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Sea cucumbers (Holothuroidea) are a diverse clade of echinoderms found
from intertidal waters to the bottom of the deepest oceanic trenches. Their
reduced skeletons and limited number of phylogenetically informative
traits have long obfuscated morphological classifications. Sanger-sequenced
Accepted: 12 June 2023 molecular datasets have also failed to constrain the position of major
lineages. Noteworthy, topological uncertainty has hindered a resolution
for Neoholothuriida, a highly diverse clade of Permo-Triassic age. We per-
form the first phylogenomic analysis of Holothuroidea, combining existing
datasets with 13 novel transcriptomes. Using a highly curated dataset of
1100 orthologues, our efforts recapitulate previous results, struggling to
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evolution, genomics, taxonomy and alternative resolutions, all of which are recovered with strong support and
systematics across a range of datasets filtered for phylogenetic usefulness. We explore

this intriguing result using gene-wise log-likelihood scores and attempt to
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ways of exploring and visualizing support for alternative trees, we are
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an amalgam of signals derived from multiple phylogenetic histories.
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Holothuroidea (commonly known as sea cucumbers) is arguably the most mor-
phologically diverse major clade of extant Echinodermata (figure 1). The smallest
adults can be less than 1 cm in length, as seen in the meiofaunal Leptosynapta
minuta [1] and epibenthic Incubocnus [2]. The largest can be thin and elongate,
reaching several metres length, as in the snake sea cucumber Synapta maculata
[3], or they may be less than a metre but robust and weighing over 5 kg, as in
the case of Holothuria fuscopunctata [4]. While predominantly benthic as adults,
some taxa are capable of swimming and there are even forms that spend their
entire lives in the water column, as Pelagothuria natatrix does [5]. While all
holothuroids have a ring of tentacles and are deposit or filter feeders, some
clades lack tube feet and have a substantially reduced water vascular system,
traits otherwise developed across all echinoderms. They can also entirely lack cal-
careous elements (ossicles) in the body wall, or these can be expanded to form
overlapping plates that build a rigid test [6]. There are currently 1775 accepted
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Figure 1. Representative holothuroid diversity included in this study. (a). Synapta sp. (b). Peniagone cf. vitrea. (c). Benthogone sp. (d). Pseudocolochirus violaceus.
(e). Abyssocucumis albatrossi. (f). Colochirus robustus. (g). Ypsilothuria n. sp. (SI0-BIC E6221). (h). Molpadia amorpha. (i). Pseudostichopus cf. mollis. (). Synal-
lactidae. (k). Bathyplotes cf. moseleyi. The classification of these terminals can be found in electronic supplementary material, table S1. All photos except (g) are of
the voucher specimens sequenced (catalogue numbers can be found in electronic supplementary material, table S1; further sampling information is accessible
through the SIO-BIC online database, https://sioapps.ucsd.edu/collections/bi/). Images (b), (c), (i) and (k) are courtesy of the Schmidt Ocean Institute, and

image () is courtesy of Monterey Bay Aquarium and Research Institute.

intertidal to the bottom of the deepest trenches [8,9]. Especially
in benthic deep-sea habitats, they can constitute the vast
majority of total biomass and have a strong impact on ecosys-
tem functioning, bioturbation and nutrient cycling [10-12].
While multiple morphological attempts have been made
to delineate major subdivisions within Holothuroidea, these

have been limited by the extreme simplification of their skel-
eton (relative to other echinoderms), the delicate and fragile
nature of their bodies (which often results in poorly pre-
served specimens for morphological analyses) and the small
number of traits that provide useful information at high taxo-
nomic levels [13-15]. The most recent revision of the group’s
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classification was based on a six-gene dataset including term-
inals from 25 of the 29 accepted family ranked taxa [16]. This
study recovered a basal split within sea cucumbers between
Apodida, a clade characterized by a complete loss of tube
feet, and Actinopoda (among which secondary reductions
or loss of tube feet occur only within Molpadida). Actino-
poda were further subdivided into Elasipodida and
Pneumonophora, the latter of which includes all species
with respiratory trees, a unique cloacal invagination that
plays an important (although not exclusive) role in respir-
ation [17,18]. Furthermore, the names Holothuriida and
Neoholothuriida were applied to the main subdivisions
within Pneumonophora, with four well-supported major
clades inside Neoholothuriida: Dendrochirotida, Molpadida,
Persiculida and Synallactida. However, the relationships
among these four lineages remained uncertain. A phylo-
genetic resolution for the major neoholothuriid lineages is
necessary to explore the origins of the high morphological
and ecological disparity harboured by this clade, as well as
to establish a natural classification framework for a substan-
tial fraction of sea cucumber diversity (62% of species-level
diversity is contained within Neoholothuriida [7]). Miller
et al. [16] concluded that meeting these objectives would
likely require sequencing efforts of a different magnitude.

