bs) By +2B;)

(Ag + Az, (Ag + 3A7,
Bs + 3By, B; + 3Bs, (A + Ar,
Ag + 247 + Ag +4A7 + (B1, By, By) . . Ag + 247,
By +4By) Bs + 4By) Bs +3By)
(a) (b)
Fig. 5. Two example graphs G € Gc>4/3 and code constructions for rate

4/3. W1 = (a1,a2,a3,a4), Wa = (51,172,63,1)4) and each Ai\Bj is a
generic linear combination of (a1, - ,a4)\(b1, - ,ba).

Theorem 2: [Sufficient Condition of Go—4/3] With K =
2 source symbols, a graph G € G453 if G contains no
internal edge or for any internal edge, its residing path contains
a 1-color node.

The proof of Theorem 2 is presented in Section [V-B.
To illustrate the idea, two examples are shown in Fig. 5,
where Example (@) contains no internal edge; Example (b)
contains two internal edges {Va,V3} and {V3,V;}. Internal
Wo-edge {Va,V3} resides in Wi-path ({Vo,Vi},{Vi1,V3}),
which contains 1-color node V; and internal Wi-edge {V3, V5}
resides in Wha-path ({V5,Va}, {Va,Va}, {V4,V5}), which
contains 1-color node Vj. So the condition of Theorem 2 is
satisfied and rate 4/3 is achievable. We next explain how to
construct the code.

We are targeting at rate L,,/L, = 4/3 so that any pair
of nodes connected by an edge contain 2L, = 3L, /2 bits.
Except from L,, bits from the desired source, at most we can
tolerate 2L,, — L,, = L,,/2 undesired bits (i.e., interference).
Then the key is to guarantee for any Wy-edge, k € {1, 2}, the
interference from WWs3_j has at most half source size. That is,
Ws_}, symbols shall be assigned according to W-edges (W),-
components). When there is no internal edge (or residing path
contains 1-color nodes), such interference based assignment
automatically ensures the independence (thus decodability) of
desired source symbols. We now come back to the examples
in Fig. 5 to see how to implement the above code design idea.

Consider Example (a) first and Example (b) will follow
similarly. We set L, /logop = 4 so that W; = (ay,as,
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(By + Ba,
(A4t 4) Bi +2B,)
(A4 +345, (Bs+ Ba, (Bs + Bs,
Ay +445)  Bs+2By) 4| Bs+2Bs)
(Ag + A, . . (Ag +3Ay, (Bs+ 3B, (Bs + 3Bs,
Ag + 247) Ag+4A7) Bz +4By) S| Bs+4Bg)
(a) (b)
Fig. 6. (a) Wa-component decomposition of WW7i-connected nodes in

Fig. 5.(a), according to which A; symbols are assigned. (b) W -component
decomposition of Wa-connected nodes in Fig. 5.(a), according to which B;
symbols are assigned.

as,ay) and Wy = (by,bs,bs,by), where each symbol is
from a sufficiently large finite field I, (the exact field
size will be given in the general proof in Section IV-B).
To achieve rate R = L,/L, = 4/3, we set L, =
3logy p, i.e., each V,, contains three symbols from the
same field. We generate a number of generic linear
combinations of (ay,---,a4)\(b1, - ,bs) and denote them
s (A1, As, -+ )\(B1, Ba,--+). For now, it suffices to view
each A;\B; as a random linear combination of symbols
from W7 \W5 and if we can collect four linearly independent
combinations of A;\Bj, then we can recover W7 \Ws. The
detailed randomized construction is again deferred to the
general proof. Each one of the three symbols in V,, will
be a linear combination of some A; and B; symbols.
We first assign the A; and B; symbols in each V, and
then linearly combine them to produce the final three
symbols in V,.

Consider nodes that are connected to W-edges so that some
A; symbols need to be assigned, i.e., all nodes Vi,---, V.
The 1-color nodes are trivial (i.e., Vi), and we just assign
three distinct A; symbols. Next, consider the remaining 2-
color nodes Vs, - - - , Vi for which the A; symbols are assigned
according to Ws-components (see Fig. 6.(a)). Vs, - -+, Vg form
two Ws-components - one consists of Vo, V3, V) and the other
consists of V5, Vi. For each WW3-component, we assign generic
linear combinations of the same 2 = %Lw /log, p A; symbols
(say A;,,A;,) so that the interference dimension is limited
to two. Further, a normal 2-color node and a Wj-special
2-color node will get two generic linear combinations of
(A;,, A;,) and a Wy -special 2-color node will get one generic
linear combination of (A4;,,A;,). For example, consider
Wa-component with nodes V3, V3, V,, where the A; symbols
appeared are limited to Ay, As; Vo, as a Wi-special 2-color
node, gets one combination Ay + A5 and V3, Vj, as normal
2-color nodes, each gets two generic combinations (e.g.,
V3 gets Ay + 5As, Ay + 6As). The other Ws-component with
nodes V5, Vs is assigned similarly - the A; symbols are limited
to Ag, A7.

The assignment for nodes connected to Ws-edges is exactly
the same (see Fig. 6.(b)). Nodes V5, --- Vg are connected
to Ws-edges and they are all 2-color. The B; symbols
are assigned according to Wj-components, ie., Vo (as a
single-node component) gets generic linear combinations of
By, By; V3, Vs form a Wi-component and get generic linear
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combinations of Bs, By; Vy, Vi form a Wi-component and the
B; symbols are limited to Bs, Bs.

The last step is to combine the A;, B; symbols so that each
V., has only three symbols. This step is simple, if a node gets
at most three A;, B; symbols, then just set them as V;, (e.g.,
V1, Vs); otherwise the node must be normal 2-color, which gets
two generic combinations of A; and two generic combinations
of B; and we just add one arbitrary combination (say the last)
of A; and B; together to reduce the total number of symbols
to three (e.g., V3, Vi, Vs, Vg).

Finally, let us verify why the decoding constraints (2)
are satisfied. An edge that contains 1-color node is
straightforward, e.g., from Wj-edge {Vi,V2}, we have
Ay, Ay, A3, Ay + As, so as long as the A; combinations
are generic we can recover Wi = (ay,--- ,a4). For edges
that connect two 2-color nodes (e.g., Wa-edge {V3,V4}),
we have 1) the interference dimension is limited to two as
our assignment is based on components of interfering sources
(e.g., we may decode A4, A; and remove them, leaving us with
only B; symbols); 2) the four symbols from the desired source
have full rank (e.g., B3, By, Bs, Bg are generic combinations)
so that we can recover the desired source symbol. Note
that because there is no internal edge, for any Wj-edge,
the two nodes obtain distinct desired W) symbols, e.g., for
Wy-edge {V3,Vi}, V5 is assigned Bs, By symbols and
Vy is assigned Bsy, Bg symbols as Vs, Vy belong to distinct
Wi-components (refer to Fig. 6.(b)). If V3, V, belong to the
same Wj-component, then the Ws-edge {V3,V4} will be
internal).

The code construction for Example (b) in Fig. 5 follows
from the same procedure as that of Example (a). That is,
first consider 1-color nodes and assign generic combinations
(e.g., V1, Vy); for remaining 2-color nodes, assign W, symbols
according to Ws3_j-components (e.g., the W; space of the
Wh-edge {V>,V3} is spanned by A4, A5, and the W space
of the Wi-edge {V5,V5} is spanned by Bg, B7); finally
combine the four symbols to three for normal 2-color nodes
(e.g., V3). The decoding constraints (2) are easily verified as
the interference dimension is strictly controlled and desired
source symbols are sufficiently generic because after removing
1-color nodes, there no longer exist internal edges.

