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Phytoplankton are responsible for half of all oxygen production and drive the ocean carbon cycle. Metabolic
theory predicts that increasing global temperatures will cause phytoplankton to become more heterotrophic
and smaller. Here, we uncover the metabolic trade-offs between cellular space, energy, and stress management
driving phytoplankton thermal acclimation and how these might be overcome through evolutionary adapta-
tion. We show that the observed relationships between traits such as chlorophyll, lipid content, C:N, and size can
be predicted on the basis of the metabolic demands of the cell, the thermal dependency of transporters, and
changes in membrane lipids. We suggest that many of the observed relationships are not fixed physiological
constraints but rather can be altered through adaptation. For example, the evolution of lipid metabolism can
favor larger cells with higher lipid content to mitigate oxidative stress. These results have implications for rates

of carbon sequestration and export in a warmer ocean.

INTRODUCTION

Ocean temperatures are increasing at unprecedented rates due to
anthropogenic increases in carbon dioxide in the atmosphere (I).
These rising temperatures have the potential to substantially alter
both rates of carbon cycling in the ocean and marine ecosystem dy-
namics (2—4). Here, we focus on the response of phytoplankton to
increasing temperatures as phytoplankton drive carbon cycling in
the ocean, contribute half of all oxygen production, and form the
base of the marine food web (5, 6).

Phytoplankton have a classic unimodal response of growth rate
to temperature (7). This response can be broken down into several
competing processes. As temperatures increase, cellular metabolism
speeds up as enzyme kinetics increase due to more collisions
between the substrate and the active site of the enzyme (8, 9).
This results in faster rates of carbon fixation and respiration (10).
In addition, warmer temperatures increase rates of protein denatu-
ration (9). Overall, respiration rates have been shown to increase
more rapidly than carbon fixation with increasing temperature
(10). However, the specific metabolic constraints driving this rela-
tionship is unclear.

Understanding the fundamental molecular and energetic trade-
offs that underlie classic trait relationships is critical for predicting
how phytoplankton will adapt to a warming ocean. Conventionally,
predicted responses have been based on present-day trait correla-
tions derived from empirical evidence. For example, previous
work has used these correlations to predict that body size will de-
crease (3, 11) and ecosystems will become increasingly hetero-
trophic in response to warming (2, 6). However, we lack a
fundamental understanding of the molecular mechanisms behind
these two hypothesized responses and thus an understanding of
how robust future predictions are on the time scales of anthropolog-
ically driven climate change.

The relationships between traits and how traits change as a func-
tion of temperature can be altered through adaptation. Here, we de-
termine which of these relationships can be altered to overcome
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environmental stress given the fundamental constraints on energy
and space that a cell must contend with. This is motivated by recent
work that showed that some trait correlations (e.g., between metab-
olism and size) can be altered through adaptation (12). An experi-
mental evolution study found that phytoplankton evolved larger cell
sizes and higher growth rates due to warming (13), opposed to the
expected smaller cell sizes (14).

By leveraging tools from thermodynamics, resource allocation
theory, and trait ecology, we developed a proteome model for a
generic phytoplankton cell to investigate the mechanistic con-
straints on photosynthesis and respiration due to warming. The
model optimizes proteome allocation and cell size to maximize phy-
toplankton growth under different temperatures. We use this model
to provide mechanistic insights into the trade-offs between respira-
tion, cellular space, and environmental stress management that
limit the metabolic choices of phytoplankton acclimation under
temperature stress and how these might be overcome through adap-
tive change. Our results suggest that phytoplankton acclimate to
warming by switching the main respiratory pathway from glycolysis
to lipid degradation due to a trade-off based on proteomic cost,
energy yield, and space constraints. In addition, decreases in cell
size are driven by the thermal dependency of nutrient uptake and
by the increased saturation of membrane lipids. We suggest that the
relationship between size and temperature can be overcome through
changes in lipid metabolism (e.g., increasing lipid content to miti-
gate oxidative stress). Thus, under certain environmental condi-
tions, phytoplankton might adapt to warming by evolving larger
cell sizes with faster growth rates. This is consistent with experimen-
tal data that found evidence for higher lipid content (15, 16) and
rapid evolution of genes associated with redox homeostasis and ox-
idative stress (13) among warm-evolved phytoplankton. Under-
standing the hard and soft constraints that drive phytoplankton
acclimation and adaptation will allow us to better predict their
impact in the carbon cycling and trophic efficiency as the
climate changes.
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RESULTS

A proteome model for a phytoplankton cell

An illustrative schematic of the single-cell proteome allocation
model for phytoplankton thermal responses is shown in Fig. 1A.
The model is built as a constrained optimization problem that max-
imizes the steady-state growth rate of a generic photosynthetic cell
given a set of environmental conditions. Specifically, cellular me-
tabolisms are represented by a system of ordinary differential equa-
tions, which are solved to estimate the daytime proteome,
macromolecular concentrations, and surface area—to—volume ratio
of a photosynthetic cell given external temperature, light, and inor-
ganic nutrients (output variables are listed in table S1). Here, we
focus on shifts in temperature and so assume that the cell is
growing under steady-state ideal light and nutrient conditions.
While we do not simulate diurnal cycles, the cell must generate suf-
ficient protein pools and stored carbon to fuel respiration during the
night (see the “Energy metabolism” section in Materials and
Methods). Resources are allocated to different protein pools
(shown in blue), which regulate the production and consumption
of other macromolecules (shown in green).

Photosystems convert light energy into chemical energy. The
conversion of inorganic carbon into a generic internal carbon
pool (akin to carbohydrates) is mediated by rubisco activity. Nitro-
gen transporters located in the cell membrane bring inorganic ni-
trogen into the cell. The internal pools of carbon and nitrogen are
used by ribosomes to synthesize proteins, including the ribosomes
themselves. The internal carbon pool is also used for lipid synthesis
and to fuel dark respiration through glycolysis. The lipid synthesis
pathway is used both to build membrane lipids and for producing
stored lipids. Stored lipids can be used to fuel dark respiration (17)
through the lipid degradation pathway. Because our model optimiz-
es for the proteome of the cell in a steady-state environment, glycol-
ysis and lipid degradation are mutually exclusive; the optimal cell
exclusively uses the more efficient pathway given a specific temper-
ature. In the model, stored lipids can also be used to minimize heat
damage (Eqgs. 21 and 22). Previous work has demonstrated that

phytoplankton store fatty acids as a result of temperature stress
(15, 18, 19) and that these fatty acids can play a role in mitigating
heat stress in both phytoplankton (18) and plants (20, 21). In addi-
tion to sequestering reactive oxygen species (ROS), lipid droplets
also regulate membrane composition by removing unsaturated
lipids at elevated temperatures (18, 21, 22). Cells also use antioxi-
dant enzymes to mitigate the impact of ROS. We also explore the
impact of using this alternative metabolic pathway for oxidative
stress and show similar results to the baseline model (Supplemen-
tary Text and see Discussion).

Cell size is determined by a trade-off between membrane real
estate for nitrogen transporters (higher surface area—to—volume
ratio) and biovolume for internal macromolecules and organelles
(lower surface area—to—volume ratio). The surface area of the cell
is equal to the area required for the nitrogen transporters and the
membrane lipids that are required for membrane integrity (Egs. 37
to 39). The volume of the cell is constrained by a maximum allow-
able intracellular density of macromolecules (proteins, storage
pools, internal pools of nitrogen and carbon, and ribosomes; see
Egs. 41 to 43). Thus, if the cell “needs” more intracellular macro-
molecules to grow optimally, it must get bigger (larger volume to
accommodate these intracellular components). Lipids and chloro-
plasts also affect cell size by occupying intracellular space and
thus decreasing the volume available for other intracellular mole-
cules (Egs. 41 to 43). We assume lipids form droplets that take up
space calculated using the measured volume of a triglyceride mole-
cule. The model can consider cells of different shapes, but here, we
assumed a spherical cell for simplicity.