Here we present the first phylogenomic study of sea
cucumbers, the last major eleutherozoan clade (which further
includes echinoids [19], asteroids [20] and ophiuroids [21]) to
have its phylogeny tackled using genome-scale datasets.
Through the generation of novel transcriptomic resources
for holothuroids we built a molecular dataset encompassing
over a thousand orthologues. The goal was to resolve some
of the lingering uncertainties in the holothuroid tree of life,
yet a continuing lack of resolution encouraged novel ways
to explore phylogenomic datasets.

Sea cucumber specimens were collected by SCUBA diving,
snorkeling, dredging and remotely operated vehicles (ROV), or
purchased from aquarium suppliers. Specimen collection and
fieldwork was performed under permits whenever applicable.
All vouchers were deposited at the Benthic Invertebrate Collec-
tion, Scripps Institution of Oceanography (SIO-BIC; electronic
supplementary material, table S1). Species identification was
based on multiple lines of evidence, including anatomical
(gross and ossicle morphology), biogeographical and molecular
(mitochondrial cytochrome c oxidase subunit I, COI) infor-
mation. DNA extractions and COI amplifications followed
protocols described in Miller et al. [16], and sequences are depos-
ited in NCBI (accession numbers available in electronic
supplementary material, table S1). In the case of unavailable
COI sequences, these were mined from assembled transcrip-
tomes by Dblasting against close relatives. Previous
identifications of transcriptomic vouchers at SIO were also
revised, including those sequenced and released as part of
EchinoDB [22,23].

For large specimens, tissue was dissected from the body wall
or tube feet, while whole body sections were sampled for the
remaining samples. Sampled tissues were finely chopped,
placed in RNAlater (Invitrogen) buffer solution, and stored at
—80°C. RNA extractions were performed from Trizol (Thermo-
fisher), using Direct-zol RNA Miniprep Kit with in-column
DNAse treatment (Zymo Research). mRNA was isolated with

Dynabeads mRNA Direct Micro Kit (Invitrogen). mRNA concen- n

tration was estimated using Qubit RNA broad range assay kit
(Thermofisher), and quality was assessed using RNA ScreenTape
with an Agilent 4200 TapeStation on an Agilent Bioanalyzer
2100. Most libraries were prepared using a KAPA-Stranded
RNA-Seq kit targeting a 200-300 bp insert size, and results
were assessed using DNA ScreenTape (Bioanalyzer 2100).
Libraries were then sequenced in multiplexed (8 libraries per
lane) pair-end runs using 150 bp paired-end Illumina HiSeq
4000 at the UC San Diego IGM Genomics Center. To minimize
read crossover, we employed 10 bp sequence tags designed to
be robust to indel and substitution errors [24]. For four samples
(Benthodytes cf. sanguinolenta, Benthogone sp., Colochirus robustus
and Peniagone cf. vitrea), library preparation and multiplexed
pair-end sequencing on an Illumina NovaSeq 6000 PE150 was
performed by Novogene.

Thirteen novel transcriptomes were generated for this study
and combined with publicly available genomic and transcriptomic
datasets downloaded from NCBI and EchinoBase [25]. Final taxo-
nomic sampling included 35 holothuroids as well as three
echinoid and one asteroid outgroups (electronic supplementary
material, table S1). Raw files for all novel datasets, as well as
those so far available only on EchinoDB [22], are deposited in
the NCBI sequence read archive (SRA) under BioProject
PRJNA979278. All assemblies are available at the associated
Dryad data repository (doi:10.5061/dryad.0p2ngf255) [26], along
with the phylogenetic matrices, trees and other results derived
from them.

