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On Deep Holes of Elliptic Curve Codes
Jun Zhang and Daqing Wan

AbstractÐ We give a method to construct deep holes for elliptic
curve codes. For long elliptic curve codes, we conjecture that our
construction is complete in the sense that it gives all deep holes.
Some evidence and heuristics on the completeness are provided
by means of connections with problems and results in finite
geometry.

Index TermsÐ Algebraic geometry code, elliptic curve,
covering radius, deep hole, finite geometry.

I. INTRODUCTION

T
HE classification of deep holes in a linear code is a funda-
mental and difficult problem in coding theory. Deciding if

a given received word is a deep hole is already NP-hard, even
for short Reed-Solomon codes. For long Reed-Solomon codes,
this problem has been studied extensively, and it is better
understood if one assumes the MDS conjecture or the rational
normal curve conjecture in finite geometry. Algebraically,
Reed-Solomon codes are just algebraic geometry codes of
genus zero. From this point of view, it is natural to study
the deep hole problem for algebraic geometry codes of higher
genus g. The difficulty naturally increases as the genus g
grows. In fact, the minimum distance is already unknown and
NP-hard to determine when genus g = 1. In this paper, we give
a first study of the deep hole problem for elliptic curve codes,
i.e., the genus g = 1 case. Our main result is an explicit
construction of a class of deep holes for long elliptic curve
codes. We conjecture that our construction already gives the
complete set of all deep holes for long elliptic curve codes.
In the final section, we provide some heuristics and evidence
about this completeness conjecture by means of its connection
with problems and results in finite geometry.

Let Fn
q be the n-dimensional vector space over the finite

field Fq of q elements with characteristic p. For any vector
(also, called word) x = (x1, x2, · · · , xn) ∈ Fn

q , the Hamming

weight Wt(x) of x is defined to be the number of its non-
zero coordinates, i.e., Wt(x) = | {i | 1 ⩽ i ⩽ n, xi ̸= 0} |. For
integers 1 ≤ k ≤ n, a linear [n, k] code C is a k-dimensional
linear subspace of Fn

q . The minimum distance d(C) of C is
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the minimum Hamming weight among all non-zero vectors in
C, i.e., d(C) = min{Wt(c) | c ∈ C \ {0}}. A linear [n, k]
code C ⊆ Fn

q is called an [n, k, d] linear code if C has
minimum distance d. For error correction purposes, an [n, k]
code C is good if its minimum distance d is large. Ideally, for
a given [n, k]-code C, one would like its minimum distance
d to be as large as possible. A well-known trade-off between
the parameters of a linear [n, k, d] code is the Singleton bound
which states that

d ⩽ n − k + 1.

An [n, k, d] code is called a maximum distance separable

(MDS) code if d = n− k + 1. The MDS codes of dimension
1 and their duals of dimension n − 1 are called trivial MDS
codes. The trivial MDS codes can have arbitrary length n. For
length n ≤ q, an important class of non-trivial MDS codes are
Reed-Solomon codes with evaluation set D chosen to be any
n rational points on the affine line A1(Fq). For n = q + 1,
one has the projective Reed-Solomon code which is also an
MDS code. For length n ≥ q + 2, one does not expect any
non-trivial MDS code to exist for odd q. This is the main part
of the long standing MDS conjecture proposed by Segre [29].

Conjecture 1.1 (MDS conjecture): The length n of non-
trivial MDS codes over the finite field Fq cannot exceed
q + 1 with two exceptions: for k ∈ {3, q − 1} and even q
the length can reach q + 2.

This conjecture remains open in general, although a lot of
progress has been made [2], [3], [4]. In particular, it is known
to be true if q is a prime, see [2] for further information. It is
also known to be true for elliptic curve codes, see [32].

Let C be an [n, k, d] linear code over Fq. The error distance

of any word u ∈ Fn
q to C is defined to be

d(u, C) = min{d(u, v) | v ∈ C},

where

d(u, v) = |{i |ui ̸= vi, 1 ≤ i ≤ n}|

is the Hamming distance between words u and v. Computing
the error distance is essentially equivalent to solving the
maximal likelihood decoding problem. Although there are
decoding algorithms available for important codes such as
Reed-Solomon codes and algebraic geometric codes, these
algorithms only work if the error distance d(u, C) is small.
If the error distance is large, then decoding becomes a problem
of major difficulty. The maximum error distance

ρ(C) = max{d(u, C) |u ∈ Fn
q }

is called the covering radius of C.
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The covering radius is perhaps the next most important
quantity of a linear code, after the minimal distance. Cov-
ering radii of codes was studied extensively [9], [10], [13],
[15], [26], [27]. There are very few families of codes with
known covering radius, e.g., Reed-Solomon codes, the first
order Reed-Muller code RM(1, m) with even m, etc. For
the first order Reed-Muller code RM(1, m) with odd m,
to determine the covering radius is already very difficult and,
in general, wide open [16]. A recent breakthrough is due
to Schmidt [28]. Surprisingly, even for the projective Reed-
Solomon code (which is an MDS code), the exact covering
radius is unknown, see [35] for the discussion. In general,
the covering radius of MDS codes is unknown. The covering
radius of a class of short MDS elliptic curve codes was
studied in [5].

A word is called a deep hole of the code C if its distance
from C achieves the covering radius of C. Deciding deep holes
of a given code is an extreme instance of decoding. It is much
harder than the covering radius problem, even for affine RS
codes. The deep hole problem for Reed-Solomon codes was
studied in [6], [8], [18], [19], [20], [22], [23], [24], [33], [34],
[35], and [36]. For Reed-Solomon codes of length n much
smaller than q, deciding if a given word is a deep hole is
equivalent to a general subset sum problem, which is NP-hard.
For Reed-Solomon codes of length n close to q, the deep hole
problem can be solved if one assumes the MDS conjecture
or the rational normal curve conjecture in finite geometry,
see [35]. In summary, the deep hole problem is expected to
be well structured for long Reed-Solomon codes, but it has no
structure for short Reed-Solomon codes.

