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ABSTRACT
The assessment of regression models with discrete outcomes is challenging and has many fundamental
issues. With discrete outcomes, standard regression model assessment tools such as Pearson and deviance
residuals do not follow the conventional reference distribution (normal) under the true model, calling into
question the legitimacy of model assessment based on these tools. To fill this gap, we construct a new type
of residuals for regression models with general discrete outcomes, including ordinal and count outcomes.
The proposed residuals are based on two layers of probability integral transformation. When at least one
continuous covariate is available, the proposed residuals closely follow a uniform distribution (or a normal
distribution after transformation) under the correctly specifiedmodel. One can construct visualizations such
as QQ plots to check the overall fit of a model straightforwardly, and the shape of QQ plots can further help
identify possible causes of misspecification such as overdispersion. We provide theoretical justification for
the proposed residuals by establishing their asymptotic properties. Moreover, in order to assess the mean
structure and identify potential covariates, we develop an ordered curve as a supplementary tool, which is
based on the comparison between the partial sumof outcomes and of fittedmeans. Through simulation, we
demonstrate empirically that the proposed tools outperform commonly used residuals for various model
assessment tasks. We also illustrate the workflow of model assessment using the proposed tools in data
analysis. Supplementary materials for this article are available online.
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1. Introduction

Regression models are used frequently in many domains of
applications to study relationships between covariates and a
discrete outcome of interest. For instance, the effects of treat-
ment on mortality (binary, Goldman et al. 2001), the associa-
tions between patients’ age and stage of disease (ordinal, Li and
Shepherd 2012), and the relationship between car types and the
number of auto insurance claims (count, Shi and Valdez 2014).
When fitting a parametric regression model, model assump-
tions including the distribution family and potential covariates
are typically made a priori based on researchers’ knowledge.
However, researchers’ prior information may not adequately
describe the patterns in the data. Resulting model deficiency
can lead to biased parameter estimates, misleading conclusions,
lack of generalizability of results, and unreliable predictions,
amongmany other detrimental consequences. Judging amodel’s
adequacy to describe the data is thus a routine and critical task
in statistics.

Residuals are regularly employed to assess the agreement
between data and an assumed model at hand (Cook and Weis-
berg 1982). Let Yi, i = 1, . . . , n, be the outcome of interest and
Xi be the set of covariates. Under a parametric model, which
synthesizes information including the distribution family and
regressors, we denote r(Yi|Xi) as the generalized model error
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formulated inCox and Snell (1968). In a linear regressionmodel,
the iid errors are given by r(Yi|Xi) = Yi − X′

iβ , i = 1, . . . , n,
where β represents the coefficients. Cox and Snell (1968) gener-
alized the concept of model errors beyond normality by seeking
iid unobserved variables. For example, the generalized error
for regression models with a continuous outcome, such as a
gamma variable, can be defined as the uniformly distributed
probability integral transform r(Yi|Xi) = F(Yi|Xi), wherein F
is the conditional distribution of Yi given Xi. Generally, when
the model is correctly specified, there is a null distribution Fr
such that

Pr(r(Yi|Xi) ≤ s) = Fr(s). (1)

With the corresponding parameter estimates plugged in,
r̂(Yi|Xi) is the residual for the ith observation. The distribution
of the residuals resembles that of the errors. Thus, under a
correctly specified model, the residuals r̂(Yi|Xi), i = 1, . . . , n,
approximately follow Fr . This characteristic leads to a common
practice of comparing the empirical distribution of residuals
with Fr for the purpose of overall model evaluation. Informal
graphical tools such as histograms and quantile-quantile (QQ)
plots or formal goodness-of-fit tests such as Kolmogorov-
Smirnov and Cramér-von Mises tests can be employed to assess
the closeness between the empirical distribution of residuals and
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Fr . Ideally, the null distribution of errors Fr should be tractable,
allowing for convenient assessment.

The assessment of regression models with discrete outcomes
is known to be challenging due to the lack of tools possessing
the desirable attribute (1) with a straightforward Fr . The most
widely used residuals such as Pearson and deviance residuals
do not have a null distribution with a closed form (Cordeiro
and Simas 2009). Typically, they are compared to a normal
distribution. However, for discrete outcomes, they might not
follow a normal distribution even when the model is correctly
specified, providing a poor basis for judgment. For the same
reason, Cox-Snell residuals (Cox and Snell 1968), which serve
as a compelling diagnostic tool for continuous outcomes, lose
effectiveness for discrete outcomes.

The difficulties in the assessment of regression models
with discrete outcomes originate from the fact that discrete
outcomes cannot be expressed as transforms of iid variables
whose distributions are free of covariates (Cox and Snell
1968). As a simple example, let Yi be a binary outcome
and p̂(Xi) be the fitted probability of 1. Its Pearson residual
is

[
Yi − p̂(Xi)

]
/
[
p̂(Xi)(1 − p̂(Xi))

]1/2, whose distribution
depends on covariates and is not close to a normal distribution,
as conventionally assumed.Without a valid residual distribution
Fr in (1), assessment routines such as QQ plots become
questionable.

A handful of works are devoted to model assessment for
discrete outcomes. Anscombe (1953) and Pierce and Schafer
(1986) proposed the approach of creating approximately iid
variables. However, this approximation might be unsatisfactory,
especially for highly discrete data such as binary outcomes. Ben
and Yohai (2004) adhered to deviance residuals and proposed
to estimate the distributions of deviance residuals beforehand in
order to construct a QQ plot, while Davison and Gigli (1989)
proposed to use a normal plot. In order to retain the favorable
properties of residuals for continuous outcomes, randomized
quantile residuals and their variations (Dunn and Smyth 1996;
Liu and Zhang 2018) are based on the idea of filling the gaps in
discrete outcomes using a simulated continuous random vari-
able. An artificial layer of noise is introduced to the data by the
nature of this expedient. Shepherd, Li, and Liu (2016) developed
residuals applicable to different types of data, although they do
not follow the null pattern (uniformity) under discreteness. Yang
(2021) proposed an alternative to the empirical distribution of
Cox-Snell residuals for discrete data. It can keep the null pattern
when the model is correctly specified and deviates from the
pattern when the model is misspecified. Nonetheless, as the
output is a function rather than residuals, this tool does not
provide clues on what could possibly go wrong. There are also
tools built for specific types of discrete data, for instance binary
(Landwehr, Pregibon, and Shoemaker 1984; Miller, Hui, and
Tierney 1991) and more general ordinal data (Liu and Zhang
2018).