Reads were trimmed or excluded based on quality scores using
Trimmomatic v 0.3.6 under default settings [27]. Additional sani-
tation steps were implemented by the Agalma 2.0 pipeline [28],
resulting in the removal of reads based on compositional and
quality filtering criteria, as well as those mapping to rRNA
sequences or retaining adapter sequences. Remaining reads were
assembled de novo with Trinity v. 2.5.1 [29]. Assemblies were
then screened for contaminants using alien_index v 3.0 [30]. Tran-
scripts with substantially better BLAST + [31] hits to a dataset of
well-curated archaeal, bacterial and fungal genomes than to a
metazoan database (both available from http://ryanlab.whitney.
ufl.edu/downloads/alien_index/), defined as those exhibiting
an alien index >45 (see [32]), were excluded. Sanitized transcrip-
tomes were imported back into Agalma for orthology inference
[28,33], which included tree-based steps to refine orthologues by
identifying duplication events on gene trees and pruning putative
paralogous sequences. Alignment and quality-based trimming
were performed with MAFFT v. 7.305 [34] and GBLOCKS
v. 0.91b [35]. The resulting supermatrix was reduced using a
70% occupancy threshold, resulting in a dataset composed of
1159 orthologues coded as amino acids (from a total of 13 767).
Gene trees were inferred from each amino acid alignment with
ParGenes v. 1.0.1 [36], using optimal models and 100 bootstrap
replicates. These were analysed with TreeShrink v. 1.3.1 [37]
(using parameters —q 0.01 —k 3 —b 25), which employs taxon-
specific distributions of root-to-tip distances to identify outlier
sequences potentially suffering from errors in alignment or orthol-
ogy inference. Identified outliers were removed from both gene
trees and individual alignments, and a new supermatrix was
concatenated. As a final sanitation step, the data was run using gen-
esortR [38,39], which ordered all loci based on decreasing estimates
of phylogenetic usefulness (electronic supplementary material,
figure S1). The worst-ranked 59 loci (5.1% of supermatrix) were
further discarded, resulting in a final dataset of 1100 loci and
264991 amino acid positions. Two smaller datasets, composed of
the top-scoring (i.e. most phylogenetically useful) half and quarter
of loci (550 and 225, respectively) were also output for analysis.
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(c) Phylogenetic inference

Phylogenies were inferred from all three datasets using a variety
of approaches. First, gene trees were provided to the coalescent-
aware summary method ASTRAL-III [40], which employs local
posterior probabilities to estimate node support [41]. Second,
tree inference was performed under a best-fit partitioned model
with IQ-TREE 2 v. 2.1.3 [42-44], using the fast-relaxed clustering
algorithm to merge individual loci (using parameters -m MFP +
MERGE -rclusterf 10 -rcluster-max 3000). Finally, the site-hetero-
geneous model CAT-PMSF [45] was used as an efficient
alternative to the computationally demanding CAT model
family [46]. For each dataset, short runs of 1100 generations
were done in PhyloBayes-MPI v. 1.8.1 [47] under a fixed top-
ology (that obtained with ASTRAL-II) to approximate site-
specific stationary distributions and amino acid exchangeabilities
under the CAT + GTR model. Model parameters were summar-
ized after discarding the initial 100 generations as burn-in,
and reformatted using scripts available at https:/ /github.com/
drenal/cat-pmsf-paper. Tree inference was then performed in
IQ-TREE 2 under maximum likelihood using the PMSF
method [48], setting exchangeabilities and site-specific frequen-
cies to the posterior mean estimates previously obtained with
PhyloBayes. For both concatenation approaches, support was
estimated using 1000 replicates of ultrafast bootstrap [49].

(d) Phylogenetic signal dissection

Several avenues were explored to assess levels of phylogenetic
signal and conflict in the data. First, a treespace was built from
gene trees using quartet dissimilarities to estimate topological
differences and principal coordinate analysis (PCoA) as the
method of ordination [50]. Levels of incongruence (henceforth,
topological disparity) were compared between the complete
and usefulness-based subsampled datasets using averaged Eucli-
dean distances to the centroid. Values for subsampled datasets
were then compared against null distributions built using 1000
replicates of randomly selected one half and one quarter of
gene trees. This approach relied on R packages Quartet [51]
and dispRity [52]. Loci were also characterized by their ability
to recover several deep, well-supported and non-nested nodes:
Apodida, Elasipodida, Holothuriida, Synallactida and Dendro-
chirotida (i.e. all currently recognized order-level clades [7]
represented by at least three sampled terminals). Gene trees reco-
vering a large proportion of ‘uncontroversial’ nodes have been
considered less likely to suffer from hidden paralogy and more
prone to retain true phylogenetic signals [53,54]. For each loci,
results were summarized using the proportion of clades recov-
ered from among those whose monophyly could be tested (i.e.
those represented by at least two terminals).