In this paper, we will study deep holes of elliptic curve
codes. For the definition and basics of elliptic curve codes,
please see Section II. Again, we expect that the deep hole
problem is well structured for long elliptic curve codes, but
no structure for general short elliptic curve codes. For this
reason, we will mostly restrict to long elliptic curve codes in
this paper.

In practical applications, for codes of length ≤ q+2, Reed-
Solomon codes already achieve the largest minimum distance.
For codes of length n ≥ q + 3, there are no non-trivial MDS
codes by the MDS conjecture, and the next best thing would
be near-MDS codes, i.e., [n, k, d] codes with d = n − k.
Long elliptic curve codes are known to be near-MDS and have
the best parameters according to the Singleton bound. By the
Hasse-Weil theorem, the length n of an elliptic curve code
C is bounded above by n ≤ q + 2

√
q + 1. This significantly

goes beyond the bound n ≤ q + 1 for Reed-Solom codes. For
good codes C with length n > q + 2

√
q + 1, one could use

algebraic geometry codes of genus g > 1 with many rational
points. In this paper, we only consider the case g = 1, which
is already sufficiently interesting and difficult.

We always assume, throughout the rest of the paper, the
finite field Fq to have odd characteristic, as to avoid technical
complications arising when the characteristic is even. In the
statement of the following theorem, we focus on the functional
elliptic curve [n, k]-code CL(D, kO), see section II for precise
definitions. With appropriate changes, the results hold for a

general divisor G. Our main result on minimum distance,
covering radius, and deep holes of long elliptic curve codes is
the following.

Theorem 1.2: Let E be an elliptic curve over Fq with a
rational point O, and D ⊂ E(Fq) \ {O} be a set of rational
points with n = |D|. For 2 ≤ k ≤ n− 2, let C = CL(D, kO)
be the functional elliptic curve [n, k]-code. Assume n ≥ q +3
(the code is long). If any one of the following three conditions
holds:

(1) n ≥ q + k, or
(2) q is a prime, or
(3) k ≤ √

q,

then we have the following results:

(i) The minimum distance d(C) = n − k.
(ii) The covering radius ρ(C) = n − k − 1.

(iii) For any P ∈ E(Fq) \ D, any vector

v ∈ CL(D, kO + P ) \ CL(D, kO)

is a deep hole of CL(D, kO).
(iv) If k < n−2, then the deep holes constructed in (iii) are

all distinct and thus yield (|E(Fq)| − n)(q − 1)qk deep
holes of CL(D, kO).

Remark 1.3: Since n ≥ q + 3, the minimum distance
d(C) = n − k always holds true for elliptic codes. We need
one of conditions (1)-(3) to insure that the covering radius can
be shown to be n − k − 1. These conditions can be removed
if one assumes the MDS conjecture or if one simply assumes
that the covering radius is n − k − 1. Without one of these
conditions, the covering radius is unknown and thus we cannot
prove that the words constructed in (iii) are deep holes.

For the boundary case k = n − 2, under the conditions in
the above theorem, the covering radius ρ(C) = n−k−1 = 1.
So all vectors in Fn

q \C are deep holes of C. Hence, the code
C = CL(D, (n − 2)O) totally has (q2 − 1)qn−2 deep holes.

A natural question is if the construction in (iii) is complete,
i.e., if there are other deep holes except those in (iii). If it is
complete, then there will be exactly (|E(Fq)| − n)(q − 1)qk

deep holes and the elliptic deep hole problem would be
solved. For short elliptic curve codes, the construction in
(iii) would not be complete. However, we have the following
completeness conjecture for sufficiently long elliptic curve
codes, namely, when D is the full set E(Fq) \ {O} and thus
n = |E(Fq)| − 1 ≥ q + 3. This conjecture is the elliptic code
analogue of the Cheng-Murray conjecture [8] for deep holes
of Reed-Solomon codes.

Conjecture 1.4: Let E be an elliptic curve over Fq with
|E(Fq)| ≥ q + 4. Take any rational point O ∈ E(Fq) and
set D = E(Fq) \ {O}. Let 2 ≤ k ≤ |E(Fq)| − 4. Then,
CL(D, (k + 1)O) \CL(D, kO) is the set of all deep holes of
CL(D, kO).

It is also an interesting problem to generalize the above
results to higher genera.

The rest of this paper is organized as follows. In Section II,
we review the definition and basics of algebraic geometry
(AG) codes. Regarding Reed-Solomon codes as AG codes
constructed from the projective line, we give a new viewpoint
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on the deep holes of Reed-Solomon codes to unify the two
constructions of the previous works. In Section III, we consider
elliptic curve codes. We determine the covering radius, present
deep holes and compute the syndromes of the deep holes under
our assumption. In Section IV, we discuss the completeness of
the deep holes found in Section III. Group actions of certain
automorphisms of the elliptic curve are used to generate
further deep holes if there is a new one of them. Using a
connection with finite geometry we can provide a preliminary
approach to the above completeness conjecture.

II. PRELIMINARIES

A. Definitions

In this subsection, We recall the definition and some basics
of algebraic geometry codes. First fix some notations valid for
the whole paper.

• Fq is a finite field of size q where q is an odd prime

power.

• X/Fq is a geometrically irreducible smooth projective

curve of genus g over the finite field Fq with function

field Fq(X).
• X(Fq) is the set of all Fq-rational points on X .

• D = {P1, P2, · · · , Pn} is a proper subset of rational

points X(Fq).
• We also write D = P1 + P2 + · · · + Pn.

• G is a divisor of degree k (2g − 2 < k < n) with

Supp(G) ∩ D = ∅.

Let V be a divisor on X . Denote by L(V ) the Fq-vector
space of all rational functions f ∈ Fq(X) with the principal
divisor div(f) ⩾ −V , together with the zero function. It is
well-known that L(V ) is a finite dimensional vector space
over Fq. And denote by Ω(V ) the Fq-vector space of all Weil
differentials ω with divisor div(ω) ⩾ V , together with the
zero differential (cf. [31]).

The residue AG code CΩ(D,G) is defined to be the image
of the following residue map:

res : Ω(G − D) → Fn
q

ω 7→ (resP1
(ω), resP2

(ω), · · · , resPn
(ω)).