2) Necessary Condition: Residing Path and Special 2-Color
Node: The sufficient condition of the achievability of rate
4/3 in Theorem 2 requires the absence of internal edges or
the presence of 1-color node in residing paths. Considering the
complementary cases, we identify a crucial graphic structure
for the unachievability of rate 4/3 - the presence of at most
one special 2-color node in a residing path. This result is stated
in the following theorem.

Theorem 3: [Necessary Condition of Go—4/3] With K = 2
source symbols, a graph G € Goy/3 if G has a residing
path which contains no 1-color node and at most one special
2-color node.

The proof of Theorem 3 is presented in Section IV-C.
To illustrate the idea, an example is shown in Fig. 7,
where the internal Ws-edge {V1,Va} resides in the W;-path
({V1,V5},{V5,Va}, {V4, Va}) and this residing path contains
only one special 2-color node V3 and no 1-color node. So the
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Vi Vs Vs ¢
W
Va Vi Ve Vz T Wo

Fig. 7. An example graph G' € G435 where the internal edge {V1, Va}
is highlighted and the only special 2-color node V3 in its residing path is
highlighted.

condition of Theorem 3 is satisfied and rate 4/3 cannot be
achieved. To see why, we next give an intuitive explanation
by contradiction.

Suppose rate 4/3 is achievable, i.e., L, /L, = 4/3. Then
we can show that for any 2-color node (e.g., V3), it must
contain at least L, /4 bits of information about each of W, and
Wy (captured through conditional entropy. See Lemma 1 in
Section I'V-C). This is because the connecting node can provide
at most L, = 3L, /4 bits of information about the desired
source symbol (e.g., V5 can contribute L, = 3L,,/4 bits on
W5 at most and the remaining L., — L, = L,,/4 bits must
come from V3). Further, if the 2-color node is normal (e.g.,
V), it must contain exactly L., /2 bits of information about
each of W7 and W5 (see Lemma 2). The reason is that for two
connecting 2-color nodes, the amount of interference allowed
is at most 2L,, — L,, = L,,/2 bits and a pair of nodes must
contribute L,, bits of information about the desired source
symbol (thus L,,/2 from each node). For example, consider
Wi-edge {V2,V4}, where from an interference view, V5 can
contain at most L,,/2 bits on Wa; from the desired source
view, V5 must also contribute at least L,, /2 bits on W5 because
of the Ws-edge {V7, V5}.

We now consider the propagation of interference through the
residing Wi-path ({Va, Vi}, {V4, Va}, {V3,V1}). Start from
the normal 2-color node V,, which contains L., /2 bits on
Wy and as a Wi-edge can tolerate at most L, /2 bits on
W5, then the normal 2-color node V,; must contain the same
L, /2 bits on Wy (see Lemma 3). We are now at Vj and
continue the Wi-path through edge {V3,Vy}, where V3 is
special so that V3 contains at least L., /4 bits on W5 and this
L, /4 bits are contained in the total L, /2 interference bits
in V. Continue further the W;j-path through edge {V3,V1},
where the L,,/4 bits on W5 in V5 must be contained in the
L., /2 bits on W5 in V4. This in turn means that the L., /2 bits
on Wy in Vi must overlap with the L,,/2 bits on Ws in V3
(in the L,,/4 bits on W5 in V3), thus the internal Ws-edge
{V1,Va} cannot contribute L,,/2 + L,,/2 = L,, independent
bits for the desired W5 source and we have arrived at a
contradiction.

From the above reasoning, we can now illuminate the role
of special and normal 2-color nodes in a residing path. For
an internal Wy-edge, its residing Wj3_;-path made up of 2-
color nodes must have two normal 2-color end nodes, each of
which contains L,,/2 independent bits of information about
the desired source Wy, (e.g., V1, Vo about Ws). In the residing
Ws_j-path, a normal 2-color node will keep the interference
on Wy to the same L,,/2 dimensions (e.g., V5, V4 have the
same L,,/2 dimensions about W5 and V7, V3 have the same
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(As + A7, Br + 3Bg)
As + 2A7 + Br + 4B~ B11

(As +
Br +(Bs)
A47+ DAs + (A1, Az, A3)
B7 + )
Bll
(As + 3A7,
By + Bio,
By + 2Bio)
Wo (L
(A6 + 5A7, B7 + 9Bs,
As + 6A7 + B7 + 10Bg)
( + 3As,
+ 11Bs,
Bio Ay + 4As + (Ba, Bs, Bs)
+128s) (A2 + A1z, Ao + 2As3,
BoEr + LIBD
Fig. 8. An example graph G € Go>4/3 with only one internal edge

{V1, Va} (highlighted). Special 2-color nodes V3, Vi, V5 are highlighted and
each residing path has at least two of them. The code produced by the
assignment of Theorem 2 and updates needed to produce the final code with
rate 4/3 are shown.

L,,/2 dimensions about W5) while a special 2-color node
will inherit at least L, /4 interference dimensions on W)
(e.g., V3 gets at least L, /4 dimensions of Wy from V3).
Conversely, a special 2-color node in a residing Ws_j-path
can change at most L,,/4 dimensions of the interference on
Wi (which is the desired source for the internal Wj-edge),
so to ensure the independence of the desired source at the
internal edge we need at least two special 2-color nodes in the
residing path. This case is exactly our focus in the next section
(along this line, we can also see the role of 1-color node in
a residing path, i.e., it completely stops the propagation of
interference. See the 1-color node Vj in the residing Ws-path
({3, Va}, {Va, Vi }, {V4, V5 }) of Fig. 6.(b), where V3, V5 can
hold independent W bits although the Wi-edge {V3, Vs} is
internal).

3) Remaining Cases: Rate 4/3 May or May Not Be
Achievable: Continuing the discussion in the previous
paragraph, the cases that are not covered by Theorem 2 and
Theorem 3 are those where each residing path contains at least
two special 2-color nodes (and no 1-color node). This setting
turns out to be quite intricate and is not fully understood.
In the following, we show that here 4/3 may or may not be
achievable, depending on the structure of other parts of the
graph.

On the one hand, we show that if there is only one internal
edge, then the presence of two special 2-color nodes in the
residing path is sufficient to achieve rate 4/3. This result is
stated in the following theorem.

Theorem 4: With K = 2 source symbols, a graph
G € Ge>ay3 if G contains only one internal edge and its
every residing path has at least two special 2-color nodes.

The proof of Theorem 4 is presented in Section IV-D.
To illustrate the idea, an example is shown in Fig. 8, where
for the only internal edge {V7, V5 }, three special 2-color nodes
V3, Vi, V5 ensure that at least two of them are contained in any
residing path.

2469

Fig. 9. A graph G € G453 albeit each residing path has two special
2-color nodes. G contains two internal edges {V71,V2}, {V3,V4} and three
special 2-color nodes Vs, Vi, V7 in residing paths.