Warming accelerates all enzymatic reactions in the model, except
for photochemistry (Fig. 1B) because photon capture is temperature
independent (23). Because rubisco and thus carbon fixation are
temperature dependent, photochemistry and carbon fixation are
modeled separately. The model can impose different thermal de-
pendencies for different reactions (e.g., Fig. 1B). We explore the sen-
sitivity of these thermal dependencies in the “Changes in cell size
due to warming” section and in the Supplementary Materials.
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Fig. 1. The single-cell proteome model for phytoplankton. (A) Blue pools indicate proteins, and green pools indicate other macromolecules. Arrows indicate one-way
reactions with blue arrows indicating the production of a given macromolecule catalyzed by a given protein and orange arrows indicating energy production fluxes. The
model optimizes the relative investment in the different proteins. (B) The model assumes that photosystems are temperature independent and that the thermal depend-
ency of nutrient transporters is lower than that of other reactions (see the “A proteome model for a phytoplankton cell” section). Thermal dependency (unitless) is defined

as the temperature impact on the reaction rate (yr.; Eq. 4).
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The model also accounts for the fact that the lipid per unit area of
membrane increases with temperature (Eq. 27). This results from
the switch from unsaturated to saturated lipids at warmer temper-
atures (24). Because saturated lipids pack more easily in the mem-
brane due to the lack of kinked hydrocarbon chains, the cell requires
a greater concentration of membrane lipids to maintain membrane
integrity at higher temperatures.

Last, the model assumes that protein damage increases with in-
creasing temperature (Eqs. 19 and 20). Although intracellular
damage due to elevated temperatures is likely to affect all proteins,
photosystems are particularly vulnerable because heat damage is
commonly accompanied by light stress and photosystem II (and
the D1 protein in particular) is closest to the site of ROS formation
(18, 25). Thus, we assume that warming results in increased damage
to photosystems and thus requires repair by specialized proteins
(Egs. 23 and 24), following Mairet et al. (26). A version of the
model where all protein pools are damaged at high temperatures
and require repair is provided in the Supplementary Materials;
this model showed qualitatively similar results. The model and pa-
rameters are fully defined in the Supplementary Materials (tables S1
to S3).

The model represents a generic phytoplankton cell that must
perform basic phototrophic metabolisms. This gives us insight
into the universal energetic and space constraints that a phytoplank-
ton cell faces as temperatures increase (“hard” constraints or trade-
offs). We also use the model to explore different metabolic strategies
that a cell might use to mitigate stress (e.g., different energy sources
for dark respiration). This framework can be expanded to compare
different metabolic strategies used by different functional groups.
For example, the cellular metabolisms represented in the model
could be developed to capture diatom-specific metabolisms or
altered to include mixotrophy.

Below, we compare our model against previously published
physiological, transcriptomic, proteomic, and metabolomic
(‘omics) datasets obtained for cultured isolates. While physiological
data cover different temperatures across the thermal growth curves,
‘omics datasets typically compare metabolic shifts between two
focused temperatures. Therefore, we compared our model against
‘omics datasets qualitatively by describing the direction of change
for a given metabolic process (Table 1).

Model comparison against physiological data

Our proteome optimization model of a phytoplankton cell repro-
duces observed trait values and trends as a function of temperature
for both large (i.e., diatoms; Fig. 2 and fig. S1) and small (i.e., the
cyanobacteria Prochlorococcus; fig. S2) phytoplankton. Hereafter,
we focus on the model results validated with the diatom data
because it allows us to explore the differences between acclimated
and adaptive responses using the results from a diatom experimen-
tal evolution study (13) (see the “Drivers of thermal adaptation”
section). The model simulations for small phytoplankton are
shown in fig. S2 and show the same energetic and space trade-offs
presented here for large phytoplankton.

By accounting for the acceleration of enzymatic reactions along-
side photosystem damage as a function of temperature, our model
captures observed growth and carbon fixation rates of various
diatom species as well as the observed decrease in the carbon use
efficiency with warming (Fig. 2, A to C). In agreement with empir-
ical data, the model also predicts an increase in the chlorophyll
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content per unit of biovolume, a decline in the nitrogen-to-
carbon ratio of the cell, and a decrease in cell size as temperature
increases (Fig. 2, D to F). These responses are independent of the
respiratory pathway used by the cell (Fig. 2 and fig. S1) and are
also observed in small phytoplankton simulations (fig. S2). The
model then allows us to tease apart the underlying molecular mech-
anisms driving these commonly reported relationships between
traits and temperature.

Shifts in investment with increasing temperatures
Differential temperature dependencies of cellular processes play a
critical role in observed trait relationships as the cell acclimates to
warming. If temperature had the same effect on all cellular process-
es, no shift in allocation would occur, as increased energy genera-
tion would keep pace with increased respiration demands. This
result would be inconsistent with observations (Table 1). In
reality, temperature-independent photon absorption by photosys-
tems is decoupled from the temperature-dependent enzyme kinet-
ics of rubisco resulting in an energetic imbalance. Thus, as
temperature increases, the optimal cell must invest more in light-
harvesting proteins and divest resources away from rubisco to max-
imize growth rates (Fig. 3A and fig. S3A). The model is able to elu-
cidate the mechanisms driving the observed shifts in rubisco gene
transcripts and photosynthesis-antenna proteins under increased
temperatures (Table 1) (18, 19, 27) as well as the observed increase
in chlorophyll-a per biovolume as a function of temperature
(Fig. 2D). Photosystem damage due to temperature stress exacer-
bates this energetic imbalance as the cell must also invest in more
repair proteins as temperature increases (Fig. 3B, fig. S3B, and
Table 1) (18, 19, 27) to avoid the excessive accumulation of irrevers-
ibly damaged photosystems (fig. S4). We explore the sensitivity of
the model to the rate of damage and show that our main results do
not change if photosystems and all other protein pools are assumed
to be damaged at the same rate or if all pools are damaged but pho-
tosystems are damaged at a higher rate. These modified versions of
the model incur a higher penalty in growth rates as temperatures
increase due to the greater investment in repair proteins and respi-
ration that is required (fig. S5).

The optimal cell compensates for the need to increase invest-
ment in photosystems and repair proteins as temperatures increase
by divesting resources away from other parts of the proteome. In-
creased kinetic energy results in more efficient pathways for protein
synthesis; thus, the optimal cell can decrease the relative investment
in ribosomes without affecting growth rates (Fig. 3B and fig. S3B).
Thus, the model predicts a decrease in the concentration of ribo-
somes with increasing temperatures (fig. S6), in agreement with em-
pirical data (Table 1) (19, 27, 28) and previous modeling results
(28). Our findings build on the modeling work by Toseland et al.
(28) to show that the decrease in ribosomes is ultimately mediated
by the need to invest more in photosystems and repair proteins with
warming as a result of energetic imbalances. While this appears to
be a general pattern, some studies observed an increase in total RNA
content with increases in temperature (Table 1) (13, 29), highlight-
ing the need for further investigations into possible alternative met-
abolic strategies. The increased investment in photosystems and the
resulting decreased investment in ribosomes contribute to the ob-
served decrease in the nitrogen-to-carbon ratio of the cell with in-
creasing temperatures (Fig. 2E), as photosystems are less nitrogen
rich than ribosomes (table S2).
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Table 1. Comparison between modeled and observed metabolic
shifts. Thermal acclimation responses are shown where the arrows
correspond to increases (1) or decreases (]) when temperatures are
increased. Note that observed shifts in investment in nitrogen transporters
come from experiments conducted at or below the optimal growth

temperature.
Variable Model Observation Data type and
reference

Investment in T T Transcriptomics (27);
photosystems proteomics (79)
Investment | | Proteomics (78);
in rubisco transcriptomics (27)
Investment in 1 1 Proteomics (79, 30)
transporters
Investment in 1 1 Transcriptomics (27);
repair proteins proteomics (18, 19)
Investment in l l Transcriptomics (27)
ribosomes
Investment in | | Transcriptomics (29);
glycolysis proteomics (30)
Investment in lipid 1 1 Transcriptomics (29)
degradation
Synthesis of 1 1 Transcriptomics (27);
saturated lipids proteomics (18, 19)
Concentration of ! l Total RNA (28);
ribosomes transcriptomics (27);

proteomics (79)