The code CΩ(D,G) has parameters [n, n−k−1+g, d ≥ k−
(2g−2)]. And its dual code, the functional AG code CL(D,G)
is defined to be the image of the following evaluation map:

ev : L(G) → Fn
q ; f 7→ (f(P1), f(P2), · · · , f(Pn)).

As functions in L(G) have at most k = deg G different
zeros, the minimum distance of CL(D,G) is d ⩾ n−k. By the
Riemann-Roch theorem, the functional AG code CL(D,G)
has parameters [n, k − g + 1, d ⩾ n − k]. This together with
the Singleton bound gives

k − (2g − 2) ≤ d(CΩ(D,G)) ≤ k − g + 2

and
n − k ≤ d(CL(D,G)) ≤ n − k + g.

If X = E is an elliptic curve over Fq, i.e., g = 1, then
CΩ(D,G) has parameters [n, n − k, d ≥ k], CL(D,G) has

parameters [n, k, d ⩾ n − k], and we only have the following
two choices for their minimum distance:

d(CΩ(D,G)) ∈ {k, k + 1}

and
d(CL(D,G)) ∈ {n − k, n − k + 1}.

It is easy to see that the two minimum distances take either
{k, n − k} or {k + 1, n − k + 1}. In the first case, both
CΩ(D,G) and CL(D,G) are near-MDS codes. In the second
case, both CΩ(D,G) and CL(D,G) are MDS codes. It was
shown that the MDS property is equivalent to certain general
subset sum problem having no solution [7]. So to determine
the exact minimum distance of a general elliptic curve code
is NP-hard under RP-reduction. However, non-trivial elliptic
code of length n ≥ q + 3 are near-MDS by the MDS
conjecture, i.e., the minimum distance take the smaller one.
This suggests that long elliptic curve codes behave better.
By using the Li-Wan sieve method [20], the authors [21]
improved the upper bound on the length of MDS elliptic curve
codes without assuming the MDS conjecture.

Proposition 2.1 ( [21]): Suppose that n ≥ ( 2
3 + ϵ)q and

q > 4
ϵ2

, where ϵ is positive. There is a positive constant Cϵ

such that if Cϵ ln q < k < n − Cϵ ln q, then the [n, k] elliptic
curve code CL(D,G) has minimum distance n−k and hence
is near-MDS.

It is further conjectured in [21] that the above condition
n ≥ ( 2

3 +ϵ)q can be improved to n ≥ ( 1
2 +ϵ)q. This conjecture

has been proved in the case 3 ≤ k ≤ q+1−2
√

q

10 in the recent

paper [14].

B. A New Viewpoint on the Deep Holes of

Reed-Solomon Codes

In this subsection, we give a new viewpoint on the deep
holes of Reed-Solomon codes regarded as algebraic geometry
codes of genus zero. The advantage of this new viewpoint
is that the two classes of deep holes of generalized Reed-
Solomon codes are essentially the same. This method extends
immediately to elliptic curve codes and even more general AG
codes.

Let Fq(x) be the rational function field. Let O be the
infinite point with uniformizer 1

x
and Pa be the finite point

with uniformizer x − a for any a ∈ Fq. For any subset
D = {a1, a2, · · · , an} ⊂ Fq, denote the corresponding set
of finite points also by D = {Pa1

, Pa2
, · · · , Pan

}. For any
integer 1 ≤ k ≤ n, the Reed-Solomon (RS) code RS(D, k)
is defined to be CL(D, (k − 1)O). The dual code of RS code
RS(D, k) is the residue AG code CΩ(D, (k − 1)O). Both of
these codes are MDS codes and their covering radii are easy
to determine.

For RS codes with odd q and k ≥ ⌊ q−1
2 ⌋, it was proved

in [18] that there are only two classes of deep holes. The first
class of deep holes of RS code RS(D, k) was given in [8]
which corresponds to polynomials of degree k. In fact, these
deep holes are vectors in CL(D, kO) \CL(D, (k− 1)O). The
second class of deep holes of RS code RS(D, k) was given
first in [33] for D = F∗

q and later in [34] for general D ⊊ Fq
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which corresponds to the rational functions { b
x−a

| a ∈ Fq \
D, b ∈ F∗

q}. In fact, these deep holes are exactly the vectors in
⋃

a∈Fq\D

CL(D, (k − 1)O + Pa) \ CL(D, (k − 1)O).

In the language of AG codes, the two classes of known
deep holes can be unified as follows: for any P ∈ P1(Fq)\D,
the vectors in CL(D, (k − 1)O + P ) \ CL(D, (k − 1)O) are
deep holes of the Reed-Solomon code RS(D, k). In the case
D is the full set Fq, the only possibility for P is O. In this
case, the above construction of deep holes is conjectured to
be complete in [8], which has been proved to be true if q is a
prime [36] or if k > (q − 1)/2 [18], using results from finite
geometry.

III. COVERING RADIUS AND DEEP HOLES

Before we move on to address the deep hole problem for
elliptic curve codes, we need to first understand the covering
radius for elliptic curve codes. But this is already a difficult
problem as seen below.

A. Covering Radius of Elliptic Curve Codes

In this subsection, we study the covering radius of elliptic
curve codes. Just like the minimal distance, in general, there
are only two possible choices for the covering radius of elliptic
curve codes.

The following lemma is essentially derived from [17]. To be
self-contained, we give a proof here.

Lemma 3.1: Let Fq be a finite field with q elements. Let
E be an elliptic curve over Fq with a rational point O, and
D ⊂ E(Fq) \ {O} be a set of rational points with n = |D|.
For 2 ≤ k ≤ n − 2, let C = CΩ(D, kO) or C = CL(D, kO).
Then the covering radius of C equals either n−dim(C)−1 or
n − dim(C).

Proof: Denote k⊥ = n−dim(C). Let H ∈ Fk⊥×n
q be any

parity-check matrix for the linear code C. Then the covering
radius ρ of C is the smallest positive integer ρ such that any
vector w ∈ Fk⊥

q can be written as a linear combination of
some ρ columns of H . As H is of full rank, we have

ρ ≤ k⊥.