In this article, we construct a new type of residuals for discrete
outcomes in Section 2. We consider settings where at least one
continuous covariate is available and thus no grouped data
are available, rendering conventional tools such as deviance
residuals unhelpful. The proposed residuals are based on two
layers of probability integral transformation. The associated
errors are iid following a uniform distribution under the null,

which is tractable and achieves (1). One can also conduct a
normal quantile transformation, and then normality is the
null pattern. As a result, we can construct visualizations such
as QQ plots to check the overall model fit straightforwardly.
We further provide insights on the shape of QQ plots, which
can help identify potential causes of misspecification. We
provide theoretical justification for the proposed residuals
by establishing their asymptotic properties in Section 2.4.
Moreover, to assess themean structures specifically, in Section 3,
we propose an ordered curve which is based on the comparison
between the partial sum of outcomes and of fitted means.
The ordered curve can help detect inadequacies in the mean
structure. Combining the ordered curve with the proposed
residuals, one can find directions for model improvement
precisely.

To get a better understanding of situations in which the
proposed tools can be useful, Section 4 provides a detailed simu-
lation study. Additionally, we present real data applications and
illustrate the workflow of model assessment using the proposed
tools in Section 5. Concluding remarks are provided in Section 6.
Longer proofs of theorems are in the supplementary material.

2. Double Probability Integral Transform Residuals

Let Y be the discrete outcome of interest. Without loss of gen-
erality, we assume that Y can only take nonnegative integers.
Denote the underlying distribution function of Y conditional
on covariates X = x as F(y|x) = Pr(Y ≤ y|X = x). Under
a parametric model M, we denote FM as the corresponding
distribution of Y given X.

2.1. Cox-Snell Residuals for Continuous Outcomes

Plugging (X,Y) in F, the variable F(Y|X) is known as the
probability integral transform. If Y is a continuous outcome, for
any fixed value s ∈ (0, 1),

Pr (F(Y|X) ≤ s|X = x) = s.

Taking the expectation with respect to X yields Pr(F(Y|X) ≤
s) = s. That is, F(Y|X) is uniformly distributed for continuous
Y . We can see that the property (1) holds for the probability
integral transform of continuous outcomes.

Given an iid sample (Xi,Yi), i = 1, . . . , n, one can acquire
the fitted distribution F̂M using parameter estimates. Then a
sequence of Cox-Snell residuals, F̂M(Yi|Xi), i = 1, . . . , n, can
be calculated. If the model is correctly specified, the Cox-Snell
residuals should be approximately uniformly distributed, and
an otherwise large discrepancy with uniformity indicates mis-
specification. Figure 1 portrays the distribution of the Cox-Snell
residuals in simulated examples. In the left panel, the data are
generated with a gamma regression model, and the Cox-Snell
residuals are obtained under the correct model. As anticipated,
the Cox-Snell residuals appear to be uniformly distributed.

However, if Y is a discrete variable, the Cox-Snell residuals
may not be uniformly distributed even under the true model. In
the right panel of Figure 1, the data are generated from a Poisson
generalized linear model (GLM). It displays the QQ plot of the
Cox-Snell residuals when themodel is correctly specified, which
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Figure 1. QQ plots of Cox-Snell residuals under correctly specified models. Left panel: gamma regression. Right panel: Poisson regression. The dashed line is the diagonal
throughout the article.

nevertheless shows a substantial deviation from the diagonal
line.

2.2. Proposed Residuals

Our goal is to construct a new type of residuals for discrete
outcomeswhich satisfies the desirable property (1) with a conve-
nient null distribution Fr . We first study the probability integral
transform of discrete outcomes. Given X = x,

Pr (F(Y|X) ≤ s|X = x) = Pr
(
Y ≤ F(−1)(s|x)

∣∣∣X = x
)

= F
(
F(−1)(s|x)

∣∣∣ x) , (2)

where F(−1)(s|x) := sup{k ∈ N : F(k|x) ≤ s}. Note
that F(−1) differs from the commonly used definition of the
inverse cumulative distribution function. For completeness, we
let F(−1)(0|x) = −∞. Taking the expectation over X, it follows
that

G0(s) := Pr (F(Y|X) ≤ s) = EX
[
F

(
F(−1)(s|X)

∣∣∣X)]
. (3)

We can see that, first, when Y is discrete, the composition
F

(
F(−1)(s|x)∣∣ x) is not necessarily equal to s. Consequently,

G0 in (3) is not the identity function, and thus the probability
integral transform is not uniformly distributed, as illustrated
in the right panel of Figure 1. Second, if Y is continuous, (3)
simplifies to the identity function.

If X contains continuous components, F(Y|X) becomes a
continuous variable as a transform of X and Y ; see details
in the supplementary material. Although F(Y|X) itself is not
uniformly distributed for discrete outcomes, because F(Y|X)

is a continuous variable, another layer of probability integral
transformation, namely G0 (F(Y|X)), produces a uniform vari-
able under the true model. We call r(Y|X) = G0 (F(Y|X)) the
double probability integral transform (DPIT for brevity), whose
distribution Fr is uniform and straightforward toworkwith. The
DPIT serves as our generalized error in (1). A list of the DPIT
properties is provided in Appendix A.

With a sample (Xi,Yi), i = 1, . . . , n, now we construct
residuals based on the DPIT. With a model M, one could the-
oretically use G0

(
F̂M(Yi|Xi)

)
, i = 1, . . . , n. The distribution of

the probability integral transform for a discrete outcome,G0, yet
remains to be specified and estimated in practice.

Based on (3), an intuitive estimator for G0(s) is the empirical
mean 1

n
∑n

j=1 F
(
F(−1)(s|Xj)

∣∣Xj
)
. There are two issues to be

addressed here. First, this raw estimator depends on F, which is
unknown in practice.We use themodel-based version with esti-
mated parameters plugged in, F̂M . Second, when constructing
the residual for the ith observation, we should estimateG0 using
other independent observations to avoid bias; see elaboration
in Appendix A. Taken together, we develop an estimator of G0
suited to the ith observation

ĜMi(s) = 1
n − 1

n∑
j=1,j�=i

F̂M
(
F̂(−1)
M (s|Xj)

∣∣∣Xj
)
. (4)

While ĜMi is a function defined for s ∈ (0, 1), we only need its
value at one point, F̂M(Yi|Xi), to develop the residuals.