T Total RNA (73, 29)

Total 1 1 Total protein content
protein content (713, 29, 30)
Stored lipids 1 1 Fatty acid content (75,
(fatty acids) 18); metabolomics (79)

As temperature increases, the optimal cell initially divests re-
sources away from respiratory pathways to accommodate the in-
creased photosystem demand. This pattern is ultimately reversed
as temperatures increase to near-fatal temperatures due to exponen-
tially increasing metabolic demands (Fig. 3B and fig. S3B), which we
discuss more below. If the cell is given a choice between fueling dark
respiration with glycolysis or lipid degradation, the optimal cell
switches from using glycolysis to using lipid degradation at a critical
high temperature (Fig. 3C). This prediction is an emergent property
of the model and provides mechanistic insight that is consistent
with transcriptomic and proteomic evidence from cultured isolates
(Table 1) in which glycolysis was found to be up-regulated in colder
environments (29, 30), while lipid degradation was up-regulated in
warmer environments (29). Here, we suggest that this switch arises
due to a trade-off between energy demands, protein requirements,
and space.

To meet increasing energy demands due to rising temperatures,
a cell must balance the relative investments in uptake and growth.
While it costs less energy to build carbohydrates, lipids store more
energy per mole of carbon (31) and also take up less space in the cell
(17). The model predicts that lipids are preferentially used for res-
piration at higher temperatures to support higher metabolic
demands while optimizing for smaller cell sizes (fig. S7), which
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helps to maintain a high surface area—to—volume ratio (see discus-
sion below). By using lipid degradation instead of glycolysis, the cell
can also increase its carbon use efficiency and the relative concen-
tration of photosystems in the cell (fig. S7). The proteome model
offers a unique framework to test the boundaries of this trade-off
and the underlying mechanisms, which are otherwise hard to dis-
entangle experimentally. Specifically, the model allows us to assess
responses over a wide range of experimental conditions and param-
eter values and identify different growth regimes, whereas such ex-
periments are challenging to conduct and are costly in terms of time
and resources.

Once temperature increases to a near-fatal temperature, the
optimal cell shifts into a third regime. In this regime, both respira-
tion demand and stress due to photosystem damage are excessively
high. Under these conditions, the optimal cell stores lipids to regu-
late stress rather than to fuel respiration and switches back to gly-
colysis to meet respiration demands (Fig. 3C). Glycolysis was found
to be up-regulated at near-fatal temperatures in Chlamydomonas
reinhardtii (Table 1) (18). The required carbohydrate storage to
fuel dark respiration in this extreme stress case results in larger
optimal cell sizes (fig. S7). A cell can avoid entering into this
third regime by increasing the efficiency of the lipid degradation
pathway (fig. S8). A shortcoming of the proteome allocation
model is that it optimizes assuming a steady-state environment.
As a result, the model never predicts the utilization of both the
lipid degradation and glycolysis pathways, resulting in the metabolic
switch (Fig. 3C and fig. S7). In reality, we expect that fluctuating
environmental conditions would generate a smooth transition in
which both pathways are used over the transition range.

Changes in cell size due to warming

Our model provides insights into the mechanisms driving changes
in cell size with increasing temperature. We find that the thermal
dependency for nitrogen uptake relative to other reactions
(Fig. 1B) plays an important role in the observed changes in cell
size with warming (Fig. 2F). Specifically, if the thermal dependency
of nutrient uptake is equal to that of other metabolic processes (e.g.,
ribosomes), as temperatures increase, the cell can maximize growth
rate by divesting resources away from transporters to invest in the
synthesis and repair of photosystems. This results in a decrease in
the relative concentration of transporters per unit of biovolume as
temperatures increase (fig. SOA) and, consequently, in a smaller
surface area—to—volume ratio and larger optimal cell size
(Fig. 4A). This is opposite to the observed trends of decreasing
cell size with increasing temperatures even under replete nutrient
conditions (11). On the other hand, if we assume that nitrogen
transport into the cell is less sensitive to temperature than other
metabolic processes, nitrogen uptake is less efficient than other
pathways as temperatures increase and thus the cell must increase
the relative concentration of transporters to maintain the same
flux of nitrogen into the cell (fig. S9A). This results in a larger
surface area—to—volume ratio and smaller optimal cell size
(Fig. 4A). This hypothesis is supported by proteomic analysis that
found nitrogen transporters to be up-regulated with warming even
under replete nutrient conditions (Table 1) (19, 30).

The proposed mechanism relating energetic imbalances, differ-
ential thermal dependencies, and cell size is also consistent with ex-
perimental evidence that the thermal dependency of nutrient
uptake is lower than that of both carbon fixation and growth (32,
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lipid degradation to fuel respiration (C). Model output is shown for the model cal-
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33). Similarly, isotope incorporation studies and enzyme assays
showed that the thermal dependency of nitrate uptake by the
diatom Thalassiosira pseudonana matched the thermal dependency
of nitrate reductase activity, which was lower than that of growth
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(34). Specifically, the Qyq (the factor by which metabolic rates in-
crease by a 10°C rise in temperature) for nitrate reductase activity
was found to be 1.8 (35), while the Q,, values for rubisco and res-
piration are approximately 2.4 and 3.0, respectively (23). Here, we
halved the activation energy E, (Eq. 4) of transporters relative to
other processes, but the model results are qualitatively the same
with different decreases in E, (fig. S10). The model allows us to un-
derstand the trade-offs associated with this lower Q;, value and re-
sulting impact on other traits.

We hypothesize that cell size is also affected by the lipid compo-
sition (saturated versus unsaturated) of the membrane. In the
model, the surface area of the cell is calculated as a function of
the concentration of membrane lipids and transporters. If we
assume that there is no change in lipid saturation as temperature
increases, then the cell maintains a constant ratio between trans-
porters and lipids in the membrane across the temperature range.
However, when we incorporate the need for cells to switch from un-
saturated to saturated lipids for membrane stability (Table 1) (18,
19, 27), the relative concentration of lipids per unit area of mem-
brane increases (fig. S9B). Saturated lipids take up less space com-
pared to unsaturated lipids because they lack kinked hydrocarbon
chains (17). Therefore, to maintain a constant spacing between
transporters in the membrane, the ratio of lipids to transporters
must increase with increasing temperature (Eq. 27). When this
change to saturated lipids at high temperatures is included in the
model (Egs. 26 and 27), the surface area—to—volume ratio of the
cell increases, resulting in smaller optimal cell sizes (Fig. 4B) to ac-
commodate the same concentration of transporters and a higher
concentration of lipids in the membrane.
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Fig. 4. Cell size depends on the thermal dependencies of membrane compo-
nents. Changes in cellular biovolume depend on the thermal dependencies of ni-
trogen transporters (A) and membrane lipids (B). Solid lines indicate the baseline
run (shown in Figs. 2 and 3), while dashed lines indicate the sensitivity runs. In (A),
the T-dependent run (red dashed line) uses the same temperature sensitivity for
transporters as other reactions. To provide the other extreme case, runs in which
transporters are assumed to be independent of temperature are shown (blue
dashed line). The baseline uses an intermediary scenario for nutrient transporters
(see Fig. 1B). (B) uses the intermediate temperature sensitivity for transporters
[black line in (A)] and shows model simulations where lipid saturation does not
change with temperature (blue dashed line) and where membrane lipids shift
from unsaturated to saturated as temperatures increase (red line). Model output
is shown for the model calibrated to data from (73) with parameter values given
in table S3.