We have seen that from the section Preliminaries:

k⊥ − 1 ≤ d(CΩ(D, (k − 1)O)) ≤ k⊥,

k⊥ − 1 ≤ d(CL(D, (k + 1)O)) ≤ k⊥,

and
k⊥ ≤ d(C) ≤ k⊥ + 1.

Now, by considering any vector

v ∈
{

CΩ(D, (k − 1)O) \ CΩ(D, kO), if C = CΩ(D, kO);

CL(D, (k + 1)O) \ CL(D, kO), if C = CL(D, kO),

we deduce that

ρ ≥ d(v, C)

≥
{

min(d(C), d(CΩ(D, (k − 1)O))) if C = CΩ(D, kO)

min(d(C), d(CL(D, (k + 1)O))) if C = CL(D, kO)

≥ k⊥ − 1.

So ρ ∈ {k⊥, k⊥ − 1} = {n − dim(C) − 1, n − dim(C)}. □

Remark 3.2: For short elliptic curve codes, to determine the
minimum distance is already NP-hard [7] under RP-reduction.
To determine the covering radius is even harder, which not
only depends on the MDS property but also on certain
extendability of MDS or near-MDS codes. For instance, if C is
MDS, then k⊥ = d(C)−1. The covering radius of C can still
take any one of the two choices {n−dim(C)−1, n−dim(C)}.
For the covering radius of C to be n−dim(C), it is equivalent
to that there is a vector v ∈ Fn

q \ C such that C ⊕ Fqv
is MDS. Even for v ∈ CL(D, kO + P ) \ CL(D, kO), the
problem is already hard which is equivalent to certain subset
sum problem.

However, for long elliptic curve codes of length n ≥ q + 3,
the problem becomes easier, at least under the MDS conjec-
ture. In any case, long AG codes are preferred in applications.

Recall that an [n, k, d] linear code is called n-optimal if
there does not exist [n′, k, d] linear code with n′ < n.

Theorem 3.3: Let Fq be a finite field with q elements. Let E
be an elliptic curve over Fq which has at least q + 4 rational
points. Let O ∈ E(Fq) be a rational point on E and D ⊂
E(Fq)\{O} be a set of rational points with n = |D| ≥ q +3.
For 2 ≤ k ≤ n − 2, let C = CΩ(D, kO) or C = CL(D, kO).
The minimum distance of C is given by d(C) = n−dim(C).
If we further assume that the MDS conjecture holds for all
[n− 1,dim(C)]-codes over Fq, then the covering radius of C
is given by ρ(C) = d(C) − 1 = n − dim(C) − 1.

Proof: The MDS conjecture is known to be true for the
elliptic code C, see [32]. Since n ≥ q + 3, this implies that
the code C is not MDS, and hence must be near-MDS with
parameters [n, dim(C), d(C) = n − dim(C)]. In particular,
the minimum distance is d(C) = n − dim(C). Now n − 1 ≥
q+2 and q is odd. By the MDS conjecture for [n−1,dim(C)]-
codes, we deduce that there is no MDS code with parameters
[n − 1,dim(C), d(C) = n − dim(C)]. So the code C is n-
optimal. By [17, Corollary 8.1], we have the following bound
on the covering radius

ρ(C) ≤ d(C) − ⌈ d(C)

qdim(C)
⌉.

Since d(C) = n − dim(C) > 0, it follows that

ρ(C) ≤ d(C) − 1.

On the other hand, by Lemma 3.1, we have

ρ(C) ∈ {d(C) − 1, d(C)}.
We conclude that ρ(C) = d(C) − 1. □

Now, any non-trivial MDS code C of dimension k ≥ 3 over
the finite field Fq has length n ≤ q+k−2 by [25, Chapter 11,
Theorem 11]. The MDS conjecture holds for prime fields [2],
and also for general q with k ≤ √

q [4], [29]. This means
that under one of the conditions (1)-(3) in Theorem 1.2, the
MDS conjecture holds for all [n, k]-codes and [n−1, k]-codes
over Fq. As a consequence, we obtain the conclusions (i) and
(ii) of Theorem 1.2 from Theorem 3.3.

B. Deep Holes of Elliptic Curve Codes and Their Syndromes

In this subsection, we first prove Theorem 1.2(iii)-(iv).
In order to study further geometry of deep holes, we will
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later focus on residue elliptic curve codes since they have an
explicit parity-check matrix of the form (1). The residue and
functional algebraic geometry codes can be represented by
each other (cf. [31, Proposition 2.2.10]). Thus, in principal,
it is sufficient to consider the residue elliptic curve codes.

Lemma 3.4: For any rational point P ∈ E(Fq)\D and any
f ∈ L(kO + P ) \ L(kO), we have

1. If P ̸= O, then P is a simple pole of f .
2. If P = O, then O is a pole of f of order k + 1.

Proof of Theorem 1.2(iii)-(iv). For any rational point
P ∈ E(Fq) \ D and any vector v ∈ CL(D, kO + P ) \ C,
we have

n − k − 1 = ρ(C) ≥ d(v, C)

≥ min(d(C), d(CL(D, kO + P ))) ≥ n − (k + 1).

So d(v, C) = n − k − 1. That is, the vector v is a deep hole.
This proves Theorem 1.2(iii).

Next, we prove Theorem 1.2(iv). For any two distinct
rational points P,Q ∈ E(Fq) \D, since functions in L(kO +
P + Q) have at most k + 2 < n zeros, the evaluation
map ev : L(kO + P + Q) → Fn

q is injective. The codes
CL(D, kO + P ) and CL(D, kO + Q) are two sub-codes of
the code CL(D, kO + P + Q). Now, if there exsit f ∈
L(kO + P ) \ L(kO) and g ∈ L(kO + Q) \ L(kO) such
that ev(f) = ev(g), then f − g regarded as a function in
L(kO + P + Q) satisfies

ev(f − g) = 0.