Since there was persistent discordance among methods of
inference regarding the resolution of major neoholothuriid
clades, phylogenetic signal for the alternative topologies was
explored using site-wise log-likelihood scores. Scores were com-
puted with IQ-TREE 2 under the best-fit partitioned model and
using three constrained topologies differing only in the position
of Molpadida (the remaining incongruence was fixed to the pre-
ferred resolution, see Results). Gene-wise log-likelihood scores
were obtained by adding scores across sites, and their differences
for all pairs of topologies—known as AGLS values—were com-
puted. Given linear dependency between the three AGLS
values (AGLS,=AGLS,—AGLS,), these were visualized in a
two-dimensional space which was rotated using principal com-
ponents analysis (PCA). A nominal AGLS threshold of +2 log-
likelihood units was used to categorize loci as either informative
or uninformative with regards to a given topological comparison.
The relative enrichment for/against alternative neoholothuriid
topologies was assessed in subsampled matrices enriched

in both phylogenetic usefulness and loci recovering high
proportions of “‘uncontroversial’ nodes (see above).

To explore the drivers of differences in AGLS across loci, fif-
teen gene properties were estimated and treated as potential
determinants. These were all calculated by genesortR [39], and
included commonly used metrics of phylogenetic signal, poten-
tial sources of systematic bias, and estimates of the overall
information content and evolutionary rate of each individual
loci. Further details on these metrics can be found in electronic
supplementary material, table S2.

Potential links between gene properties and the phylogenetic
support for alternative neoholothuriid relationships were
explored using two different statistical approaches. Associations
between the PCA axes derived from AGLS values (representing
major aspects of phylogenetic signal for competing hypotheses)
and explanatory variables were first tested using the ‘envfit’
function in R package vegan [55]. This approach overlayed vec-
tors onto the ordination plot depicting the directions and
magnitudes of maximum correlation between individual gene
properties and PCA scores. Each predictor was analysed separ-
ately, and the significance of the correlations tested using 10
000 random permutations. Given the possibility of nonlinear
relationships between predictor and response variables, a
second approach was explored in which AGLS values were trans-
formed into a single categorical factor with three levels. For this,
loci were categorized into: (A) uninformative, including those for
which all AGLS were within +2 log-likelihood units; as well as
those either (B) supporting or (C) rejecting the resolution
obtained using ASTRAL-III, defined as exhibiting at least one
comparison favouring or disfavouring such topology, respect-
ively, by an absolute AGLS value >2. This categorization is
supported by analyses showing that the main aspect of differ-
ences in phylogenetic signal across loci relates to their support
for/against the topology obtained with ASTRAL-III, with very
little ability to discriminate between the two other alternatives
(see Results). A conditional inference classification tree was fit
to the data using function ‘ctree’ in R package partykit [56], asses-
sing whether partitioning the data by values of any of the gene
properties was able to generate subsets of loci that show similar
topological preferences. A Bonferroni correction for multiple
comparisons was applied, and significant predictors were visual-
ized on the ordination plot using smooth surfaces fit using
penalized regression splines [57].

All statistical analyses were performed in the R environment
v. 4.2.2 [58] using code reliant on the packages mentioned above,
as well as adephylo [59], ape [60], phangorn [61], phytools [62] and
those included in the tidyverse [63].

3. Results

Phylogenetic inference under all methods explored and for
the three datasets of different sizes recovered highly congru-
ent and well-supported topologies (electronic supplementary
material, figures S2-54), which were also in broad agreement
with the most recent large-scale study based on Sanger-
sequenced loci [16]. As summarized in figure 24, Apodida,
Elasipodida and Holothuriida formed successive and mono-
phyletic sister groups to the remainder of sea cucumber
diversity included within Neoholothuriida. The latter was
further subdivided into four major lineages: Dendrochirotida,
Molpadida, Persiculida and Synallactida. Nodes defining all
aforementioned clades had maximum support across ana-
lyses. Support for currently recognized order level clades
was surprisingly unambiguous: 69.2% of gene trees resolved
a monophyletic Synallactida, and between 87.1 and 96.9%
recovered the monophyly of Apodida, Elasipodida,
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Figure 2. Summary of phylogenetic inference results. (a). Strict consensus of the nine inference conditions explored, varying both the number of loci and the
method of inference. Nodes disagreeing between analyses are collapsed and labelled (see panels (b,c) for further details); branch lengths are otherwise taken
from the CAT-PMSF analysis of the full dataset. (b). Monophyly of a clade composed of two cucumariid terminals, Colochirus robustus and Cucumaria georgiana,
is rejected by ASTRAL-III, but upheld by the other methods (legend for support value grid is shown in (a)). (c). Systematic disagreement between all methods of
inference regarding relationships among major neoholothuriid clades. The resolution favoured by each method is found across datasets of different sizes. Topologies,
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branch lengths and support values for each individual analysis are shown in electronic supplementary material, figures S2-54.

