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Abstract—Continuous integration (CI) has become a popular
method for automating code changes, testing, and software
project delivery. However, sufficient testing prior to code submis-
sion is crucial to prevent build breaks. Additionally, testing must
provide developers with quick feedback on code changes, which
requires fast testing times. While regression test selection (RTS)
has been studied to improve the cost-effectiveness of regression
testing for lower-level tests (i.e., unit tests), it has not been applied
to the testing of user interfaces (UI) in application domains such
as mobile apps. UI testing at the UI level requires different
techniques such as impact analysis and automated test execution.
In this paper, we examine the use of RTS in CI settings for
UI testing across various open-source mobile apps. Our analysis
focuses on using Frequency Analysis to understand the need
for RTS, Cost Analysis to evaluate the cost of impact analysis
and test case selection algorithms, and Test Reuse Analysis to
determine the reusability of UI test sequences for automation. The
insights from this study will guide practitioners and researchers
in developing advanced RTS techniques that can be adapted to
CI environments for mobile apps.

Index Terms—Regression testing, Android apps, Empirical
study

I. INTRODUCTION

Continuous integration (CI) has been widely used in practice
to rapidly integrate code changes, new features, test execution,
and provide feedbacks. When changes are committed to the
project hosted by the CI system (e.g., Jenkins, Travis), tests are
automatically executed to check whether the changes break the
functionality of the code. A survey conducted on more than
400 software developers suggest that about 70% developers
found that CI is able to help them catch bug earlier and make
them less worried about breaking the builds [1].

In order to provide fast feedback for developers, it is
important to run test cases as quickly as possible. Regression
test selection (RTS) techniques have been employed to focus
on running only tests that are relevant to the changes [2].
Traditional RTS approaches often cannot be adopted in CI
environments primarily because they perform fine-grained
analysis (e.g., code instrumentation) to select test cases and
thus require significant analysis time. Recent work has quan-
titatively studied to what extent RTS is needed in CI environ-
ments and the cost-effectiveness of RTS techniques at different
levels of regularities [3]

Most existing techniques and studies on CI testing focus
on lower-level tests (e.g., unit tests) [1]. This is because unit

tests are often generated in early development process and
can execute quickly to provide fast feedback. However, unit
tests are not able to detect user-level runtime failures. Some
application domains, such as mobile apps, have rich graphical
user interfaces (GUI). Therefore, testing the GUI of these apps
is critical and a lot of research has been focusing on this
topic [4]. When a change happens, regression testing is still
needed to validate the changes will not adversely affect the
GUI of the application. There are a few approaches on devel-
oping regression testing techniques, such as RTS, to efficiently
validate the effects of changes on the application UI [5]–[7].
For example, QADroid [5] is one of the first approaches to
apply RTS on mobile apps. Specifically, QADroid performs
an event-level impact static analysis to select the GUI events
affected by the app changes.

However, there are still many open challenges that have
not been identified or addressed in existing research. For
example, while there have been many approaches on study-
ing CI testing [3], [8] or designing new RTS techniques to
support CI testing, none of them have focused on testing the
GUI of mobile apps. It is worthwhile studying the cost and
effectiveness of CI-based RTS for mobile apps. Our empirical
study indicates that out of the 318 open-source apps hosted on
GitHub that we selected from the Google Play Store, 40.25%
of them employ CI. In addition, existing RTS techniques for
mobile apps focus on selecting affected events, which are not
directly executable and require manual testing. Therefore, it
is necessary to study how to automatically execute the test
sequences relevant to the affected events.

The goal of this study is to identify opportunities in
performing CI testing for mobile apps at the UI level to
understand the cost and effectiveness of regression testing.
We perform an in-depth study on 473,225 commits of 318
open-source apps selected from the Google Play Store. For
different apps, we begun with analyzing the frequency of
commits on GitHub and the frequency of functional changes
only because not all the changes are related to the logic of
UI, such as commits of code refactoring and documentation.
Our results suggest that a significant proportion of functional
commits in Android UI testing occur within a short timeframe
of 30 minutes, indicating the need for RTS. However, the
majority of functional group commits occur in time intervals
greater than two hours, suggesting that when considering
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testing groups of commits made by the same developers, it
is unlikely that RTS will be necessary, potentially leading to
more efficient development processes.

In addition to code change frequency, we also analyze the
cost of performing program analysis for identifying affected
UI and the cost of test sequence execution. The goal is to
assess the cost of UI-level RTS when dealing with the speed of
changes. Specifically, we use dynamic analysis to identify the
UI affected by the code changes and compute the cost. We then
execute the test sequences including the affected UI. The cost
of executing the test sequences containing the affected UI will
allow us to estimate the time needed to test the UI affected by
the changes. Our results suggest that while the cost of creating
the initial test sequences can be high, selecting test sequences
containing affected UI elements can significantly reduce the
cost of testing.

Finally, we study the re-usability of test sequences in the
presence of changes. We study to what extent the the app
can reuse existing test sequences for the changes. We study
the change-prone UI by analyzing the frequency of each
UI being changed across commits. We hypothesize that the
change-prone UIs are more likely to be the targets and thus
automatically selected for testing. Our results indicate that
test sequences that already exist are often highly reusable. In
addition, there are certain UI elements commonly observed
across changes in some applications; prioritizing testing of
these UI elements without extensive analysis could be more
efficient.

II. BACKGROUND AND MOTIVATION

In this section, we describe background on regression test
selection techniques and their application on mobile apps. We
then describe the background of testing in CI environments.