Combining the components above, we propose the dou-
ble probability integral transform residuals (DPIT residuals for
brevity)

r̂(Yi|Xi) = ĜMi
(
F̂M(Yi|Xi)

)
, i = 1, . . . , n. (5)

If the model is correctly specified, the DPIT residuals should
closely follow a uniform distribution (e.g., the right panel of
Figure 2), and otherwise model deficiency is implied. To facil-
itate visualization and comparison with other residuals, one can
also apply the normal quantile transformation�−1 to the DPIT
residuals, resulting in

�−1 [
r̂(Yi|Xi)

]
, i = 1, . . . , n.

Consequently, a standard normal distribution serves as the null
pattern. In Figure B1 of Appendix B, we demonstrate the behav-
ior of the residuals on both uniform and normal scales in a
simulated example, wherein we can see that the uniform resid-
uals accentuate the center values, while the normal residuals
emphasize the tails.

The construction of the proposed residuals involves two-
stage estimation.We need to first estimate themodel parameters
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Figure 2. QQ plots of residuals under the correctly specified model.

using all the data to obtain F̂M . Subsequently, using the parame-
ter estimates, we estimate G0 through ĜMi for each observation
i. For the ith observation, the corresponding residual can be
calculated as follows.

1. Calculate ai = F̂M(Yi|Xi).
2. For j = 1, . . . , n and j �= i, calculate bij = F̂(−1)

M
(
ai|Xj

)
, and

then determine cij = F̂M
(
bij|Xj

)
.

3. Compute the average of cij to yield r̂(Yi|Xi) =
1

n−1
∑n

j=1,j�=i cij. To acquire the residuals on the normal
scale, one can further apply �−1 [

r̂(Yi|Xi)
]
.

We construct the DPIT residuals by compressing the Cox-
Snell residuals using ĜMi, thereby ensuring the residuals’ uni-
form distribution for discrete outcomes under the null. Since
ĜMi converges toG0 which is amonotone function, the proposed
residuals nearly preserve the ordering of the Cox-Snell residuals.
As illustrated in Figure 2, ĜMi brings the Cox-Snell residuals dis-
played in the left panel to the diagonal in the right panel. Lastly,
if Y is continuous, (4) simplifies to the identity function, and
thus the proposed residuals coincide with Cox-Snell residuals.
Hence, Cox-Snell residuals for continuous data can be viewed as
a special case of the proposed residuals.

2.3. Handling Ordinal and Binary Outcomes

For ordinal outcomes including binary, the probability integral
transform F(Y|X) is situated at 1 if Y takes the largest possible
value. Suppose the possible values of Y are 0, 1, . . . , kmax, then
F(Y|X) has a point mass at 1 with probability

Pr (F(Y|X) = 1) = Pr (Y = kmax) = 1 − EXF(kmax − 1|X).

The distribution of the DPIT is

Pr (G0(F(Y|X)) ≤ s)

=

⎧⎪⎨
⎪⎩
1 s = 1,
EXF(kmax − 1|X) EXF(kmax − 1|X) < s < 1,
s s ≤ EXF(kmax − 1|X).

See derivations in the supplementary material. We can see from
the equation above that for EXF(kmax − 1|X) < s < 1,

Pr (G0(F(Y|X)) ≤ s) does not vary with s. Consequently, when
constructingQQplots, the quantiles ofG0(F(Y|X))with a prob-
ability s > EXF(kmax − 1|X) clump at 1. Hence, this area is not
helpful for model assessment. As demonstrated in the left panel
of Figure 3, in which the simulated outcomes are binary and
the model is correctly specified, a cluster of points appears at 1.
The points corresponding to the observations whose response
variable takes value at 0, in contrast, closely align with the
diagonal and provide a correct signal.

To make full use of the data, we consider an
altered DPIT, H0 (F(Y − kmax|Xi)), wherein H0(s) :=
Pr (F(Y − kmax|X) ≤ s) = EX

[
F

(
F(−1)(s|X) + kmax|X

)]
.

The corresponding altered residuals are

r̂S(Yi|Xi) = ĤMi
(
F̂M(Yi − kmax|Xi)

)
(6)

where

ĤMi(s) = 1
n − 1

n∑
j=1,j�=i

F̂M
(
F̂(−1)
M (s|Xj) + kmax|Xj

)
.

In the middle panel of Figure 3, we display the altered residuals,
which exploit the information of the data with outcomes equal
to 1. The observations whose responses are 0, on the other hand,
do not provide information in this case.

To integrate, we combine both types of residuals for ordinal
outcomes. One should use the original DPIT residuals for obser-
vations smaller than the largest possible value and employ the
altered residuals for observations taking value at the maximum.
By doing so, we obtain residuals whose null distribution is
uniform on (0, 1). In the right panel of Figure 3, the residual plot
utilizes all the data and is close to the diagonal with a correctly
specified model.

2.4. Large Sample Properties

In this section, we study the asymptotic distribution of the
proposed residuals. In particular, we look into the empirical
residual distribution function

1
n

n∑
i=1

1
[
r̂(Yi|Xi) ≤ s

] = 1
n

n∑
i=1

1
[
ĜMi

(
F̂M(Yi|Xi)

)
≤ s

]
.
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Figure 3. QQ plots of the proposed residuals for binary outcomes with a correctly specified model.

We focus on the null behavior of the proposed tool, namely
when the model is correctly specified F = FM . For clarity,
we index functions by their parameters β in this section. The
underlying parameters β0 are estimated using the maximum
likelihood estimator β̂ . The quantity of interest to study is then

1√
n

n∑
i=1

{
1
[
Ĝ

β̂i

(
F(Yi|Xi, β̂)

)
≤ s

]
− s

}
. (7)

where

Ĝ
β̂i(s) = 1

n − 1

n∑
j=1,j�=i

F
(
F(−1)(s|Xj, β̂)

∣∣∣Xj, β̂
)
.