Since the evaluation map ev : L(kO + P + Q) → Fn
q is

injective, we have f − g = 0, i.e., f = g in L(kO + P + Q).
This is impossible according to Lemma 3.4 by comparing the
orders of poles P and Q. So the sets CL(D, kO +P )\C and
CL(D, kO+Q)\C are disjoint for any distinct rational points
P,Q ∈ E(Fq) \ D.

For any rational point P ∈ E(Fq) \ D, we have

|CL(D, kO + P ) \ C| = qk+1 − qk = (q − 1)qk.

According to the above disjointness, there are totally

|E(Fq) \ D|(q − 1)qk = (|E(Fq)| − n)(q − 1)qk

deep holes provided by the theorem. □

Remark 3.5: For the case k = n− 2, let P,Q ∈ E(Fq) \D
be two distinct rational points. Then the spaces CL(D, kO +
P ) = CL(D, kO+Q) if and only if the divisor D−kO−P−Q
is principal.

In the rest of this subsection, we focus on the residue elliptic
codes. We will compute the syndromes of deep holes. On the
one hand, it will help us to separate the deep holes and then
to count them. On the other hand, this computation will help
us to connect the deep hole problem and the corresponding
finite geometry problem which will be discussed later for the
completeness of the found deep holes.

Because we only consider elliptic curves over finite fields of
odd characteristic, we may assume the elliptic curve is given

by the non-singular Weierstrass equation y2 = x3+ϵx2+λx+
µ (ϵ, λ, µ ∈ Fq) together with the infinity point O. Let

D = {Pi = (αi, βi) | i = 1, 2, · · · , n} ⊂ E(Fq) \ {O}}

be a set of rational points on E of size n = |D|. Let C =
CΩ(D, kO) be the residue elliptic curve code. Then the dual
code of C is C⊥ = CL(D, kO).

The following lemma plays an important role in the explicit
computation procedure. The lemma should be well-known in
the literature. But we have not found any reference for it. To be
self-contained, we give a proof here.

Lemma 3.6: Notations as above. We have

1) For any integer k ≥ 1, the Riemann-Roch space L(kO)
has a basis

{xiyj | i ∈ Z≥0, j ∈ {0, 1}, 2i + 3j ≤ k}.

2) For any integer k ≥ 2 and for any P = (α, β) ∈ E(Fq)\
{O}, the Riemann-Roch space L(kO − P ) has a basis

{x − α,(x − α)x, · · · , (x − α)x⌊ k
2
⌋−1,

y − β, x(y − β), · · · , x⌊ k−3

2
⌋(y − β)}.

Proof: 1. Since we have the valuations vO(x) = −2 and
vO(y) = −3, we have vO(xiyj) = −2i − 3j. So for any
non-negative integers i, j satisfying 2i + 3j ≤ k, the divisor
div(xiyj) + kO is effective, i.e.,

div(xiyj) + kO ≥ 0.

That is, xiyj ∈ L(kO). By restricting to j ∈ {0, 1}, it is easy
to see that functions {xiyj | i ∈ Z≥0, j ∈ {0, 1}, 2i+3j ≤ k}
are linearly independent over Fq. By direct computing, there
are

(

⌊k

2
⌋ + 1

)

+

(

⌊k − 3

2
⌋ + 1

)

= k

elements in the set {xiyj | i ∈ Z≥0, j ∈ {0, 1}, 2i+3j ≤ k}.
On the other hand, by the Riemann-Roch theorem, the dimen-
sion of the Riemann-Roch space L(kO) is k. So functions in
{xiyj | i ∈ Z≥0, j ∈ {0, 1}, 2i + 3j ≤ k} form a basis for
the Riemann-Roch space L(kO).

2. First, functions in {x − α, (x − α)x, · · · , (x −
α)x⌊ k

2
⌋−1, y − β, x(y − β), · · · , x⌊ k−3

2
⌋(y − β)} are Fq-linear

combinations of functions in {xiyj | i ∈ Z≥0, j ∈ {0, 1}, 2i+
3j ≤ k}. It is easy to write down the transform matrix
which implies that functions in {x − α, (x − α)x, · · · , (x −
α)x⌊ k

2
⌋−1, y−β, x(y−β), · · · , x⌊ k−3

2
⌋(y−β)} are Fq-linearly

independent. Secondly, functions in {x−α, (x−α)x, · · · , (x−
α)x⌊ k

2
⌋−1, y−β, x(y−β), · · · , x⌊ k−3

2
⌋(y−β)} have a common

zero P . So

{x − α,(x − α)x, · · · , (x − α)x⌊ k
2
⌋−1,

y − β, x(y − β), · · · , x⌊ k−3

2
⌋(y − β)} ⊂ L(kO − P ).

Finally, by the Riemann-Roch theorem, the dimension of
the Riemann-Roch space L(kO − P ) is k − 1. So func-
tions in {x − α, (x − α)x, · · · , (x − α)x⌊ k

2
⌋−1, y − β, x(y −

β), · · · , x⌊ k−3

2
⌋(y − β)} form a basis for the Riemann-Roch

space L(kO − P ). □
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By the above lemma, the Riemann-Roch space L(kO) has
a basis

{xiyj | i ∈ Z≥0, j ∈ {0, 1}, 2i + 3j ≤ k}.

So we can choose a parity-check matrix of C as follows:

H(k) =































1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

α
⌊ k

2
⌋

1 α
⌊ k

2
⌋

2 · · · α
⌊ k

2
⌋

n

β1 β2 · · · βn

α1β1 α2β2 · · · αnβn

...
...

. . .
...

α
⌊ k−3

2
⌋

1 β1 α
⌊ k−3

2
⌋

2 β2 · · · α
⌊ k−3

2
⌋

n βn































. (1)

Theorem 3.7: Notations as above. Suppose the [n, n − k]-
code C = CΩ(D, kO) has covering radius ρ(C) = n −
dim(C) − 1 = k − 1. Let P = (α, β) ∈ E(Fq) \ D be any
rational point on the elliptic curve E. Then we have

1) Any vector v ∈ CΩ(D, kO − P ) \ C is a deep hole
of C.