Holothuriida and Dendrochirotida (electronic supplementary
material, figure S5). Despite the relatively small size of loci
(mean number of characters: 239.9, range = 103-621), 88.0%
simultaneously resolved at least two thirds of these clades,
and 58.1% resolved them all.

Only two regions of the tree topology showed incongru-
ent resolutions among the analyses performed (figure 2b,c).
First, ASTRAL-III rejected a close relationship among two
of the cucumariid species sampled, Colochirus robustus and
Cucumaria georgiana, which otherwise formed a clade under
concatenation approaches (figure 2b). Given the otherwise
unambiguous support for a close relationship between Colo-
chirus and Cucumaria, as well as the poor node support for
the ASTRAL-III topology when using the complete dataset,
we tentatively favour here the results obtained under conca-
tenation methods. We note, however, that a monophyletic
Cucumariidae was not recovered by our analyses regardless
of how these terminals are resolved, as they were only dis-
tantly related to the remaining cucumariids (Abyssocucumis,
Pseudocolochirus). In fact, discrepancies between our trees
and the current family level classification of sea cucumbers
are pervasive, and also included the non-monophyly of elasi-
podid families Psychropotidae (Psychropotes, Benthodytes) and
Laetmogonidae (Benthogone, Pannychia), the dendrochirotid
family Sclerodactylidae (Cladolabes, Eupentacta, Sclerodactyla),
and the synallactid families Synallactidae (Synallactes,
Bathyplotes, Paelopatides) and Stichopodidae (Stichopus,
Isostichopus, Apostichopus).

A second and more striking topological discordance
involved the organization of the four major lineages within
Neoholothuriida (figure 2c). Each one of the different
methods of inference proposed an alternative resolution for
the clade, which were recovered regardless of dataset size
and strongly supported (values >95) when employing the
complete supermatrix. While all three inference methods
agreed on a subtree in which Dendrochirotida and Synallac-
tida share a closer relationship than either one does with
Persiculida, the position of Molpadida within this scaffold
was highly unstable and methodologically sensitive. Sup-
ported alternatives included a placement of Molpadida as
sister to either Synallactida, Persiculida, or Synallactida +
Dendrochirotida (henceforth referred to as “ASTRAL’, ‘parti-
tioned’, and ‘CAT-PMSF’ topologies, respectively; figure 2c).
Despite this level of uncertainty, our analyses still reject the
long-hypothesized close relationships between Molpadida
and Dendrochirotida [13,15], as well as the topology of
Miller et al. [16] in which Dendrochirotida placed as sister
group to all other neoholothuriids. While support values for
some deep nodes decreased when performing inference with
the smallest of datasets, this seems to be entirely driven by a
reduction in the amount of data, as subsampled matrices
showed significant reductions in overall phylogenetic
conflict (estimated using topological disparity; electronic
supplementary material, figure S6).

To further explore the phylogenetic signal for competing
topologies, we gene-wise

neoholothuriid estimated
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Figure 3. Exploration of support for alternative neoholothuriid topologies across loci. (a). Principal components (PC) axes obtained from the three AGLS. Percentages
of explained variance are shown on axis labels. Loci are colour coded depending on their favoured topology. (b). Relationship between the PC axes and the scores of
individual AGLS. Trendlines correspond to LOESS smoothing curves, and p-values (Spearman’s rank correlation coefficients) are shown when absolute values > 0.7,
taken to represent strong correlations. The area included within = 2 log-likelihood units is highlighted and considered an area of weak support. Note the markedly
different scales of the y-axes for PCs 1 and 2. Topologies are colour coded as in (a).