Theorem 2.1. Under Assumptions A.1, A.2, and A.3,
when the model is correctly specified, for fixed s,
1√
n

∑n
i=1

{
1
[
Ĝ

β̂i

(
F

(
Yi|Xi, β̂

))
≤ s

]
− s

}
converges weakly

to a Gaussian distribution. Its mean is Egs(X,Y) and variance is
Egs(X,Y)2 − (

Egs(X,Y)
)2, where

gs(x, y) = fs(x, y) + [
I(β0)

]−1

∂
[
G̃β ,β0

(
G−1

β (s)
)]

∂β

∣∣∣∣∣∣
β=β0

l̇β0(x, y),

and
fs(x, y) = 1

(
G0(F(y|x,β0)) ≤ s

)
− F

(
F(−1)(G−1

0 (s)|x,β0)
∣∣∣ x,β0

)
.

Furthermore,
G̃β ,β0(s) := Pr (F(Y|X,β) ≤ s)

= EX
[
F

(
F(−1)(s|X,β)

∣∣∣X,β0

)]
; (8)

I(β) is the Fisher information matrix; lβ(x, y) is the log-
likelihood, and l̇β(x, y) = ∂ lβ(x, y)/∂β is the score function.

FromTheorem 2.1, we can see that the proposed residuals do
converge to being uniformly distributed asymptotically, at the
order of

√
n. Furthermore, the uncertainties associated with the

distribution of the proposed residuals originate from two dis-
tinct sources. The first part fs(x, y) arises from the estimation of
G0, and the second part involves the uncertainty in β̂. The details
and proof of the theorem are provided in the supplementary
material.

3. Ordered Curve

Reflecting on (2), the distribution of the probability integral
transform varies with the value of x for discrete outcomes.When
constructing the proposed residuals, despite an overall transfor-
mation G0, the dependence of the DPIT on covariates remains.
As will be demonstrated in the simulation study, the residuals
versus predictor plots are not informative. Therefore, the DPIT
residuals have limited capacity of detecting deficiency in the
mean structure. In this section, we propose a supplementary tool
for assessing mean structures.

Lorenz curves (Hand and Henley 1997), a concept originally
employed to compare risk classifiers in finance, were adapted by
Frees, Meyers, and Cummings (2011) to judge the adequacy of
insurance premiums. In their framework, Lorenz curves com-
pare the cumulative sum of premiums with the cumulative sum
of actual losses, as a threshold changes. Here we generalize this
idea to assess the mean structure of discrete outcomes.

In order to assess the mean structure, we propose to compare
the cumulative sum of the response variable Y and its hypothe-
sized value. Denote themean for the ith observation as λi, and λ̂i
is the fitted value. For instance, in a PoissonGLMwith a log link,
λi = exp

(
X′
iβ

)
. Note that for ordinal outcomes, it requires the

assignment of numbers to categories, and λi is the mean based
on the integer encoding of categories. We further let �, which
is a transform of X, be the random variable generating λi. We
introduce a variable denoted as Z to determine the cutoff. Here
Z can be� itself, a linear combination ofX, or a variable outside
X. We will discuss below the choice of Z. On the one hand, the
cumulative response function is defined as

L1(t) = E [Y1(Z ≤ t)]
E [Y]

,

with its empirical counterpart being

L̂1(t) =
∑n

i=1 [Yi1(Zi ≤ t)]∑n
i=1 Yi

.

The function is divided by the sum of the responses for normal-
ization. On the other hand, assuming the model is correct, if Z
is either contained in X or independent of X and Y ,

E [Y1(Z ≤ t)] = E [�1(Z ≤ t)] ;
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see Appendix A for details. In either case, we define

L2(t) = E [�1(Z ≤ t)]
E�

.

Its empirical version is

L̂2(t) =
∑n

i=1

[
λ̂i1(Zi ≤ t)

]
∑n

i=1 λ̂i
.

If the mean structure is correctly specified, namely � is indeed
the mean of Y , we expect that L1 and L2 are close to each other.
Therefore, in practice, we can examine the curve (L̂2(t), L̂1(t)),
as t varies. If the curve is distant from the diagonal, it suggests
discrepancies between L1 and L2 and thus incorrectness in the
mean structure. In addition, the position of the curve relative
to the diagonal reveals the relationship between the fitted and
underlying means. If the curve lies above the diagonal, it indi-
cates that the cumulative sum of the response is larger than that
of the fittedmean, and thus themean is underestimated, and vice
versa.

This idea of comparing the estimated mean to the mean of
the outcome is used to construct calibration plots for classifiers.
To do so, the fitted probabilities are typically binned (Faraway
2016). To avoid the ad-hoc nature of binning, we consider the
cumulative sum instead. Su andWei (1991) used the partial sums
of residuals over a partition of the covariate space. However,
their method required simulations to establish the null behavior
of the tool.

To pragmatically construct the ordered curve, one can order
the threshold variableZ(1),Z(2), . . . ,Z(n) and denote the original
index of Z(i) as Ti. That is, Z(i) = ZTi . The empirical version of
the curve L̂1(t) against L̂2(t) can then be characterized by the
following n points(

λ̂T1∑n
i=1 λ̂i

,
YT1∑n
i=1 Yi

)
,

(
λ̂T1 + λ̂T2∑n

i=1 λ̂i
,
YT1 + YT2∑n

i=1 Yi

)
, . . . ,

(∑k
i=1 λ̂Ti∑n
i=1 λ̂i

,
∑k

i=1 YTi∑n
i=1 Yi

)
, . . . , (1, 1) .

In GLMs, as a result of the normal equation,
∑n

i=1 λ̂i and∑n
i=1 Yi are typically very close. Hence, the denominators of L̂1

and L̂2 serve as normalization factors and do not impact the
shape of the curve much.

The role of the threshold variable Z is to determine the rule
for accumulating� and Y for the ordered curve. The candidates
for Z include first the fitted values, second a linear combination
of X, or third a potential variable to be included as a covariate.
In the third case, if the variable being considered is in fact
irrelevant, it is equivalent to randomly reordering the data and
calculating the partial sums.

To reveal a potential lack of fit, the optimal choice for Z
should lead to a significant separation between� andY . Assum-
ing no collinearity, an important predictor which is missing in
the model can induce such an effect, since it is highly corre-
lated with Y but not with �. Therefore, if a variable leads to
a large discrepancy between the ordered curve and the diag-
onal, including this variable in the mean function should be
considered.