A. Background

Regression Test Selection for Mobile Apps. Let P be a
program, and let P ′ be a modified version of P . Regression
Test Selection (RTS) techniques aim to reuse existing test cases
in P by selecting a subset of test cases that are important to
rerun, omitting less important test cases. Several approaches
have been proposed for rendering reuse more cost-effective
via regression test selection [9]–[14].

However, most existing RTS techniques focus on traditional
applications and cannot be directly applied to testing the user
interface (UI) of mobile apps, which are typically event-driven
and have different system architectures. To test the UI of
mobile apps, an impact analysis must be able to identify
changes at the UI level rather than the code level, as in
traditional approaches, so that certain UI components will be
selected to test the app functionality affected by the changes.

While a significant amount of work has been proposed to
test mobile apps [15]–[23], little has focused on studying or
developing RTS for them. To the best of our knowledge,
QADroid [5] is the only approach that can perform event-
aware RTS for testing the UI of Android apps. Specifically,
QADroid develops an event-level impact analysis technique to
determine which UI events are affected by the app changes, so
that developers can focus on creating test sequences focusing
on these events.

Continuous Integration (CI) Testing. Continuous Inte-
gration (CI) encourages developers to break their work into
smaller pieces and commit changes to the repository fre-
quently. This enables them to track changes and receive fast
feedback if any tests fail due to the changes. To maintain
a working software product, tests are executed whenever a
change occurs to examine if the change breaks the build.
Therefore, the affordability of test selection is determined by
the frequency of changes and the cost of exercising the tests.

However, traditional Regression Testing Selection (RTS)
techniques cannot be applied in CI environments due to
their typically long analysis time involving certain testing-
related tasks such as impact analysis and collecting coverage.
Recent research proposes to make regression testing more
cost-effective in modern software projects [10], [24]. For
example, Gligoric et al. [24] propose a class-level dynamic
RTS technique that is more efficient than finer-level dynamic
RTS, as shown by their evaluation. Elbaum et al. [25] create
RTS techniques that use time windows to track how recently
test suites have been executed and revealed failures.

Hilton et al. [26] study the usage of CI in open-source
projects, such as to what extent CI is adopted in software
development. Legunsen et al. [9] evaluate the performance
benefits of static RTS techniques and their safety in modern
software projects. Memon et al. [27] share their experience
and results in RTS on Google projects. Vasilescu et al. [28]
study the productivity of CI based on 246 GitHub projects.
However, none of the existing CI testing techniques or studies
have targeted mobile apps.

GUI testing. In mobile and web applications, a GUI widget
refers to a graphical element, such as a button, text field, or
check box, used in the app’s interface. A generic event refers
to any action that is triggered by the system or the user, while
a GUI event is an executable GUI widget associated with a
particular event type, such as click, long-click, swipe, or edit.

GUI testing is the process of generating a sequence of
GUI events with the goal of achieving optimal code coverage
and detecting bugs. By testing the app’s graphical interface,
developers can ensure that the app’s functionality is working as
intended and that the user experience is smooth and intuitive.

B. Motivation

Although recent research has considered applying RTS to
perform regression testing for mobile apps, challenges still
remain concerning its cost-effectiveness. First, the cost of
selecting the affected UI depends on how the impact analysis
was done, which directly affects the applicability of RTS in
fast-changing environments, such as CI. While the practicality
of RTS in CI has been studied [9], [26]–[28], none of them has
considered the scenarios of event selection for mobile apps.

Second, existing research, such as QADroid [5], focuses on
event selection, whereas another key phase contributing to the
cost is executing the events. Unlike traditional unit testing for
which tests are directly executed by the test engine (e.g., JUnit
framework), UI testing of mobile apps needs to exercise se-
quences of events. That being said, sequences that include the
affected events should be automatically selected and executed
by an RTS approach. To the best of our knowledge, none of
the existing techniques can achieve this goal.
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Therefore, this study will investigate whether and how
RTS can be used for testing mobile apps in the presence of
speedy app evolution, such as CI environments. We expect the
results to provide insights and guidance for designing cost-
effective RTS techniques for mobile apps. Our study will be
centered around the aforementioned challenges. Specifically,
we will first study how frequently mobile apps are changed
to provide an overview of the app evolution and the necessity
of using CI-based RTS. Second, we will study the cost of
RTS with the current state-of-the-art impact analysis and event
execution. We expect the results to demonstrate the practical
aspect of performing RTS in CI environments for mobile apps
(Challenge 1). Finally, we will study the re-usability of test
sequences to assess the feasibility of automating the execution
of test sequences (Challenge 2).

In summary, our study aims to address the challenges that
still remain in applying RTS for mobile app testing. By
investigating the cost-effectiveness of RTS in fast-changing
environments, such as CI, and exploring the re-usability of
test sequences, we expect to provide valuable insights for
designing effective RTS techniques for mobile apps.

III. EXPERIMENT DESIGN

A. Development of Research Questions
Our goal is to understand the key factors that affect the

applicability of regression test selection techniques for mobile
apps in CI environments. To this end, we design our research
questions in three dimensions: frequency analysis, cost analy-
sis, and test reuse analysis.