2) If P = O, then the syndrome of v is

H(k)vT =











































(0, · · · , 0,

n
∑

i=1

α
k
2

i vi, 0, · · · , 0)T ,

if k is even;

(0, · · · , 0,
n

∑

i=1

α
k−3

2

i βivi)
T ,

if k is odd.

3) If P ̸= O, then the syndrome of v is

H(k)vT = b(1, α, · · · , α⌊ k
2
⌋, β, βα, · · · , βα⌊ k−3

2
⌋)T ,

where b =
∑n

i=1 vi ̸= 0.

Proof: Since d(C) ≥ n − dim(C) = n − (n − k) = k,
the first statement follows from

k − 1 = ρ(C) ≥ d(v, C)

≥ min(d(C), d(CΩ(D, kO − P ))) ≥ k − 1.

Next, we compute the syndrome H(k)vT by separating two
cases: P = O and P ∈ E(Fq) \ (D ∪ {O}).

For the case P = O, any vector v ∈ CΩ(D, (k − 1)O) \
CΩ(D, kO)) can be annihilated by vectors in CL(D, (k−1)O)
but not by vectors in CL(D, kO)\CL(D, (k−1)O). So H(k−
1)vT = 0. Hence, the syndrome equals

H(k)vT =























(0, · · · , 0,

n
∑

i=1

α
k
2

i vi, 0, · · · , 0)T , if k is even;

(0, · · · , 0,

n
∑

i=1

α
k−3

2

i βivi)
T , if k is odd.

For the case P = (α, β) ∈ E(Fq) \ (D ∪ {O}), similarly,
any vector v ∈ CΩ(D, kO − P ) \ CΩ(D, kO) is annihi-
lated by vectors in CL(D, kO − P ) but not by vectors in

CL(D, kO) \CL(D, kO − P ). By Lemma 3.6, the Riemann-
Roch space L(kO − P ) has a basis

{x − α,(x − α)x, · · · , (x − α)x⌊ k
2
⌋−1,

y − β, x(y − β), · · · , x⌊ k−3

2
⌋(y − β)}.

So we have


































α1 − α · · · αn − α
(α1 − α)α1 · · · (αn − α)αn

...
. . .

...

(α1 − α)α
⌊ k

2
⌋−1

1
· · · (αn − α)α

⌊ k
2
⌋−1

n

β1 − β · · · βn − β
α1(β1 − β) · · · αn(βn − β)
α2

1(β1 − β) · · · α2

n(βn − β)
...

. . .
...

α
⌊ k−3

2
⌋

1
(β1 − β) · · · α

⌊ k−3

2
⌋

n (βn − β)



































v
T = 0.

Let b =
∑n

i=1 vi. Since the vector v can not be annihilated
by vectors in CL(D, kO) \ CL(D, kO − P ), we have b ̸= 0.
So we have






































1 · · · 1
α1 − α · · · αn − α

(α1 − α)α1 · · · (αn − α)αn

...
. . .

...

(α1 − α)α
⌊ k

2
⌋−1

1
· · · (αn − α)α

⌊ k
2
⌋−1

n

β1 − β · · · βn − β
α1(β1 − β) · · · αn(βn − β)
α2

1(β1 − β) · · · α2

n(βn − β)
...

. . .
...

α
⌊ k−3

2
⌋

1
(β1 − β) · · · α

⌊ k−3

2
⌋

n (βn − β)







































v
T =









b
0
...
0









.

By adding the second row by α-times of the first row, then
adding the third row by α-times of the new second row, and
so on, we obtain


































1 · · · 1
α1 · · · αn

...
. . .

...

α
⌊ k

2
⌋

1
· · · α

⌊ k
2
⌋

n

β1 − β · · · βn − β
α1(β1 − β) · · · αn(βn − β)
α2

1(β1 − β) · · · α2

n(βn − β)
...

. . .
...

α
⌊ k−3

2
⌋

1
(β1 − β) · · · α

⌊ k−3

2
⌋

n (βn − β)



































v
T =

























b
bα
...

bα⌊ k
2
⌋

0
...
0

























.

Now, by adding β times of the first ⌊k−3
2 ⌋ + 1 rows to the

lower part in the above equation, we have






























1 · · · 1
α1 · · · αn

...
. . .

...

α
⌊ k

2
⌋

1 · · · α
⌊ k

2
⌋

n

β1 · · · βn

α1β1 · · · αnβn

...
. . .

...

α
⌊ k−3

2
⌋

1 β1 · · · α
⌊ k−3

2
⌋

n βn































vT =





























b
bα
...

bα⌊ k
2
⌋

bβ
bβα
...

bβα⌊ k−3

2
⌋





























.
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That is,

H(k)vT = b(1, α, · · · , α⌊ k
2
⌋, β, βα, · · · , βα⌊ k−3

2
⌋)T .

□

In the above theorem, one checks that

|CΩ(D, kO − P ) \ C| = qn−k+1 − qn−k = (q − 1)qn−k.

If k ≥ 3, the syndrome formula implies that the union
⋃

P∈E(Fq)\D

CΩ(D, kO − P ) \ C

is a disjoint union. This disjoint union gives (|E(Fq)| − n)
(q − 1)qn−k deep holes of C. This proves the analogue of
Theorem 1.2 for the residue elliptic code CΩ(D, kO).

Remark 3.8: It is natural to ask if the deep holes given
in the above theorem form all the deep holes. The answer is
expected to be yes for long elliptic curve codes, but it is going
to be difficult to prove. In next section, we use finite geometry
to discuss the completeness of deep holes in the above theorem
and use the automorphism technique to obtain more ones if
there is any new deep hole.

IV. ON THE COMPLETENESS OF DEEP HOLES

A. Automorphisms of Elliptic Curves and Deep Holes of

Elliptic Curve Codes

In this subsection, we use a Hamming distance-preserving
subgroup of automorphism group of the linear code C to
construct more deep holes if there is any new deep hole. This
idea was used in [35].