4. Simulation

In this section, we discuss the operating characteristics of
the proposed tools via various examples. In Section 4.1, we
show that the proposed residuals exhibit null patterns when
the model is correctly specified. In Section 4.2, we explore
their behaviors when the model is misspecified. In Sec-
tion 4.3, the empirical performance of the ordered curve is
evaluated.

4.1. Closeness to Null Pattern under TrueModels

We first demonstrate that when the model is correctly specified,
the proposed residuals follow the null pattern. In Figure 4, the
data are generated using a negative binomial distribution with
mean μ = exp (β0 + X1β1 + X2β2), where X1 ∼ N(0, 1), and
X2 is binary with a probability of success as 0.7. The coefficients
are set as β0 = −2,β1 = 2, and β2 = 1. The underlying
size parameter is 2. We vary the sample size from 50 to 500.
For visual clarity and comparability with other residuals, we
present our residuals on the normal scale �−1 [

r̂(Yi|Xi)
]
in

this section, and thus a standard normal distribution is the null
pattern.

In the left column of Figure 4, when the model is correctly
specified, the QQ plots of the proposed residuals are in close
proximity to the diagonal (dashed line throughout this section),
indicating that they closely follow the null distribution. This
behavior persists even when the sample size is rather small in
the top row. This is an advantage of the proposed residuals over
the tool in Yang (2021), which uses kernel functions and requires
a large sample size. For comparison, we also display the normal
QQ plots of deviance and Pearson residuals. They deviate from
the null pattern and erroneously signal a deficiency in themodel,
leading to a Type I error.

We further compare the proposed residuals with the ran-
domized quantile residuals in Figure 5. The randomness asso-
ciated with randomized quantile residuals is particularly evi-
dent for small sample sizes. For the same dataset and model,
we see distinct patterns in the randomized quantile residuals
with different seed numbers, as shown in the middle and right
panels.

To assess the variability of the proposed residuals, we fur-
ther present a simulation study with 10,000 replicates in the
supplementary material. It shows that our residuals are close
to being normally distributed under small sample sizes. To
save space, the null patterns of the proposed residuals under
other distributions are displayed in the comparative plots of
Section 4.2.

4.2. Discrepancy with the Null When theModel Is
Misspecified

In this section, we demonstrate that the proposed residuals can
effectively detect model misspecification in various scenarios.
Sample sizes are 500 throughout this section.

4.2.1. Overdispersion and Zero-Inflation in Count Data
For the negative binomial data described in Section 4.1, now
we fit them with a Poisson GLM, and thus overdispersion is
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Figure 4. QQ plots of the proposed residuals (left column) compared with deviance (middle column) and Pearson residuals (right column) when the model is correctly
specified. The sample size is 50 in the top row and 500 in the second row.

Figure5. QQplots of theproposed residuals (left) and randomizedquantile residuals (middle and right panels,withdifferent seednumbers) for negativebinomial outcomes
with a correctly specified model.

present. The resulting QQ plots of the proposed residuals, along
with other residuals, are shown in the bottom row of Figure 6.
In the first column, we can see that the proposed residuals
show a transition from being close to the diagonal when the
model is correctly specified to displaying an obvious and readily
interpretable discrepancy when overdispersion is an issue. In
contrast, the deviance and Pearson residuals show a large dis-
crepancy with the null pattern in both scenarios, making them
not informative.

In Appendix B.1, we illustrate that the shape of the QQ plot
for the proposed residuals is determined by the relationship

between the estimated distribution function F̂M and the true
distribution function F. Due to the orthogonality between the
mean and dispersion components in GLMs, the mean structure
is close to being correctly fit evenwhen the dispersion parameter
is misspecified. In an overdispersed model, due to the underes-
timated variance, F̂M behaves more wildly than F. Therefore, if
one spots the S-shaped pattern in the QQ plot, as shown in the
lower left panel of Figure 6, it is probable that overdispersion is
an issue.

Besides negative binomial distributions, zero-inflatedmodels
are commonly used to handle overdispersion in count data. In
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Figure 6. QQ plots of the proposed residuals (left column) compared with deviance (middle column) and Pearson residuals (right column) for negative binomial data. The
model is correctly specified in the first row, while in the second row, the data are mistakenly fit with a Poisson GLM.

Figure 7, we simulate data using a zero-inflated Poisson model.
The probability of excess zeros is modeled with logit(p0) =
β00 + β10X1, and the Poisson component has a mean λ =
exp(β0 + β1X1 + β2X2), where X1 ∼ N(0, 1) and X2 is
a dummy variable with a probability of 1 equal to 0.7, and
(β00,β10,β0,β1,β2) = (−2, 2,−2, 2, 1). In the top row of
Figure 7, when the model is correctly specified, the pro-
posed residuals closely follow their null pattern. In contrast,
the deviance and Pearson residuals again deviate from nor-
mality. Here the saturated Poisson model is used to define
the deviance residuals for the zero-inflated Poisson model
(Lee, Wang, and Yau 2001). When the model is misspeci-
fied, as depicted in the bottom row of Figure 7, the pro-
posed residuals show a large discrepancy from the diagonal.
Moreover, a noticeable S-shaped pattern, similar to what was
observed in the bottom left panel of Figure 6, arises due to
overdispersion.

4.2.2. Ordinal Data
In this experiment, we consider ordinal regression models with
three levels 0, 1, and 2. Under an ordinal logistic regression
model with proportionality assumption, P(Y ≤ j) = F(αj),
where F is the distribution function of a logistic random variable
with mean β1X1. We let α0 = 1, α1 = 4, β1 = 3, and
X1 ∼ N(2, 1).

Here we compare the proposed method with the two types
of residuals introduced in Li and Shepherd (2012) and Liu and
Zhang (2018) which were designed to tackle ordinal regression

model diagnostics. In Liu & Zhang framework, it is assumed
that there is a latent variable Ai which follows a logistic dis-
tribution with mean Xi1β̂1. Given the fitted thresholds α̂0 and
α̂1, they simulate the residual r̂Liui from the distribution of
Ai|Yi = yi. Under the correct model, these residuals are
expected to follow a logistic distribution. The Li & Shepherd
residuals are defined as r̂Lii = F̂(Yi − 1|Xi) + F̂(Yi|Xi) − 1.
For continuous outcomes, these residuals are supposed to follow
a uniform distribution over [−1, 1] under the true model. We
can see in the top row of Figure 8 that both the proposed
method and the Liu & Zhang residuals result in plots that are
closely aligned with the diagonal when the model is correctly
specified.