The model predicts that cells get larger again at near-fatal tem-
peratures across all modeled scenarios (Figs. 2F and 4). This occurs
during the third regime described above. Energetic constraints at
high temperatures force the cell to heavily invest in respiration
and carbon storage, decreasing the concentration of transporters
and membrane lipids per unit of biovolume (fig. S9). Consequently,
the cell decreases its surface area—to—volume ratio to accommodate
the required carbon storage and energy investment.

Drivers of thermal adaptation

Cells respond to shifts in environmental conditions first by accli-
mating (rearrangement of metabolism through phenotypic
changes) and then by adapting (genetic changes). The proteome
model allows us to study both responses. The acclimation response
is captured by the different allocation strategies predicted at differ-
ent temperatures (i.e., those described above) based on a set of cons-
tant parameter values (table S2). However, by altering underlying
parameters (table S3), we can also use the model to understand
the adaptive responses of phytoplankton. For example, understand-
ing which model parameters can be altered to capture observed dif-
ferences between phytoplankton species (Fig. 2 and fig. S2) can
provide insight into different adaptive strategies. This is done sys-
tematically to assess the sensitivity of the model results to all free
parameters (figs. S10 to S16). To investigate ways in which a
single phytoplankton species adapts to high temperatures, we
conduct an additional set of model simulations. Here, we allow
changes (akin to mutations) in parameters (akin to genes) associat-
ed with the (i) activation energy E,, (ii) maximum total lipid content
Clagmay and (iii) maximum turnover rates k. (table S3). We
compare our results against data from Schaum et al. (13) in
which diatom strains of T. pseudonana were grown for 300 genera-
tions at the following temperatures: 22°C (control), 26°C (moderate
warming), and 32°C (severe warming). This analysis allows us to
uncover the mechanistic links between cellular adaptive strategies
and trade-offs.

Empirical evolution studies have shown that phytoplankton can
adapt to high temperatures by increasing their optimum growth
temperature Top,e (10, 13, 36, 37). The capacity of enzymes to
evolve thermostability is well known, especially in the field of
protein engineering (38). This response can be captured in the
model by increasing the activation energy E,, which sets the slope
at which metabolic rates increase exponentially with increasing
temperature (table S3). This adaptation allows higher growth rates
at high temperatures but comes at the cost of reduced growth rates at
lower temperatures due to slower kinetics (Fig. 5A). In addition to
this known trade-off, the model proposes additional trade-offs as-
sociated with evolving enzymes that perform better at high temper-
atures. Because the thermal dependency of nutrient transport into
the cell is lower than other reactions in the model (see discussion
above), warm-adapted cells can minimize the impact of this
trade-off by devoting more resources to rubisco and ribosomes
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Fig. 5. Thermal acclimation of phytoplankton evolved at different temperatures. Model output (lines) compared against data from an experimental evolution study
(symbols) in which the diatom T. pseudonana were grown for 300 generations at the following temperatures: 22°C (control), 26°C (moderate warming), and 32°C (severe
warming) (13). (A) Growth rate, (B) cell length, and (C) carbon storage, which includes both carbohydrates and lipids required to meet dark respiration costs and stored

lipids for mitigating oxidative stress.
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and divesting resources away from transporters at cooler tempera-
tures. However, this requires the warm-adapted cells to be larger
than their ancestors (Fig. 5B). Furthermore, although cells can
evolve enzymes that are more stable at higher temperatures, meta-
bolic rates still increase exponentially with temperature in the
warm-adapted cells, resulting in high respiration demands. The
optimal warm-adapted cell must then store even more carbon
than the ancestor cell to fuel respiration as temperatures increase
(Fig. 5C). Thus, the model provides a mechanistic explanation for
why, at high temperature, the warm-adapted cells both grow faster
and are larger than the ancestral strains (Fig. 5B, blue versus yellow).

The model identifies an additional trade-off associated with
warm temperature adaptation. To adapt to critically high tempera-
tures (i.e., grow faster and increase carbon use efficiency), cells must
also invest in mechanisms to minimize and repair damage resulting
from oxidative and heat stress (13), thus divesting resources away
from other intracellular processes. While there are many ways in
which a cell can invest resources to mitigate heat and oxidative
stress, here, we test two strategies: (i) the use of lipids to sequester
ROS and (ii) the use of antioxidant enzymes to decrease oxidative
stress. Both strategies result in qualitatively similar results. Here, we
present the lipid strategy based on results from two experimental
evolution studies that found increased lipid content in warm-
adapted cells (15, 16). The results from the antioxidant enzyme sim-
ulations are provided and discussed in the Supplementary Materials
(fig. S12; see the “Antioxidant enzyme simulation” section in Sup-
plementary Text).

The model is able to capture the trade-offs associated with adap-
tation to both moderate (26°C) and extreme (32°C) changes in tem-
perature. Increasing just the maximum lipid content (ctagmay)
decreases the cost of heat-damaged photosystems ey (table S3), al-
lowing the 32°C evolved cells to sustain growth at the previously
fatal temperature of 40°C (fig. S11A). This growth at extreme

temperatures comes at the cost of reduced growth across the
growth curve relative to the 26°C evolved model (e.g., maximum
growth of 1.02 day™' compared to 1.14 day™' for the 26°C
evolved model). It also requires increased cell sizes to accommodate
higher lipid storage (fig. S11B). By shifting the thermal dependency
of the reactions (higher E,) and evolving higher lipid content, the
cell can obtain higher growth rates relative to the simulations where
only maximum lipid content increased, albeit still slightly lower
than the 26°C evolved model (fig. S11A). The model dynamics
are consistent with the observed physiological shifts in warm-
adapted cells (13) and suggests a mechanism for the observed
changes. Specifically, to minimize damage at high temperatures
and support high respiration demands, the cell must invest in the
synthesis of stored lipids, which take up cellular space and divest
carbon away from growth (fig. S11C).

The model provides an additional prediction. Because of the
high cost of respiration under severe warming (32°C), it is advanta-
geous to slow all reaction rates to keep energy demands lower at high
temperatures, decrease respiration rates, and, thus, require less
carbon storage, which allows the cell to maintain a smaller size
(fig. S11B). Specifically, the model is only able to capture the
larger decrease in growth rates across the entire growth curve ob-
served in the experimental data (red line in Fig. 5A) by also decreas-
ing the maximum turnover rates of all reactions (i.e., k. table S3).
Decreases in k¢ for high temperature—adapted strains is consistent
with previous findings (13, 36, 10). Experimental evolution studies
for a variety of different phytoplankton species [Chlorella vulgaris
(36), Ostreococcus tauri (10), Synechococcus (10), and T. pseudonana
(13)] all show that photosynthesis and respiration rates decreased in
high temperature-adapted strains. While an increase in carbon use
efficiency for high temperature—adapted strains relative to ancestral
strains appears to be a robust response, the cellular trade-offs
behind this response were not previously known. More work is
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Fig. 6. Phytoplankton thermal trade-offs. Phytoplankton respond plastically to increases in temperature by decreasing cell size; by increasing photosystems, trans-
porters, and the saturation of membrane lipids; and by storing lipids instead of carbohydrates. At critically high temperatures, the cell gets larger again because it must
maximize investment in carbon storage to fuel high respiration rates. To adapt to warming, phytoplankton can evolve higher E, so that enzymes function better at high
temperatures at the cost of higher carbon storage and lower growth at colder temperatures. Cells can also evolve higher lipid content or use other metabolisms such as
antioxidant enzymes to decrease cellular damage, which requires larger sizes. Schematic created with BioRender.com.
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needed to understand additional trade-offs associated with adapta-
tions to these extreme temperatures, but the model provides a useful
tool for teasing mechanisms apart.