To assign the code, we first follow the same procedure
in Theorem 2 to assign the coded symbols (see Fig. 8).
Because of the presence of the internal Ws-edge {V1, V5 } (and
absence of 1-color nodes in the residing paths), the desired
W5 symbols are not independent (i.e., only B7, Bg appears
in V7, V, while we need four B; symbols to recover WWs).
So we need to expand the dimension of the W; symbols
to satisfy the decoding constraint (2) for the internal edge
{V1,Va}. This is done by replacing Bs\B7 in Vi\V2 with
another generic Bj1\ Bz symbol (see Fig. 8), but now the
interference on W5 in the residing path will not be limited to
only two dimensions. A final update is required - starting from
V5, we visit each residing path to find its closest special 2-color
nodes, which turn out to be V4, V5 and remove B7 therein to
ensure the interference along this path is limited to Bg, Bio
two dimensions (see Fig. 8). Repeat the same for V71, i.e., visit
each residing path starting from V7, find the closest special
2-color nodes, which turn out to be V3, and only keep By
(remove Bg) at V3. Such special 2-color nodes are guaranteed
to exist as each residing path has at least two special 2-color
nodes. Also replace Bg by Bi; for each node visited along the
residing paths so that now again the interference dimension is
limited to B7, By; (i.e., V. See Fig. 8). The update is complete
and decoding constraints (2) are all satisfied (refer to Fig. 8
for a verification). Indeed, we may see that the role of each
special 2-color node along the residing Wj-path is to replace
L, /4 dimensions of W5_j so that with two special 2-color
nodes we may have fully independent L,,/2 dimensions of
Ws_j, for the two nodes in the internal W5_;—edge.

On the other hand, we show that for the graph in Fig. 9,
rate 4/3 cannot be achieved even if each residing path contains
two special 2-color nodes. This result is stated in the following
theorem.

Theorem 5: The storage code capacity of the graph G in
Fig. 9 is strictly smaller than 4/3.

The proof of Theorem 5 is presented in Section IV-E.
An intuitive explanation, which builds upon and generalizes
the converse arguments in Theorem 3, on the unachievablity
of rate 4/3 is given here. Suppose rate 4/3 can be achieved.
Consider the internal W-edge {Vi,Va}, where Vi, V5 are
normal 2-color and each must contain independent L, /2 bits
of information about W5. Due to the Wi-edges {V4,V5} and
{Va, Vs}, the special 2-color node V5 must inherit L,, /4 bits
on W5 from V; (because the total amount of interference about
W in any Wi-edge cannot exceed L., /2 bits) and the special
2-color node Vi must inherit L,, /4 bits on W5 from V5. Note
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Vi o] Vs Vs t
—wW
A Vo
V4 prrreer) Vs - W3

Fig. 10.  An example graph G € G 4/3, where a normal 2-color node
V7 is connected to a special 2-color node V4 and V7, Vs are connected to
different types of edges.

now that V3 is connected to both V5, Vg with Wi-edges, so the
L, /2 bits of information about W5 in the normal 2-color
node V3 must contain the L, /4 bits of information about
Wy in V5 and Vi. Further, V5 and Vg contain independent
information about W5. So the L, /2 bits on W5 in V3 is
exactly the union of the L, /4 bits on W5 in V5 and V5.
From the same reasoning, as Vg is connected to both V5 and
Ve with TW;-edges, Vg contains exactly the same L,, /2 bits of
information about W5 as V3. This will cause a contradiction
because ({Vs, Vz},{V7,V4}) belongs to a residing path and
V7 is a special 2-color node, so V; must share L,,/4 bits on
Wy with Vg (thus V3), which contradicts the fact that {V3, V4 }
is an internal Ws-edge, i.e., V3, Vy must contain independent
L., /2 bits of information about Ws.

C. Extremal Graphs With Capacity 4/3: Go—4/3 With K > 2
Source Symbols

We now generalize the results on Go_y/3 from K = 2
source symbols to K > 2 source symbols. Let us start
from necessary conditions, which include some new graphic
structures with more than 2 sources that place rate constraints,
and state the result in the following theorem.

Theorem 6: [Necessary Condition of Go_4/3] A graph
G € Gocays if G contains 1) an M-color node, where M > 4,
or 2) a 3-color code that is connected to an M-color code,
where M > 2, or 3) a normal 2-color node V' that is connected
to a 2-color node whose connected edges are associated with
a different set of source symbols from that connected to V.

The set of graphs that satisfy the conditions in Theorem 6
is denoted as G/’ e The first two conditions are easily seen
and an example for the third condition is shown in Fig. 10.
The proof of Theorem 6 is deferred to Section IV-F. We give
an intuitive explanation here on why R < 4/3 for the graph
G in Fig. 10. From (V4,Vy, V;), we can decode Wy, W, i.e.,
2L, bits. Vy, V5 can contribute at most 2L, bits on W7, W3 so
that the remaining 2L,, —2L,, bits must come from V7, leaving
only L, — (2L,, — 2L,) = 3L, — 2L,, bits of room for W5.
Similarly, V5 has at most L, — (L,, — L,,) = 2L,, — L,, bits
of room for W5 because at least L,, — L, bits of W; must
come from V5 (consider the Wi-edge {V5, V3}). The Wh-edge
{V1, V2 } needs to have at least L,, bits of room for the desired
source W, ie., (3L, —2L,,) + (2L, — L) > L,, so that
R=1L,/L,<5/4<4/3.

Interestingly, if we exclude the graphs in gggg /0 i.e., those
for which rate 4/3 cannot be achieved, then the sufficient
condition in Theorem 2 generalizes immediately to more than
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(Bs + Bio, Bo + 2Bio, (Bii+ Biz, Bii + 2B,
As + 3A7)

Cs+ Cs)
(B13 + Bia, Cs4 + 3Cs,
Biz + 2B14 + Ca + 4Cs)

t

(A4 + As, (Ce + C7,
As + 2As, Ce+2C7, — w4
B7 + Bs) Biz + 3Bi1a)
A~ Wo
(B1, B2, B3) ~ree W3
Fig. 11. An example graph G € Go>4s3 with K = 3 source
symbols and code construction for rate 4/3. Wi = (a1, - ,a4),
Wo = (b, ,bsa), W3 = (c1,--- ,ca) and each A;\B;\Cp, is a generic
linear combination of (a1, -+ ,a4)\(b1, -+ ,ba)\(c1, - ,ca).

K = 2 source symbols. This result is stated in the following
theorem.

Theorem 7 (Sufficient Condition of Go—4/3): A graph G' €
Gosaysif G ¢ Gonly /4 and G contains no internal edge or for
any internal edge, its residing path contains a 1-color node.

The code construction of Theorem 7 is almost identical to
that of Theorem 2 and it turns out to work as long as the
structures in Theorem 6 are avoided. The detailed proof is
deferred to Section IV-G and an example is shown in Fig. 11
to illustrate the idea. The assignment is still interference
based, i.e., for each source symbol W}, decompose all nodes
connected to Wj-edges according to Wy, -components, where
k' # k (each node will belong only to one such component)
and assign the same W)} symbols within the same Wj./-
components. After this operation, the interference dimension
is controlled; the absence of internal edges (after removing
1-color nodes) will guarantee the independence of desired
symbols. The condition G' ¢ G/, /4 helps to guarantee that
if a pair of connecting 2-color nodes are connected to edges
associated with more than 2 source symbols (e.g., in Fig. 11,
{Va,V3} are associated with 3 sources), the pair of nodes
must be special 2-color and the interference caused by the two
interfering source symbols is still limited to L,,/2 dimensions
(e.g., in Fig. 11, V5, V3 are special 2-color and for Ws-edge
{Va,V3}, the interference is one A; combination in V5 and
one (), combination in V3, i.e., two dimensions in total).
Other edges are the same as those in Theorem 2 and decoding
constraints (2) hold (see Fig. 11).

IV. PROOFS
A. Proof of Theorem 1: Go=2,Gc=3/2

In this section, we provide the full characterization of Go—o
and Go_3 /2. From the proof, we can obtain that the three
highest storage code capacity values are 2,3/2,4/3.

1) If and Only If Condition of Gc—>: We show that
G(V,E,t) € Go—o if and only if every node V' € V is 1-
color. We prove the if part and the only if part sequentially.