Let Aut(E/Fq) be the Fq-automorphism group of E as an
elliptic curve and let AutD,G(E/Fq) be its subgroup fixing
D and G, respectively. That is,

AutD,G(E/Fq)={σ ∈ Aut(E/Fq) |σ(D) = D, σ(G)=G}.
For any linear code C, denote by PAut(C) the permutation
automorphism group of C whose elements are not only
permutations of coordinates but also automorphisms of C.

Lemma 4.1: Let C = CΩ(D,G) or C = CL(D,G) be the
algebraic geometry code constructed from the elliptic curve E.
There is a homomorphism ρ : AutD,G(E/Fq) → PAut(C).

Proof: The statement holds for general algebraic geom-
etry codes [31, Proposition VII.3.3]. In order to describe the
detail of the homomorphism which we need to use to obtain
new deep holes, we give the construction of the homomor-
phism, i.e., the proof of the lemma.

We only prove the statement for C = CL(D,G). The
proof for the case C = CΩ(D,G) is the same. Let
AutD,G(Fq(E)/Fq) be the Fq-automorphism group of the
elliptic function field Fq(E) whose elements fix D and G.
There is a homomorphism

ρ1 : AutD,G(E/Fq) → AutD,G(Fq(E)/Fq)

defined by as follows: for any T ∈ AutD,G(E/Fq), and f ∈
Fq(E), ρ1(T )(f) = T ∗(f) is the pull-back of f which is
defined by T ∗(f)(P ) = f(T−1(P )) for any P ∈ E(Fq).

Next, we show that for any T ∈ AutD,G(E/Fq), it holds
ρ1(T ) ∈ Aut(L(G)). For any f ∈ L(G), we have

div(f) + G ≥ 0. So T−1(div(f)) + T−1(G) ≥ 0. Since
T−1(G) = G and T−1(div(f)) = div(T ∗(f)), we have
div(T ∗(f)) + G ≥ 0. That is, T ∗(f) ∈ L(G).

Since the map ev is an isomorphism from L(G) to C,
we define ρ = ev ◦ ρ1 ◦ ev−1 : C → C. It is obvious that
ρ is an automorphism of C. To finish the proof, we need to
show that for any T ∈ AutD,G(E/Fq), ρ(T ) is a permutation
of coordinates. Indeed, for any f ∈ L(G), we have

ρ(T )(f(P1), f(P2), · · · , f(Pn))

=ev ◦ ρ1(T ) ◦ ev−1(f(P1), f(P2), · · · , f(Pn))

=ev(ρ1(T )(f))

=ev(T ∗(f))

=(T ∗(f)(P1), T
∗(f)(P2), · · · , T ∗(f)(Pn))

=(f(T−1(P1)), f(T−1(P2)), · · · , f(T−1(Pn))).

□

Note that for any T ∈ AutD,G(E/Fq), as a permutation of
coordinates, the map ρ(T ) can be extended to the whole space
Fn

q which is still denoted by ρ(T ).
Proposition 4.2: Let C = CΩ(D,G) or C = CL(D,G)

be the algebraic geometry code constructed from the elliptic
curve E. If the word v is a deep hole of C, then so is the
word ρ(T )(v) for any T ∈ AutD,G(E/Fq).

Proof: We have seen that the map ρ(T ) : Fn
q → Fn

q

preserves the Hamming distance and is an automorphism of
C if restricted to the linear subspace C. So

d(ρ(T )(v), C) = d(v, ρ(T )−1C) = d(v, C).

Hence, the word ρ(T )(v) is a deep hole of C. □

Remark 4.3: Since T (P ) ∈ E(Fq) \ D for any T ∈
AutD,G(E/Fq) and P ∈ E(Fq) \D, the deep holes found in
Theorem 3.7 are invariant under the action in Proposition 4.2.

If any new deep hole except those in Theorem 3.7 was
found, then its orbit under the action of ρ(AutD,G(E/Fq))
would provide new ones. So it is interesting to find new deep
hole not of the form in Theorem 3.7. We will see this is already
very hard for small n − k in the next subsection.

B. Deep Holes of Elliptic Curve Codes and Finite Geometry

In this subsection, we discuss the geometry of deep holes
of elliptic curve codes.

Definition 4.4: An n-track in PG(k−1, Fq), the projective
k − 1-dimensional space over the finite field Fq, is a set T of
n points which satisfies the following two conditions:

(i) Any k−1 points in T are linearly independent as vectors
in Fk

q ;
(ii) There exists a hyperplane passing through some k points

in T .

Definition 4.5: An (n; k)-set A in PG(k − 1, Fq) is an n-
track with an extra condition: any k+1 points of A can linearly
generate PG(k − 1, Fq).

The following proposition give the structure of long tracks.
Proposition 4.6: [11, Theorem 3.4] If n > q +k, then any

n-track in PG(k − 1, Fq) is an (n; k)-set.
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Definition 4.7: An (n; k)-set A in PG(k − 1, Fq) is called
complete if there is no (n + 1; k)-set in PG(k − 1, Fq)
containing A as a subset.

Definition 4.8: An (n; k)-set A in PG(k − 1, Fq) is called
extendable if there is some n + 1-track in PG(k − 1, Fq)
containing A as a subset. Otherwise, we call it non-extendable.

Note that when n > q+k, all n-tracks in PG(k−1, Fq) are
(n; k)-set. So in this case, ªcompleteº and ªnon-extendableº
are the same thing.

An important class of long (n; k)-sets is constructed from
elliptic curves, i.e., columns of H(k). We can rearrange the
rows of H(k) such that 2i + 3j of the corresponding row
defined by xiyj is in the increasing order. Define the map

ϕk :E(Fq) \ {O} → PG(k − 1, Fq)

(x, y) 7→























(1, x, y, x2, xy, x3, · · · , x
k
2
−2y, x

k
2 )T

if k is even;

(1, x, y, x2, xy, x3, · · · , x
k−1

2 , x
k−3

2 y)T

if k is odd,

and ϕk(O) = (0, 0, · · · , 0, 1)T ∈ PG(k−1, Fq). If n = |D| ≥
q+1, then the code CΩ(D∪{P}, kO) has minimum distance k
for any rational point P ∈ E(Fq)\D by MDS conjecture (for
a proof of MDS conjecture for elliptic curve codes, we refer
to [32]). Note that the matrix [ϕk(P1), · · · , ϕk(Pn), ϕk(P )] is
a parity-check matrix of the code CΩ(D ∪ {P}, kO), so the
vectors ϕk(P1), ϕk(P2), · · · , ϕk(Pn) and ϕk(P ) form an
(n + 1; k)-set for any rational point P ∈ E(Fq) \ D.