1) Frequency Analysis.: The frequency of the changes
would play an important role to analyze the cost of regression
test selection for mobile apps in CI environments. Existing
research has shown that traditional RTS is not suitable for CI
environment with fast change speed because it often requires a
significant amount of time to perform the analysis to select an
accurate set of tests. The main concern of applying traditional
testing techniques in CI is that the analysis and testing time
can be too much to catch up with the speed of changes [25].
Therefore, the degree to which RTS can be applied depends
on the arrival rates of commits or commit intervals (i.e., the
time between consecutive commits). For example, if changes
happen frequently in short intervals, the efficiency of RTS
is very important in order to minimize analysis and testing
times. On the other hand, if changes usually happen in larger
intervals (i.e., low commit arrival rates), such as when the
project reaches a certain development period, it might be okay
to just re-execute all test sequences to simplify the testing
process.

Prior work [3] also demonstrated that a 60% of open-
source projects do not even need RTS because their average
commit interval is smaller than the time of executing all tests.
Therefore, we study the frequency of commits. Therefore,
we first ask the following research questions: RQ1: What is
the frequency of single commits? In this RQ, we analyze the
frequency of overall commits, also focusing on the distinction
of the frequencies between functional and non-functional com-
mits. The insight is that some changes are not directly affecting
the behavior or functionality of the application, which are
not related to UI logic, which suggests that there is no need
to execute all existing UI test sequences for non-functional

changes commit. This insight has important implications for
optimizing the UI testing process and reducing unnecessary
resource consumption. Also, Developers tend to make multiple
commits within a short time timeframe and they may prefer to
run tests after multiple commits instead of after each individual
one. Hence, we formulate RQ2: What is the frequency of
group commits?

Answering the above RQs would assess if CI is needed
in Android development community. If the functional change
frequency is low, then maybe traditional testing is sufficient.

2) Cost Analysis: The cost of RTS often includes the
time needed for analysis (e.g., impact analysis, test selection
algorithms) and test execution. The cost is critical in CI testing
because a very long testing time defeats the purpose of having
developers receive fast feedback. This motivates us to study
the cost of RTS in mobile apps. However, the challenge is that
UI testing is different from traditional value-based testing (i.e.,
providing an input and checking the output) in several aspects.
First, the impact analysis is performed at the event level, so the
analysis needs to associate the code with particular UI events.
Therefore, we answer the following research question: RQ3:
What is the cost of program analysis for identifying affected
events?

Second, in traditional unit testing, tests are selected if their
associated code is changed or affected. However, UI testing
is at the level of event sequences. Even if the affected events
are selected, one still needs to search for event sequences to
exercise the affected events for automated testing. Therefore,
we would like to examine the cost of finding and exercising
such event sequences. Hence, we ask in RQ4: What is the
cost of exercising the affected events and how does this cost
relate to the time intervals between commits??

3) Test Reuse Analysis: It can be costly to dynamically
search for testing sequences. Research has shown that a
targeted search can take anywhere from 16 seconds to over
two hours, with an average of about 6 minutes [29]. A more
practical approach is to reuse existing test sequences that
contain the affected events. However, it may not always be
possible to reuse existing sequences when events are added or
deleted. Thus, we aim to study the feasibility of reusing exist-
ing test sequences during test selection. Therefore, we pose the
following research question: RQ5: What test executable rate
of executing existing test sequences from the initial commit
version to subsequent commit versions? To what extent existing
test sequences can be reused across changes?

Some traditional regression test selection and test prioritiza-
tion techniques examine the history of changed code or source
files to determine the tests to be selected or prioritized. The
insight is that frequently changed code is more prone to bugs
than other parts of the code. Thus, the tests associated with
the change-prone code are selected for continuous integration
(CI) testing. In the context of UI testing, we can examine the
frequency of changed events so that frequently changed events
can be selected for testing. Therefore, we ask the following
research question: RQ6: What is the percentage of affected
events that are commonly seen across changes

B. Data Collection

Project selection. We collect open-source projects from the
Google Play Store by utilizing web crawling techniques [30].
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By iterating over the web pages of more than 100,000 apps,
we successfully identified approximately 1,000 open-source
Android mobile apps by filtering keywords related to open-
source projects in their web pages, such as open − source,
opensource, GitHub, GitLab, etc. Among these, 318 host
their code repositories on GitHub, providing a valuable re-
source for further analysis and insights into the development
process of Android applications. We based our study on 318
applications and employed web crawling techniques [30] again
to collect detail commit information from each commit page,
such as the code changes (both additions and deletions),
methods, classes, and etc.

To ensure that the study is conducted under a consistent and
automated setup, we identified and selected projects that could
be successfully built using the Gradle command line build.
This choice allows us to automatically checkout a series of
continuous commit IDs, connect an emulator, build and deploy
the corresponding commit version of APK, and execute test
sequences just by utilizing bash scripts and command lines.
We selected 100 continuous commit versions only for each
project to strike a balance between the depth of analysis and
the feasibility of conducting the study within the given time
and resource constraints. We made the decision not to exclude
non-functional commits to simulate real-world scenarios in a
continuous integration environment. In such environments, de-
velopers typically do not have prior knowledge about whether
a commit is functional or not.

Table. I shows the characteristics of the overall of projects
and projects selected for studying RQ3-6, including details on
the number of projects, total commits, size, age distribution,
and the usage of CI/CD. The usage of CI/CD suggests the pop-
ularity of CI in the Android development community. In order
to determine if a GitHub project uses CI/CD, one can search
for common files such as .travis.yml or .github/workflows/, or
checking for build status badges in GitHub.