DISCUSSION

Our proteome model provides insight into the underlying cellular
mechanisms behind observed plastic and evolved phytoplankton
trait changes to shifts in temperature (Fig. 6). Identifying which
trade-offs are hard constraints determined by energetic or biophys-
ical limitations versus malleable constraints that can be overcome
via evolution generates hypotheses for how phytoplankton might
adapt to a warm ocean and the resulting impact on ecosystem pro-
cesses (13, 37). We make three important predictions. First, lipids
are preferentially used for respiration as temperature increases
because they have a higher recoverable energy and take up less
space in the cell. This has potential implications for food web dy-
namics by producing high-energy prey. Second, changes in the sat-
uration of membrane lipids and the lower thermal dependency of
nutrient uptake explain why cells acclimate to warming by decreas-
ing size. These trade-offs result from fundamental imbalances in
cellular energetics and space. Third, phytoplankton might break
the observed temperature-size correlation and evolve larger sizes
under temperature stress by evolving metabolisms to mitigate intra-
cellular stress at high temperatures at a cost to growth at lower tem-
peratures. We hypothesize that increasing cell size may be an
important strategy to allow for increased lipid content and mini-
mize oxidative stress when faced with critically high temperatures.

Why do phytoplankton acclimate to warming by
decreasing cell size?

As predicted by theory and empirical evidence, we find that phyto-
plankton acclimate to warming by decreasing cell size (Fig. 6). De-
creases in size as a function of temperature have been reported for
diverse organisms, both across and within species; this response is
so ubiquitous that it has been considered a universal ecological re-
sponse to global warming (3), although this is debated (39). De-
creases in the size of marine plankton due to warming have been
explained by the accompanied effects on decreased nutrient avail-
ability due to increased stratification of the water column (4, 40).
However, decreases in cell size are also observed experimentally
when warming is decoupled from nutrient limitation (11). Our
model reveals that this is because, even under replete nutrient con-
ditions, phytoplankton can become limited by nutrients due to the
lower thermal dependency of nutrient uptake relative to other met-
abolic processes (23, 32, 34). Thus, as temperatures warm, a cell
must increase the relative investment in nutrient transporters, as
supported by previous proteomic analyses (19, 30), to keep pace
with increased metabolic demands. In addition, at higher tempera-
tures, cells switch from unsaturated to saturated lipids (24), requir-
ing a higher relative investment in the synthesis of saturated lipids
(18, 19, 27) to maintain membrane integrity, which also decreases
the optimal cell size.

We identify a trade-off between allocating cellular space to pho-
tosystems and carbon storage (increasing cellular volume) versus
membrane components (increasing cellular surface area) as temper-
atures increase (Fig. 6). To manage this trade-off, we find that the
cell switches from glycolysis to lipid degradation due to warming, as
supported by empirical evidence (29, 30). By choosing to store lipids

Leles and Levine, Sci. Adv. 9, eadh8043 (2023) 1 September 2023

instead of carbohydrates (17), phytoplankton fine-tune respiration
(41) by more efficiently storing energy per mole of carbon as well as
per unit of biovolume. This increases the cells’ carbon use efficiency
and allows for smaller cell sizes at warmer temperatures. However,
the model also predicts that cells should get larger again at critically
high temperatures (Fig. 6). This has been observed empirically (29,
42) and is usually attributed to cell cycle arrest just before cell death
(18). Here, we propose that there is an additional mechanism at
play. Cells must invest more in repair and respiration and thus
carbon storage, divesting resources away from membrane compo-
nents and investing resources in components that require larger cel-
lular volume. Because lipids can help mitigate damage due to
oxidative stress, our model predicts that the optimal cell switches
back to glycolysis to fuel respiration, which promotes further in-
creases in cell size at extremely high temperatures (fig. S7). While
cells typically switch from glycolysis to lipid degradation as temper-
atures warm, a previous study found that phytoplankton up-regu-
lated glycolysis under extreme heat stress (18).

The respiratory pathways used by phytoplankton might also
affect the oxygen cycling. Because of the lower oxygen content of
lipids relative to carbohydrates (43), the molar ratio of oxygen to
organic carbon consumed during respiration is higher for lipids.
This can have important consequences to the oxygen cycling in
the global ocean, decreasing the concentration of dissolved
oxygen and increasing low-oxygen zones due to warming, particu-
larly in the oligotrophic gyres (44).

Can phytoplankton adapt to warming without shrinking?
One might ask: Is the observed relationship between small size and
warmer temperatures strongly constrained, or is there a way for phy-
toplankton to adapt to warming without shrinking? Schaum et al.
(13) found that while high temperature—acclimated cells decreased
cell size, high temperature—adapted populations evolved larger cell
sizes and higher growth rates at elevated temperatures compared to
the ancestral population. Using the proteome allocation model, we
reveal the mechanisms and trade-offs both behind the observed
trend of decreases in cell size with temperature and how phyto-
plankton might alternatively be able to get larger under temperature
stress, thus challenging the temperature size rule. We found that to
evolve higher growth rates at warmer temperatures, phytoplankton
must (i) store more carbon to fuel higher rates of respiration and/or
(ii) decrease heat damage by evolving antioxidant responses such as
higher lipid content or increased production of antioxidant
enzymes (Fig. 6). Both strategies require allocating more cellular
space toward storage, which requires larger cell sizes.

The predictions described above have important consequences
to ecosystem functioning. Large phytoplankton with high lipid
content can have a positive impact on the higher trophic levels in
the marine food web. While larger phytoplankton can help
support larger predators, higher lipid content can translate into
higher food quality. If cells can adapt in this way, we would
expect higher trophic transfer efficiency and larger export due to
the overall high contribution of larger particles to the biological
pump, contrary to short-term predictions (15, 16). However,
under the multistressor environment of high temperature and nu-
trient limitation, previous empirical work has found that phyto-
plankton thermal responses are more strongly constrained (45)
and that thermal adaptation was not possible (46). These previous
studies typically assume a constant environment. The question then
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becomes if large cell sizes could arise as an alternative adaptive strat-
egy in environments with frequent and high variations in temper-
ature and pulses of nutrients. In such an environment, larger cells
would be able to store more carbon to regulate oxidative stress to
support higher growth during warmer periods. Even the most oli-
gotrophic seas are influenced by nutrient pulses derived from meso-
and submesoscale features (47). Thus, large phytoplankton could
benefit from storing nutrients during these episodes, suggesting
that there might be a niche for being large in a future warmer ocean.

Future directions

Our findings are grounded in a large body of theory (2, 48) and
lessons from trait ecology (11, 49) as well as based on insights
from experimental evolution studies (13, 15) and ‘omics approaches
(24, 29, 41). By integrating these fields, we investigate the gaps in
knowledge related to the molecular trade-offs that constrain both
short-term acclimation and evolutionary adaptation of phytoplank-
ton due to warming. Previous work has shown that proteome
models can provide insight into microbial choices across different
environments (26, 50-54). Here, we show how the proteome alloca-
tion model can be used to investigate short-term (acclimated) and
long-term (adaptive) responses and provide mechanistic hypothe-
ses related to underlying trade-offs. Future studies designed to spe-
cifically test these hypotheses against proteomic data will important.
Specifically, we need more studies that quantify proteomic and met-
abolic responses across multiple temperatures to accurately assess
the underlying mechanisms. We hypothesize that the growth strat-
egy of cells shift multiple times as temperatures increase (here, we
discuss three regimes) such that experiments comparing only two
temperatures can be difficult to interpret and contrast with
other studies.