We then generate data under the scenario where the assump-
tion of proportionality is not met, which is a common issue for
ordinal regression models. Specifically, P(Y ≤ 0) = F(α0)
as described above whereas P(Y ≤ 1) = F1(α1), where F1
is the distribution function of a logistic random variable with
mean β2X1 and we set β2 = 1. The data are incorrectly fit
with a proportional odds model, and the bottom row of Figure 8
includes the results. It is apparent that our proposed method
demonstrates sensitivity to the presence of non-proportionality
in this example.

To explore the shape of the QQ plot, in the supplementary
material, we compare the underlying and fitted probabilities
under non-proportionality. The fitted probabilities of zeros and
the fitted cumulative probabilities at kmax − 1 are consistently
larger than the corresponding underlying probabilities, resulting
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Figure 7. QQplots of the proposed residuals (left column) comparedwith the deviance (middle column) the Pearson residuals (right column) for zero-inflated Poisson data.
The model is correctly specified in the top row and misspecified as a Poisson GLM in the bottom row.

in a QQ plot with both tails above the diagonal, as shown in the
lower left panel of Figure 8.

4.2.3. Binary
We further include an example of binary data. The underly-
ing model is a logistic regression with the probability of 1 as
logit−1(β0 + β1X1 + β2X2 + β3X1X2), where (β0,β1,β2,β3) =
(−5, 2, 1, 3), X1 ∼ N(1, 1), and X2 is a dummy variable
with a probability of one equal to 0.7. For the misspeci-
fied model, the binary covariate and the interaction term are
omitted. It was discussed in Hosmer et al. (1997) that most
goodness-of-fit tests tend to have limited power in such set-
tings. Figure 9 shows the results. Due to the undesirable prop-
erties of deviance and Pearson residuals, here we display Liu
& Zhang and Li & Shepherd residuals instead. When the
model is correctly specified, the proposed residuals follow the
null pattern. When the interaction term is omitted, on the
other hand, the proposed tool can effectively detect the model
deficiency.

4.2.4. Outliers
The proposed residuals can help identify outliers. Figure 10
includes a Poisson example, with the same underlying mean
structure as the negative binomial outcomes discussed in Sec-
tion 4.1.Wemanually enlarged three outcomes by adding values
of 10, 15, and 20 to them, respectively. In the left panel of

Figure 10, we can see the three modified data points stand out,
signaling they are potential outliers.

We also emphasize that close examination of the data is
required for outlier identification. Aswill be demonstrated in the
next section, the distribution of the proposed residuals depends
on the values of covariates. Therefore, it is possible that a large
value of the residual is the consequence of high leverage. When
encountering suspected cases, it is important to carefully exam-
ine the data.

4.2.5. Limitation: Uninformative Residuals Versus Predictor
Plots

In linear regression models, another common utility of resid-
uals is to check the mean structure. Analysts routinely check
residuals versus predictor plots to decide whether the covariate
structure is sufficient or if another variable should be included
in the model. As discussed in Section 3, the distribution of
the proposed residuals depends on the value of covariates. In
the left column of Figure 11, we display the residuals versus
fitted values plots for the negative binomial (NB) and binary
examples of Sections 4.2.1 and 4.2.3, respectively, when the
model is correctly specified. The fitted values are on the scale of
the linear predictors. It is clear that the distribution of the resid-
uals changes with the fitted values, and we should not expect
the residuals to exhibit no discernible pattern. In addition, we
differentiate the residuals based on the corresponding outcomes.
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Figure 8. Graphical detection of non-proportionality in ordinal regressionmodels. The two rows correspond to scenarios in which the assumption of proportionality is met
and not met, respectively.

Figure 9. QQ plots of the proposed residuals (left column) compared with the Liu & Zhang residuals (middle column) and Li & Shepherd residuals (right column) for the
binary example. The model is correctly specified in the top row and a main effect and an interaction term are missing in the bottom row.
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Figure 10. Graphical detection of outliers.

Figure 11. Residual versus fitted value plots when the model is correctly specified.

We can see that the residuals show lines of points corresponding
to the observed responses, as noted in Faraway (2016). It was
shown in the literature that other residuals, including Pearson,
deviance and Li & Shepherd residuals, also face this challenge
for discrete data (Shepherd, Li, and Liu 2016; Liu and Zhang
2018; Liu et al. 2021), which we illustrate in the right column
of Figure 11. In order to assess the mean structure, we proposed

a tool in Section 3. We will demonstrate its utility in the next
section.

4.3. Ordered Curve

We first revisit the binary example in Figure 9. In each plot
of Figure 12, we display the ordered curves for both the cor-
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Figure 12. Ordered curves of binary regression with different threshold variables Z. The sample size is 500.

Figure 13. Ordered curves of Poisson regression with different threshold variables Z. The sample size is 500.

rectly specified (solid curve) and themisspecifiedmodel (dotted
curve). We consider three different choices for the threshold
variable Z, the fitted values (left panel), the missing covariate
(middle panel), and a randomly simulated irrelevant variable
(right panel). We can see that, first, regardless of the threshold
variable, when the mean structure is correctly specified, the
solid curves are close to the diagonal (dashed line). Second, for
the misspecified model, the degree of deviation between the
ordered curve and the diagonal depends on the choice of the
threshold variable. When we use the fitted values to sort the
data, the curve for the incorrect model shows a small deviation
from the diagonal. Strikingly, when the omitted variable X2 is
used as the threshold variable, it leads to a curve far from the
diagonal. On the other hand, if Z is a completely irrelevant
variable, we can hardly detect the incorrectness in the mean
structure.