If Part: 1f every node V' € V is l-color, then we prove
that the capacity is 2. First, we show that R < 2. Note that
we assume G has no isolated nodes, so G must contain one
edge, say Wi-edge {V;, V;}. From the decoding constraint (2),
we have

1 2
Ly @ HW) 1V, Vi W) < HV,V;) < 2L, (&)

~RYL,/L, <2 (5)
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where the last inequality in (4) follows from the fact that each
coded symbol V; contains at most L, bits.

Second, we show that symbol rate R = 2 is achievable,
by an MDS code. Note that each node is 1-color; suppose there
are M), nodes that are only connected to Wy-edges, k € [K]
and denote this set of nodes by Vi. Choose the field size
p to be a prime that is no smaller than maxye(r] M. Set
L., = 2log, p, L, = log, p so that each source\coded symbol
is comprised of 2\1 symbols\symbol from F, and the rate
achieved is 2. Generate MDS coded symbols as follows.

Wy =
X, =

(Wi (1); Wi(2)) € F2x* ©)
(Xe(1);- 5 Xp(My)) L2V, W, € Fgkal 7

where Vi € IFIJ)W’CXQ is a full rank Vandermonde matrix so
that from any two elements of X}, we can recover Wy, (i.e.,
MDS). Finally, we assign each node in V), a distinct element
of X} so that from any Wj-edge, we can decode Wi.

Only if Part: We show that if there exists an M -color node,
M > 2, then R < 2 so that the capacity must be strictly
smaller than 2 and further, the capacity will drop to 3/2 at
least. Suppose we have an M -color node V; that is connected
to Wk1'edge {Vlv le}, T WkM'edge {Vm VJ'M}’ then

—~
=
—

ML, = HWg, - ,Wk,) (8)
2
<:) I(‘/;7‘/}17"'7‘/J'M;Wk17"'7WkM) ©
< HWViy Vi, Viy) (10)
< (M+1)L, (1)
= R Y L, /L,<(M+1)/M<3/2<2 (12)

2) If and Only If Condition of Ggo—3/,: We show that
G(\V,E,t) € Ge—g) if and only if every node V € V is
2-color or 1-color (and there exists a 2-color node) and there
are no connected 2-color nodes. We prove the if part and the
only if part sequentially.

If Part: We show that C' = 3/2 if the condition above
is satisfied. First, G contains a 2-color node, so from (12)
we have that R < 3/2. Second, we show that R = 3/2 is
achievable, again by an MDS code. Note that each node is
1-color or 2-color. Consider the nodes that are connected
to Wy-edges, among which suppose M} are 1-color (denote
this set by V}) and M7 are 2-color (denote this set by V7).
Choose the field size p to be a prime that is no smaller than
maxy (2M} + M?). Set L, = 3log, p,L, = 2log,p, i.e.,
each source\coded symbol is comprised of 3\2 symbols from
IF,, and the rate achieved is 3/2. Generate MDS coded symbols
as follows.

Wi = (Wi(1); Wi(2); Wi(3)) € F2x! (13)
X, = (Xp(1);---; Xp(2M} + M?))
1 2
2 VW, € FEMetMi)xd (14)
where 'V ¢ ]P’;mwﬁMﬁ)X3 is a full rank Vandermonde

matrix so that from any three elements of Xj, we can
recover Wy (i.e., MDS). The existence of such a full rank
Vandermonde matrix is guaranteed due to our field size choice.
Finally, we assign each node in V}\V} two\one distinct
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elements\element of X;. Note that any node V € V will
be assigned two I, symbols. To verify that the decoding
constraint (2) holds, consider any Wj-edge {V;,V;}, where
Vi, V; cannot both be 2-color because from our condition of
Gco—3/2, 2-color nodes do not connect. As a 2-color node
contains one element of X} and a 1-color node contains two
elements of Xy, (V;, Vj) will contain at least three elements
of X}, from which we can recover Wj.

Only if Part: We show that C' # 3/2 if the condition of
gc:3/2 is violated, i.e., if 1) there only exist 1-color nodes,
2) there is an M -color node, where M > 3, or 3) if there are
connected 2-color nodes, say V;, V. For Case 1), G € Go—1;
for Case 2), from (12) we have R < 4/3 < 3/2; for Case 3),
we next show that R < 4/3 so that the proof is complete
and when capacity 2 and 3/2 cannot be achieved, it drops to
4/3 at least (and rate 4/3 is achievable for some graph, e.g.,
Theorem 2, so the third-highest capacity value is 4/3).

Suppose {V;, V;} is a Wy-edge. As V; is 2-color, V; must be
connected to some node V;,,i; # ¢ with a Wy, -edge, where
k1 # k. Consider the Wy, -edge {V;,V;, } and we have

1

—~
—

L, Y #W) (15)
DIV, Vi Wi ) (16)

= H(V, Vi)~ HVi, Vi [Wiy) (17)

< 9L, H(V,,Vi,[Wi,) (18)

~ HVIW.) < H(V.,Vi|We,) < 2L, — Ly. (19)

Symmetrically, V; is 2-color so that V; must be connected
to Vj,,71 # j with a Wy, -edge, where ky # k. Note that
j1 may be the same as i; and ky may be the same as k;. The
same proof will work under all circumstances. Consider the
Wi,-edge {V;, V}, }. Following the derivation of (19), we have

H(‘/?Isz) < 2L, — Ly. (20)
Finally consider the Wj-edge {V;,V;} and we have

Lo 2 HW Wi, Wi,) 1)
< H(Wi, Vi, Vi |Wiy s Wi,) (22)

2
2 HW; VWi, W) 23)
< HWViWi) + HV; W) (24)

(19)(20)

< 9Ly — Ly +2Ly — Ly (25)
-r 9 L,/L, <4/3 (26)

B. Proof of Theorem 2: Sufficient Condition of Go—4/3 With
K=2

We show that if a graph’ G(V,€) contains no internal
edge or each residing path contains one 1-color node, then
R = 4/3 is achievable. We first present the code construction
and then prove it satisfies the decoding constraint (2).

2For simplicity, the edge association mapping ¢ is omitted from the graph
notation G in this section.
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1) Code Construction: Choose the field size p to be a prime
that is greater than 4|&|. Set L,, = 4log, p, L, = 3log, p so
that each source\coded symbol is comprised of 4\3 symbols
from F,, and the rate achieved is 4/3.

Consider the set of nodes that are connected to Wj-edges,
k € {1,2} and denote this set by V. Consider the subgraph
of G(V, &) whose node set is V}, and edge set is comprised
of all W5_j-edges that are connected to some node in Vg,
denoted by £5_j and denote this subgraph by Gy (Vi, k).
Decompose G (V,E3—r) into W5_j-components and sup-
pose we have M such components. Among these Mj
Ws5_,-components, suppose M, components are comprised
of 1-color nodes (each such comp(l)nent is an isolated node)
and label them as PILH,--- 7P,LM’“]; the remaining M? =
M), — M} components are comprised of 2-color nodes and

label them as QQ], e ,QECIVI’?]. For an example of subgraph
Gr(Vk, E3_1) and its decomposition, refer to Fig. 6.

Generate generic linear combinations of the source symbols
as follows.

Wi = (Wi(1);--- s Wi(4) e Fp*' k€ {1,2} (27)
Xp = (Xe(1);- - X(3M + 2M3))
A Hkaer(fM;JrzM,f)m (28)

where Hy, is a (3M} +2M}?) x 4 matrix over the field F,, and
each element of Hy is chosen uniformly and independently
from IF),. Thus our construction is randomized and we will
show that the probability that all decoding constraints (2) are
satisfied is strictly larger than O so that one feasible code
construction exists.