This model provides a powerful tool for testing metabolic strat-
egies and understanding the conditions when one strategy is favor-
able over another. Here, we contrast strategies for fueling dark
respiration and two potential antioxidant strategies. However, the
model can easily be expanded to explicitly test trade-offs associated
with other metabolic strategies within the context of the general
space and energy constraints discussed here. For example, the
model could provide insight into the ability to combine photosyn-
thesis with the consumption of prey (mixotrophy) and how these
diverse metabolic strategies can drive different thermal responses
among protists. This modeling framework could also be used to in-
vestigate within species trade-offs across different environments
and across species trade-offs driving differences in functional
group traits. A shortcoming of this modeling approach is that the
model only predicts the steady-state optimal solution. An exciting
direction for future research is to modify the model to consider
strategies that prepare for future environments (e.g., luxury nutrient
uptake) or fluctuating conditions. Ultimately, proteome models can
inform the key trait trade-offs that should be included in large-scale
ecosystem models (28, 55), allowing us to better understand how
fine-scale processes scale up to influence global biogeochemical
cycles. This is particularly critical because both trait values and
the correlation between traits will constrain the possible evolution-
ary outcomes of phytoplankton in a warmer ocean (56).
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MATERIALS AND METHODS

The proteome allocation problem

Our coarse-grained model is built as a constrained optimization
problem that maximizes the steady-state growth rate of a generic
photosynthetic cell considering temperature, irradiance levels, and
external dissolved inorganic nitrogen and carbon concentrations.
While the model does not dynamically simulate light-dark cycles,
it requires the cell to prepare for the dark part of the light cycle,
i.e., the cell must produce and store enough chemical energy
during the light period to account for dark respiration. The
model is based on previous proteome models developed for hetero-
trophic and phototrophic metabolisms (26, 50—-54). For each envi-
ronmental condition, the model optimizes the following state
variables: the intracellular concentration of proteins (p) and other
macromolecules (c), the relative investments in the different pro-
teins (¢), the volume—to—surface area ratio of the cell (p), and the
fractions of the lipid synthesis flux designated to build membrane
lipids (ouy,) and stored lipids (ay,) and to fuel the lipid degradation
pathway (ay4) (table S1). Our work extends previous models to
account for temperature effects, lipid and energy metabolisms,
and space constraints in the model, allowing us to predict changes
in phytoplankton cell size and stoichiometry as a function of tem-
perature. Parameter values are presented in table S2 for those that
were kept constant throughout our simulations and in table S3 for
those that were fitted to observational data. More details on the
choice of parameter values are given in Supplementary Methods
(tables S6 to S14).

The mathematical model

The model assumes a cell that is growing exponentially at the
highest growth rate possible given a specific constant environmental
setting. Thus, for each macromolecule in the cell (c), the sum of the
rates (v) of all synthesis processes minus the sum of the rates of all
degradation processes is balanced by the cellular growth rate p

dc
E = Z Vsynthesis — Z Vdegradation — Uc = 0 (1)

We solve for each cellular pool concentration (molecules per
cubic micrometer of biovolume) that maximizes p. The reaction
rates catalyzed by a given protein i are represented by a Michae-
lis-Menten—type equation
Si

TR )
in which k; is the maximum temperature corrected turnover rate per
protein. S; is the substrate concentration, K; is the half-saturation
constant, and p; is the concentration of protein i in molecules of
protein i per cubic micrometer of biovolume. The glycolysis and
lipid degradation fluxes estimated to meet dark respiration costs
are an exception because all glucose and lipid storage will be used
to fuel respiration during the night and thus Eq. 2 can be simplified
as v; = k;p; for these pools.

vi = kip;
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We assume that all enzymatic rates in the cell increase with tem-
perature following the Arrhenius equation

ki = kref,'YTu (3)

Yra = €xp [EE (Tif - %ﬂ (4)

in which ki is the maximum turnover rate at a reference temper-
ature T (in kelvin), E, is the activation energy (eV), R is Boltz-
mann’s constant (eV K1), and T is the actual temperature (K).
The only exception is the maximum rate of photosynthesis (k,,),
which we assume is independent of temperature (23). Simulations
were run where E, was constant for all reactions (except photosyn-
thesis) and where E, varied for different enzymes (e.g., Fig. 1B).

All protein pools p; are synthesized by ribosomes (p,;), including
ribosomes themselves. The total protein synthesis flux catalyzed by
ribosomes v,; (molecules of amino acids um™ min™") is partitioned
among the different proteins according to the relative proteome in-
vestments ¢;. Because our model does not simulate the full prote-
ome, we assume that a fraction of the proteome devoted to other
protein pools (powmer; table S2) is constant, and thus, the sum of
all proteome relative investments is equal to (1 — ¢oher)

Z(bi = (1 - ‘Pother) =0.5 (5)

Our results are not sensitive to the choice of poher (fig. S13). One
can rewrite Eq. 1 for a given protein pool i as the following

i=0 (6)
in which n; is the molecular weight of a given protein (number of
amino acids per protein). The model is fully defined in the Supple-
mentary Materials, and a detailed description of the different met-
abolic pathways is given in the following sections.

i

1
iVri - —
¢ S

Protein synthesis

The protein synthesis flux (v,; molecules of amino acids pm_3
min~') is catalyzed by ribosomes and requires both internal
carbon (¢;c) and internal nitrogen (c;,)

Cic Cin
Cic + ch ¢in + Kin

The cellular nitrogen to carbon demand ("“") is defined as

Daan = Z‘Pi%‘

Naac (8)

in which the subscript i represents protein pool i, and g is the ratio of
nitrogen to carbon for that protein pool. We use an average value for
the carbon content of the protein pools (1., molecules of C per
amino acid; table S2) and solve for n,,, (molecules of N per
amino acid). The above equation thus controls the consumption
rate of carbon and nitrogen used in the synthesis of proteins to
meet the optimal stoichiometry of the cell.

Vi = nprl (7)

Carbon metabolism

The conversion of dissolved inorganic carbon (DIC) into a generic
pool of organic carbon (c;.) is mediated by the rubisco protein pool
(pru) such that the flux of carbon fixation v,, (molecules of C pm_3
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min~") is given by

B DIC )
ru = KruPru DIC + Km

For the model results presented here, we assume that carbon is
not limited: DIC >> K., $0 V;y & kyypr,. This internal organic
carbon (c;.) is used in three different reactions: (i) protein synthesis
(vyy) catalyzed by ribosomes, (ii) lipid synthesis (vy,) catalyzed by the
protein pool py,, and (iii) glycolysis (vg) catalyzed by the protein
pool pg to fuel cellular respiration durmg the nlght The reaction
rates vy, and vy are in units of molecules of C um™ *min~".

klbplb (10)

Cic + Klb

Vgl = kgiPgl (11)

The glycolysis flux can be simplified as vy = kg pg because we
assume that all glucose will be used to fuel respiration during
the night.

We can then write the equation for the internal pool of carbon

dCiC
o (12)

in which v,; is multiplied by 1, to convert the amino acid flux to
carbon units.

= Vru — VriMlaac — VIb — Vgl — WG = 0

Nitrogen metabolism

Dissolved inorganic nitrogen (DIN) is imported into the cell (vy;
molecules of N um™ min~") by nitrogen transporters (py,) localized
in the membrane

DIN

Ve = kP DIN 1 Ky, (13)
T

Vir ~ ktrptr (14)

As we focus here on the impact of temperature on cell metabo-
lism, we assume nitrogen is not limiting so that DIN >> K,, and v,, &
kypy.. Internal nitrogen (c;,) is subsequently consumed by the
protein synthesis pathway (v,;) such that the internal pool of nitro-
gen can be obtained from

dcin
— 15
ot (15)

in which v,; is multiplied by 1,,, to convert the amino acid flux to
nitrogen units.