log-likelihood scores for the three alternative resolutions of this
clade. A PCA of differences in the scores obtained for pairs of
topologies (AGLS) revealed that the topological preferences of
loci could be summarized using a single major underlying axis
which accounted for 85.3% of total variance (figure 3a). The
scores of loci along this first PC axis represented the relative
support either for or against the ASTRAL topology
(figure 3b). On the other hand, the ability of loci to discern
between the partitioned and CAT-PMSF trees was much
weaker and mainly captured by the second PC axis, which
explained only 14.7% of variance. The absolute values of
AGLS were generally small, with most loci (615 loci, 55.9%
of the complete dataset) being relatively uninformative regard-
ing relationships among neoholothuriid clades (figure 42 and
electronic supplementary material, figure S7). Nonetheless,
the remainder of the dataset was once again roughly evenly

split into a fraction that supported the ASTRAL configuration
(207 loci, 18.8%), and one that rejected it in favour of either
one, or both, of the topological alternatives (278 loci, 25.3%).
These proportions remained stable across datasets subsampled
using different strategies (electronic supplementary material,
figure S8).

None of the 15 gene properties explored was recovered as a
significant predictor of AGLS (figure 4b). Furthermore, these
metrics correlated mostly with PC 2 (electronic supplementary
material, table 52), leaving the major aspect of topological pre-
ference entirely unexplained. An alternative approach based on
classification trees recovered one significant predictor: uninfor-
mative loci were significantly more likely to have a short
alignment length, but this property also fails to explain which
resolution was preferred by longer and more informative loci
(electronic supplementary material, figure S9).
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Most loci (615, 55.9% of the full dataset) can be considered uninformative regarding relationships among neoholothuriid clades. The remainder can be classified into
those supporting a given topology (denoted using a plus sign, +) if they favour a given resolution against both alternatives (coloured section of bar chart) or only
one (white section of bar chart) with a AGLS > 2; or rejecting a given topology (denoted using a minus sign, —). The number of loci either supporting (right side
of wheel) or rejecting (left side of wheel) the ASTRAL topology are comparable in number: 207 (18.8%) versus 278 (25.3%), respectively. Further details on loci
categorization can be found in electronic supplementary material, figure S7. (b). Top: Exploration of 15 potential determinants of AGLS. Arrows indicate directions of
maximum correlation between scores and determinants; their length is scaled to the strength of the correlation. Predictors mostly load onto PC 2. R* and p-values
are shown in electronic supplementary material, table S2, but no correlation is significant. Bottom: Smoothed surface of alignment length, the only significant
determinant found using a classification tree. Longer loci are more likely to be informative, yet alignment length does not predict which topology is preferred

(see electronic supplementary material, figure S9).

Phylogenetic incongruence is a hallmark of genome-scale
datasets [64-66]. A wide range of biological processes and
methodological artefacts can lead phylogenomic datasets to
harbour a mixture of phylogenetic signals, which can be dif-
ferentially amplified by methods of reconstruction to produce
conflicting, yet well-supported, topologies [67-69]. Different
avenues have been proposed to ameliorate phylogenetic
incongruence and favour a specific resolution for recalcitrant
nodes. One strategy is to focus on data filtering, exploring the
effects of removing sites and/or loci with unexpectedly high
topological preferences [70,71], or those showing evidence of
contributing mostly phylogenetic noise or biases [39,72].
Alternatively, methods have been developed to dissect
alternative signals [73-75] in the hopes that one emerges as
a better-justified option. Finally, exploring a range of infer-
ence methods, which vary in their realism, complexity,
susceptibility to errors, and (potentially) relative fit, can
also be used to justify favouring one among several alterna-
tive hypotheses [76-78]. However, even after exhaustive
testing of these options, a robust resolution for some nodes
on the tree of life remains elusive [79-82], awaiting the dis-
covery of novel phylogenetic markers, improved taxon
sampling or methodological developments.