Consider P,Lm], me[M ,i], denote its node by V, and set

V = (Xx(3m — 2), Xz (3m — 1), Xx(3m)). (29)

This step completes the assignment for all 1-color nodes, each
of which must reside in one P,Lm].

Consider QLm],m € [M?]. Suppose Qgcm] contains .J
nodes Vi ,---,V;, (each must be 2-color). Consider node
Vi, J € [J].

If V;, is Wi-special, setViEk] 2
X5, (3M} +2m — 1) + (25 — 1) X3 (3M} + 2m); (30)
otherwise, set Vi[k] = (Vigk](l), Vijk](Q))

J

2 (Xe(3M} +2m = 1) + (2 = D)X (3M] +2m),

Xp(3ME+2m 1) +2iX,(3M} +2m)). (31

Finally, after setting V1, V2l for each 2-color node V,
we are ready to set V.

If V' is normal, then set
vV = (vi(), vE(1), vi(2) + VI (2);
otherwise, set V = (VI V),

(32)
(33)
Note that for a special 2-color node, at least one of V'[! V2

will be one symbol so that V' will contain no more than three
symbols (when a node V' is simultaneously Wj-special and
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Ws-special, V' will have only two symbols and we may zero-
pad to make its length three). This completes the assignment
for all 2-color nodes and the code construction is complete.

2) Proof of Correctness: We show that the decoding
constraint (2) is satisfied. Consider any edge {V;,V;} € &
and suppose it is a Wy-edge.

When V;,V; contain one 1-color code, say V;, then V;
contains three elements of X (say, Xp(mi), Xx(mi +
1), X (mq + 2); refer to (29)) and V; contains at least one
generic combination of distinct two elements of X or one
distinct element of X (say, Xy(m2) + jXik(mo + 1) or
Xj(me); refer to (29) - (33)). These 4 symbols in X can
be written as a multiplication of a 4 x 4 matrix, denoted by
T;; and the source symbol vector Wy,. View the determinant
of T;; as a polynomial T;;(H;, Hy), whose variables are
the elements of H, Hy (refer to (69)). T;;(H;, Hs) is not a
zero-polynomial as we may set Xy (my) = Wi (1), Xi(my1 +
1) = Wi(2),Xpg(m1 + 2) = Wi(3),Xr(m2) =
Wi (4), X (mg +1) = 0 so that T;; is an identity matrix and
ﬂj(Hl,HQ) =1.

We are left with cases where V;, V; are both 2-color. Note
that V;, V; cannot be Wj-special. We have three cases.

1) Vi, V; are both Wj_j-special. Then each of V;,V;

contains two generic combinations of two distinct
elements of X, (refer to (31) and (33)), say

+ (251 — 1) Xg(mq + 1),
+ 251Xk (mq + 1) from V; and
+ (2j2 — 1) Xi(ma + 1),

+ 2j2 X1 (mo + 1) from V; (34)

where the elements of X, are all distinct because
Vi, V; belong to different W3_j-components in the
decomposition of G (Vy, E3—). Otherwise, {V;, V;} is
an internal edge after removing 1-color nodes, which
contradicts the condition of Theorem 2. From the four
symbols in (34), we can recover four distinct elements
of Xy, ie., (Xip(ma); Xr(my + 1); Xi(ma); Xi(ma +
1)), which can be similarly written as T;leWk. View
det(T;;) as a polynomial T;;(H;, Hy), which is not the
zero-polynomial.

2) One of V;,V; is W3_j-special, say V; and the other is
normal, say V. From (31) - (33), we have

Vi = (Xk(ml) + (271 — 1) Xg(m1 + 1),
Xi(my) + 251 Xk (my + 1),
Xs_p(m*) + (201 — 1) X3_g(m* + 1))

Vi = (Xk(mz) + (252 — 1) Xg(m2 + 1),

Xg_k(m*) + (2i2 - 1)X3_k(m* + 1),
Xi(ma) + 2j2 Xp(ma + 1)

+ ngk(m*) + 27;2X37k(m* + 1)) (35)

where the elements of X, are all distinct due to the
same reason as above; the elements of X3_; must be the
same, i.e., m* appears in both V;, V; because {V;,V;}
is a Wy-edge so that Vi, V; belong to the same Wj-
component in the decomposition of Gz_r(Vs—x,Ex).
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Further, V;,V; are distinct so i1 # iy in (35) (refer
to (31)). Thus from (V;,V}), we can first decode and
remove Xs_p(m*), Xs_p(m* + 1), leaving us with
four distinct elements of X, i.e., (Xx(my); Xp(my +
1); Xi(ma); X (mg + 1)) = T Wy View det(T;;)
as a polynomial T;;(H;, Hs), which is non-zero.

3) V;,Vj are both normal. From (31) - (33), we have

Vi = (Xk(TfM) + (271 — D Xp(mq + 1),
Xk (m*) + (2iy — 1) X5_p(m* + 1),
Xp(my) + 251 Xp(my + 1)
+ Xs_k(m*) + 201 X3k (m* + 1)

V; = (Xk(m2) + (252 — 1) Xg(m2 + 1),

Xz (m") + (2i2 — 1) Xz_p(m" + 1),
Xk (ma) + 2j2 X (m2 + 1)

+ Xy p(m*) + 2i2X3_p(m* +1))  (36)

where the elements of X, are all distinct, the
elements of Xj3_j, must be the same, and i F#
i. Thus from (V;,V;), we can first decode and
remove Xs5_p(m*), Xs_r(m* + 1), leaving us with
(Xg(m1); Xi(m1 + 1); Xg(ma); Xp(ma + 1)) =
T?J-“W;C and det(T;;) is a non-zero polynomial
T,;(Hy, Hy).

Finally, consider all edges of G(V,£) and consider
ILi j.¢v..v,yee Tij(H1, Ha), which is a polynomial with
degree at most 4/£|. Now each element of Hy, Hy is selected
independently and uniformly from F,,, where p > 4|£|. By the
Schwartz—Zippel lemma [28], [29], [30], we have

Pr H

i,5:{Vi,V;}€€

4l€|

Tij(Hl,Hg) =0] < T < 1. (37)

Therefore there exists a realization of Hy, Hy so that each
T;;(Hy,Hy) # 0 and each T;; has full rank, i.e., W}, can be
recovered from {V;,V;} and all decoding constraints (2) are
satisfied.

C. Proof of Theorem 3: Necessary Condition of Go—y4/3 With
K=2

We show that R = 4/3 cannot be achieved if a graph
G contains an internal Wy-edge {V;,,Vi,.} and its resid-
ing Ws_p-path ({V;,, Vi, },--+ ,{Vi._,,Vi,}) contains only
2-color nodes, V;,,---,V;,, among which at most one is
special (if there exists, suppose itis V; ,1 <p < P).

To set up the proof by contradiction, let us assume that
R = limp, oo Lyw/L, = 4/3 is asymptotically achievable
(the same proof works for the exact achievable case by
replacing o(L,,) with zero), i.e.,

Lo = (3Ly)/4 + o(Ly).

We show that a 2-color node V must contain at least
L,,/4 bits (minimum amount of desired information) and
at most L,,/2 bits (maximum amount of interference) of
information about each of W5 and W5. This result is stated in
the following lemma.

(38)
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Lemma 1 (2-color Node): When R = 4/3, for any 2-color
node V', we have

Ly /44 o(L.,) H(V|Wy)

<
< Ly/2+0o(Ly), Yk € {1,2}. (39)

Proof: As V is 2-color, we have a Wi-edge {V,V}, } and a
Wy-edge {V,V},}. We prove (39) when k£ = 1 and the proof
when k£ = 2 follows from symmetry.