Overall Projects Projects(RQ3 - RQ6)
# Projects 318 20
Total Commits 473,225 1475

Size (LOC)
Min: 406

Median: 17,612.5
Max: 2,211,640

Min: 4,026
Median: 34,681.5

Max: 114,760

Ages (yrs) Min: 0.17
Max: 14.5

Min: 0.85
Max: 14.5

CI/CD Usage
Total: 40.25%

Travis CI: 28%
GitHub Workflows: 24.53%

Total: 85%
Travis CI: 85%

GitHub Workflows:80%

TABLE I: Overall Projects vs. Projects for RQ3-6

C. Threats to Validity

The primary threat to external validity for this study involves
the representativeness of our subjects and the selected commits
(RQ3–RQ6). The data we gathered comes from 40.25% of
projects using CI/CD with 28% deployed in Travis CI envi-
ronments and 24.53% using GitHub Workflows. Other subjects
and CI servers may exhibit different behaviors. However,
we do reduce this threat to some extent by systematically
searching for open-source code subjects from Google Play
Store for our study. A second source of potential threat
involves the selection of commits used to study the cost of
analysis. Since we selected the first 100 commits from the

commits version that could be built using the Gradle command
line build, they may not represent the all commits over the
commit history.

The primary threat to internal validity for this study is the
potential occurrence of errors during the implementation of
dependency analysis in RTS. To address this concern, we
took measures to control the threat by conducting extensive
testing of our tools. We also validated their results against a
smaller program for which we could manually determine the
correct outcomes. Secondly, we employed dynamic analysis
to identify the affected events and test sequences. However,
it is important to note that dynamic analysis might not cover
all the affected code if it is not executed. To overcome this
limitation, future studies will incorporate both dynamic and
static analysis to provide a more comprehensive perspective.
Thirdly, we utilized a depth-first search algorithm to generate
test sequences, which is a widely adopted approach [18], [29],
[31]. However, future studies could benefit from employing
state-of-the-art tools [32]–[35] to generate test sequences,
enabling more thorough insights into the subject matter.

The primary threat to construct validity involves the dataset
and metrics used in the study. To mitigate this threat, we
used open source projects from GitHub, which are publicly
available and well studied by existing research [28]. We have
also used well known metrics in our data analysis such as
the number of commits and correlation analysis, which are
straightforward to compute.

IV. RESULTS

A. Frequency Analysis

The first research question (RQ1) aims to investigate the
frequency of code commits in Android UI testing and deter-
mine the extent to which RTS (Regression Test Selection) is
required. The purpose of this research question is to identify
the circumstances under which RTS is necessary and those
in which it may not be required. For example, in projects
with low code change frequency, RTS may not be needed.
Conversely, in projects with multiple active authors, code
commits may occur in a rapid succession. In such cases,
executing tests after a group of commits rather than after each
individual commit could be more cost-effective. Therefore,
the study conducts commit frequency analysis for both single
commits and group commits.

1) RQ1: What is the frequency of single commits: In
Android UI testing, a single code commit can be classified into
two types: functional and non-functional changes. Functional
changes directly affect the application’s behavior, features, or
capabilities, while non-functional changes relate to aspects
such as maintainability, readability, or performance, which
do not directly application’s behavior most of the time. As
noted in the Data Collection Section, we used web crawling
techniques to obtain details of each commit page. This allowed
us to examine a vast number of commits to identify if the
commit is functional or non-functional by using heuristics
code to examine if there are any additions and deletions of
calling functions.

Functional commits are more likely to require testing than
non-functional commits since they can affect the software’s
behavior. To understand the extent to which RTS is necessary,
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Fig. 1: Time Interval Distribution for Single Commits

it is crucial to distinguish functional commits from other types
of commits.

Our study analyzed 473,225 commits from 318 apps,
where 187,881 (39.7%) were functional commits and 285,344
(60.3%) were non-functional. Figure 1 displays the frequency
distribution of all commits, functional commits, and non-
functional commits. The x-axis represents the range of time in-
tervals between two consecutive commits, binned into different
ranges from 0-1 minute to 1440+ minutes. The y-axis shows
the percentage of commits that fall into each interval range.
The figure shows that overall commits, functional commits,
and non-functional commits have a similar trend, with the
percentage of commits decreasing as the time gap between
consecutive commits increases. This trend indicates that func-
tional commit frequencies are not significantly different from
overall commit frequencies in terms of their time distribution.

Our analysis revealed that a significant proportion of func-
tional commits in our dataset occurred within a relatively
short time period. Specifically, 44.7% of functional commits
were observed to occur within 30 minutes, indicating that
a large proportion of functional changes are introduced into
the codebase shortly after the previous commit. Within 60
minutes, this percentage increased to 52.9%, indicating that
the majority of functional changes occur within the first
hour of committing code changes. Additionally, our analysis
found that a slightly higher percentage of functional commits
(60.5%) occurred within 2 hours of the previous commit.
Many existing techniques, such as those proposed in the
literature [22], [34], [35], typically allocate a threshold of 1-3
hours to complete a thorough GUI testing.

RQ1: A considerable number of functional com-
mits occur within a short timeframe of 30 minutes.
This rapid pace of development indicates that the
development team is making changes to the codebase
frequently and possibly in a highly iterative manner.
Therefore, it is essential to ensure that testing strategies
are efficient enough to keep pace with the speed of
development. Specifically, our results imply that if the
execution time for testing exceeds 30 minutes, it may
be necessary to use Regression Test Selection (RTS)

techniques to optimize the testing process.

2) RQ2: What is the frequency of group commits?: App
development is generally a collaborative effort, involving mul-
tiple developers who work together to maintain and enhance
the project. Our data indicates that the 5-number summary of
the number of developers of studied apps includes a minimum
value of 1, a first quartile value of 2, a median value of 5,
a third quartile value of 21, and a maximum value of 1983.
Developers tend to make multiple commits within a short time
period and they may prefer to run tests after multiple commits
rather than after every single commit.