= Vir — Vrillaan — MCin = 0

Cell stoichiometry

By simulating carbon and nitrogen metabolisms and varying the ni-
trogen content per amino acid (1,,,) according to the nitrogen to
carbon demand, it is possible to estimate the overall N:C quota of
the photosynthetic cell (g.;) by computing the weighted average

Zpir]iqinaac + Cin
Zpininaac + Cic + (Clm +oai + Ctag)nlic + Cgur]guc
in which i represents protein pools, p is protein concentration, 1 is

the protein molecular weight in units of amino acids per protein,
and q is the protein nitrogen-to-carbon ratio (see table S2). It is

eell = ( 16)
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important to note that g . represents the light proteome, thus ac-
counting for the carbon storage (cg, + ¢;;) that is needed to meet
dark respiration. As shown by previous studies, carbon storage re-
quired for dark metabolism can account for a large amount of
carbon in the cell (17, 51).

Photosynthesis

Photosystems (p,,) absorb photons at the rate of v, (molecules of
photon um™> min~") converting light (I) energy into chemical
energy at the rate of v, [molecules of adenosine 5'-triphosphate
(ATP) um ™ min™"'], as follows

I

Vp = kpppm (17)

(18)

is the amount of chemical energy produced per photon

Vep = Vp&p

in which e
absorbed.

Photosystems are assumed to be damaged by heat. Our model
captures several aspects of photosystem damage: reversible photo-
system damage, irreversible photosystem damage, and minimiza-
tion of damage by reducing oxidative stress (25). It is known that
photosystems are susceptible to heat damage, more specifically
the D1 protein within photosystem II. As heat stress increases, pho-
tosystem damage increases. We represent this process in the model
as a temperature-dependent damage term after (26)

p

(19)

kd = krefd Yrd

O [E(1 1
Yra =PI\, " T

in which kg is the maximum rate of damage at a given temperature,
kreg, is the maximum rate of damage at a reference temperature Tr.p,
and E, is the deactivation energy that sets the slope at which tem-
perature increases the damage of photosystems above Tj.

We allow the cell to mitigate photosystem damage caused by heat
stress either through stored lipids (cag) or by producing antioxidant
enzymes (pox). Here, we describe the model version that uses lipids
to mitigate oxidative stress. The alternative model formulation is de-
scribed in Supplementary Text (see the “Antioxidant enzyme sim-
ulations” section). Lipid droplets act as a sink for ROS and have
been observed to play a role in the repair of damaged photosystems
(18). The cell can thus choose to maximize the concentration of
stored lipids up to cye _ in the cell to minimize the rate of
damage of photosystems as temperature changes, or it can choose
to store less lipids at the cost of higher damage (Egs. 21 and 22).
Thus, the actual rate of damage v4 depends on k4 (Eq. 19), on the
concentration of photosystems p,,, and on the concentration of
stored lipids c.q

(20)

(21)

Ctag < Ctagin T Cagme

Ctag
Vg = kdpp 7C e
tag

(22)

in which the minimum concentration of stored lipids cg  is
needed to avoid v4 going to zero.
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We assume that some damaged photosystems (pgp,) can be re-
paired via repair proteins (p,). When heat stress is moderate, the
photosystem can be repaired by removing and replacing the D1
protein using specific proteases (25); however, when heat stress is
extreme, irreversible damage occurs. Both mechanisms are captured
by our model and pg,, accounts for both the reversible and irrevers-
ibly damaged photosystems. The rate of repair (v,.) is calculated as

pdp
pdp +pp

Considering that the repair processes are relatively fast compared
to protein synthesis (57), the damage-repair processes can be
assumed to converge to a quasi-steady state (v, = v4), following
Mairet et al. (26). This allows us to solve for the fraction of
damaged photosystems

Ve = krepre (23)

pdp _ de thag
pdp + Pp krepre
Last, the photosystems equation can be written as

d(Pp +Pdp)
dt

(24)

1
= q)pvrin_ - P(pp +Pdp) =0 (25)
p

Lipid metabolism

Lipids play three different roles in our model. First, we assume that
the cell must invest in lipids to maintain membrane integrity follow-
ing Molenaar et al. (50). This is implemented by assuming that the
ratio between transporter proteins (p,,) and lipids (¢,,) in the mem-
brane must be equal to or lower than a certain value M,;, + M

&SMmin+M

Clm (26)

M in is the minimum ratio between p, and ¢,,. The M term cap-
tures the temperature dependence of lipid saturation. Specifically,
the saturation state of lipids increases as a function of temperature
(18, 21). While unsaturated fatty acids have kinks in their molecular
structure due to single or multiple double bonds, saturated fatty
acids lack these kinks and thus can be more tightly packed together,
occupying less space in the membrane. Because the constraint given
in Eq. 26 controls the minimum spacing between transporters
needed for membrane integrity, as temperatures increase, more
lipids per surface area of membrane is needed. For simplicity, we
assume that M decreases linearly as a function of temperature (24)

Toax — T
M (Mmax Mmm) <Tmax _ Tmm> (27)
in which M, is the maximum transporter-to-lipid ratio in the
membrane and T, and T,,;, are the maximum and minimum
temperatures, respectively, at which we perform our modeling
experiments.

Second, we assume that stored lipids i, can be used to mitigate
oxidative stress as described above (Eqgs. 21 and 22). Third, lipids
can fuel dark respiration through the lipid degradation pathway.
We thus optimize for the fractions of the lipid synthesis flux (vy,)
that are used to synthesize (i) membrane lipids (ay,,), (ii) stored
lipids that can mitigate damage (aag), and (iii) lipids for dark
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respiration (ayq) so that

A + Qg + g = 1 (28)

We assume that the lipid degradation pathway must be catalyzed
by the protein pool py4 so that vjq = kigpig = agvip. Last, we can define
the equations for the membrane lipid and stored lipids pool as
follows

dcyy 1

—— = U Vip — — MG 29
dt Im V1b e WCm ( )

dciag

—— = QaeVIb — — UCra 30
ar - eetbq o Hoee (30)

in which vy, (molecules of carbon um™ min™") is multiplied by the
inverse of nj;. (molecules of carbon per molecule of stored lipid) to
convert the flux from carbon to lipid units.

Energy metabolism
The energy metabolism of the cell is constrained based on repro-
duction and consumption terms for all cellular processes so that
for each reaction rate v;, there is an associated energy conversion
factor e; (table S2). The cell can obtain energy through three path-
ways: photochemistry, glycolysis, and lipid degradation. All other
metabolic functions have an associated energetic cost. Energy
fluxes are described in units of molecules of ATP um™ min ~'.
We first assume that light energy converted by photosystems (e,;
ATP per photon) must meet the energy cost associated with rubisco
activity (e,,; ATP per carbon)

€pVp > eV

(31)
After meeting rubisco costs, photosystems can also contribute to
meet the energetic demands of other metabolic functions (ecos)

€cost < (epvp - eruvru) (32)

in which the total energetic cost of the cell (e.os), excluding rubisco
costs, can be defined as the sum of the metabolic fluxes v; multiplied
by its respective energy costs e;

€cost — Z €iV; (33)

We assume that a fraction fy, of e, happens in the dark and

thus must be paid through either glycolysis (vg) or lipid degradation
(via)

ecostf dr < €gVg + €1aVid (34)

far is a constant in our model and we assume it to be 25% of e
The amount of dark respiration relative to respiration occurring
during the day is hard to constrain and varies by phytoplankton
species and light-dark cycle. Falkowski and Owens (58) estimated
dark respiration for six species of phytoplankton and found that
it accounted on average for approximately 25% of gross photosyn-
thesis, with a maximum of 50% being observed. Because this param-
eter is poorly constrained, we performed a sensitivity test to confirm
that our choice for the fraction of respiration occurring in the dark
does not alter our results (fig. S14). We find that as fy, increases, the
cell must increase the investment in respiration, decrease growth
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rates, and increase cell sizes to accommodate for carbon storage
that fuels respiration.