We propose here that the early diversification of
neoholothuriid sea cucumbers, an ancient, diverse and morpho-
logically heterogeneous clade, constitutes another example of a
group that defies phylogenetic resolution. Previous studies had
acknowledged that a robust topology for Neoholothuriida was
probably unattainable with the use of small molecular datasets
[16], yet phylogenetic resolution remains out of reach even
when employing more than a thousand loci. This result is par-
ticularly noteworthy given how comparatively trivial it is to

correctly reconstruct other deep nodes (electronic supplemen-
tary material, figure S5). The reason wunderlying this
uncertainty is not a lack of statistical power, but the presence
of multiple signals supporting alternative trees. While a node
uniting Dendrochirotida and Synallactida to the exclusion of
Persiculida emerges from all our analyses, the position of Mol-
padida within this topology remains uncertain. A coalescent-
aware method of reconstruction places Molpadida inside
the clade containing Dendrochirotida and Synallactida, while
concatenation-based methods place it outside, with further dis-
agreement emerging depending on whether site-homogeneous
or site-heterogeneous models are used. All three of these
topological alternatives are well-supported and robust to
gene subsampling, and thus represent an example of remark-
able methodological sensitivity. Further exploration reveals
that our dataset is unlikely to contain enough information
to disambiguate between the topologies supported by
alternative concatenation methods. On the other hand, the pla-
cements of Molpadida either inside or outside of the node
containing Dendrochirotida + Synallactida are each strongly
supported by substantial fractions of the data (19% and 25%
of loci, respectively).

Complex site-heterogeneous models, such as the CAT
family, are likely to fit genome-scale datasets better
[48,83,84], but the use of model fit statistics when comparing
mixture models against other alternatives (such as parti-
tioned models) has been criticized [85]. Furthermore, issues
relating to convergence, missing data, and over-parameteri-
zation [86-88] have still led many to question the results
obtained under CAT models. Similarly, coalescent-aware
methods have outperformed concatenation in a number of
simulation scenarios [89,90], yet doubts remain regarding
their usefulness to resolve ancient divergences, given that
gene tree error is expected to surpass incomplete lineage
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sorting as the dominant source of incongruence for deep
nodes [91]. The fit of summary methods (such as ASTRAL)
is also impossible to evaluate relative to that of others, further
complicating arriving at an objective way of preferring one
method of inference from among those tested here.

In the absence of clear guidance as to which inference
method should be preferred, we focused instead on evaluating
the amount and quality of the signals supporting alternative
placements of Molpadida. We used AGLS as proxies for the
topological preference of loci (as in e.g. [19,70,92]), extending
this type of analysis to simultaneously consider three alterna-
tive topologies. This allowed us to uncover a strong
asymmetry in the ability of loci to distinguish between alterna-
tive trees and, as explained above, redirect our efforts to
assessing two broad topological alternatives. Although many
studies have succeeded in disentangling phylogenetic from
non-phylogenetic signals by exploring loci quality [93-95],
our attempts failed to find any determinants of topological
preference: loci supporting alternative positions of Molpadida
do not differ in their levels of phylogenetic signal, systematic
biases, amounts of information or evolutionary rates. The
only major pattern uncovered is that longer loci are more
likely to harbour some sort of signal, a predictable and rela-
tively trivial result stemming from the increased statistical
power of longer alignments.

The branches subtending the major neoholothuriid clades
are remarkably short (electronic supplementary material,
figures 52-54). This scenario, coupled with the deep origin
of the major clades of crown holothuroids [16,96], is
expected to result in unfavourable signal to noise ratios
[97]. Nonetheless, the finding that substantial fractions of
our supermatrix exhibit strong signal for competing topolo-
gies is not in line with Neoholothuriida originating from a
hard polytomy [98]. Two broad explanations are therefore
consistent with our results. First, incongruence might be
caused by types of model violations that were not explicitly
tested here, as would result, for example, from convergent
shifts in amino acid composition [98-100]. Alternatively, neo-
holothuriid evolution might be better explained by ancient
events of reticulation, as produced by processes such as
ancient hybridization and incomplete lineage sorting. Find-
ing direct evidence to substantiate these claims is
complicated by the relatively sparse sampling attained by
this study, the limited genomic resources available for the
clade, and the lack of available methods that can simul-
taneously address both of these processes [79]. We suggest
that Neoholothuriida constitutes a case of an ancient and
rapid radiation, and further progress in its resolution could
benefit from targeting data whose evolutionary history
proves easier to model. Addressing the currently sparse
sampling of both Molpadida and Persiculida should also be
prioritized if we are to resolve this lingering uncertainty,
especially through the sequencing of morphologically
unique and potentially deeply divergent lineages such as
Caudinidae, Eupyrigidae and Gephyrothuriidae.
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