This observation leads to our thoughts to consider an
enhancement for RTS: A single commit can be seen as a
test event, and a group of commits is also considered a
test event. Can testing efficiency be improved by running
tests on a per-group basis rather than per single commit
basis? A Group commit refers to a sequence of one or more
consecutive commits made by the same author within the
same date. Our data, drawn from 473,225 single commits,
indicates that 154,124 groups were formed by the definition
above, representing a reduction of 67.47% in the number of
test events. Of these groups, 46.64% of groups were found to
be functional, while 53.36% of groups were considered non-
functional. A group of commits can be considered functional
if it contains at least one functional commit.

The results indicate a reduction of 67.47 in the number of
test events from 473,225 single commits to 154,124 group
commits. The reduction is 61.85% when considering func-
tional group commits. With grouping commits, the number of
test events is significantly reduced, meaning that less testing
is needed.

Fig.2 (a) displays the time interval distribution of group
commits, demonstrating a consistent trend among all group
commits, functional group commits, and non-functional group
commits. The graph reveals that less than 20% interval falls
in [0,30], especially for functional group commits, only 10%
of the intervals fall within the [0, 30], while the majority are
distributed across the [120, 1400) and [1400, inf) intervals.
This observation suggests that there are considerable time gaps
between group commits, providing ample time for testing.
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Fig. 2: Time Interval Distribution for Group Commits

Consequently, there may be no need the introduce the idea
of group commits for RTS for UI testing.

However, it is essential to consider the potential bias due to
the wide range of numbers of developers in different apps,
as indicated by the 5-number summary of the number of
developers (1, 2, 5, 21, 1983). To account for this possible
bias, the data has been divided based on the number of unique
developers in each app, forming groups [1, 5], (5, 10], (10,
20], (20, 30], (30, 40], (40, 50], and (50, inf] for functional
group commits. The range of these groups is determined by
the distribution of unique developers of studied apps. Fig.2
(b) shows the time interval distribution of functional group
commits across developer groups. While the trends remain
similar to those seen in Fig.2 (a), it is observed that the largest
two developer groups, (40, 50] and (50, inf), exhibit the highest
percentage in the (0, 30] interval and the lowest percentage
in the (1440, inf) interval. In contrast, the smallest developer
group [1,5] has the lowest percentage in the (0, 30] range and
the highest percentage in the (1440, inf) range. Nonetheless,
the highest percentage in the (0, 30] interval remains small,
less than 20%.

This observation suggests that although the higher number
of developers does contribute to an increase in the percentage
of functional group commits in smaller time intervals, the
increase is still relatively minimal. As a result, the need for
the idea of group commit strategy may not be significant, even
for applications with a higher number of developers.

RQ2: We found that a relatively small percentage of
functional group commits (9.9%) were made within
time intervals of less than 30 minutes. The majority of
functional group commits (81.83%) occurred in time
intervals greater than two hours. Specifically, 32.57%
of the functional group commits fell within the time
range of [2, 24) hours, while 49.26% exceed 24 hours.
These findings suggest that when considering testing
groups of commits made by the same developers, it
is unlikely that RTS will be necessary. Therefore, this
information can guide developers in optimizing their
testing strategies and prioritizing their testing efforts,
potentially leading to more efficient development pro-
cesses.

B. Cost Analysis

1) RQ3: What is the cost of program analysis for identifying
affected events?: Given a code change c, the analysis will
identify a set of GUI widgets W associated with the code
that is affected by the change c. The GUI widget w ∈ W is
considered affected GUI. In order to identify the affected GUI,
we needed to obtain the mapping between GUI widgets and
the code. When the source code has changed, the GUI related
to the changed method can be quickly found with the help
of mapping information. There are two general approaches to
obtaining the mapping information from call graph to identify
the affected GUI: static analysis and dynamic analysis.

In this study, we chose dynamic analysis as the preferred
approach for establishing the mapping between UI elements
and their corresponding methods. The rationale behind this de-
cision lies in the ability of dynamic analysis to provide a more
accurate and straightforward representation of the application’s
runtime behavior. By monitoring user interactions with the UI
and logging the invoked methods, dynamic analysis allows
us to directly observe the relationships between UI elements,
their associated event handlers, and methods called inside han-
dlers, effectively circumventing the need for iterating through
the call graph. This, in turn, eliminates the consideration
of unnecessary paths and potential inaccuracies that might
arise during static analysis. For example, when identifying
the method related to a button, the static analysis might
require examining the entire codebase, the associated resource
references of the button, constructing the static call graph,
traversing the call graph of find all methods containing the
associated resource references of the button, and potentially
considering irrelevant paths or methods. In contrast, dynamic
analysis involves monitoring the actual user interaction, while
clicking the button, information of invoked methods would
be logged, which allows direct establishes of the relationship
between the button and its related methods.