Consider the W;-edge {V, V}, }. Following the steps in (15)
to (19), we have

(38)

(VIWI) < 2Ly — Ly w/2+0(Lw)- (40)
Consider the W-edge {V,V;,}. We have
L, 2 HW W) 1)
< H(Wa,V,V;,|Wh) 42)
2
2 WV, W) “3)
< H(V|Wy)+ H(Vj,) (44)
< H(V|Wi)+ L, (45)
= HWV|W)) > Ly—L, 2 L,/440(Ly). (46)

|
Next, we tighten the result in Lemma | when the 2-color
node is further normal. Specifically, a normal 2-color node V'
must contain exactly L,,/2 bits of information about each of
W1 and Ws. This result is stated in the following lemma.
Lemma 2 (Normal 2-Color Node): When R = 4/3, for
any normal 2-color node V', we have
H(V|Wy) = Ly /2 + o(Ly), Yk € {1,2}. (47)
Proof: As V is normal 2-color, it must be connected to V;,
through a Wi-edge and V), through a Ws-edge, and further
Vi, Vj, are 2-color. The ‘<’ direction of (47) has been proved
in (39), so we only need to prove the ‘>’ direction, which is
considered in the following when k = 2 and the proof when
k =1 follows from symmetry.
Consider the Wi-edge {V,V;, }. We have

—~
N3

L, = H(W;|Wy) (48)
< H(W.,V,V; |Ws) (49)
D W, v, W) (50)
< H(V[Wz2)+ H(V;[Wa) (S
(39)
< H(V|W3)+ Ly/2 + o(Ly) (52)
= H\V|W2) > Ly,/2+0(Ly) (53)

where (52) holds because V;, is a 2-color node so that we
may apply (39) of Lemma 1.
|
After establishing the properties on the nodes, we proceed
to consider the edges. We show that for any two connected
2-color nodes, the interference contained in them is L,, /2 bits
if the two nodes contain one normal 2-color node.
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Lemma 3 (W3_g-edge): When R = 4/3, for any Ws3_j-
edge {V;,V;} where V;,V; are 2-color and at least one of
Vi, Vj is normal, we have

H(Vi, Vj[Wa_) = Lu/2 + o(Lw). (54)

Proof: Suppose V; is normal, then on the one hand, we have

47
H(Vi, Vi|Ws_r) > HViWs_1) "2 Ly/2+ o(Lw). (55
On the other hand, we have

(38

(19)
H(Vi,VilWs_1) < 2Ly — Lw 2 Lu/2 + o(Ly)  (56)

so that the proof is complete.
|

We now go from the properties of edges in Lemma 3 to
those of paths that were made up of such edges. We show
that the interference contained in a sequence of such edges,
i.e., a path, is L,,/2 bits, in the following lemma.

Lemma 4 (W3_g-path): When R = for
a W37k'path ({‘/;17 ViQ}’ T {‘/;P—17 ‘/;P}) where
Vieoro o5 Vip_1s Vi o5 Vip, 1 < p < P are normal
and V;  is either normal or special, we have

H(WVi, - Vi, Wa—) < Ly/2+0(Ly)  (57)

H(V,, - Vip[Ws—i) < Lu/2+0(Ly). (58)

Proof: We prove (57) and (58) follows similarly. The proof
is based on a straightforward application of the submodular
property on the entropy function to (54) in Lemma 3 (note

that each edge in the path contains at most one special 2-color
node).

4/3,

p?

H(Vi Vi, [Wa_g) +-- -+ H(V;,_, Vi, [W3_y)

> HWVi, Vi, |Wa—) + H(Vi,[Ws_)
+o+ H(Vi, W) (59)

VIRV (- 1)Ly/2> H(V, -+, Vi W)
Y (p—2)Lu/2+0(Ly)  (60)
—  H(Viy,+ Vi |Wsr) < Lu/2+ o(Ly,).(61)

|
Equipped with the above lemmas, we are ready to
demonstrate a contradiction as follows.

L =  Lu/2+4 Lu/2 (62)
(57)(58)
> HVi, -, Vi,[Ws_p)
+ H(Vi,, +, Vip|[Wa—k) + 0o(Ly)(63)
> HWViy, -, Vip|[Ws_y)
H(V;,[W3_x) + o(L) (64)
(2)(39)
> H(Viy, Vip, Wi[W3_y)
+ Ly/44 o(Ly) (65)
> H(WpWs_g)+ Ly/4+0(Ly)  (66)
D 5L,/4+ o(Ly) 67)
= 1 > 5/4 (contradiction) (68)

where (64) follows from submodularity; the first term of (65)
follows from the decoding constraint (2) of the Wj-edge
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{Vi,, Vi, } and the second term of (65) follows by applying
Lemma 1 to the 2-color node V; ; the last step follows by
dividing by L,, on both hand sides and letting L,, — oo.

D. Proof of Theorem 4: One Internal Edge

We show that R = 4/3 is achievable if a graph G(V,E)
contains only one internal edge, say Wj-edge {V;,V;} and
each residing path has at least two special 2-color nodes.
We first present the code construction and then prove it
satisfies the decoding constraint (2).

1) Code Construction: The first part of the code construc-
tion is the same as that in Section IV-B.1. The second part
is presented now, where we need to make the following
updates. Generate two more generic linear combinations of
Wi, symbols.

X = (Xp(1); X5(2) = HWi € 30 (69)

where each element of Hy, € F2** is independent and uniform
over [F),.

Consider the internal Wj-edge {V;,V;} and find its all
residing Ws3_j-paths whose nodes are all 2-color (i.e., no 1-
color nodes). Suppose there are M such paths, denoted by
Py, .-, Py Start from V;\V; and visit each path P,,,m €
[M] along the W3_j-edges until we see a special 2-color
node, denoted by V; \Vj, . Denote the set of V; \Vj nodes
as V;\V;. Note that every node in V;,V; is Wj-special and
V; N V; = 0 (as each residing path has at least two special
2-color nodes).

Vi, V; are normal and suppose they are currently set as (by
the construction in Section IV-B.1)

m

Vi = (Xlm®)+ @2 - DXelm® +1),
Xz i (m1) + (2iy — 1) X5_p(my + 1),
Xp(m™) + 21 Xg(m™ + 1)
+ X3 p(my) + 261 X3_p(m1 + 1)

Vi o= (Xu(m®)+ (22 — )Xe(m® + 1),

Xa_p(my) + (2i2 — 1) X3_(m1 + 1),
Xk(m*) + QjQXk(m* + 1)

+ X3_k(m1) + 2i2X3_x(my + 1)) (70)

where because the Wi-edge {V;,V;} is internal, the desired
symbols are limited to Xy (m*), Xp(m* +1). Then each Wj-
special 2-color node in V;, V; is currently set as
V e VU Vj :
Vo= (Xp(m")+ (2j3 — D) Xi(m* + 1),
X3,k(m2) + (223 — 1)X3,k(m2 + 1),

X3_(m2) + 2i3X3_p(mo + 1)) (71)

and update it to

EVeEV iV = (Xu(m"),
Xa_(ma) + (2i3 — 1) Xz_p(m2 + 1),
Xs_p(ma) + 2i3X5_(ma + 1))  (72)
ifVey: Vv = (Xp(m"+1),

X3k (m2) + (2i3 — 1) X3 (m2 + 1),
X3 (m2) + 2i3 X3 (ma +1)). (73)
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For every normal 2-color node V' in the segment of residing
path P,,,,m € [M] from V; to the node before V; . Update
V' as follows.