Last, we can calculate the concentration of the storage pools for
both glucose (cg,) and lipids (c;;) needed to fuel respiration during
the dark period

Cgu = Vgl tq (35)

Nguc

i =via——H (36)

lic
in which ng, is the number of molecules of carbon per molecule of
glucose, ny;. is the number of molecules of carbon per molecule of
stored lipid, and f4 is the duration in minutes of the dark period that
the cell experiences over a day. Here, we assumed a 12-hour light/
12-hour dark cycle.

Space and density constraints

Following Molenaar et al. (50), we assume that the volume of the cell
(Vior) is proportional to the total surface area (SA) occupied by
transporters and lipids in the membrane multiplied by a factor
that corresponds to the volume—to—surface area ratio of the cell

Vit = (ntrstr =+ nlmslm)ﬁ (37)

in which n,, and ny,, are the total number of transporters and lipids
in the membrane, and s, and s),,, correspond to the specific surface
area of transporters and lipid molecules, respectively. The number
of molecules of a given intracellular pool i can be linked to their
concentrations as follows

n;
Vtot

Thus, we can combine the equations above to get

1= (ptrstr + Clmslm)ﬁ (39)

Unsaturated lipids are expected to have higher s, relative to sat-
urated lipids due to the presence of kinks in their molecular struc-
ture. Previous studies found that s, can be up to 1.25 times higher
for unsaturated lipids versus saturated lipids (59, 60). We performed
sensitivity analyses assuming that s,,, decreases linearly with in-
creases in temperature (due to increases in the saturation level of
lipids; Egs. 26 and 27) and found that this did not affect our main
results (fig. S15). Thus, to minimize free parameters in the model,
we decided to assume a constant value for s,.

This formulation allows us to simplify the optimization problem
to a single unknown parameter . Because { is the volume-to-
surface ratio of the cell, and assuming a spherical cell, we can also
estimate cell size (radius, r) as

Ci (38)

Vtot r
P=<a 3 (40)

Note that other cellular geometries can be used with this model
by modifying Eq. 40, but for simplicity, we use a sphere. We impose
aconstraint on the maximum allowable intracellular density of mac-
romolecules D, (Da um™>). If the cell is at its maximum intracel-
lular density and “needs” to allocate more resources to proteins (for
example), then it would be required to also increase its cell size. To
estimate the intracellular density of macromolecules, we must
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divide the abundance of intracellular components by the available
volume. To do this, we divide the cellular volume into two reser-
voirs: the volume that is occupied by hydrophobic molecules (i.e.,
stored lipids) and organelles (i.e., photosystems) and the rest of the
volume. It is this “other” volume V that is used to calculate the in-
tracellular density of macromolecules (Egs. 41 to 43). We can then
write an expression for the total volume of the cell

th =V + (I’IP + ndp)VP =+ (i’lh + Yltag) Vh (41)

in which n,, and ngj, are the total number of functional and damaged
photosystems and 7y; and g are the total number of stored lipids
required to regulate oxidative stress and to fuel respiration, respec-
tively. V;, and V); correspond to the volume of photosystem and
stored lipid molecules, respectively. We can rewrite the expression
above to obtain

VV =1- (Pp +Pdp)Vp - (Cli + Ctag)Vli
tot

This expression allows us to define the concentration of the pools
that affect the intracellular density of macromolecules in the cell,
which we denoted in Eq. 43 with subscript k and includes all
pools in the model except for photosystems, lipid storage, and mem-
brane components

(42)

> e L Dot
k = Umax T,
NkNaa : Vtot
Nk (number of amino acids per protein k) and n,, (Daltons per
amino acid) convert ¢, from units of molecule of protein per total
cellular biovolume to Daltons per total cellular biovolume
(table S2).

(43)

Model validation and analyses

Our modeling predictions were compared against physiology, tran-
scriptomic, proteomic, and metabolomic datasets compiled from
the literature. Physiology data were available across entire tempera-
ture growth curves and allowed us to compare our modeling predic-
tions against growth rates, carbon fixation rates, carbon use
efficiency (i.e., 1 — respiration/photosynthesis), cell size (biovo-
lume), cellular nitrogen-to-carbon ratio, and chlorophyll content
per unit of biovolume. Whenever needed, we used the free
version of GetData Graph Digitizer to digitize plots.'Omic datasets,
however, commonly reported metabolic shifts between two temper-
atures, and thus, we were only able to perform qualitative compar-
isons for these data types (Table 1).

Physiology data were compiled from different sources for small
(Prochlorococcus) and large (diatoms) phytoplankton acclimated to
different temperatures under controlled experimental conditions
(table S5). A total of six models were fit to the different datasets
(table S3). Specifically, we tuned a subset of 10 model parameters
to fit the models to the different datasets (table S3); all other param-
eter values were kept constant across all simulations and are given in
table S2. The model parameters were kept within the range of values
reported in the literature (see details for each parameter in Supple-
mentary Text) while also capturing key differences in the observed
thermal curves. For example, E, and T4 values used for the simula-
tions presented here (table S3) are within the range reported by
Barton et al. (10). To simulate the higher protein content observed
for Chaetoceros sp. (29) compared to T. pseudonana (13), Dy, was
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increased for the simulations compared against Liang et al. (29).
Similarly, on the basis of literature values of the volume of photo-
systems for cyanobacteria (Bionumber ID: 103908 and 103909) rel-
ative to diatoms (61), V}, was decreased for the small phytoplankton
simulations. Last, the least well-constrained parameter in the model
is the maximum allowed transporter—-to—membrane lipid ratio
(M nay)- To minimize the impact of this uncertainty on our conclu-
sions, we performed a sensitivity analysis to confirm that changing
this parameter does not alter our main findings (fig. S16).

We validated the model assuming that the cell could only use
glycolysis (Fig. 2) or lipid degradation (fig. S1) to fuel dark respira-
tion. This was done because our model solves for the optimal pro-
teome of the cell in a steady-state environment and thus results in a
sharp transition between the two metabolic pathways (it is never
optimal to use both pathways). The tuned parameters for the
model runs in which the cell could only use the glycolysis and the
lipid degradation pathways are given in tables S3 and S4,
respectively.

Often conversion factors were necessary to compare the model
output to experimental data. The simulated pool of photosystems
was converted to units of chlorophyll per biovolume assuming
that one photosystem has, on average, 140 molecules of chlorophyll
(Bionumber ID: 111790) (62) and considering that one molecule of
chlorophyll has 893.5 g/mol. The carbon fixation rates reported in
(13) were converted from units of pgC pgC™" day™" to ugC pm™
day ™" assuming a constant cellular carbon content of 1.25 x 10™*
pmol C pm_3 [figure 3b in (13)].

We solved the model from 5° to 45°C in intervals of 1°C. We also
performed a large number of sensitivity analyses to investigate (i)
how the thermal dependencies of membrane components influence
cell size (Fig. 4 and fig. S10), (ii) different protein damage formula-
tions (fig. S5), (iii) the impact of poorly constrained parameters on
traits and proteome investments (figs. S13 to S16), (iv) how traits
change as the cell shifts from using glycolysis to using lipid degra-
dation to fuel dark respiration (fig. S7), and (v) what influences the
critical point at which the metabolic switch between glycolysis and
lipid degradation occurs (fig. S8). In addition, we tested two differ-
ent strategies through which a cell can invest resources to mitigate
oxidative stress (i.e., stored lipids and oxidative enzymes; fig. S12)
and the impact of different parameters on the possible adaptive
strategies of phytoplankton (fig. S11). The model was written in
Julia (63), and the code is deposited on Zenodo (DOI: https://doi.
org/10.5281/zenodo0.8125732) and is available on GitHub (https://
github.com/LevineLab/ProteomePhyto/tree/main).

Supplementary Materials
This PDF file includes:
Supplementary Text

Figs. S1 to S16

Tables S1 to S15
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