While the dynamic analysis may require more time due to
code execution, its ability to capture the precise execution
paths and sequence of method calls outweighs these draw-
backs. In fact, constructing and iterating the entire static call
graph can be a time-consuming process. Consequently, the
dynamic analysis presents itself as a superior method for
mapping UI elements to their related methods, delivering a
more reliable and accurate understanding of the application’s
behavior, particularly regarding user interaction and event
handling.
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Generating test sequences for initial app version. When
performing RTS, it is necessary to have initial test sequences
to choose from. However, many of the apps in our dataset
do not have default initial test sequences. To address this
challenge, we developed our own tool that generates initial test
sequences. This tool employs the Depth-First Search (DFS)
algorithm, as utilized in existing work [18], to automatically
explore the app. The DFS algorithm traverses as far as possible
along each GUI sequence before backtracking Note that in
our study, the term ”backtracking” does not refer to pressing
the ”back” button or performing any stepping back actions.
Instead, it refers to restarting the application and re-executing
the sequence from the initial point up to the decision point.
For example, by clicking on the menu on the home page, the
instrumented source code will execute the methods under the
action of clicking, along with the resource ID of the GUI
element involved. Utilizing the collected information about
GUI elements, a series of executable GUI test sequences are
generated. The number and length of test sequences can be
influenced by the complexity of the app’s interface and the
actions required to navigate to the next state.

Our initial test sequences contain various numbers of se-
quences ranging from 23 to 123, with the longest sequence in
each set varying between 4 and 13. The process of collecting
sequences takes a variable amount of time, ranging from 32
to 150 minutes, in the study. We have employed two stopping
criteria maximum sequence and length and time limit. When
the search reaches the depth of 15, it backtracks and continues
exploring other possible sequences and we imposed a time
limit of 150 minutes to ensure the algorithm does not run
indefinitely. It mainly includes the time spent on analyzing
the hierarchy of the current screen to identify the candidates
for the next step, locating UI elements, performing operations
on them, restarting apps and navigating to the previous state
for every exploration. Note that achieving comprehensive code
coverage is extremely challenging [18], [22], [32], [33], [35],
and dynamic DFS does not serve as the optimal solution.
In this work, we only required basic sequences and thus do
not need to concentrate on generating complex sequences or
sequence combinations to enhance code coverage.
Test sequence selection. Our approach to RTS involves
establishing a mapping between methods and associated GUI
widgets, denoted as < m,W >, where m is a method and
W is the set of GUI widgets associated with that method.
This mapping allows us to quickly identify the affected GUI
widgets W when a code change c occurs. By locating the
corresponding method m, we can obtain the set of associated
widgets W , and any test sequences containing w ∈ W can be
selected for execution.

The efficiency of our approach is supported by the constant
time complexity of O(1) for identifying the affected GUI
widgets W . This is due to the fast execution of the map.get()
function, with retrieval times ranging from approximately
0.0061 ms to 0.0295 ms per commit in our study. To locate
the corresponding method m, we leveraged GitHub’s commit
history, which conveniently displays the block of code change
c along with the file path fp and the class cls or method m
it belongs to. By collecting the method m while crawling the
commit history, we can efficiently and accurately locate the
affected GUI widgets W for RTS.

RQ3: Performing impact analysis using dynamic
analysis can be as expensive as running one round
of all test sequences as it requires code execution.
The cost of creating initial test sequences for 20 apps
ranged from 32 to 150 minutes, with 48.1% commit in-
tervals falling within 30 minutes and 61.7% within 120
minutes. These results suggest that RTS is necessary to
reduce the cost of regenerating all test sequences for
each change. Additionally, the costs associated with
instrumenting the code and generating/updating map-
ping information are relatively insignificant compared
to the cost of executing the code. With the mapping
information obtained from the initial analysis, related
sequences can be quickly retrieved in just 0.03 ms after
a code change.

2) RQ4: What is the cost of exercising the sequences
containing affected UI and how does this cost relate to the
time intervals between commits?: Costs of the RTS involves
both the number of tests being selected and the time spent on
executing these tests.
Number. Fig.3 shows the percentage of selected sequences.
The reduction ranges from 0% to 92.7%, with an average is
67.06% We found the reduction rate was not as low as what
we expected. We have identified two reasons. The first reason
is because of the granularity of our dynamic analysis. Our
approach tracks the changes at the method level. If a change
occurs in a method, even if it is not directly associated with
the UI, our approach will mark the UI as affected. A pos-
sible improvement is to perform a finer-granularity analysis,
but with additional costs. Another reason is because of the
presence of high-dependence UIs with numerous options. For
instance, given the following sequences:
Sequence 1: Home→MoreOptions
Sequence 2: Home→MoreOptions→A
Sequence 3: Home→MoreOptions→B
Sequence 4: Home→MoreOptions→A→A1
Sequence 5: Home→MoreOptions→B→B1
When the MoreOptions is affected, all the above sequences
would be selected for testing. However, the three sequences,
Home→MoreOptions, Home→MoreOptions →A, and
Home→MoreOptions →B, are usually sufficient to test
the functionalities of MoreOptions. One possible solution
is to employ existing approaches, such as DetReduce [36] for
minimizing Android GUI test suites in RTS for efficient testing
selection.
Timing. The red curve in Fig.3 shows the average execution
time of selected sequences. A 0-minute execution time implies
either no impact on UI elements (e.g., configuration, docu-
mentation) or incomplete test coverage due to limited time or
limitations in the test generation algorithm’s ability to map
code to UI elements. The minimum and maximum execution
times are 5.25 and 34.3 minutes, respectively, indicating that
the test case selection technique is effective at controlling the
time interval to keep it within the desired interval (48.1%
commit intervals falling within 30 minutes and 61.7% within
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120 minutes.) and providing fast feedback to developers.

RQ4: Even with straightforward selection techniques,
the cost of testing can be significantly reduced by
exercising selected sequences containing affected UI
elements. This finding suggests that there is substantial
potential for cost reduction if a repository of test
sequences with high coverage, precise impact analy-
sis, and optimal selection methods are developed and
applied in future research.