Vo= (Xp(m) + (2ja — D) Xk(m* +1),
Xs_p(ms) + (24 — 1) X5_p,(ms + 1),
X (m®) + 2js Xy (m* + 1)
+ Xs_p(ms) + 204 X5 (ms + 1))  (74)
-V = (Xk(m*) +(2j5 — D)X (1),

X3_k(m3) + (2i4 - I)Xg_k(mg + 1),
Xi(m™) + 2jaX5(1)

+ X3_k(mg) + 204 X3_p(mz +1)). (75

Similarly replace Xj(m* +1) by X (1) for all nodes (except
V;,.) that are connected to the above V' through a Ws_-path.

For every normal 2-color node V' in the segment of residing
path P,,,m € [M] from V; to the node before V; . Update
V' as follows.

Vo= (Xp(m") + (275 — DXp(m® + 1),
X3 r(ma) + (205 — 1) X3_p(my + 1),
Xi(m™) 4+ 2j5 Xp(m* + 1)
+ X3 p(ma) +2i5X3_(ma+1))  (76)
—- V = (Y}f(?) + (245 — D Xp(m™ + 1),

X3—k(ma) + (25 — 1) Xz_p(ma + 1),
Yk;(Q) + 2j5Xk(m* + 1)

+ X3_p(ma) +2i5X3_p(ma +1)). (77

Similarly replace X (m*) by X (2) for all nodes (except V)
that are connected to the above V' through a Wj3_j-path. The
description of the code construction is complete.

2) Proof of Correctness: The proof of correctness is similar
to that in Section IV-B.2, where we wish to show that for each
edge {V;, V;}, the interference dimension is limited to two so
that interference can be decoded and removed and the linear
mapping from the four linear combinations of desired source
symbols to the four desired source symbols, described by a
4 x 4 matrix T;; may have full rank and then the existence
of a feasible code construction (i.e., a choice of Hy, Hy, Hy)
is guaranteed by the Schwartz—Zippel lemma [28], [29], [30]
(refer to (37)).

We now consider each edge of G. The unchanged edges are
the same as before and the proof in Section IV-B.2 applies.
We are left with the edges that have been updated. First,
for the only internal Wjy-edge {V;,V;}, the interference is
unchanged, i.e., limited to X5_j(m1), X3_x(m; + 1) and the
desired symbols are X (m*), Xi(m* + 1), Xx(1), X1(2) so
that det(T,;;) is not the zero polynomial. Second, for every
Ws5_j-edge in the segment of residing path P,,,m € [M]
from V; to V; , the desired X3_j symbols are unchanged
and the interference from Wy is limited to Xj(m*), Xx(1),
i.e., two dimensions (refer to (72), (75)) so that interference
can be decoded and removed. Third, for every W5_j-edge in
the segment of residing path P,,,m € [M] from Vj to V} ,
the desired X5_; symbols are unchanged and the interference
from W, is limited to Xy, (m*+1), X;(2), i.e., two dimensions
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(refer to (73), (77)). Finally, for all other edges that involve
a node that has been updated, no matter it is a W3-edge or
a Ws_j-edge, we may verify that interference has dimension
two and desired symbols have dimension four. The proof of
correctness is thus complete.

E. Proof of Theorem 5: Graph G in Fig. 9

We show that R < 4/3 for the graph G in Fig. 9.
To set up the proof by contradiction, let us assume that
R =1limy, oo Lw/L, = 4/3 is (asymptotically) achievable,
i.e., Ly = 3Ly /4 + o(Ly,).

Let us start with a useful inequality, stated in the following
lemma.

Lemma 5: When R = 4/3, for the graph G in Fig. 9,
we have

H(V:%Vﬁ'Wl) 2 Lw/2 + O(Lw)' (78)
Proof:
H(Vs, Vs|Wh) = H(Vy, Vo, Vs, V| W)
— H(Vq, Vol V5, Vs, Wh) (79)

H(Vi, Vo, Wa|W1) — H(VA|V5, Wh)
— H(Va|Vs, Wh) (80)

> Ly = H(W, Vs|Wh) + H(Vs|[W7)
— H(Va2, Vs|Wh) + H(Vs|W1) 81

(39)(54)
> Ly—Ly/2+ Ly/4

— Ly/24 Lu/4+ o(Ly) (82)

= Luy/2+0(Ly) (83)

where the first term of (80) follows from the decoding
constraint (2) of the Ws-edge {Vi,Va2}; (82) follows by
applying Lemma 3 to edges {V1, Vs}, {V2, Vs} and applying
Lemma 1 to nodes Vs, V. [ |

Next, applying Lemma 3 to edges {V3,V5}, {V5,Vs},
{Ve,Vs}, {Vs,Vs}, {Vs,V2},{V7,V4} and submodularity
repeatedly, we have

3Ly + o(Ly,)

= H(V3,‘/5|W1)+H(‘/3,,%|W1)
+ H(Vg, Vs|Wh1) + H(Vs, Vs|Wh)

+ H(Vs, Vz|[Wh) + H(V7, Va|Wh) (34)
> H(V3, Vs, Vs|W1) + H(V3|W)
+ H(Vs, Vs, Vs|W1) + H(Vs|W1)
+ H(Vg, Vg, Va|W1) + H(Wr|Wh) (85)
O H(Vy Vi Vi, Ve, Vi, Vel Wh) + H(Va, Vil T)
+ H(V5|Wh) +5L,,/4 (86)
(2)(47)(78)
> H(V3, Vy, Wy |Wy)
4 Lu/2+ Ly/2 + 5L, /4 87)
STV (88)
= 3 > 13/4 (contradiction) (89)
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where (86) follows by applying Lemma 1| to 2-color node
V7 and applying Lemma 2 to normal 2-color nodes V3, Vg and
the first term of (87) follows from the decoding constraint (2)
of the Wh-edge {V3, V,}. We have arrived at a contradiction
and the proof is complete.

FE. Proof of Theorem 6: Necessary Condition of Go—43
With K > 2

We show that R < 4/3 if a graph G contains any one of
the three structures in Theorem 6. Let us consider the three
structures sequentially.

The first structure is that G contains an M-color node,
where M > 4. From (12), we have R < (M + 1)/M <
5/4 < 4/3.

The second structure is that G contains a 3-color node
V' that is connected to an M-color node V;,, where M >
2. Suppose {V,V;, } is a Wj,-edge. As V is 3-color,
we have a Wy,,-edge {V, V;, } and a Wy, -edge {V, V;, }, where
k1, ko, ks are distinct and 41, 49, i3 are distinct. As V;, is M-
color, M > 2, we have a Wy-edge {V;,,V;} where j might
be io or i3 (but j # i1) and k might be ko or k3 (but k # k1).
The following proof will work under all circumstances.

Consider Wy,-edge {V,V;,} and W}, -edge {V, V,,}. From
the decoding constraint (2), we have

2Ly L IV, V,, Vi Wi, Wiy (90)

= H(V,Vi,,Viy) = H(V, Vi, Vi, Wiy, Wi, ) O1)

< 3L, — H(V|Wy,, Wkg) 92)

- H(V|Wi,, We,) < 3Ly — 2Ly, (93)

Consider Wy-edge {V;,,V;}. From (19), we have
H(V;, [Wk) < 2Ly — Ly, 94

Adding (93) and (94), we have

5Ly —3Ly = H(V|Wk23Wks) +H(‘/11‘Wk)(95)
Z H(‘/? ‘/i1|Wk2’Wk37Wk) (96)
2
2 H(Wkl |W7€2’ Wi, W) o7
v Ly, (98)
= R=1L,/L, < 5/4<4/3. (99)

The third structure is that G contains a normal 2-color
node V' that is connected to a 2-color node V; and V.V, are
connected to different types of edges. Suppose {V,V;} is a
Wy-edge. As V,V; are 2-color (the two colors are different)
and V is normal, we have a Wy, -edge {V;,V;, }, a Wg,-
edge {V,V;, }, and a Wy,-edge {V},,V;,} where k, k1, ko are
distinct and k3 # ko.