We further explore a Poisson example. The mean function
is μ = exp (β0 + X1β1 + X2β2), where X1 and X2 ∼ N(0, 1)
independently. The coefficients are set to be β0 = 0,β1 = 2, and
β2 = 1. For the misspecified model, X2 is omitted. Consistent
with our observations of Figure 12, using the omitted variable
as the threshold variable elucidates the distinction between the
fitted means and the means of the actual outcomes, as demon-
strated in the middle panel of Figure 13. When we use the
fitted values and an irrelevant variable as the threshold variable
in the left and right panels of Figure 13, we observe a slight

deviation from the diagonal under themisspecifiedmodel in this
example.

5. Data Analysis

In this section, we present real data examples to demonstrate the
workflow of model assessment using our tools.

5.1. Count Data

AT&T ran an experiment varying five factors relevant to a
wave-soldering procedure formounting components on printed
circuit boards (Comizzoli, Landwehr, and Sinclair 1990). The
response variable is the count of howmany solder skips appeared
to a visual inspection. Table 1 includes the description and sum-
mary statistics of the important covariates. The sample size is
900. This example demonstrates the application of the proposed
residuals even in cases where continuous covariates are not
present, as long as there are factors with many levels.

We first fit regression models with main effects. In the left
panel of Figure 14, we use a Poisson GLM, and our tool displays
a pronounced S-shaped pattern, hinting at potential overdisper-
sion. This is consistent with the conclusion of Faraway (2016).
In the middle panel, we use a negative binomial distribution to
correct for overdispersion. According to our residuals, the neg-
ative binomial distribution leads to a substantial improvement
in the model fit, yet some insufficiency is indicated by the tails.
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In the right panel, we present the ordered curve, which implies
insufficiency in the mean structure.

We then include interaction terms selected using a stepwise
procedure. Figure 15 shows the diagnostic plots of the resulting
model. The inclusion of interaction terms yields a considerable
improvement in model fit.

5.2. Binary Outcomes

The dataset was collected in one of the earliest studies addressing
the factors impacting the chance of developing heart disease

Table 1. Covariates of AT&T data.

Variable Description Levels (Frequency)

Opening the amount of clearance
around the mounting pad

L (300), M (300), S (300)

Solder the amount of solder Thick (450), Thin (450)
Mask type and thickness of the

material used for the solder
mask

A1.5 (180), A3 (270), A6 (90), B3
(180), B6 (180)

PadType the geometry and size of the
mounting pad

D4 (90), D6 (90), D7 (90), L4
(90), L6 (90), L7 (90), L8 (90), L9
(90), W4 (90), W9 (90)

Panel each board was divided into
three panels

1 (300), 2 (300), 3 (300)

(Rosenman et al. 1975). The study started in 1960 and involved
3154 healthy men aged between 39 and 59. All the subjects were
free of heart disease at the beginning of the study. The response
variable is whether these men developed heart disease eight and
a half years later. 255 men developed coronary heart disease,
while the others did not. Table 2 includes the variables thatmight
be related to the chance of developing this disease.

We first highlight the difficulties in the assessment of regres-
sion models with binary outcomes. We fit the data with all the
variables except age, which is a very important predictor clini-
cally. Figure 16 includes the proposed residual plot (left panel)
and the randomized quantile residual plot (right panel). The
proposed residuals have a slight deviation from the diagonal at
the upper tail, while the randomized quantile residuals indicate
that the model is sufficient. This is further supported by the
Hosmer-Lemeshow test (Hosmer and Lemeshow 1980), which
returns a large p-value 0.62, suggesting the adequacy of the
model. Since the data are fit with logistic regression, a calibration
plot is not revealing either.

However, in the left panel of Figure 17, we show the ordered
curve when age is used as the threshold variable. The curve
clearly suggests that the mean structure is insufficient and age
should be considered as a predictor, which is consistent with
common knowledge. In the right panel of Figure 17, we include

Figure 14. Assessment plots for the regression models of the solder data with main effects only. The left and middle panels display the proposed residuals of Poisson and
negative binomial regressions, respectively. The right panel shows the ordered curve and the fitted values are used as the threshold variable.

Figure 15. Assessment plots for the negative binomial models of the solder data with main effects and interactions.
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age as a predictor, and the ordered curve suggests an improve-
ment in the mean structure.

6. Conclusion

Regression models with discrete outcomes are commonly used
in a wide range of areas. Diagnostics for such models are chal-
lenging due to the lack of effective tools. In this article, we
proposed the DPIT residuals to assess regression models with
discrete outcomes. To further assess the mean structure, we also

Table 2. Covariates of heart disease data.

Variable Description Mean (SD) / Levels (count)

age age in years 46.275 (5.517)
height height in inches 69.780 (2.521)
sdp systolic blood pressure in mm Hg 128.603 (15.056)
chol fasting serum cholesterol in mm% 226.346 (43.421)
behave behavior type which is a factor A1 (263), A2 (1320), B3 (1209),

B4 (348)
cigs number of cigarettes smoked per day 11.577 (14.494)
arcus arcus senilis absent (2202), present (938)
bmi body mass index 24.516 (2.564)

proposed an ordered curve, and we showed in the data analysis
that it can revealmodel deficiency overlooked by other tools.We
focused on diagnostics and informal assessment in this article.
Goodness-of-fit tests (e.g., Hosmer et al. 1997; Nattino, Pennell,
and Lemeshow 2020) which provide p-values and statements
with statistical confidence will be investigated in the future.

To summarize the workflow of model assessment using the
proposed tools, one should first look into the QQ plot of the
DPIT residuals for overall assessment. Meanwhile, one should
examine the ordered curve to evaluate the mean structure. We
recommend using the fitted values and potential predictors as
the threshold variable. If one variable leads to a large discrepancy
between the ordered curve and the diagonal, this variable should
be considered to include in the mean function. On the other
hand, if the mean structure seems sufficient yet the residual
plot indicates model deficiencies, one can identify causes of
misspecification from the shape of the QQ plot. For instance, an
S-shaped QQ plot for count data might hint at overdispersion,
while a U-shaped plot for ordinal outcomes might imply non-
proportionality. This can also be combined with tools devoted
to specific types of misspecification (e.g., Pregibon 1981). We
note that in practice, we might incur more than one type of

Figure 16. Residual plots for logistic regression of the heart disease datawith the variable agemissing. Left: QQplot of the proposed residuals. Right: QQplot of randomized
quantile residuals.