C. Test Sequence Reuse Analysis

1) RQ5: What test executable rate of executing existing
test sequences from the initial commit version to subsequent
commit versions? To what extent existing test sequences can be
reused across changes?: Test executable rate (TR) measures
the percentage of test sequences that can be successfully
executed in the current version (TS) compared to the total
number of sequences generated from the initial version (TT ):
TR = TS/TT .

The ability to reuse existing test sequences across changes
depends on various factors such as UI alterations, built version
updates, and code refactoring. To evaluate the test executable
rate, we executed all initial test sequences on subsequent
commit versions. The change in the rate reflects the number of
successful tests in the current version, providing insights into
the degree of test sequence reuse for subsequent app versions.
A higher test executable rate indicates better test sequence
reuse and potential cost reduction.

Fig.4 displays the change of executable rate of running
all existing test sequences as the commit is made and the
application is updated. The analysis of the executable rate
of existing test sequences among the 1475 commits shows
interesting patterns in terms of re-test rates and trends. Among
all subjects, it shows an overall downward trend, as expected.
However, we have made several interesting observations:
Varying test executable rate. Among different apps, their test
executable rates vary, ranging from 100% to 0%. Most apps
keep relatively high re-test rates despite an overall downward
trend. Some apps eventually drop to a 0% rate (e.g., EasyXkcd,
BeeCount) while some maintained a 100% re-test rate (e.g.,
Noice, BudgetWatch).

Decreasing test executable rate. The test executable rate
can decrease to various extents. In some cases, the rate
may drop by only 2% at one time, while in others, it
may experience a significant decrease of more than 8%.
A minor decrease usually occurs when code changes cause
only one or a few sequences to fail, often resulting from
modifications to a leaf element or an element with limited
dependencies in the UI hierarchy. In contrast, a larger decrease
in the rate can arise from changes to a higher-level element
or an element with a more complex set of dependencies
within the UI hierarchy. Such changes have a broader impact,
disrupting multiple navigation paths and causing a larger
number of test sequences to fail to be executed. Assume
that an app includes, but is not limited to, the following
sequences: Home→Settings→A, Home→Settings→B,
Home→Settings→C, and Home→Settings→D. If A is
deleted, only one sequence might be affected, resulting in a
minor decrease in the test executable rate. However, if the
Settings button is deleted, all functionality within Settings
would be impacted, causing a large number of sequences to
fail. Consequently, the Test Executable Rate would experience
a more significant drop due to the broader impact of the
change.

Increasing test executable rate. There are two scenarios
leading to the increase: 1) the addition of a previously deleted
UI that exists in the original test cases, causing a revival in
the reuse rate; and 2) the trend is determined by comparing
the reuse rate of the current commit with that of the previous
commit, in chronological order. However, the previous commit
might not be the parent of the current commit. In such cases,
the parent commit could be an earlier commit with a higher
reuse rate, which can happen when multiple developers are
working on the project and one makes several changes that
cause the rate to drop, while another developer pushes a new
commit based on an earlier commit. In both cases, the increase
in reuse rate is observed when comparing the current commit
to its parent commit.

Stable test executable rate. Our analysis revealed that a vast
majority of commit versions, i.e., 98.68%, have the same
executable as their previous version, indicating periods of
stabilization throughout the testing process. As shown in Fig.4,
these periods are represented by horizontal segments. The
reason for such stability lies in the nature of the commits. Our
study was based on commit versions rather than release ver-
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Fig. 4: Executable Rate

sions, which are typically achieved by merging multiple single
commits from various developers. Developers usually make
small, incremental changes to the code in each commit, and
it is less common for them to make significant modifications,
such as adding or deleting UI elements, in every commit. Such
significant changes can have a substantial impact on the user
experience, causing confusion or inconsistency to both users
and other developers. As a result, consecutive commits often
have the same executable, indicating stabilization periods.
When a dramatic decrease in the test executable rate occurs,
it is likely that the rate of subsequent commits will remain at
the new level for a while until the next significant change is
made.

RQ5: Test sequences that already exist are of-
ten highly reusable, meaning that they can be used
multiple times. In order to maintain and improve
this reusability, developers should follow good coding
practices. This includes using unique element names,
avoiding making changes or duplicating elements dur-
ing development, and using distinctive UI element
features to identify targets during automated testing.
It’s worth noting that the rate of reusable test sequences
may fluctuate and even drop to 0% for some apps.
However, periods of stabilization show that the rate of
subsequent commits stabilizes at the new level before
the next change. This indicates that by adjusting failed
test cases or replacing them with new ones, developers
can restore and maintain high reusability rates.

2) RQ6: What is the percentage of affected events that are
commonly seen across changes? Are they focused on a small
number of UI element?: In RQ4, we learned that UI elements
that have multiple dependencies play an important role in
the application and they should be prioritized in testing as
well. In addition to the above prioritization, this RQ allows
us to identify the percentage of affected UI elements that are
commonly observed across various changes in applications, as
well as to determine whether they are concentrated on a small
number of events. If certain UI elements are more frequently
changed over others, one can assume that these events need to
be tested without analysis after a period of commits to avoid
costs.

The percentage of a UI element that is commonly seen
across changes is the ratio of the number of times the UI

element is seen across changes (N ) to the total number of
occurrences of all UI elements that are commonly seen across
changes (T ): P = N/T . Each box in Fig.5 represents an
individual app. The percentage values on the x-axis indicate
the distribution of the proportion of a specific UI element
frequently observed across changes for each app. A box with
a higher median percentage value (the red line within each
box) signifies that the app has UI elements that appear more
frequently across changes. Conversely, a box with a lower
median percentage implies that there is no frequent element
being seen.