Proposition 4.9: Suppose the residue elliptic curve code
C = CΩ(D, kO) has covering radius ρ = k − 1. Let
H = (h1, h2, · · · , hn) ∈ Fk×n

q be a parity-check matrix of
C. The vector v is a deep hole of C if and only if vectors
h1, h2, · · · , hn and HvT form an n+1-track in PG(k−1, Fq).

Proof: First, since the code C = CΩ(D, kO) has
minimum distance ≥ k, any k−1 columns of the parity-check
matrix H are linearly independent.

Secondly, since C has covering radius ρ = k − 1, we have
that the vector v is a deep hole of C if and only the syndrome
HvT can not be written as any linear combination of any
≤ k − 2 columns of H .

So if the vector v is a deep hole of C, then

(i) any k − 1 vectors from {h1, h2, · · · , hn, HvT } are lin-
early independent;

(ii) there exists a hyperplane passing through HvT and some
k − 1 vectors from {h1, h2, · · · , hn}, since d(v, C) =
k − 1.

Hence {h1, h2, · · · , hn, HvT } forms an n + 1-track in
PG(k − 1, Fq).

Conversely, if {h1, h2, · · · , hn, HvT } is an n + 1-
track in PG(k − 1, Fq), then any k − 1 vectors from
{h1, h2, · · · , hn, HvT } are linearly independent. So the syn-
drome HvT can not be written as any linear combination of
any ≤ k−2 columns of H . Hence the vector v is a deep hole
of C. □

The above proposition characterizes the geometry of
deep holes of the residue elliptic curve code C =
CΩ(D, kO), equivalently the extendability of the (n; k)-set

{ϕk(P1), ϕk(P2), · · · , ϕk(Pn)}. We have seen that for large
n ≥ q+1 and for any rational point P ∈ E(Fq)\D the vectors
ϕk(P1), ϕk(P2), · · · , ϕk(Pn) and ϕk(P ) form an (n + 1; k)-
set. As a consequence, we can re-obtain the deep holes of
C = CΩ(D, kO) in Theorem 3.7.

Here raises the interesting problem: Is the (|E(Fq)|; k)-set
ε = {ϕk(P ) | P ∈ E(Fq)} extendable? If not, does there exist
an integer N0 such that any track intersecting with ε at N0 or
more points must be a part of ε?

Remark 4.10: The authors [1], [12] studied the extendibility
of the (|E(Fq)|; k)-set ε = {ϕk(P ) | P ∈ E(Fq)}. The
problem for small k is already very difficult, e.g. see [12]
for k = 5. Let q ≥ 121 be an odd prime power. Let E be an
elliptic curve over the finite field Fq with non-zero j-invariant.
Then for k = 3, 4, 6 the (|E(Fq)|; k)-set (ϕk(P ))P∈E(Fq) is
non-extendable. It is conjectured in [1] that for k = 9 the
(|E(Fq)|; 9)-set (ϕ9(P ))P∈E(Fq) is complete.

Corollary 4.11: Suppose the (|E(Fq)|; k)-set ε = {ϕk(P ) |
P ∈ E(Fq)} is non-extendable and N0 is the smallest integer
such that any track intersecting with ε at N0 or more points
must be a part of ε. Let D ⊂ E(Fq)\{O} with cardinality n =
|D| ≥ N0. If the residue elliptic curve code C = CΩ(D, kO)
is near-MDS and has covering radius ρ = k − 1, then the
following words

⋃

P∈E(Fq)\D

CΩ(D, kO − P ) \ C

form all the deep holes of C.
Proof: First, for any point P ∈ E(Fq)\D and any vector

v ∈ CΩ(D, kO − P ) \ C, we have

k−1=ρ ≥ d(v, C) ≥ min(d(C), d(CΩ(D, kO −P )))≥k−1.

So d(v, C) = k − 1. That is, the word v is a deep hole of C.
Next, we show the completeness. The code C has a parity-

check matrix H = [ϕk(P )]P∈D. Let v be a deep hole of C.
By Proposition 4.9, ϕk(P ), P ∈ D and HvT form an n + 1-
track in PG(k − 1, Fq). Since the n + 1-track {ϕk(P ) |P ∈
D} ∪ {HvT } intersects with ε at n ≥ N0 points, by the
assumption of the corollary, the syndrome HvT has to be
of the form ϕk(Q) for some Q ∈ E(Fq) \ D. From the
proof of Theorem 3.7, ϕk(Q) is the syndrome of some word
w ∈ CΩ(D, kO − Q) \ C. That is,

HvT = ϕk(Q) = HwT

for some w ∈ CΩ(D, kO−Q)\C. So we have v ≡ w mod C.
That is, v ∈ w + C for some w ∈ CΩ(D, kO − Q) \ C. The
completeness is proved. □

If such an N0 ≤ |E(Fq)| − 1 in the above corollary exists,
then Conjecture 1.4 holds for C = CΩ(D, kO) where k ∈
{n − 3, n − 4, n − 6}. As an extension of [30, Theorem 1]
from the genus g = 0 to the genus g = 1, it is interesting to
study the non-extendability of {ϕk(P ) | P ∈ E(Fq)} and the
existence of N0 in Corollary 4.11.

V. CONCLUSION

In this paper, we studied deep holes of elliptic curve codes.
If the covering radius ρ is equal to k−1, which typically holds
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for long residue elliptic [n, n− k]-codes, then classes of deep
holes and their syndromes are determined. The completeness
of the deep holes found was discussed in connection with
extendability of (n; k)-sets in finite geometry. If the deep holes
found are not complete, then permutation automorphisms can
be applied to obtain more deep holes.
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