Figure 17. Ordered curves for logistic regression of the heart disease data. Left: age is not included in the mean and age is used as the threshold variable. Right: age is
included and fitted values are used as the threshold variable.
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misspecification simultaneously, and the causes of misspecifi-
cation are not always identifiable (Cook and Weisberg 1999).
The regression model-building process should therefore involve
iterations between assessment and improvement.

Appendix A. Additional Derivations

Under the true model, the following properties hold for the DPIT.

1. E {r(Y|X)} = 1
2 . On the normal scale, E

{
�−1 [r(Y|X)]

} = 0.
2. var {r(Y|X)} = 1

12 . On the normal scale, var
{
�−1 [r(Y|X)]

} = 1.
3. For y1 ≤ y2,

r(y1|X) ≤ r(y2|X).

The third property holds since both F(·|X) andG0(·) are nondecreasing
functions. With parameter estimates plugged in, the residuals resemble
the DPIT, which we show in Section 2.4.

Figure B1. QQ plots of the proposed residuals under the uniform and normal scales.
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We now elucidate the construction of ĜMi in (4). If we were to use
all the observations, the estimated DPIT of the ith outcome is

1
n

n∑
j=1

F
(
F(−1)(F(Yi|Xi)|Xj)|Xj

)

= 1
n

n∑
j=1,j�=i

F
(
F(−1)(F(Yi|Xi)|Xj)

∣∣∣Xj
)

+ 1
n
F

(
F(−1) (F(Yi|Xi)|Xi)

∣∣∣Xi
)

= 1
n

n∑
j=1,j�=i

F
(
F(−1)(F(Yi|Xi)|Xj)

∣∣∣Xj
)

+ F(Yi|Xi)
n

.

The first term in this display resembles G0 (F(Yi|Xi)), the DPIT. The
second term, however, induces bias from G0 (F(Yi|Xi)). Hence, we
ought to exclude the ith observation.

Next, we derive the L2(t) function for ordered curves. If Z is con-
tained in X, the cumulative response equals

E [Y1(Z ≤ t)] = EXE [Y1(Z ≤ t)|X]
= EX [1(Z ≤ t)E (Y|X)]
= E [�1(Z ≤ t)] .

If Z is independent of X and Y , the cumulative response can be written
as

E [Y1(Z ≤ t)] = E [1(Z ≤ t)] E� = E [1(Z ≤ t)�] .

In either case,

E [Y1(Z ≤ t)] = E [�1(Z ≤ t)].

We establish Theorem 2.1 with the following assumptions.

Assumption A.1. β̂ is asymptotically efficient. The sequence
√
n(β̂ −

β0) converges in distribution to a tight, Borel-measurable random
element.

The maximum likelihood estimator of GLMs satisfies the asymp-
totic efficiency assumption under regularity conditions.

Assumption A.2. The density of Gβ (F(Yi|Xi,β)) is bounded for β

ranging over a small neighborhood of β0.

Assumption A.2 holds if F(k|X,β) is Lipschitz continuous with
respect to β , for a fixed k. We verify the assumptions for GLMs in the
supplementary material.

Assumption A.3 (Lipschitz condition). There exists a constant α1 such
that for β and β ′ in a small neighborhood of β0,∣∣∣Gβ

(
F(y|x,β)

) − Gβ ′
(
F(y|x,β ′)

)∣∣∣ ≤ α1
∣∣β − β ′∣∣ .

Appendix B. Additional Simulation

To compare the usage of our residuals on a normal and a uniform
scale, in Figure B1, we display the QQ plots of the original residuals
r̂(Yi|Xi) against the quantiles of a uniform distribution in the left
column, and�−1 [

r̂(Yi|Xi)
]
against the quantiles of a standard normal

distribution in the right column. We simulate data using a negative
binomial distribution, and the data are fit correctly in the top row. In
themiddle row, we fit the data with a PoissonGLM, while in the bottom
row, one of the covariates is missing. We can see in the middle and
bottom rows that the uniform residuals accentuate the center, while

the normal residuals emphasize the tails; see a thorough discussion in
Gan, Koehler, and Thompson (1991). In practice, one can choose either
or both displays for model assessment. Note that infinite values might
occur for normal residuals, when the original residuals are very close to
0 or 1.

B.1. Unraveling QQ Plots

When the model is correctly specified, our residuals should follow a
uniform distribution. To construct QQ plots, one can plot the residuals
against the quantiles of a uniformdistribution. To understand the shape
of the QQ plots of the proposed residuals, here we reproduce their
patterns in a heuristic manner. We define the unobservable auxiliary
residuals

r̂M0(Yi|Xi) = GM0
(
F̂M(Yi|Xi)

)
, i = 1, . . . , n,

where GM0 = EX
[
F

(
F(−1)
M (s|X)

∣∣∣X)]
is the underlying distribu-

tion of FM(Y|X). The auxiliary residuals follow a uniform distri-
bution. Since GM0 is a monotone function, and ĜMi converges to
EX

[
FM

(
F(−1)
M (s|X)

∣∣∣X)]
, which is also a monotone function, the

rank of r̂(Yi|Xi) among the proposed residuals is approximately same
as the rank of r̂M0(Yi|Xi) among the auxiliary residuals. Therefore, the
QQ plot of r̂(Yi|Xi), i = 1, . . . , n could, in theory, be approximated by
plotting

r̂(Yi|Xi) against r̂M0(Yi|Xi), i = 1, . . . , n.

The shape of the QQ plot of proposed residuals is thus determined by
the relationship between ĜMi and GM0. Furthermore, this relationship
is preponderantly determined by the distinction between F̂M and F,
averaging over covariates. Therefore, if the QQ plot is above the diago-
nal, it implies that F̂M(k) > F(k) on average, and vice versa.

This property of the proposed residuals can help identify certain
causes of misspecification. In particular, the behavior in the lower
tail displays the comparison between F̂M(k) and F(k) for a small k.
Conversely, the behavior in the upper tail reflects the contrast between
F̂M(k) and F(k) for a large k.

Supplementary Materials

Supplementary material: The supplementary material includes addi-
tional simulation results and proofs of the theoretical results in Sec-
tions 4 and 2.4. (.pdf file)

R code and package: The R code for simulation and data analysis. The
proposed methodology is implemented in the assessor package. See
the README contained in the zip file formore details. (code202312.zip,
zip file)
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