The results indicate that the median percentage of affected
UI elements across changes ranges from 0% to 50%. There are
few apps having a larger median percentage, around 30% and
50%, of affected UI elements while few have 0 % of affected
UI elements. This implies that the extent of seen UI element
depends on the specific app and its unique characteristics. The
higher the median percentage of affected that are commonly
seen across changes, the more likely it is that frequently
testing them without extensive analysis is preferred. The fact
that a few apps (e.g., Noice) have no UI element changes is
because the continuous commits selected for studying involve
only configuration and build updates, with no functional code
changes. This usually happens when an app reaches maturity,
developers tend to shift their focus to maintenance tasks. In
such cases, developers might just need to focus their testing
on core functionality and elements that have had defects in
the past.

RQ6: There are certain UI elements commonly ob-
served across changes in some applications, and they
are not evenly distributed across all apps. Therefore,
prioritizing testing of these UI elements without ex-
tensive analysis could be more efficient for certain
apps, especially those with a higher percentage of
affected UI elements that are commonly seen across
changes. However, it is important to note that each
app is unique, and the extent of seen UI element
varies. Therefore, developers should consider the spe-
cific characteristics of their application before deciding
on testing strategies.

V. IMPLICATIONS FOR FUTURE RESEARCH

Our study motivates further research on RTS for mobile
apps in CI environments.
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Fig. 5: Distribution of affected UI that are commonly seen across changes

A. Implications to Practitioners

Our study suggests that a significant proportion of open-
source Android apps utilize Continuous Integration (CI)
frameworks. While CI testing is commonly used to execute
unit tests, our findings indicate that practitioners should pay
attention to the selection and execution of UI tests to handle
rapid code changes effectively.

Continuous Integration (CI) automates compilation, build-
ing, and testing to ensure code quality with every commit.
For regression testing to work in CI, it must keep pace with
frequent commits. Our Frequency Analysis reveals that 44.7%
of functional changes occur within 30 minutes, and 52.9%
occur within 60 minutes. These findings can assist developers
in making testing decisions during development. For instance,
if executing all test cases takes longer than 30 or 60 minutes, it
would be advisable to apply Regression Test Selection (RTS)
techniques selectively.

Our Test Reuse Analysis shows that existing test sequences
often exhibit a high reuse rate since apps typically do not
undergo significant changes over every commit. Moreover,
alterations in the functional logic underlying the user interface
typically do not affect the execution of test sequences. To
maintain test sequences efficiently and ensure high reusability,
developers must follow a consistent coding style, including
avoiding the modification and duplication of GUI element fea-
tures unless necessary, avoiding the use of common features,
and eschewing the use of coordinates.

Thus, adaptive RTS techniques may be developed to se-
lectively execute RTS for certain commits. For example, if a
new project feature is introduced where more code commits
are expected, RTS can be applied to reduce the cost of testing.
Otherwise, it would be safer to execute more test cases.

B. Implications to Researchers

Test Automation. Our study highlights the importance of UI
testing in mobile app development and the limitations of cur-
rent CI testing practices that mainly focus on unit testing [1],
[37], [38]. Although recent research has developed techniques
to select events affected by code changes [5], as our results
suggest, they cannot be applied in CI environments because the
selected events have to be manually executed. We recommend
the development of new RTS techniques that can automatically
analyze impact events and execute associated event sequences
to handle rapid code changes in CI environments. Furthermore,
we suggest exploring the use of cost-efficient method analysis

to facilitate the selection and execution of impacted events in
UI testing.
Test Sequence Reuse. In Test Reuse Analysis, although ex-
isting sequences has high reusability across changes, they fail
to cover newly introduced GUI elements and some UI logic
changes. Regenerating test sequences using existing state-of-
the-art tools can be a time-consuming process, as it requires
running the tool for the entire application. This presents a
significant motivation for developers to explore alternative
methods for updating test sequences more efficiently.

By leveraging existing test sequences and incorporating
impact analysis of code changes, developers can strive to
generate new sequences and update existing sequences specif-
ically targeting the updated GUI elements in RTS. This
targeted approach ensures thorough testing of new features
and updating the failed sequences without regenerating test
sequences for the entire application, ultimately saving time and
resources and enhancing RTS for UI testing. Additionally, the
period of stabilization of test reuse observed in RQ5 further
demonstrates that the new sequences generated through this
targeted approach are not just one-time-use and likely to be
reused in subsequent commit versions.

VI. CONCLUSIONS AND FUTURE WORK

We have performed an empirical study employing regression
test selection (RTS) in continuous integration (CI) environ-
ments. The study provides guidance for future research on RTS
in CI environments. Future research can concentrate on devel-
oping advanced RTS techniques tailored to CI environments
for mobile apps. This includes optimizing test cases selection
algorithms, minimizing test cases that serve the same testing
purpose, and generating new test cases or fixing failed ones
based on existing sequences and code changes. By enhancing
RTS techniques for UI testing in CI settings, developers
can achieve more efficient and cost-effective software project
delivery. As part of our future work, we will: (1) integrate the
F-Droid repository, (2) determine the number and generation
of test sequences for new functionalities across commits, (3)
include static analysis and compare it with dynamic analysis,
and (4) utilize state-of-the-art tools for test sequence genera-
tion.
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