Consider Wy-edge {V,V;} and Wj, -edge {V;,Vi}.
Following the derivation of (93), we have

H(V Wi, W) < 3Ly — 2Ly. (100)
Consider Wy, -edge {V},, V], }. From (19), we have
H(Vj,[Wh,) < 2Ly = Ly (101)
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Adding (100) and (101), we have

5L, — 3L, > H(V|Wk,Wkl)+H(V}l|Wk3) (102)
> H(Va ‘/}I‘Wk’Wk17Wk’3) (103)
(2)
> H(kaz‘kakaWks) (104)
Yo, (105)
=R = Lw/Lv§5/4<4/3. (106)

G. Proof of Theorem 7: Sufficient Condition of Go—y3 With
K>2

We show that R = 4/3 is achievable if a graph G(V, &) ¢

oy /4 contains no internal edge after removing one 1-color
nodes in residing paths. We first present the code construction,
which is a minor modification of that in Section IV-B.1 and
then prove it satisfies the decoding constraint (2), which is
similar to that in Section IV-B.2.

1) Code Construction: Choose the field size p to be a prime
that is greater than 4|&|. Set L,, = 4log, p, L, = 3logy p so
that each source\coded symbol is comprised of 4\3 symbols
from IF,, and the rate achieved is 4/3.

Consider the set of nodes that are connected to Wj-edges,
k € [K] and denote this set by V. Consider the subgraph of
G(V,€) whose node set is V;, and edge set is comprised of
all edges that are not Wjy-edges and are connected to some
node in Vj, denoted by & and denote this subgraph by
G (Vk, Exe ). Decompose G (V, Exe) into Wy, -components,
k" # k and suppose we have M} such components. A trivial
component with a single node can be classified as a Wj,/-
component for any k' # k and we just fix one &’ (any choice
will work). Among these M; W) -components, suppose
M} components are comprised of 1-color nodes and label

them as P,Ll], - P[Mk] M? components are comprlsed of
2-color nodes and label them as Qk vy LM’“], the

remaining M} = My, — M|} — M? components are comprised
3
of 3-color nodes and label them as S ,Ll], e S ,[CM’“} (each such
component is an isolated node as 3-color nodes are connected
to only 1-color nodos when G ¢ QZL<(3 2
Generate generic linear comblnatlons of the source symbols

as follows.

Wi = (Wi(l);---; Wi(4)) eIF;;“,ke [K] (107)
Xi = (Xi(1);-; Xp(8M +2M; + My))
A OHW, € F(SMk+2Mk+Mk)x1 (108)
where each element of H;, € IE‘,(,BM;+2M’§+M’3)X4 is chosen

uniformly and independently from IF),.
Consider P,Lm], m € [M}], denote its node by V, and set

V = (Xp(3m — 2), Xi,(3m — 1), X, (3m)). (109)
This step com letes the assignment for all 1 color nodes.
Consider Q ,m € [M?]. Suppose Qk contains J nodes
Vi, -, Vi, Cons1der V],j € [J], which is 2-color.
If Vi, is Wy-special, set Vl[]k] £
X (3ME 4 2m — 1) + (2 — 1) X (3M} + 2m);
(110)
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otherwise, set V") = (v,(1), v"(2))
2 (Xe(3M} +2m — 1) + (2 = D)X, (3M} +2m),
Xi(3M} +2m — 1) + 2jX,(3M} +2m) ). (111)

For any 2-color node V' that is connected to W, -edges and
Wi, -edges,

if V' is normal, then set

V = (VIal(1), vikl(1), vial(2) + vikl(2)); (112)

otherwise, set V = (VIFl ylk:l), (113)

This step co
Consider S

VI & X, (3M} + 2ME +m).

Fletes the assignment for all 2-color nodes.
,m € [M3?], denote its node by V, and set

(114)

For any 3-color node V that is connected to W, -edges,
Wi,-edges, and Wy, -edges, set

V= (V[k1]7v[k2],v[k3])_ (115)

This step completes the assignment for all 3-color nodes and
as G ¢ gg;g /4 contains no M-color nodes, where M > 4,
the code construction is complete.

2) Proof of Correctness: Consider any edge {V;,V,} € &
and suppose it is a Wy-edge.

When V;, V; contain one 1-color code, then our assignment
ensures that (V;,V;) contains four distinct elements of Xy,
which can be written as T%”Wk and det(T;;) is a non-zero
polynomial T;;(Hy, - ,H).

We are left with cases where V;,V; are both 2-color
(because 3-color nodes in G ¢ ggg /4 are connected only
to 1-color nodes). When V;,V; contain one normal 2-color
code, then G ¢ QTC‘“"<"3 /4 ensures that V;, V; are connected to
edges that are associated with the same set of two source
symbols, i.e., we are back to the K = 2 setting considered in
Theorem 2 and following the proof in Case 2 and Case 3 of
Section IV-B.2, we have T;;(H;,--- ,Hp) is non-zero. The
only remaining case is that V;, V; are both special, say V; is
Wy, -special and V; is Wy, -special, where ki # k, ko # k.
Then from (111) and (113), we know that (V;,V;) each
contains two distinct elements of X (distinctness is due to
the absence of internal edges after removing 1-color nodes)
so that T;;(Hy,--- ,H) is not the zero-polynomial.

Finally, consider [, ;.(v; v.yee Tij(Hu, -+, Hy), which
is a non-zero polynomial with degree at most 4|£| < p,
the field size. By the Schwartz—Zippel lemma [28], [29],
[30], there exists a realization of Hy,--- ,Hg so that each
T;j(Hy,--- ,Hg) # 0 and all decoding constraints (2) are
satisfied.

V. DISCUSSION

An extremal rate perspective is taken to study the storage
code problem over graphs. For the highest capacity values,
we have identified a number of combinatorial structures that
have significant impact on the code rate - M-color code
(i.e., the number of sources associated with a node), internal
edge (which captures a direct conflict between alignment
of undesired source symbols and independence of desired
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source symbols), normal 2-color node\special 2-color node
(for rate 4/3, which keeps the same interference\which
could change interference up to the extent of 1/4 source
size). Both the achievability and converse results are guided
by a linear dimension counting view. The sufficient and
necessary conditions presented are not the largest that our
proof technique can lead to, i.e., we can solve more graph
instances, but a systematic description is still out of current
reach. It is not clear which rates will turn out to have
hard capacity instances. Specifically, all extremal graphs with
storage code capacity 4/3 appear to go beyond the techniques
of this work. Regarding generalizations, we note that our
model is the most elementary, where we have focused on
the highest capacity values, i.e., best rate scenarios instead
of lowest capacity values, i.e., worst rate scenarios, or other
physically meaningful rates; decoding constraints are placed
on a pair of nodes in this work instead of an arbitrary set of
nodes, i.e., we may have a hypergraph rather than a graph [2];
each edge is associated with only one source symbols instead
of multiple source symbols where the decoding structure can
be more diverse [1]. Finally, from an extremal rate and network
perspective, we may view combinatorial objects using the
metric of capacity and study further extremal (largest, densest,
most (linearly) independent) graphs, set families, vector spaces
etc. along the line of extremal combinatorics [31].
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